EP1960205B1 - Method of modulating printhead peak power requirement using redundant nozzles - Google Patents

Method of modulating printhead peak power requirement using redundant nozzles Download PDF

Info

Publication number
EP1960205B1
EP1960205B1 EP05813457.8A EP05813457A EP1960205B1 EP 1960205 B1 EP1960205 B1 EP 1960205B1 EP 05813457 A EP05813457 A EP 05813457A EP 1960205 B1 EP1960205 B1 EP 1960205B1
Authority
EP
European Patent Office
Prior art keywords
nozzles
printhead
nozzle
line
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05813457.8A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP1960205A1 (en
EP1960205A4 (en
Inventor
Kia Silverbrook
Simon Robert Walmsley
Brian Robert Brown
Richard Thomas Plunkett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Memjet Technology Ltd
Original Assignee
Zamtec Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zamtec Ltd filed Critical Zamtec Ltd
Publication of EP1960205A1 publication Critical patent/EP1960205A1/en
Publication of EP1960205A4 publication Critical patent/EP1960205A4/en
Application granted granted Critical
Publication of EP1960205B1 publication Critical patent/EP1960205B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04586Control methods or devices therefor, e.g. driver circuits, control circuits controlling heads of a type not covered by groups B41J2/04575 - B41J2/04585, or of an undefined type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J29/00Details of, or accessories for, typewriters or selective printing mechanisms not otherwise provided for
    • B41J29/38Drives, motors, controls or automatic cut-off devices for the entire printing mechanism
    • B41J29/393Devices for controlling or analysing the entire machine ; Controlling or analysing mechanical parameters involving printing of test patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/0452Control methods or devices therefor, e.g. driver circuits, control circuits reducing demand in current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/145Arrangement thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J29/00Details of, or accessories for, typewriters or selective printing mechanisms not otherwise provided for
    • B41J29/38Drives, motors, controls or automatic cut-off devices for the entire printing mechanism

