EP1416233B1 - Adsorption refrigerator with heat accumulator - Google Patents
Adsorption refrigerator with heat accumulator Download PDFInfo
- Publication number
- EP1416233B1 EP1416233B1 EP03017429A EP03017429A EP1416233B1 EP 1416233 B1 EP1416233 B1 EP 1416233B1 EP 03017429 A EP03017429 A EP 03017429A EP 03017429 A EP03017429 A EP 03017429A EP 1416233 B1 EP1416233 B1 EP 1416233B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat
- adsorption
- phase
- cooling apparatus
- medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001179 sorption measurement Methods 0.000 title claims abstract description 66
- 238000001816 cooling Methods 0.000 claims abstract description 25
- 239000000872 buffer Substances 0.000 claims abstract description 16
- 238000009833 condensation Methods 0.000 claims abstract description 4
- 230000005494 condensation Effects 0.000 claims abstract description 4
- 238000003795 desorption Methods 0.000 claims description 37
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 34
- 239000010457 zeolite Substances 0.000 claims description 14
- 229910021536 Zeolite Inorganic materials 0.000 claims description 12
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 12
- 239000003795 chemical substances by application Substances 0.000 claims description 10
- 239000007788 liquid Substances 0.000 claims description 6
- 230000005855 radiation Effects 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 2
- 239000000080 wetting agent Substances 0.000 claims description 2
- 230000004888 barrier function Effects 0.000 claims 1
- 238000011017 operating method Methods 0.000 abstract 1
- 239000002594 sorbent Substances 0.000 description 42
- 239000012530 fluid Substances 0.000 description 19
- 239000003570 air Substances 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- 238000001704 evaporation Methods 0.000 description 8
- 230000008020 evaporation Effects 0.000 description 8
- 238000011049 filling Methods 0.000 description 7
- 238000003860 storage Methods 0.000 description 6
- 239000012080 ambient air Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000008014 freezing Effects 0.000 description 3
- 238000007710 freezing Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 241001507939 Cormus domestica Species 0.000 description 2
- 235000013361 beverage Nutrition 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000012782 phase change material Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical class [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000003351 stiffener Substances 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B17/00—Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
- F25B17/08—Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D11/00—Self-contained movable devices, e.g. domestic refrigerators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2339/00—Details of evaporators; Details of condensers
- F25B2339/04—Details of condensers
- F25B2339/046—Condensers with refrigerant heat exchange tubes positioned inside or around a vessel containing water or pcm to cool the refrigerant gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D23/00—General constructional features
- F25D23/003—General constructional features for cooling refrigerating machinery
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2700/00—Means for sensing or measuring; Sensors therefor
- F25D2700/12—Sensors measuring the inside temperature
Definitions
- the invention relates to a periodically operating adsorption cooling apparatus with buffer memory and a method for its operation according to the preamble of claim 1.
- Adsorption chillers are devices in which a solid sorbent sorbs a vaporous working medium with heat release at medium temperature level (adsorption phase).
- the working fluid evaporates in an evaporator while absorbing heat at a lower temperature level. After the adsorption phase, the working medium can be desorbed again by supplying heat at a high temperature level (desorption phase).
- desorption phase working fluid evaporates from the sorbent and flows into a condenser. There, the working fluid is reliquefied and then evaporated again in the evaporator.
- Adsorption refrigerators with solid sorbents are known from EP 0 368 111 and DE-OS 34 25 419.
- Sorbent container filled with sorbent, while sucking agent vapor, which is produced in an evaporator, and sorb it in the Sorptionsffenhellung under heat release. The heat of sorption must be removed from the sorbent filling.
- the chillers can be used to cool and keep food warm in thermally insulated containers. Between the evaporator and the sorbent these refrigerators contain a shut-off device. This allows evaporation and sorption of the working fluid at a later date.
- the adsorption cooling apparatus known from EP 0 368 111 consists of a transportable cooling unit and a stationary charging station which can be separated therefrom.
- the cooling unit contains a sorption tank filled with a solid sorbent and an evaporator with liquid working fluid. Again, evaporator and sorption are connected to each other via a shut-off steam line. Through a heat exchanger embedded in the evaporator flow liquid media, which are cooled by temperature-controlled opening and closing of the shut-off device to the desired temperature level. After the sorbent is saturated with working fluid, it can be heated in the charging station. The working fluid vapor flowing out is reliquefied in the evaporator. The condensation heat is dissipated by cooling water flowing through the embedded heat exchanger.
- shut-off serve on the one hand during the desorption phase to decouple the evaporator from the rest of the refrigerator to prevent hot working medium vapor flowing into the cold evaporator and on the other to regulate the refrigeration in the evaporator during the adsorption or move it to a later date. Without shut-off device, the evaporator becomes hot during the desorption phase and thus warm the medium to be cooled in contact therewith.
- Object of the present invention is to protect in an adsorption refrigerator without shut-off device according to the preamble of claim 1, the medium to be cooled in the desorption against excessive heating.
- the coupling of the condenser to a buffer storage allows a much faster desorption and, consequently, a higher desorption performance, since the liquefaction heat, e.g. can be derived more effectively due to incipient convection.
- the desorption phase can thus be significantly shortened compared to the adsorption phase.
- the medium to be cooled is less exposed to the high liquefaction temperatures.
- the desorption phase can be reduced to a few minutes, while the adsorption phase can take several hours to several days.
- the buffer store can dissipate the heat load absorbed with high power slowly and over small heat exchanger surfaces.
- buffer storages Inexpensive is water, which also allows a high heat transfer performance.
- the condenser can be integrated directly into a water reservoir. Over the outer surface of the tank, the buffered heat is then removed during the long Adsorptionsphase without additional heat exchanger to the ambient air.
- the evaporator system Since the evaporator system is raised to the temperature level of liquefaction at each desorption and must be cooled to the low temperature level of evaporation at the beginning of the adsorption by evaporation of part of the working fluid, it makes sense to keep the thermal mass of the evaporator low and the amount set liquid working fluid so that at the end of the adsorption as possible, the entire working fluid is evaporated. Towards the end of the adsorption, the amount of working fluid in the evaporator becomes ever smaller, and consequently the wetting of the heat exchanger surface for absorbing heat from the medium to be cooled becomes increasingly difficult.
- the evaporator contains wetting agents for this operating state, which distribute the remaining working medium homogeneously over the inner evaporator surface.
- wetting agents for this operating state, which distribute the remaining working medium homogeneously over the inner evaporator surface.
- glass fiber webs which are applied as a thin layer on the corresponding evaporator surfaces, have proved suitable.
- the evaporator is arranged with respect to the medium to be cooled in such a way that it releases relatively little heat during the desorption phase. This is achieved, e.g. in that relatively little medium to be cooled is in contact with the evaporator or is not circulated during the desorption phase.
- the medium to be cooled is gaseous, e.g. in refrigerators, it is advantageous to place the evaporator under the ceiling of the cabinet. Since warm air is lighter than cold, the cold air mass remains in the lower part of the cabinet while only the air surrounding the evaporator gets warm. The goods stored in the cabinet then remain cold during the relatively short desorption phase. This effect can be further enhanced by cold storage media and / or radiation screens, which are arranged below the evaporator.
- Zeolite is a crystalline mineral that consists of a regular skeletal structure of silicon and aluminum oxides. This framework structure contains small cavities in which water molecules can be adsorbed by releasing heat. Within the framework structure, the water molecules are exposed to strong field forces, which bind the molecules in the lattice in a liquid-like phase. The strength of the binding forces acting on the water molecules depends on the already pre-adsorbed amount of water and the temperature of the zeolite. For practical use, up to 25 grams of water per 100 grams of zeolite can be sorbed. Zeolites are solids without disturbing thermal expansion in the adsorption or desorption reaction. The framework structure is freely accessible from all sides for the water vapor molecules. The devices are therefore operational in every situation.
- the use of water as a working fluid makes it possible to reduce the required regulatory effort to a minimum.
- the water surface cools to 0 ° C and freezes on continued evaporation to ice.
- the ice layer can be advantageously used to control the temperature of the medium to be cooled. With low heat input the ice layer grows, with very high heat it melts off. The formation of ice reduces the heat transfer from the medium to be cooled into the evaporator, so that the medium can not cool below 0 ° C. With continued evaporation, the entire water supply can freeze in the evaporator. The sublimation temperature of the ice layer then drops below 0 ° C.
- the aqueous evaporator content may also be added to the freezing point lowering substances, if the temperature of the medium to be cooled should be lowered below 0 ° C.
- Solid sorbents have low heat conduction and limited heat transfer. Since the heat transfer from the sorbent container to the heat-absorbing ambient air is of the same order of magnitude, heat exchangers without ribs, such as plates, tubes and corrugated metal hoses, are generally recommended. Some solid sorbents, such as zeolites, are stable enough to compensate for external pressures on thin-walled heat exchanger surfaces. Additional stiffeners or thick-walled heat exchanger surfaces are therefore not necessary.
- Solid sorbents can also be processed into moldings. A single or a few moldings can form a complete, low-cost sorbent filling.
- desorption end temperatures of 200 to 300 ° C. and adsorption end temperatures of 40 to 80 ° C. are recommended for zeolite / water systems. Since in particular zeolite granules have a low heat conduction, the sorbent containers are to be designed so that the heat conduction path for the amounts of heat converted does not exceed 3 cm.
- thermoelectric desorption As a heat source for the desorption all known means are suitable, provided that the required temperature level for the desorption reaction is achieved.
- electrically heated plates or cartridges which are adapted to the geometry of the sorbent container. Heating devices which heat the sorbent charge by means of radiation or induction (eddy currents) are also very suitable.
- the heating surface When heating the sorbent by means of a flame, the heating surface can also be used as a heat exchanger surface for heat dissipation during the adsorption phase. Thus, one of the usually double-installed heat exchanger surfaces can be saved.
- the working fluid condenses predominantly in the condenser.
- the condensate must be directed from there into the evaporator. If the adsorption chiller is simple in design, the condensate must be able to tile back into the evaporator without additional assistance. This is always easy to realize when the condenser and thus also the heat buffer are higher than the evaporator. The condensate can then already during the desorption phase due to gravity tile back. In refrigerators where this is not possible, it may be advantageous if the condensate is stored in the condenser or a collection tank, to then be sucked up into the evaporator at the beginning of the adsorption phase when the vapor pressure in the evaporator drops.
- the cross section of the working medium vapor line to the sorbent is reduced for this purpose. This can be done, for example, by means of expansion bodies, which reduce the line cross-section to the sorbent as the temperature falls.
- Particularly inexpensive are bi-metal elements that are installed in the evaporator, narrow the output of the evaporator at decreasing evaporator temperatures.
- a refrigerator 1 shown in FIG. 1 consists of a thermally insulated hollow body 2, which closes a door 3 on its front side and which cools food and beverage bottles 11 in the interior and stores them cooled.
- the medium to be cooled by the evaporator in this application is the air in the interior of the refrigerator.
- an evaporator 4 is arranged, from which the working fluid evaporates water 5.
- the evaporator 4 is connected via a working medium vapor line 9 with a sorbent container 12 and via a further connecting line 10 with a condenser 13.
- the evaporator 4 is coated on its lower inner surface with an absorbent non-woven fabric 6, which distributes the working fluid water homogeneously over the heat-absorbing surface. Outside it contains several cooling fins 7, which absorb heat from the medium to be cooled air. Below the cooling fins 7 is a layer cold storing elements 8 are inserted, which contain water and can also ice.
- a bi-metal element 23 is arranged, which narrows the outlet opening to the sorbent container at decreasing evaporator temperatures.
- the condenser 13 provided with heat exchanger fins 15 is located in the lower region of a buffer reservoir 14 which is filled with water 16.
- the sorbent container 12 consists of two metallic Sorberhüllen 17, which embed an electric heater 18 in the middle.
- the Sorberhüllen 17 each contain a sorbent filling 19, which is constructed of zeolite molded bodies.
- a controller 20 controls the operation of the heater 18, depending on the temperature of the refrigerator air and the temperature of the sorbent charge 19.
- Input variables to the controller 20 are the air temperatures in the refrigerator, which are detected by a temperature sensor 21 and the zeolite temperature, which is a zeolite Temperature sensor 22 is reported.
- the function of the refrigerator according to the invention can be subdivided into a relatively short desorption phase and a significantly longer adsorption phase.
- the desorption phase begins with the heating of the sorbent filling 19.
- the temperature sensor 21 reports to the controller 20, the exceeding of the preselected temperature of the refrigerator air.
- the electric heater 18 is put into operation until the zeolite temperature sensor 22 detects the reaching of the desorption end temperature.
- water vapor is expelled from the ever warmer sorbent charge 19, which flows through the working medium vapor line 9, the evaporator 4 and the connecting line 10 into the liquefier 13.
- the steam is liquefied by heat through the heat exchanger fins 15 to the buffer water 16.
- the condensate collects in the lower part of the condenser 13.
- this phase can be kept short according to the invention and the heat losses are low relative to the high heat output, can be dispensed with a thermal insulation of the outer sorbent casing 17.
- 18 temperatures up to 400 ° C can be measured near the electric heater, while the zeolite temperatures in contact with the outer sorption container shells 17 are only 140 ° C hot.
- the heat losses to the environment are much lower from this low temperature level.
- these temperatures occur only at the end of the desorption phase.
- the heating is turned off.
- the buffer has its highest temperature at this time. This now decreases continuously during the following adsorption phase, as heat slowly flows out of the container walls to the environment.
- the buffer memory 30 is above the evaporator 32.
- the working medium vapor line 34 passes through the buffer memory 30 to the water content 35 to be able to effectively derive the liquefaction heat.
- the part of the working medium vapor line 34 which can deliver heat to the water content 35, therefore, at the same time has the function of the condenser.
- the working medium vapor line 34 is arranged inclined, so that the condensate 39 can already flow directly into the evaporator 32 during the desorption phase without additional precautions, following the gravitational force.
- the sorption container 33 consists in this embodiment of an inner heating cartridge 38 and a sorbent filling 37, which is enclosed by a cylindrical Sorber-shell 36. Again, this does not require thermal insulation, since the heat losses due to the short desorption phase and the large temperature gradient within the Sorptionsstoffyogllung 37 are low.
- the operation of the cooling apparatus of FIG. 2 is identical to the above-described operation of the apparatus of FIG. 1. The only difference is that the condensate 39 does not remain in the condenser, but can flow into the evaporator 32 during the desorption phase.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Sorption Type Refrigeration Machines (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
Description
Die Erfindung betrifft einen periodisch arbeitenden Adsorptions-Kühlapparat mit Pufferspeicher und ein Verfahren zu dessen Betrieb gemäß dem Oberbegriff des Anspruch 1.The invention relates to a periodically operating adsorption cooling apparatus with buffer memory and a method for its operation according to the preamble of
Adsorptions-Kühlapparate sind Geräte, in denen ein festes Sorptionsmittel ein dampfförmiges Arbeitsmittel unter Wärmefreisetzung auf mittlerem Temperaturniveau sorbiert (Adsorptionsphase). Das Arbeitsmittel verdampft dabei in einem Verdampfer unter Wärmeaufnahme auf tieferem Temperaturniveau. Nach der Adsorptionsphase kann das Arbeitsmittel durch Wärmezufuhr auf hohem Temperaturniveau wieder desorbiert werden (Desorptionsphase). Dabei dampft Arbeitsmittel aus dem Sorptionsmittel ab und strömt in einen Verflüssiger. Dort wird das Arbeitsmittel rückverflüssigt und im Verdampfer anschließend erneut verdampft.Adsorption chillers are devices in which a solid sorbent sorbs a vaporous working medium with heat release at medium temperature level (adsorption phase). The working fluid evaporates in an evaporator while absorbing heat at a lower temperature level. After the adsorption phase, the working medium can be desorbed again by supplying heat at a high temperature level (desorption phase). In this case, working fluid evaporates from the sorbent and flows into a condenser. There, the working fluid is reliquefied and then evaporated again in the evaporator.