Definitions

  • This invention relates to a method of printing from an inkjet printhead, whilst modulating a peak power requirement for the printhead. It has been developed primarily to reduce the demands on a pagewidth printhead power supply, although other advantages of the methods of printing described herein will be apparent to the person skilled in the art.
  • Inkjet printers are now commonplace in homes and offices.
  • inkjet photographic printers which print color images generated on digital cameras, are, to an increasing extent, replacing traditional development of photographic negatives.
  • the demands of such printers in terms of print quality and speed continue to increase.
  • the present Applicant has previously described many different types of pagewidth printheads, which are fabricated using MEMS technology.
  • pagewidth printing the print medium is continuously fed past a stationary printhead, thereby allowing high-speed printing at, for example, one page per 1-2 seconds.
  • MEMS fabrication of the printhead allows a much higher nozzle density than traditional scanning printheads, and print resolutions of 1600 dpi are possible.
  • pagewidth printing has been made possible by reducing the total energy required to fire each ink droplet and/or efficiently removing heat from the printhead via ejected ink.
  • self-cooling of the printhead can be achieved, which enables a pagewidth printhead having a high nozzle density to operate without overheating.
  • the power requirement of the printhead may, of course, vary.
  • An average power requirement for printing a page is determined by the total energy required and the total time taken to print the page, assuming an equal distribution of printing over the time period.
  • the power requirement of the printhead during printing of the page may fluctuate. Due to a particular configuration of the printhead or printer controller, some lines of print may consume more power than other lines of print. Hence, a peak power requirement for each line of printing may be different.
  • nozzles ejecting the same color of ink are arranged longitudinally in color channels along the length of the printhead.
  • Each color channel may comprise one or more rows of nozzles, all ejecting the same colored ink.
  • each row of nozzles will be fired sequentially during printing e.g . cyan then magenta then yellow.
  • a typical pagewidth printhead may be comprised of a plurality of printhead modules, which abut each other and cooperate to form a printhead extending across a width of the page to be printed.
  • Each printhead module is typically a printhead integrated circuit comprising nozzles and drive circuitry for firing the nozzles.
  • the rows of nozzles extend over the plurality of printhead modules, with each printhead module including a respective segment of each nozzle row.
  • PLT030US filed May 27, 2004, one line may be printed by the first nozzle row and the next line is printed by the second nozzle row so that the first and second nozzle rows print alternate lines on the page.
  • the visual effect on the page is halved, because only every other line is printed using that row of nozzles.
  • the corresponding row of nozzles may be used to print dots in those positions where there is a known dead nozzle. In other words, only a small number of nozzles in the 'redundant' row may be used to print.
  • each nozzle row must fire in one-third of the line-time. If the average power requirement of the printhead is x, then the peak power requirement over the duration of the line-time is as shown in Table 1: Table 1 Line-time Color Channel Peak Power Requirement 0 C x 0.33 M x 0.67 Y x 0 (new line) C x ... etc.
  • each nozzle row is allotted one-tenth of the line-time, since there are now ten nozzle rows.
  • a printhead could be configured not to fire redundant color channels in a given line-time, resulting in an average of x peak power for each nozzle row.
  • Such a configuration is effectively the same as that described in Table 1. While this configuration would address peak power and misdirectionality issues, it would not address the problem of known dead nozzles, since only one of each redundant color channel would be able to be fired in a given line-time, thereby losing one of the major advantages of redundancy.
  • US 2005/078133 describes a redundancy scheme for a printer comprising a plurality of separate printheads which print simultaneously.
  • a first embodiment of the invention provides a method as detailed in claim 1.
  • a method of modulating a peak power requirement of an inkjet printhead comprising a plurality of first nozzles and a plurality of second nozzles supplied with a same colored ink, said first nozzles and second nozzles being configured in a plurality of sets, wherein each set of nozzles comprises one first nozzle and one corresponding second nozzle, each nozzle in a set being configurable to print a dot of said ink onto a substantially same position on a print medium, said method comprising:
  • a method of printing a line of dots from an inkjet printhead comprising a plurality of first nozzles and a plurality of second nozzles supplied with a same colored ink, said first nozzles and second nozzles being configured in a plurality of sets, wherein each set of nozzles comprises one first nozzle and one corresponding second nozzle, each nozzle in a set being configurable to print a dot of said ink onto a substantially same position on a print medium, said method comprising printing a line of dots across said print medium such that said first nozzles and said second nozzles each contribute dots to said line.
  • a method of modulating a peak power requirement of an inkjet printhead comprising a plurality of transversely aligned color channels, each color channel comprising at least one nozzle row extending longitudinally along said printhead, each nozzle in a color channel ejecting the same colored ink, wherein said printhead is comprised of a plurality of printhead modules, each printhead module comprising a respective segment of each nozzle row, said method comprising each of said printhead modules firing a respective segment within a predetermined segment-time, wherein at least one of said fired segments is contained in a different color channel from at least one other of said fired segments.
  • an inkjet printhead comprising a plurality of transversely aligned color channels, each color channel comprising at least one nozzle row extending longitudinally along said printhead, each nozzle in a row ejecting the same colored ink, wherein said printhead is comprised of a plurality of printhead modules, and the number of color channels is equal to the number of printhead modules.
  • a printer controller for supplying dot data to an inkjet printhead, said printhead comprising a plurality of first nozzles and a plurality of second nozzles supplied with a same colored ink, said first nozzles and second nozzles being configured in a plurality of sets, wherein each set of nozzles comprises one first nozzle and one corresponding second nozzle, each nozzle in a set being configurable by said printer controller to print a dot of said ink onto a substantially same position on a print medium, said printer controller being programmed to supply dot data such that said first nozzles and said second nozzles each contribute dots to a line of printing.
  • a printer controller for supplying dot data to a printhead, said printhead comprising a plurality of transversely aligned color channels, each color channel comprising at least one nozzle row extending longitudinally along said printhead, each nozzle in a color channel ejecting the same colored ink, wherein said printhead is comprised of a plurality of printhead modules, each printhead module comprising a respective segment of each nozzle row, said printer controller being programmed to supply dot data such that each of said printhead modules fires a respective segment within a predetermined segment-time, wherein at least one of said fired segments is contained in a different color channel from at least one other of said fired segments.
  • a printhead system comprising an inkjet printhead and a printer controller for supplying dot data to said printhead, said printhead comprising a plurality of first nozzles and a plurality of second nozzles supplied with a same colored ink, said first nozzles and second nozzles being configured in a plurality of sets, wherein each set of nozzles comprises one first nozzle and one corresponding second nozzle, each nozzle in a set being configurable by said printer controller to print a dot of said ink onto a substantially same position on a print medium, said printer controller being programmed to supply dot data such that said first nozzles and said second nozzles each contribute dots to a line of printing.
  • a printhead system comprising an inkjet printhead and a printer controller for supplying dot data to said printhead, said printhead comprising a plurality of transversely aligned color channels, each color channel comprising at least one nozzle row extending longitudinally along said printhead, each nozzle in a color channel ejecting the same colored ink, wherein said printhead is comprised of a plurality of printhead modules, each printhead module comprising a respective segment of each nozzle row, said printer controller being programmed to supply dot data such that each of said printhead modules fires a respective segment within a predetermined segment-time, wherein at least one of said fired segments is contained in a different color channel from at least one other of said fired segments.