Adsorptions-Kühlapparate mit festen Sorptionsmitteln sind aus der EP 0 368 111 und der DE-OS 34 25 419 bekannt. Sorptionsmittelbehälter, gefüllt mit Sorptionsmittel, saugen dabei Arbeitsmitteldampf, welcher in einem Verdampfer entsteht, ab und sorbieren ihn in der Sorptionsmittelfüllung unter Wärmefreisetzung. Die Sorptionswärme muss dabei aus der Sorptionsmittelfüllung abgeführt werden. Die Kühlapparate können zum Kühlen und Warmhalten von Lebensmitteln in thermisch isolierten Behältern eingesetzt werden. Zwischen dem Verdampfer und dem Sorptionsmittel enthalten diese Kühlapparate eine Absperrvorrichtung. Diese erlaubt eine Verdampfung und Sorption des Arbeitsmittels zu einem späteren Zeitpunkt.Adsorption refrigerators with solid sorbents are known from EP 0 368 111 and DE-OS 34 25 419. Sorbent container, filled with sorbent, while sucking agent vapor, which is produced in an evaporator, and sorb it in the Sorptionsmittelfüllung under heat release. The heat of sorption must be removed from the sorbent filling. The chillers can be used to cool and keep food warm in thermally insulated containers. Between the evaporator and the sorbent these refrigerators contain a shut-off device. This allows evaporation and sorption of the working fluid at a later date.
Der aus der EP 0 368 111 bekannte Adsorptions-Kühlapparat besteht aus einer transportablen Kühleinheit und einer davon separierbaren, stationären Ladestation. Die Kühleinheit enthält einen Sorptionsbehälter, gefüllt mit einem festen Sorptionsmittel und einen Verdampfer mit flüssigem Arbeitsmittel. Auch hier sind Verdampfer und Sorptionsbehälter über eine absperrbare Dampfleitung miteinander verbunden. Durch einen im Verdampfer eingebetteten Wärmetauscher fließen flüssige Medien, die durch temperaturgeregeltes Öffnen und Schließen der Absperreinrichtung auf das gewünschte Temperaturniveau gekühlt werden. Nachdem das Sorptionsmittel mit Arbeitsmittel gesättigt ist, kann es in der Ladestation erhitzt werden. Der dabei abströmende Arbeitsmitteldampf wird im Verdampfer rückverflüssigt. Die Kondensationswärme wird durch Kühlwasser, das durch den eingebetteten Wärmetauscher strömt, abgeführt.The adsorption cooling apparatus known from EP 0 368 111 consists of a transportable cooling unit and a stationary charging station which can be separated therefrom. The cooling unit contains a sorption tank filled with a solid sorbent and an evaporator with liquid working fluid. Again, evaporator and sorption are connected to each other via a shut-off steam line. Through a heat exchanger embedded in the evaporator flow liquid media, which are cooled by temperature-controlled opening and closing of the shut-off device to the desired temperature level. After the sorbent is saturated with working fluid, it can be heated in the charging station. The working fluid vapor flowing out is reliquefied in the evaporator. The condensation heat is dissipated by cooling water flowing through the embedded heat exchanger.
Die Absperreinrichtungen dienen zum einen dazu, während der Desorptionsphase den Verdampfer vom restlichen Kühlapparat abzukoppeln, um ein Einströmen heißen Arbeitsmitteldampfes in den kalten Verdampfer zu verhindern und zum anderen dazu, während der Adsorptionsphase die Kälteerzeugung im Verdampfer zu regeln oder auf einen späteren Zeitpunkt zu verschieben. Ohne Absperreinrichtung wird der Verdampfer während der Desorptionsphase heiß und damit das mit diesem in Kontakt stehende zu kühlende Medium warm.The shut-off serve on the one hand during the desorption phase to decouple the evaporator from the rest of the refrigerator to prevent hot working medium vapor flowing into the cold evaporator and on the other to regulate the refrigeration in the evaporator during the adsorption or move it to a later date. Without shut-off device, the evaporator becomes hot during the desorption phase and thus warm the medium to be cooled in contact therewith.
Aus der US-A-5 272 891 und der US-A-2 055 669 ist bekannt, die Verdampfer so anzuordnen, dass sie auch während der Desorptionsphasen mit Arbeitsmittel überflutet sind. Arbeitsmitteldampf kann dann nicht in den Verdampfer strömen und ihn erwärmen. Diese Lösung ist jedoch für das Arbeitsmittel Wasser mit seinem sehr niedrigen Dampfdruck nicht realisierbar, da der hydrostatische Wasserdruck einer Verdampfung entgegenwirkt. Aus beiden Schriften ist auch bekannt die Kondensationswärme in einem Wärmepuffer größtenteils bis zur folgenden Sorptionsphase zwischenzuspeichern.From US-A-5 272 891 and US-A-2 055 669 it is known to arrange the evaporators so that they are also flooded with working fluid during the desorption phases. Fluid vapor can then not flow into the evaporator and heat it. However, this solution is not feasible for the working fluid water with its very low vapor pressure, since the hydrostatic water pressure counteracts evaporation. From both documents is also known to temporarily store the heat of condensation in a heat buffer until the next sorption phase.
Aufgabe der vorliegenden Erfindung ist es, in einem Adsorptions-Kühlapparat ohne Absperreinrichtung gemäß dem Oberbegriff des Anspruchs 1 das zu kühlende Medium in der Desorptionsphase vor unzulässiger Erwärmung zu schützen.Object of the present invention is to protect in an adsorption refrigerator without shut-off device according to the preamble of
Gelöst wird diese Aufgabe bei einem Adsorptions-Kühlapparat der erfindungsgemäßen Art durch die kennzeichnenden Merkmale der Ansprüche 1 und 11. Die Unteransprüche zeigen vorteilhafte Ausgestaltungen der Erfindung.This object is achieved in an adsorption cooling apparatus of the type according to the invention by the characterizing features of
Die Kopplung des Verflüssigers an einen Pufferspeicher erlaubt eine deutlich schnellere Desorption und damit einhergehend eine höhere Desorptionsleistung, da die Verflüssigungswärme z.B. auf Grund einsetzender Konvektion effektiver abgeleitet werden kann. Die Desorptionsphase kann damit gegenüber der Adsorptionsphase deutlich verkürzt werden. Das zu kühlende Medium ist weniger lange den hohen Verflüssigungs-Temperaturen ausgesetzt. Bei einem geeignet dimensionierten Pufferspeicher kann die Desorptionsphase auf wenige Minuten reduziert werden, während die Adsorptionsphase mehrere Stunden bis zu mehreren Tagen dauern kann. Der Pufferspeicher kann während dieser langen Adsorptionsphase die mit hoher Leistung aufgenommene Wärmelast langsam und über kleine Wärmetauscherflächen abführen.The coupling of the condenser to a buffer storage allows a much faster desorption and, consequently, a higher desorption performance, since the liquefaction heat, e.g. can be derived more effectively due to incipient convection. The desorption phase can thus be significantly shortened compared to the adsorption phase. The medium to be cooled is less exposed to the high liquefaction temperatures. With a suitably sized buffer storage, the desorption phase can be reduced to a few minutes, while the adsorption phase can take several hours to several days. During this long adsorption phase, the buffer store can dissipate the heat load absorbed with high power slowly and over small heat exchanger surfaces.
Als Pufferspeicher sind prinzipiell alle aus der Wärmespeichertechnik bekannten Speichermedien wie Flüssigkeiten, Phasenwechselmaterialien (PCM) und Feststoffe geeignet. Preiswert ist Wasser, das auch eine hohe Wärmeübertragungsleistung ermöglicht. Der Verflüssiger kann dabei direkt in einem Wasserspeicher integriert sein. Über die äußere Oberfläche des Tanks wird dann die gepufferte Wärme während der langen Adsorptionsphase ohne zusätzliche Wärmetauscher an die Umgebungsluft abgeführt.In principle, all storage media known from heat storage technology, such as liquids, phase change materials (PCM) and solids, are suitable as buffer storages. Inexpensive is water, which also allows a high heat transfer performance. The condenser can be integrated directly into a water reservoir. Over the outer surface of the tank, the buffered heat is then removed during the long Adsorptionsphase without additional heat exchanger to the ambient air.