  • All aspects of the invention provide the advantage of modulating a peak power requirement of the inkjet printhead.
  • a power supply which supplies power to the printhead, need not be specially adapted to supply severely fluctuating amounts of power throughout each print cycle.
  • the degree of peak power fluctuations within each line-time are substantially reduced.
  • the design and manufacture of the printhead power supply may be simplified and the power supply is made more robust by virtue of not having to deliver severely fluctuating amounts of power to the printhead.
  • the present invention allows print quality to be improved by using redundant nozzle rows, and without compromising the above-mentioned improvements in peak power requirement.
  • Print quality may be improved by, for example, reducing the visual effects of unknown dead nozzles in the printhead, and reducing the visual effects of misdirected ink droplets.
  • the terms “row”, “rows of nozzles”, “nozzle row” etc. may include nozzle rows comprising one or more displaced row portions.
  • the term "ink” includes any type of ejectable fluid, including, for example, IR inks and fixatives, as well as standard CMYK inks.
  • references to "same colored ink” include inks of a same color or type e.g . same cyan ink, same IR ink or same fixative.
  • the term "substantially the same position on a print medium” is used to mean that a droplet of ink has an intended trajectory to print at a same position on the print medium (as another droplet of ink).
  • a droplet of ink may not be printed exactly on its intended position on the print medium.
  • the term “substantially the same position on a print medium” includes misplaced droplets, which are intended to print at the same position, but may not necessarily print at that position.
  • the first nozzles and second nozzles are configured in a plurality of sets, wherein each set of nozzles comprises one first nozzle and one corresponding second nozzle. Further, each nozzle in a set is configurable to print a dot of ink onto a substantially same position on a print medium, so that the nozzles can be used interchangeably.
  • a set is a pair of nozzles consisting of one first nozzle and one second nozzle.
  • a set may alternatively comprise further (e.g. third and fourth) nozzles, with each nozzle in the set being configurable to print a dot of ink onto a substantially same position on a print medium.
  • the present invention is not limited to two rows of redundant nozzles and may include, for example, three or more rows of redundant nozzles.
  • the printhead is a stationary pagewidth printhead and the print medium is fed transversely past the printhead.
  • the present invention has been developed primarily for use with such pagewidth printheads.
  • the printhead comprises a plurality of transversely aligned color channels, each color channel comprising at least one nozzle row extending longitudinally along the printhead, each nozzle in a color channel ejecting the same colored ink.
  • each transversely aligned color channel is allotted a portion of a line-time for firing. In this way, dot-on-dot printing can be achieved, which is optimal for dithering.
  • Color channels in the printhead may eject the same or different colored inks. However, all nozzles in the same color channel are typically supplied with and eject the same colored ink. Color channels ejecting the same colored ink are sometimes termed 'redundant' color channels.
  • the printhead comprises at least one redundant color channel so that at least one color channel ejects the same colored ink as at least one other color channel.
  • Each color channel may comprise a plurality of nozzle rows.
  • each color channel comprises a pair of nozzle rows.
  • nozzle rows in the same color channel are transversely offset from each other.
  • one nozzle row in a pair may be configured to print even dots on a line, while the other nozzle row in the pair may be configured to print odd dots on the same line.
  • the nozzle rows in a pair are usually spaced apart in a transverse direction to allow convenient timing of nozzle firings.
  • the even and odd nozzle rows in one color channel may be spaced apart by two lines of printing.
  • each set of nozzles comprises one first nozzle from a first color channel and one second nozzle from a second color channel.
  • the first and second nozzles in the set are aligned transversely so that each can print onto the substantially same position on a print medium.
  • one set of nozzles prints a column of same-colored dots down a print medium, with each nozzle in the set contributing dots to the column.