Da der Verdampfer systembedingt bei jeder Desorption auf das Temperaturniveau der Verflüssigung angehoben wird und zu Beginn der Adsorptionsphase durch Verdampfen eines Teils des Arbeitsmittels wieder auf das tiefe Temperaturniveau der Verdampfung abgekühlt werden muss, ist es sinnvoll die thermische Masse des Verdampfers gering zu halten und die Menge flüssigen Arbeitsmittels so einzustellen, dass am Ende der Adsorptionsphase möglichst das gesamte Arbeitsmittel verdampft ist. Gegen Ende der Adsorption wird die Arbeitsmittelmenge im Verdampfer immer kleiner und folglich die Benetzung der Wärmetauscherfläche zur Wärmeaufnahme aus dem zu kühlenden Medium immer schwieriger. Erfindungsgemäß enthält der Verdampfer für diesen Betriebszustand Benetzungsmittel, die das restliche Arbeitsmittel homogen über die innere Verdampferfläche verteilen. Bewährt haben sich hierfür Glasfaservliese, die als dünne Schicht auf den entsprechenden Verdampferflächen aufgebracht sind.Since the evaporator system is raised to the temperature level of liquefaction at each desorption and must be cooled to the low temperature level of evaporation at the beginning of the adsorption by evaporation of part of the working fluid, it makes sense to keep the thermal mass of the evaporator low and the amount set liquid working fluid so that at the end of the adsorption as possible, the entire working fluid is evaporated. Towards the end of the adsorption, the amount of working fluid in the evaporator becomes ever smaller, and consequently the wetting of the heat exchanger surface for absorbing heat from the medium to be cooled becomes increasingly difficult. According to the invention, the evaporator contains wetting agents for this operating state, which distribute the remaining working medium homogeneously over the inner evaporator surface. For this purpose, glass fiber webs, which are applied as a thin layer on the corresponding evaporator surfaces, have proved suitable.
Besonders vorteilhaft ist es, wenn der Verdampfer in Bezug auf das zu kühlende Medium so angeordnet ist, dass er während der Desorptionsphase relativ wenig Wärme abgibt. Erreicht wird dies z.B. dadurch, dass relativ wenig zu kühlendes Medium mit dem Verdampfer in Kontakt steht oder während der Desorptionsphase nicht umgewälzt wird. Wenn das zu kühlende Medium gasförmig ist, wie z.B. in Kühlschränken, ist es vorteilhaft, den Verdampfer unter der Decke des Schrankes zu platzieren. Da warme Luft leichter ist als kalte, verbleibt die kalte Luftmasse im unteren Bereich des Schrankes während nur die den Verdampfer umgebende Luftmenge warm wird. Die im Schrank gelagerten Waren bleiben dann während der relativ kurzen Desorptionsphase kalt. Dieser Effekt kann noch zusätzlich durch Kälte speichernde Medien und/oder Strahlungsschirmen verstärkt werden, die unterhalb des Verdampfers angeordnet sind.It is particularly advantageous if the evaporator is arranged with respect to the medium to be cooled in such a way that it releases relatively little heat during the desorption phase. This is achieved, e.g. in that relatively little medium to be cooled is in contact with the evaporator or is not circulated during the desorption phase. If the medium to be cooled is gaseous, e.g. in refrigerators, it is advantageous to place the evaporator under the ceiling of the cabinet. Since warm air is lighter than cold, the cold air mass remains in the lower part of the cabinet while only the air surrounding the evaporator gets warm. The goods stored in the cabinet then remain cold during the relatively short desorption phase. This effect can be further enhanced by cold storage media and / or radiation screens, which are arranged below the evaporator.
Für hohe Desorptionsleistungen sind eine hohe Wärmeleitung im Sorptionsmittel und ein guter Wärmeübergang von der Heizquelle nötig. Besonders vorteilhaft kann es sein, wenn die Heizleistung in das Sorptionsmittel während der Desorptionsphase weit höher ist, als die Wärmeverluste an die Umgebung. In diesem Fall kann eine thermische Isolierung an den der Umgebung zugewandten Sorptionsbehälter-Hüllen entfallen. Über diese wird während der Adsorptionsphase die Adsorptionswärme abgegeben, ohne dass es zusätzlicher Maßnahmen bedarf.For high desorption a high heat conduction in the sorbent and a good heat transfer from the heat source are necessary. It may be particularly advantageous if the heating power in the sorbent during the desorption phase is much higher than the heat losses to the environment. In this case, thermal isolation from the sorbent container sheaths facing the environment may be eliminated. Through this, the heat of adsorption is released during the adsorption phase, without the need for additional measures.
Besonders vorteilhaft ist die Verwendung des Adsorptionsstoffpaares Zeolith/Wasser. Zeolith ist ein kristallines Mineral, das aus einer regelmäßigen Gerüststruktur aus Silizium- und Aluminiumoxiden besteht. Diese Gerüststruktur enthält kleine Hohlräume, in welchen Wassermoleküle unter Wärmefreisetzung adsorbiert werden können. Innerhalb der Gerüststruktur sind die Wassermoleküle starken Feldkräften ausgesetzt, welche die Moleküle im Gitter in einer flüssigkeitsähnlichen Phase binden. Die Stärke der auf die Wassermoleküle einwirkenden Bindungskräfte ist abhängig von der bereits voradsorbierten Wassermenge und der Temperatur des Zeolithen. Für den praktischen Gebrauch können pro 100 Gramm Zeolith bis zu 25 Gramm Wasser sorbiert werden. Zeolithe sind feste Stoffe ohne störende Wärmeausdehnung bei der Adsorptions- bzw. Desorptionsreaktion. Die Gerüststruktur ist von allen Seiten für die Wasserdampfmoleküle frei zugänglich. Die Apparate sind deshalb in jeder Lage einsatzfähig.The use of the zeolite / water adsorption substance pair is particularly advantageous. Zeolite is a crystalline mineral that consists of a regular skeletal structure of silicon and aluminum oxides. This framework structure contains small cavities in which water molecules can be adsorbed by releasing heat. Within the framework structure, the water molecules are exposed to strong field forces, which bind the molecules in the lattice in a liquid-like phase. The strength of the binding forces acting on the water molecules depends on the already pre-adsorbed amount of water and the temperature of the zeolite. For practical use, up to 25 grams of water per 100 grams of zeolite can be sorbed. Zeolites are solids without disturbing thermal expansion in the adsorption or desorption reaction. The framework structure is freely accessible from all sides for the water vapor molecules. The devices are therefore operational in every situation.
Die Verwendung von Wasser als Arbeitsmittel gestattet es, den erforderlichen Regelungsaufwand auf ein Minimum zu reduzieren. Beim Verdampfen von Wasser unter Vakuum kühlt sich die Wasseroberfläche auf 0°C ab und gefriert bei fortgesetzter Verdampfung zu Eis. Die Eisschicht kann vorteilhaft zur Regelung der Temperatur des zu kühlenden Mediums benutzt werden. Bei geringer Wärmezufuhr wächst die Eisschicht, bei sehr großer Wärmezufuhr schmilzt sie ab. Durch die Eisbildung wird die Wärmeübertragung vom zu kühlenden Medium in den Verdampfer reduziert, so dass sich das Medium nicht unter 0°C abkühlen kann. Bei fortgesetzter Verdampfung kann der komplette Wasservorrat im Verdampfer vereisen. Die Sublimationstemperatur der Eisschicht sinkt anschließend unter 0°C ab.The use of water as a working fluid makes it possible to reduce the required regulatory effort to a minimum. Upon evaporation of water under vacuum, the water surface cools to 0 ° C and freezes on continued evaporation to ice. The ice layer can be advantageously used to control the temperature of the medium to be cooled. With low heat input the ice layer grows, with very high heat it melts off. The formation of ice reduces the heat transfer from the medium to be cooled into the evaporator, so that the medium can not cool below 0 ° C. With continued evaporation, the entire water supply can freeze in the evaporator. The sublimation temperature of the ice layer then drops below 0 ° C.
Dem wässerigen Verdampferinhalt können auch den Gefrierpunkt absenkende Stoffe beigemischt sein, wenn die Temperatur des zu kühlenden Mediums unter 0°C abgesenkt werden soll.The aqueous evaporator content may also be added to the freezing point lowering substances, if the temperature of the medium to be cooled should be lowered below 0 ° C.