  • a "column” refers to a line of dots printed substantially perpendicular to the printhead and substantially parallel with a feed direction of the print medium.
  • one first nozzle in the set prints about half of the column and one second nozzle in the set prints about half of the column, so that the first and second nozzles in the set share printing of the column equally between them.
  • a visual effect of misdirected ink droplets is reduced.
  • An advantage of using a plurality (e.g. two) nozzles for printing the same column is that misdirected ink droplets may be averaged out between those nozzles.
  • the first nozzles and second nozzles when printing a line of same-colored dots across the print medium, the first nozzles and second nozzles contribute dots to the line.
  • a "line” refers to a line of dots printed substantially parallel with the printhead and substantially perpendicular to a feed direction of the print medium.
  • the first nozzles print about half of the line and the second nozzles print about half of the line, so that the first and second nozzles share printing of the line equally between them. Accordingly, the peak power requirement for printing the line is reduced by about 50%, as compared to printing the line using only first nozzles or only second nozzles.
  • alternate first nozzles in a first nozzle row are used to print about half of the line and alternate second nozzles in a second nozzle row are used to print about half of the line.
  • other patterns for sharing printing between the first and second nozzles may also be used.
  • a visual effect of malfunctioning or dead nozzles is reduced.
  • the nozzles may be known dead nozzles or unknown dead nozzles.
  • the visual effect of an unknown dead nozzle is reduced by virtue of the fact that the nozzle is only required to print about half of the time. For example, with an unknown dead magenta nozzle, a column of magenta dots would be missing completely with no redundancy, whereas half of the column is still printed using redundancy. The latter is, of course, far more visually acceptable than the former.
  • the color (which is the same color printed by the first and second nozzles) is magenta, cyan or black.
  • the human eye is most sensitive to magenta, cyan and black, and these colors are consequently the preferred candidates for redundancy.
  • a printhead may contain more than one redundant color channels.
  • the printhead may comprise first and second magenta nozzles, and first and second cyan nozzles.
  • the printhead comprises a plurality of transversely aligned color channels with each color channel comprising at least one nozzle row extending longitiudinally along the printhead. Each nozzle in a color channel is supplied with and ejects the same colored ink.
  • the printhead is comprised of a plurality of printhead modules, with each module comprising a respect segment of each nozzle row. Out-of-phase printing is provided by a method in which each of the printhead modules fires a respective segment within a predetermined segment-time, wherein at least one of the fired segments is contained in a different color channel from at least one other of the fired segments.
  • a segment-time may be defined as a predetermined fraction of one line-time.
  • a line-time is defined as the time taken for the print medium to advance past the printhead by one line.
  • all segments in a nozzle row are fired within one line-time.
  • a segment-time is equal to one line-time divided by the number of nozzle rows.
  • a period of each line-time may be dedicated to a line-based overhead, in which case the segment-time will be less than one line-time divided by the number of nozzle rows.
  • all segment-times are equal.
  • At least one nozzle row has a different peak power requirement from other nozzle rows.
  • a redundant nozzle row would normally have half the peak power requirement of a non-redundant nozzle row.
  • a predetermined firing sequence modulates the peak power requirement during each segment-time so that the peak power requirement is within about 10%, optionally within 5%, of the average power requirement of the printhead.
  • the peak power requirement of the printhead is equal to the average power requirement of the printhead.
  • all segments on the printhead are fired within one-line time.
  • the number of color channels is equal to the number of printhead modules. This is the optimum number of color channels and modules to achieve perfect out-of-phase firing. However, as will be explained in more detail below, the advantages of out-of-phase firing may still be achieved using any number of printhead modules and color channels.
  • each of the printhead modules fires a segment from a different color channel within the predetermined segment-time.