Verwendbar sind auch andere Sorptionstoff-Paarungen, bei denen das Sorptionsmittel fest ist und auch bei der Sorptionsreaktion fest bleibt. Feste Sorptionsmittel haben eine geringe Wärmeleitung und einen begrenzten Wärmeübergang. Da auch der Wärmeübergang vom Sorptionsmittelbehälter an die Wärme aufnehmende Umgebungsluft in der gleichen Größenordnung liegt, empfehlen sich prinzipiell Wärmetauscher ohne Berippung, wie beispielsweise Platten, Rohre und gewellte Metallschläuche. Einige feste Sorptionsmittel, wie Zeolithe, sind stabil genug um auch äußere Überdrücke auf dünnwandigen Wärmetauscherflächen zu kompensieren. Zusätzliche Versteifungen oder dickwandige Wärmetauscherflächen sind deshalb nicht nötig.Also usable are other sorbent pairings in which the sorbent is solid and remains solid during the sorption reaction. Solid sorbents have low heat conduction and limited heat transfer. Since the heat transfer from the sorbent container to the heat-absorbing ambient air is of the same order of magnitude, heat exchangers without ribs, such as plates, tubes and corrugated metal hoses, are generally recommended. Some solid sorbents, such as zeolites, are stable enough to compensate for external pressures on thin-walled heat exchanger surfaces. Additional stiffeners or thick-walled heat exchanger surfaces are therefore not necessary.
Feste Sorptionsmittel lassen sich zudem zu Formkörpern verarbeiten. Ein einzelner oder einige wenige Formkörper können eine komplette, preisgünstige Sorptionsmittelfüllung bilden.Solid sorbents can also be processed into moldings. A single or a few moldings can form a complete, low-cost sorbent filling.
Für eine wirtschaftliche Betriebsweise sind bei Zeolith/Wasser-Systemen Desorptions-Endtemperaturen von 200 bis 300 °C und Adsorptions-Endtemperaturen von 40 bis 80°C empfehlenswert. Da insbesondere Zeolithgranulate eine geringe Wärmeleitung haben, sind die Sorptionsmittelbehälter so auszulegen, dass der Wärmeleitungsweg für die umgesetzten Wärmemengen 3 cm nicht übersteigt.For economical operation, desorption end temperatures of 200 to 300 ° C. and adsorption end temperatures of 40 to 80 ° C. are recommended for zeolite / water systems. Since in particular zeolite granules have a low heat conduction, the sorbent containers are to be designed so that the heat conduction path for the amounts of heat converted does not exceed 3 cm.
Als Wärmequelle für die Desorptionsphase sind alle bekannten Einrichtungen geeignet, vorausgesetzt das erforderliche Temperaturniveau für die Desorptionsreaktion wird damit erreicht. Vorteilhaft sind elektrisch beheizte Platten oder Patronen, die der Geometrie der Sorptionsmittelbehälter angepasst sind. Gut geeignet sind auch Heizvorrichtungen, die mittels Strahlung oder Induktion (Wirbelströme) die Sorptionsmittelfüllung erhitzen. Beim Beheizen des Sorptionsmittels mittels einer Flamme kann die Heizfläche auch als Wärmetauscherfläche zur Wärmeabgabe während der Adsorptionsphase genutzt werden. Somit kann eine der üblicherweise doppelt installierten Wärmetauscherflächen eingespart werden.As a heat source for the desorption all known means are suitable, provided that the required temperature level for the desorption reaction is achieved. Advantageously, electrically heated plates or cartridges, which are adapted to the geometry of the sorbent container. Heating devices which heat the sorbent charge by means of radiation or induction (eddy currents) are also very suitable. When heating the sorbent by means of a flame, the heating surface can also be used as a heat exchanger surface for heat dissipation during the adsorption phase. Thus, one of the usually double-installed heat exchanger surfaces can be saved.
Vorteilhaft kann es auch sein, die Geometrie des Sorptionsmittelbehälters speziell auf die Wärmeabgabe während der Sorptionsphase abzustimmen. Für den Fall der Wärmeabgabe an die Umgebungsluft sind große, strömungsgünstige Wärmetauscherflächen zu bevorzugen.It can also be advantageous to tailor the geometry of the sorbent container specifically to the heat output during the sorption phase. In the case of heat emission to the ambient air, large, flow-favorable heat exchanger surfaces are to be preferred.
Das Arbeitsmittel kondensiert überwiegend im Verflüssiger. Das Kondensat muss von dort in den Verdampfer geleitet werden. Wenn der Adsorptions-Kühlapparat einfach aufgebaut ist, muss das Kondensat ohne zusätzliche Hilfe in den Verdampfer zurückfliesen können. Einfach zu realisieren ist dies immer dann, wenn der Verflüssiger und damit auch der Wärmepuffer höher liegen als der Verdampfer. Das Kondensat kann dann schon während der Desorptionsphase auf Grund der Schwerkraft zurückfliesen. In Kühlapparaten wo dies nicht möglich ist, kann es von Vorteil sein, wenn das Kondensat im Verflüssiger oder einem Sammeltank gespeichert wird, um dann zu Beginn der Adsorptionsphase, wenn der Dampfdruck im Verdampfer sinkt, in den Verdampfer hochgesaugt zu werden.The working fluid condenses predominantly in the condenser. The condensate must be directed from there into the evaporator. If the adsorption chiller is simple in design, the condensate must be able to tile back into the evaporator without additional assistance. This is always easy to realize when the condenser and thus also the heat buffer are higher than the evaporator. The condensate can then already during the desorption phase due to gravity tile back. In refrigerators where this is not possible, it may be advantageous if the condensate is stored in the condenser or a collection tank, to then be sucked up into the evaporator at the beginning of the adsorption phase when the vapor pressure in the evaporator drops.
Bei kostengünstigen Kühlapparaten muss auf eine aufwendige, elektronische Regelung verzichtet werden. Da aber Adsorptionsapparate zwangsläufig eine stark schwankende Kühlleistung abgeben, ist es von Vorteil, wenn die Kühlleistung auf einfache Weise begrenzt werden kann. Erfindungsgemäß wird hierzu der Querschnitt der Arbeitsmitteldampfleitung zum Sorptionsmittel verringert. Dies kann z.B. durch Dehnkörper erfolgen, die bei sinkender Temperatur den Leitungsquerschnitt zum Sorptionsmittel verkleinern. Besonders preiswert sind Bi-MetallElemente, die im Verdampfer eingebaut, den Ausgang des Verdampfers bei sinkenden Verdampfertemperaturen verengen.In low-cost refrigerators must be dispensed with a complex, electronic control. However, since adsorption devices inevitably give off a strongly fluctuating cooling capacity, it is advantageous if the cooling capacity can be limited in a simple manner. According to the invention, the cross section of the working medium vapor line to the sorbent is reduced for this purpose. This can be done, for example, by means of expansion bodies, which reduce the line cross-section to the sorbent as the temperature falls. Particularly inexpensive are bi-metal elements that are installed in the evaporator, narrow the output of the evaporator at decreasing evaporator temperatures.
In der Zeichnung ist die Erfindung am Beispiel zweier elektrisch beheizter Kühlschränke dargestellt.
- Fig. 1 zeigt ein Schnittbild durch einen Adsorptions-Kühlapparat mit tiefer liegendem Verflüssiger, während
- Fig. 2 den oberen Teil eines Adsorptions-Kühlapparat mit einem in Bezug auf den Verdampfer höher liegenden Verflüssiger aufzeigt.
- Fig. 1 shows a sectional view through an adsorption chiller with lower condenser, while
- Fig. 2 shows the upper part of an adsorption refrigerator with a higher condenser with respect to the evaporator.
Ein in Fig. 1 dargestellter Kühlschrank 1 besteht aus einem thermisch isolierten Hohlkörper 2, den an seiner Vorderseite eine Tür 3 verschließt und der im Innenraum Lebensmittel und Getränkeflaschen 11 abkühlt und gekühlt lagert. Das vom Verdampfer zu kühlende Medium ist in dieser Anwendung die Luft im Innenraum des Kühlschrankes.A
Unter der Decke des Kühlschrankes 1 ist ein Verdampfer 4 angeordnet, aus dem das Arbeitsmittel Wasser 5 verdampft. Der Verdampfer 4 ist über eine Arbeitsmitteldampfleitung 9 mit einem Sorptionsmittelbehälter 12 und über eine weitere Verbindungsleitung 10 mit einem Verflüssiger 13 verbunden. Der Verdampfer 4 ist auf seiner unteren Innenfläche mit einem saugfähiges Faservlies 6 beschichtet, welches das Arbeitsmittel Wasser homogen über die Wärme aufnehmende Oberfläche verteilt. Außen enthält er mehrere Kühlrippen 7, die Wärme aus dem zu kühlenden Medium Luft aufnehmen. Unterhalb der Kühlrippen 7 ist eine Lage Kälte speichernde Elemente 8 eingelegt, die Wasser enthalten und die auch vereisen können. Vor der Mündung der Arbeitsmitteldampfleitung 9 ist ein Bi-Metall-Element 23 angeordnet, das bei sinkenden Verdampfertemperaturen die Austrittsöffnung zum Sorptionsmittelbehälter verengt. Der mit Wärmetauscherrippen 15 versehene Verflüssiger 13 liegt im unteren Bereich eines Pufferspeichers 14, der mit Wasser 16 aufgefüllt ist. Der Sorptionsmittelbehälter 12 besteht aus zwei metallischen Sorberhüllen 17, die in der Mitte eine elektrische Heizung 18 einbetten. Die Sorberhüllen 17 enthalten jeweils eine Sorptionsmittelfüllung 19, die aus Zeolithformkörpern aufgebaut ist.Under the ceiling of the
Ein Regler 20 steuert den Betrieb der Heizung 18 , abhängig von der Temperatur der Kühlschrankluft und der Temperatur der Sorptionsmittelfüllung 19. Eingangsgrößen in den Regler 20 sind die Lufttemperaturen im Kühlschrank, die über einen Temperatursensor 21 erfasst werden und die Zeolithtemperatur, die von einem Zeolith-Temperaturfühler 22 gemeldet wird.A
Die erfindungsgemäße Funktion des Kühlschrankes lässt sich in eine relativ kurze Desorptionsphase und eine deutlich längere Adsorptionsphase unterteilen.The function of the refrigerator according to the invention can be subdivided into a relatively short desorption phase and a significantly longer adsorption phase.
Die Desorptionsphase beginnt mit dem Aufheizen der Sorptionsmittelfüllung 19. Der Temperatursensor 21 meldet an den Regler 20 die Überschreitung der vorgewählten Temperatur der Kühlschrankluft. Daraufhin wird die elektrische Heizung 18 in Betrieb genommen bis der Zeolith-Temperaturfühler 22 das Erreichen der Desorptions-Endtemperatur feststellt. Während der Heizphase wird aus der immer wärmer werden Sorptionsmittelfüllung 19 Wasserdampf ausgetrieben, der durch die Arbeitsmitteldampfleitung 9, den Verdampfer 4 und die Verbindungsleitung 10 in den Verflüssiger 13 einströmt. In diesem wird der Dampf durch Wärmeabgabe über die Wärmetauscherrippen 15 an das Pufferwasser 16 verflüssigt. Das Kondensat sammelt sich im unteren Bereich des Verflüssigers 13. Ein kleiner Teil des Wasserdampfes verflüssigt sich im Verdampfer 4 bis dieser auf das Temperaturniveau des Verflüssigers 13 angestiegen ist. Auch die Luftmassen rund um den Verdampfer 4 erwärmen sich. Da diese Luftmenge leichter ist, als die kalte Luft im unteren Kühlschrankbereich, erfolgt keine Vermischung. Zudem verhindern die Kälte speichernden Elemente 8 dass die Getränkeflaschen 11 im Kühlschrank (z.B. durch Wärmestrahlung) merklich erwärmt werden.The desorption phase begins with the heating of the sorbent filling 19. The
Auch die mit der Umgebungsluft in Kontakt stehenden Sorptionsbehälter-Hüllen 17 geben während der Desorptionsphase Wärme ab. Da diese Phase aber erfindungsgemäß kurz gehalten werden kann und die Wärmeverluste relativ zur hohen Heizleistung gering sind, kann auf eine thermische Isolierung der äußeren Sorptionsbehälter-Hüllen 17 verzichtet werden. Zudem bildet sich innerhalb der Sorptionsmittelfüllung 19 ein relativ starker Temperaturgradient aus. So sind nahe der elektrischen Heizung 18 Temperaturen bis 400 °C messbar, während die Zeolithtemperaturen im Kontakt zu den außenliegenden Sorptionsbehälter-Hüllen 17 nur 140 °C heiß werden. Die Wärmeverluste an die Umgebung sind von diesem niedrigen Temperaturniveau deutlich geringer. Zudem treten diese Temperaturen lediglich am Ende der Desorptionsphase auf. Mit dem Erreichen der Desorptions-Endtemperatur wird die Beheizung abgestellt. Der Pufferspeicher hat zu diesem Zeitpunkt seine höchste Temperatur. Diese sinkt nunmehr während der folgenden Adsorptionsphase kontinuierlich ab, da über die Behälterwände langsam Wärme an die Umgebung abfließt.The
Auch über die nicht thermisch isolierten Sorptionsbehälter-Hüllen 17 fließt weiterhin Wärme an die vorbeiströmende Umgebungsluft ab. Die Temperatur der Sorptionsmittelfüllung 19 sinkt dadurch und Arbeitsmitteldampf strömt zurück in den Sorptionsmittelbehälter 12. Der Dampfdruck im Verdampfer 4 nimmt daraufhin ab bis das Kondensat aus dem Verflüssiger hochgesaugt wird. Alsbald befindet sich die gesamte flüssige Arbeitsmittelmenge im Verdampfer 4. Bei fortgesetzter Abkühlung der Sorptionsmittelfüllung 19 wird im Laufe der Adsorptionsphase auch diese Wassermasse im Verdampfer unter Aufnahme der Verdampfungswärme verdampfen. Bei Verdampfungstemperaturen unterhalb des Gefrierpunktes wird nach und nach die verbliebene Wassermenge vereisen. Ein mögliches Abkühlen weit unter den Gefrierpunkt verhindert das Bi-Metallelement 23, das die Einströmungsöffnung in die Arbeitsmitteldampfleitung 9 verengt. Das Ende der Adsorptionsphase ist erreicht, wenn der Regler 20 eine zu hohe Lufttemperatur im Kühlschrank registriert. Durch Aufheizung der Sorptionsmittelfüllung 19 beginnt die Desorptionsphase dann von vorne.Heat also flows through the non-thermally insulated
Bei dem in Fig. 2 dargestellten Adsorptions-Kühlapparat liegt der Pufferspeicher 30 oberhalb des Verdampfers 32. Vom Sorptionsmittelbehälter 33 verläuft die Arbeitsmitteldampfleitung 34 durch den Pufferspeicher 30 um an dessen Wasserinhalt 35 die Verflüssigungswärme effektiv ableiten zu können. Der Teil der Arbeitsmitteldampfleitung 34, der Wärme an den Wasserinhalt 35 abgeben kann hat demzufolge zugleich die Funktion des Verflüssigers. Die Arbeitsmitteldampfleitung 34 ist geneigt angeordnet, so dass das Kondensat 39 bereits während der Desorptionsphase ohne zusätzliche Vorkehrungen, der Schwerkraft folgend direkt in den Verdampfer 32 abfließen kann. Der Sorptionsbehälter 33 besteht in dieser Ausgestaltung aus einer innenliegenden Heizpatrone 38 und einer Sorptionsmittelfüllung 37, die von einer zylindrischen Sorber-Hülle 36 umschlossen ist. Auch diese benötigt keine thermische Isolierung, da die Wärmeverluste auf Grund der kurzen Desorptionsphase und des großen Temperaturgradienten innerhalb der Sorptionsmittelfüllung 37 gering sind.In the adsorption cooling apparatus shown in Fig. 2, the
Die Betriebsweise des Kühlapparates nach Fig. 2 verläuft identisch zu der weiter oben beschriebenen Betriebsweise des Apparates gemäß Fig. 1. Einziger Unterschied ist, dass das Kondensat 39 nicht im Verflüssiger verbleibt, sondern bereits während der Desorptionsphase in den Verdampfer 32 abfließen kann.The operation of the cooling apparatus of FIG. 2 is identical to the above-described operation of the apparatus of FIG. 1. The only difference is that the
Claims (11)
- Adsorption cooling apparatus including an intermittently heated sorption agent container (12), which contains a sorption agent (19), which exothermically adsorbs a working agent during an adsorption phase and desorbs during a subsequent desorption phase with the addition of heat at relatively high temperatures, a condenser (13), which draws off condensed working agent via a connecting conduit (10) into the vaporiser (4), which is in turn connected to the sorption agent (19) via a working agent vapour conduit (9) and, during the adsorption phase, absorbs heat from a medium to be cooled, and the condenser (13) is coupled to an accumulator (14), which stores at least a proportion of the heat of condensation of the working medium vapour and can conduct the stored heat to the environment even during the adsorption phase, characterised in that the vaporiser (4) contains wetting agents (6),which produce a homogeneous distribution of the liquid working agent within the vaporiser.