  • each segment in a nozzle row may be fired sequentially.
  • each segment in a nozzle row need not be fired sequentially, whilst still enjoying the advantages of out-of-phase firing.
  • the invention will be described with reference to a CMY pagewidth inkjet printhead 1, as shown in Figure 1 .
  • the printhead 1 has five color channels 2, 3, 4, 5 and 6, which are C1, C2, M1, M2 and Y respectively. In other words cyan and magenta have 'redundant' color channels.
  • C and M redundant The reason for making C and M redundant is that Y only contributes 11 % of luminance, while C contributes 30% and M contributes 59%. Since the human eye is least sensitive to yellow, it is more visually acceptable to have missing yellow dots than missing cyan or magenta dots.
  • black (K) printing is achieved via process-black (CMY).
  • the printhead 1 is comprised of five abutting printhead modules 7, which are referred to from left to right as A, B, C, D and E.
  • the five modules 7 cooperate to form the printhead 1, which extends across the width of a page (not shown) to be printed.
  • each module 7 has a length of about 20 mm so that the five abutting modules form a 4" printhead, suitable for pagewidth 4" x 6" color photo printing.
  • paper is fed transversely past the printhead 1 and Figure 1 shows this paper direction.
  • Each of the five color channels on the printhead 1 comprises a pair of nozzle rows.
  • the C1 color channel 2 comprises nozzle rows 2a and 2b. These nozzle rows 2a.and 2b extend longitudinally along the whole length of the printhead 1.
  • abutting printhead modules 7 are joined, there is a displaced (or dropped) triangle 8 of nozzle rows. These dropped triangles 8 allow printhead modules 7 to be joined, whilst effectively maintaining a constant nozzle pitch along each row.
  • a timing device (not shown) is used to delay firing nozzles in the dropped triangles 8, as appropriate.
  • USSN 10/854512 Docket No. PLT014US
  • USSN 10/854491 Docket No. PLT028US
  • Each of the printhead modules 7 contains a segment from each of the nozzle rows.
  • printhead module A contains segments 2a A , 2b A , 3a A , 3b A , 4a A etc. Segments from the same nozzle row cooperate to form a complete nozzle row.
  • segments 2a A , 2a B , 2a C , 2a D and 2a E cooperate to form nozzle row 2a.
  • Figure 2 shows the printhead module A with its respect segments from each nozzle row.
  • FIG. 3 there is shown a detailed schematic view of a portion of the five color channels 2, 3, 4, 5 and 6. From Figure 3 , it can be seen that the pair of nozzle rows (e.g. 2a and 2b) in each color channel (e.g. 2) are transversely offset from each other. In color channel 2, for example, nozzle row 2a prints even dots in a line, while nozzle row 2b prints interstitial odd dots in a line.
  • color channel 2 for example, nozzle row 2a prints even dots in a line, while nozzle row 2b prints interstitial odd dots in a line.
  • the even rows of nozzles 2a, 3a, 4a, 5a and 6a are transversely aligned, as are the odd rows of nozzles 2b, 3b, 4b, 5b and 6b.
  • This transverse alignment of the five color channels allows dot-on-dot printing, which is optimal in terms of dithering.
  • all even nozzles and all odd nozzles must be fired so that dot-on-dot printing is achieved.
  • the even and odd nozzles (e.g. 2a and 2b) in the same color channel (e.g. 2) may be separated by, for example, two lines.
  • Adjacent color channels e.g. 2 and 3
  • the exact spacing between even/odd nozzle rows and adjacent color channels may be varied, whilst still achieving dot-on-dot printing.
  • C1, C2 cyan
  • M1, M2 magenta
  • each nozzle row must print in one-tenth of the line-time in order to achieve all the advantages of redundancy and compensate for any known dead nozzles using a redundant color channel.
  • the inherent power supply problems in relation to the redundancy scheme described in USSN 10/854507 (Docket No. PLT019US), filed May 27, 2004 and USSN 10/854523 (Docket No. PLT030US), filed May 27, 2004 have also been described above.
  • Dot-at-a-time redundancy is where redundant rows of nozzles are used such that there is never more than one out of every two adjacent nozzles firing within a single nozzle row.
  • the even dots for a color are produced by two nozzle rows (each printing half of the even dots)
  • the odd dots for a color are produced by two nozzle rows (each printing half of the dots).
  • nozzle rows 2a and 3a may both contribute even dots to a line of printing
  • nozzle rows 2b and 3b may both contribute odd dots to a line of printing.
  • Figures 4A and 4B show a firing sequence for two lines of printing using dot-at-a-time redundancy.