- Adsorption cooling apparatus as claimed in one of the preceding claims, characterised in that the vaporiser (4) is so arranged that it transfers relatively little heat to the medium to be cooled during the desorption phase.
- Adsorption cooling apparatus as claimed in one of the preceding claims, characterised in that the vaporiser (4) is arranged in the upper region of the medium to be cooled and that the medium to be heated during the desorption phase does not mix with the cooler medium located beneath it due to the lower density.
- Adsorption cooling apparatus as claimed in one of the preceding claims, characterised in that arranged beneath the vaporiser (4) there is an element (8) storing cold or a radiation shield.
- Adsorption cooling apparatus as claimed in one of the preceding claims, characterised in that the medium to be cooled is prevented by means of barrier devices from exchanging heat with the medium that has already been cooled during the desorption phase.
- Adsorption cooling apparatus as claimed in one of the preceding claims, characterised in that the desorption heat supplied during the desorption phase is supplied from a burner.
- Adsorption cooling apparatus as claimed in one of the preceding claims, characterised in that the sorption agent contains zeolite and the working agent contains water.
- Adsorption cooling apparatus as claimed in one of the preceding claims, characterised in that the condensate is collected at a lower level in a condensate buffer and at the beginning of the adsorption phase is drawn into the higher level of the vaporiser (4) by suction.
- Adsorption cooling apparatus as claimed in one of the preceding claims, characterised in that the working medium vapour conduit (9) includes a control element, which restricts the flow cross-section at vaporiser temperatures which are too low.
- Adsorption cooling apparatus as claimed in Claim 10, characterised in that the control element includes a bimetallic element (23).
- A method of operating an adsorption cooling apparatus as claimed in Claim 1, wherein the desorption phase constitutes less than one-third of the time of the adsorption phase, characterised in that during the adsorption phase, a temperature gradient of above 100 K is produced between the heat-receiving surface and the heat-emitting surface, caused by high heat output.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10250510 | 2002-10-29 | ||
DE10250510A DE10250510A1 (en) | 2002-10-29 | 2002-10-29 | Adsorption cooling device with buffer storage |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1416233A2 EP1416233A2 (en) | 2004-05-06 |
EP1416233A3 EP1416233A3 (en) | 2005-09-21 |
EP1416233B1 true EP1416233B1 (en) | 2007-04-25 |
Family
ID=32087289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03017429A Expired - Lifetime EP1416233B1 (en) | 2002-10-29 | 2003-08-01 | Adsorption refrigerator with heat accumulator |
Country Status (6)
Country | Link |
---|---|
US (1) | US6820441B2 (en) |
EP (1) | EP1416233B1 (en) |
JP (1) | JP2004150792A (en) |
AT (1) | ATE360787T1 (en) |
DE (2) | DE10250510A1 (en) |
ES (1) | ES2283688T3 (en) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2851329B1 (en) * | 2003-02-17 | 2006-02-03 | Airbus | METHOD OF MAINTAINING COLD FOOD ON AIRCRAFT AND MEANS FOR IMPLEMENTING THE SAME |
DE10344455A1 (en) | 2003-09-25 | 2005-05-12 | Zeolith Tech | Process and devices for rapid solidification of hydrous substances |
DE102005034297A1 (en) * | 2005-02-25 | 2006-08-31 | Zeo-Tech Zeolith-Technologie Gmbh | Cooling unit for use in food industry, has sorbent material sealed into sorbent-containing pouch having multilayer sheeting material with metallic layer or metallized layer for allowing vacuo to sorb vaporous working medium |
WO2008015608A2 (en) * | 2006-08-04 | 2008-02-07 | Koninklijke Philips Electronics N.V. | A domestic beverage dispensing apparatus comprising an adsorbent cooling device |
EP1967799B1 (en) * | 2007-03-05 | 2012-11-21 | ZEO-TECH Zeolith Technologie GmbH | Sorption cooling element with regulating organ and additional heat source |
EP2006616A2 (en) * | 2007-06-19 | 2008-12-24 | ZEO-TECH Zeolith Technologie GmbH | Flexible sorption cooling element |
DE102009010594A1 (en) | 2009-02-25 | 2010-08-26 | Enymotion Gmbh | Fuel cell system has fuel cell and process gas generating device for generation of process gas for operating fuel cell |
WO2013001608A1 (en) | 2011-06-28 | 2013-01-03 | 富士通株式会社 | Adsorption heat pump using sheet valve, and information processing system |
US9175888B2 (en) | 2012-12-03 | 2015-11-03 | Whirlpool Corporation | Low energy refrigerator heat source |
CN107062682B (en) * | 2013-03-29 | 2020-04-24 | 脱其泰有限责任公司 | Temperature-controlled storage system |
US9170053B2 (en) | 2013-03-29 | 2015-10-27 | Tokitae Llc | Temperature-controlled portable cooling units |
US11105556B2 (en) | 2013-03-29 | 2021-08-31 | Tokitae, LLC | Temperature-controlled portable cooling units |
US10941971B2 (en) | 2013-03-29 | 2021-03-09 | Tokitae Llc | Temperature-controlled portable cooling units |
US9657982B2 (en) | 2013-03-29 | 2017-05-23 | Tokitae Llc | Temperature-controlled medicinal storage devices |
DE102014225411A1 (en) * | 2014-12-10 | 2016-06-16 | Mahle International Gmbh | Sorptionsmodul |
AT518923A1 (en) | 2016-08-09 | 2018-02-15 | Rep Ip Ag | transport container |
AT518924A1 (en) | 2016-08-09 | 2018-02-15 | Rep Ip Ag | transport container |
DE102017101058A1 (en) | 2017-01-20 | 2018-07-26 | Coolar UG (haftungsbeschränkt) | SORPTIONSKÄLTEVORRICHTUNG |
JP7448908B2 (en) | 2019-05-31 | 2024-03-13 | ゴビ テクノロジーズ インコーポレイテッド | thermal regulation system |
US20210310711A1 (en) | 2019-05-31 | 2021-10-07 | Gobi Technologies Inc. | Temperature-controlled sorption system |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB317767A (en) * | 1928-08-21 | 1930-11-21 | Wulff Berzelius Normelli | Improvements in periodic absorption refrigerating apparatus |
BE380895A (en) * | 1929-09-19 | |||
DE609104C (en) * | 1933-06-16 | 1935-02-07 | H C Edmund Altenkirch Dr Ing | Method for operating an absorption refrigeration machine |
GB506846A (en) * | 1937-01-27 | 1939-06-06 | Ivar Amundsen | Refrigerating plant of the absorption type |
DE3207656A1 (en) * | 1982-02-15 | 1983-08-25 | Hieronimi, Ulrich, 8000 München | SORPTION APPARATUS AND METHOD FOR THEIR OPERATION |
FR2539854A1 (en) * | 1983-04-22 | 1984-07-27 | Cetiat | ADSORPTION REFRIGERATION FACILITY ON SOLID ADSORBENT AND METHOD FOR ITS IMPLEMENTATION |
DE3342985A1 (en) * | 1983-11-28 | 1985-06-13 | Fritz Dipl.-Ing. Kaubek | CONTINUOUSLY SORPTION APPARATUS AND METHOD FOR THEIR OPERATION |
DE3347700C2 (en) * | 1983-12-31 | 1994-07-07 | Zeolith Tech | Zeolite molding with high heat conduction and process for its production |
DE3413349C2 (en) * | 1984-04-09 | 1986-09-25 | Fritz Dipl.-Ing. Kaubek | Method and device for heating with a periodic adsorption storage heat pump |
DE3425419C2 (en) * | 1984-07-10 | 1993-12-09 | Zeolith Tech | Adiabatic heating and cooling devices based on the adsorption principle |
DE3521484A1 (en) * | 1985-06-14 | 1986-12-18 | Fritz Dipl.-Ing. Kaubek | ADSORPTION COOLER |
DE3837880A1 (en) * | 1988-11-08 | 1990-05-10 | Zeolith Tech | REFRIGERATED TANK FOR A SORPTION APPARATUS |
DE3837872A1 (en) * | 1988-11-08 | 1990-05-10 | Zeolith Tech | SORPTION COOLING SYSTEM |
DE3901558A1 (en) * | 1989-01-20 | 1990-07-26 | Zeolith Tech | SORPTION CONTAINER FOR SOLID SORPTION AGENTS |