  • the nozzles indicated in Figures 4A and 4B are not fired simultaneously; each nozzle row is allotted one-tenth of the line-time in which to fire its nozzles, with even nozzles rows firing sequentially followed by odd nozzle rows firing sequentially.
  • alternate nozzles are fired in each nozzle row from the C1, C2, M1 and M2 color channels.
  • Nozzles fired from C2 and M2 complement those fired from C1 and M1.
  • alternate even nozzles are fired from nozzle row 2a and complementary alternate even nozzles are fired from nozzle row 3a.
  • Nozzle rows 6a and 6b in the Y channel have no redundancy and each of these nozzle rows must therefore fire all its nozzles in one-tenth of the line-time.
  • the present invention achieves at least as good print quality as the line-at-a-time redundancy described in USSN 10/854507 (Docket No. PLT019US), filed May 27, 2004 and USSN 10/854523 (Docket No. PLT030US), filed May 27, 2004.
  • Table 3 shows how the peak power requirement of the printhead (having an average power requirement of x) varies over two lines of printing using dot-at-a-time redundancy according to the present invention: Table 3 Line-time Color Channel Nozzle Row Peak Power Requirement 0 2 (C1) 2a (even) 0.83 x 0.1 3 (C2) 3a (even) 0.83 x 0.2 4 (M1) 4a (even) 0.83 x 0.3 5 (M2) 5a (even) 0.83 x 0.4 6(Y) 6a (even) 1.67 x 0.5 2 (C1) 2b (odd) 0.83 x 0.6 3 (C2) 3b (odd) 0.83 x 0.7 4 (M1) 4b (odd) 0.83 x 0.8 5 (M2) 5b (odd) 0.83 x 0.9 6 (Y) 6b (oddd
  • each color channel is fired in-phase - that is, a whole row of, say, even nozzles from one color channel is fired within its allotted portion of the line-time.
  • In-phase firing provides simpler programming of the printer controller, which controls the firing sequence via dot data sent to the printhead 1.
  • the firing may be out-of phase - that is, within the same allotted portion of the line-time (termed the 'segment-time'), at least one segment of nozzles is fired from a color channel that is different from at least one other segment of nozzles.
  • a major advantage of out-of-phase firing is that if one or more color channels (e.g. Y) has a different peak power requirement to the other color channels, this difference is averaged into the power requirements of the other color channels within each segment-time.
  • the spike in power (corresponding to the Y channel) in Table 3 is effectively merged into rest of the line-time.
  • the result is that the peak power requirement during each segment-time is always equal to the average power requirement for the printhead. This situation is optimal for supplying power to the printhead.
  • Table 4 illustrates a sequence of out-of-phase firing for one line of printing from the printhead 1, using dot-at-a-time redundancy.
  • Table 4 Line-time Module A (CC, S, P) Module B (CC,S, P) Module C (CC, S, P) Module D (CC, S, P) Module E (CC, S, P) Peak Power Requirement 0 C1, 2a A , 0.83 x C2, 3a B , 0.83 x M1,4a C , 0.83 x M2,5a D , 0.83 x Y, 6a E , 1.67 x x 0.1 C2, 3a A , 0.83 x M1,4a B , 0.83 x M2, 5a C , 0.83 x Y, 6a D , 1.67 x C1, 2a E , 0.83 x x 0.2 M1, 4a A , 0.83 x M2, 5a B , 0.83 x Y, 6a C , 1.67 x C1, 2
  • out-of-phase firing also works well with any number of printhead modules or color channels.
  • an A4 pagewidth printhead is comprised of eleven abutting modules [(i) to (xi)]. With five color channels and eleven printhead modules, it is impossible to ensure that each printhead module fires a different color channel within a segment-time ( i.e. one-tenth of a line-time). Regardless, out-of-phase firing can still be used to optimize the peak power requirement of the printhead.
  • out-of-phase firing accommodates the eleven printhead modules and provides a peak power requirement that is always within 10% of the average power requirement x of the printhead. Indeed, the peak power requirement is always within 5% of the average power requirement x in this example. For the purposes of providing a power supply for the printhead, such small variations in peak power requirement during each line-time are not significant and would not affect the design of the power supply.
  • out-of-phase firing or dot-at-a-time redundancy may be used in combination with printhead module misplacement correction and/or dead nozzle compensation, as described in our earlier patent applications USSN 10/854521 (Docket No. PLT001US) filed May 27, 2004 and USSN 10/854515 (Docket No. PLT020US), filed May 27,2004..
  • a printer controller 10 shown schematically in Figure 5 , may be suitably programmed to provide dot data to the printhead 1, so as to print in accordance with the methods described above.
  • a printhead system 20 comprises the printer controller 10 and the printhead 1, which is controlled by the controller.
  • the printer controller 10 communicates dot data to the printhead 1 for printing.