DE4003107A1 (en) * | 1990-02-02 | 1991-08-08 | Zeolith Tech | ICE PRODUCER ACCORDING TO THE SORPTION PRINCIPLE |
DE4121131A1 (en) * | 1991-06-26 | 1993-01-07 | Zeolith Tech | SORPTION AGENT CONTAINER AND SORPTION METHOD WITH REGENERATIVE HEAT EXCHANGER |
DE4126960A1 (en) * | 1991-08-14 | 1993-02-18 | Zeolith Tech | SORPTION APPARATUS FOR COOLING AND / OR HEATING |
DE4138114A1 (en) * | 1991-11-19 | 1993-05-27 | Zeolith Tech | COOLING DEVICE AND COOLING METHOD FOR COOLING A MEDIUM WITHIN A VESSEL |
ATE147499T1 (en) * | 1992-07-06 | 1997-01-15 | Zeolith Tech | COOLING SYSTEM WITH A VACUUM TIGHT FLUID STEAM COLLECTION LINE |
US5272891A (en) * | 1992-10-21 | 1993-12-28 | Erickson Donald C | Intermittent sorption cycle with integral thermosyphon |
DE4243816A1 (en) * | 1992-12-23 | 1994-06-30 | Zeolith Tech | Sorbent cartridge |
DE4243817A1 (en) * | 1992-12-23 | 1994-06-30 | Zeolith Tech | Sorption system adapter and method of using this adapter |
WO1995014898A1 (en) * | 1993-11-29 | 1995-06-01 | Mayekawa Mfg. Co., Ltd. | Adsorption type cooling apparatus, method of controlling cold output of same, and fin type adsorbent heat exchanger for use in same |
JP2866203B2 (en) * | 1994-09-12 | 1999-03-08 | エレクトロルックス・レジャー・アプライアンシィーズ・アー・ゲー | Sorption refrigeration unit |
WO1996011368A1 (en) * | 1994-10-06 | 1996-04-18 | Electrolux Leisure Appliances Ab | Cooling device with intermittently operating cooling unit |
FR2774460B1 (en) * | 1998-02-03 | 2000-03-24 | Elf Aquitaine | METHOD FOR MANAGING A THERMOCHEMICAL REACTION OR SOLID-GAS ADSORPTION |
DE19922848A1 (en) * | 1999-05-19 | 2000-11-23 | Zeolith Tech | Device and method for cooling a liquid in a container |
DE10016352A1 (en) * | 2000-04-03 | 2001-10-04 | Zeolith Tech | Sorption cooler |
DE10028030A1 (en) * | 2000-06-09 | 2001-12-13 | Zeolith Tech | Sorption device for heating and cooling gas flows |
US6601404B1 (en) * | 2001-08-17 | 2003-08-05 | Nanopore, Inc. | Cooling device |
-
2002
- 2002-10-29 DE DE10250510A patent/DE10250510A1/en not_active Withdrawn
-
2003
- 2003-08-01 EP EP03017429A patent/EP1416233B1/en not_active Expired - Lifetime
- 2003-08-01 AT AT03017429T patent/ATE360787T1/en not_active IP Right Cessation
- 2003-08-01 ES ES03017429T patent/ES2283688T3/en not_active Expired - Lifetime
- 2003-08-01 DE DE50307123T patent/DE50307123D1/en not_active Expired - Lifetime
- 2003-09-08 US US10/657,668 patent/US6820441B2/en not_active Expired - Fee Related
- 2003-10-28 JP JP2003367706A patent/JP2004150792A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
DE50307123D1 (en) | 2007-06-06 |
US20040079106A1 (en) | 2004-04-29 |
JP2004150792A (en) | 2004-05-27 |
US6820441B2 (en) | 2004-11-23 |
EP1416233A2 (en) | 2004-05-06 |
DE10250510A1 (en) | 2004-05-19 |
ATE360787T1 (en) | 2007-05-15 |
EP1416233A3 (en) | 2005-09-21 |
ES2283688T3 (en) | 2007-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1416233B1 (en) | Adsorption refrigerator with heat accumulator | |
EP0368111B1 (en) | Sorption refrigeration system | |
EP1143210B1 (en) | Sorption cooler | |
EP1054222B1 (en) | Device and method for cooling a liquid in a receptacle | |
EP0158326B1 (en) | Adsorption apparatus | |
EP0205167A1 (en) | Adsorption cooler | |
US5442931A (en) | Simplified adsorption heat pump using passive heat recuperation | |
WO2010049147A1 (en) | Adsorption cooling system and adsorption cooling method for an aircraft | |
DE69420404T2 (en) | HEAT TRANSFER DEVICE AND METHOD FOR SOLID VAPOR SORPTION PLANTS | |
DE10303292A1 (en) | Mobile cooling container has zeolite absorption system connecting to chamber through back pressure valve with fans in absorption and storage chambers | |
DE3837880A1 (en) | REFRIGERATED TANK FOR A SORPTION APPARATUS | |
EP0733190B1 (en) | Cooling device with intermittently operating cooling unit | |
DE19908666B4 (en) | Sorption heat pump / chiller with heating of the previous adsorber to desorption temperature by adsorption | |
DE3604909C2 (en) | Refrigeration process using two periodically operating sorption refrigerators | |
WO2017157512A1 (en) | Refrigerator and/or freezer device | |
DE202015005746U1 (en) | Solar collector and solar air conditioning system that includes this | |
EP2637883B1 (en) | Adsorption refrigeration machine operated by exhaust gas | |
RU2700324C2 (en) | Air conditioning system for vehicle | |
EP2489963A2 (en) | Solar-operated sorption apparatus | |
DE10047503A1 (en) | Sorption reactor, for heat exchange in vehicle/building air conditioning systems, has a compound structure of zeolite and metal in a container together with an evaporator for steam | |
JPS5875675A (en) | Air-cooling or refrigerating device utilizing solar heat | |
WO2016087210A1 (en) | Refrigeration appliance with a heat circuit | |
DE102008020605B4 (en) | Heating and cooling arrangement | |
DE4431388C2 (en) | Device for receiving and delivering thermal energy | |
JPS6017668A (en) | Cooling system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
17P | Request for examination filed |
Effective date: 20060310 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070425 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 50307123 Country of ref document: DE Date of ref document: 20070606 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070725 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20070724 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070925 |
|
ET | Fr: translation filed | ||
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2283688 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070425 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070425 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070725 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070425 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070425 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070425 |
|
BERE | Be: lapsed |
Owner name: ZEO-TECH ZEOLITH TECHNOLOGIE G.M.B.H. Effective date: 20070831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070425 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20080128 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070726 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070831 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070425 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070425 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070425 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071026 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20090821 Year of fee payment: 7 Ref country code: FR Payment date: 20090819 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20090819 Year of fee payment: 7 Ref country code: GB Payment date: 20090821 Year of fee payment: 7 Ref country code: TR Payment date: 20090724 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20090824 Year of fee payment: 7 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100801 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20110502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100801 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50307123 Country of ref document: DE Effective date: 20110301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100831 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100801 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20111019 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100802 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100801 |