Landscapes

  • Ink Jet (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
EP05813457.8A 2005-12-05 2005-12-05 Method of modulating printhead peak power requirement using redundant nozzles Not-in-force EP1960205B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/AU2005/001829 WO2007065187A1 (en) 2005-12-05 2005-12-05 Method of modulating printhead peak power requirement using redundant nozzles

Publications (3)

Publication Number Publication Date
EP1960205A1 EP1960205A1 (en) 2008-08-27
EP1960205A4 EP1960205A4 (en) 2010-07-21
EP1960205B1 true EP1960205B1 (en) 2014-04-09

Family

ID=38122382

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05813457.8A Not-in-force EP1960205B1 (en) 2005-12-05 2005-12-05 Method of modulating printhead peak power requirement using redundant nozzles

Country Status (4)

Country Link
EP (1) EP1960205B1 (ko)
KR (1) KR101058636B1 (ko)
AU (1) AU2005338846B2 (ko)
WO (1) WO2007065187A1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5796418A (en) * 1995-04-12 1998-08-18 Eastman Kodak Company Page image and fault tolerance control apparatus for printing systems

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3339724B2 (ja) * 1992-09-29 2002-10-28 株式会社リコー インクジェット記録方法及びその装置
US6498615B1 (en) * 1997-08-26 2002-12-24 Eastman Kodak Company Ink printing with variable drop volume separation
US6183056B1 (en) * 1997-10-28 2001-02-06 Hewlett-Packard Company Thermal inkjet printhead and printer energy control apparatus and method
US6644766B1 (en) * 1998-04-28 2003-11-11 Xerox Corporation Printing system with phase shift printing to reduce peak power consumption
US6409331B1 (en) * 2000-08-30 2002-06-25 Creo Srl Methods for transferring fluid droplet patterns to substrates via transferring surfaces
JP2002137372A (ja) * 2000-11-02 2002-05-14 Canon Inc 記録装置及び記録装置の消費電力低減方法
US6471320B2 (en) * 2001-03-09 2002-10-29 Hewlett-Packard Company Data bandwidth reduction to printhead with redundant nozzles
US6742885B2 (en) * 2001-12-28 2004-06-01 James A. Reczek Ink jet ink set/receiver combination
JP2005041136A (ja) * 2003-07-23 2005-02-17 Canon Finetech Inc インクジェット記録装置およびインクジェット記録方法
JP4020040B2 (ja) 2003-07-23 2007-12-12 松下電工株式会社 エッジ材貼着方法およびエッジ材貼着装置
US6942308B2 (en) * 2003-10-10 2005-09-13 Hewlett-Packard Development Company, L.P. Compensation of lateral position changes in printing
JP2005169754A (ja) * 2003-12-09 2005-06-30 Canon Inc インクジェット記録装置及びインクジェット記録方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5796418A (en) * 1995-04-12 1998-08-18 Eastman Kodak Company Page image and fault tolerance control apparatus for printing systems

Also Published As

Publication number Publication date
EP1960205A1 (en) 2008-08-27
AU2005338846B2 (en) 2009-10-01
WO2007065187A1 (en) 2007-06-14
EP1960205A4 (en) 2010-07-21
AU2005338846A1 (en) 2007-06-14
KR20080075904A (ko) 2008-08-19
KR101058636B1 (ko) 2011-08-22

Similar Documents

Publication Publication Date Title
US7918522B2 (en) Printhead system for modulating printhead peak power requirement using redundant nozzles
US7438371B2 (en) Method of modulating printhead peak power requirement using redundant nozzles
JPH11198380A (ja) インク・ジェット印刷ヘッドおよび印刷方法
US20060274117A1 (en) Printhead unit and color inkjet printer having the same
KR19990088039A (ko) 양방향잉크젯칼라인쇄방법및칼라잉크젯인쇄장치
US7458659B2 (en) Printer controller for modulating printhead peak power requirement using redundant nozzles
US20130241997A1 (en) Ink jet printing apparatus and ink jet printing method
JPH05104739A (ja) カラーインクジエツト記録装置
JPH10250059A (ja) インクジェット・プリンタ用の印刷ヘッドを製造する方法及び印刷方法
US7896465B2 (en) Inkjet printhead with a printer controller for controlling nozzle firing sequence
JP3639703B2 (ja) インクジェット記録装置およびインクジェット記録方法
US7984966B2 (en) Inkjet printhead with matched number of color channels and printhead modules
US7118191B2 (en) Apparatus and method for ink jet printing using variable interlacing
US8075097B2 (en) Method of modulating peak power requirement of modular printhead
JP2002192727A (ja) インクジェット記録ヘッド、インクジェット記録装置およびインクジェット記録方法
EP1960205B1 (en) Method of modulating printhead peak power requirement using redundant nozzles
US20070126761A1 (en) Printhead system for modulating printhead peak power requirement using redundant nozzles
US20070126760A1 (en) Printer controller for modulating printhead peak power requirement using out-of-phase firing
US20040113975A1 (en) Color printing with reduced hue shift
JP2006103053A (ja) 記録装置、カラー補完記録方法、及びインクジェット記録ヘッド
EP1029686B1 (en) Printing apparatus and method
JPH03246060A (ja) 記録装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080701

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

A4 Supplementary search report drawn up and despatched

Effective date: 20100623

RIC1 Information provided on ipc code assigned before grant

Ipc: B41J 2/04 20060101AFI20070807BHEP

Ipc: B41J 2/05 20060101ALI20100617BHEP

Ipc: B41J 2/035 20060101ALI20100617BHEP

17Q First examination report despatched

Effective date: 20100712

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ZAMTEC LIMITED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131001

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ZAMTEC LIMITED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 661121

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005043255

Country of ref document: DE

Effective date: 20140515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MEMJET TECHNOLOLGY LIMITED

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 661121

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140409

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MEMJET TECHNOLOGY LIMITED

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140710

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140809

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140811

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005043255

Country of ref document: DE

Owner name: MEMJET TECHNOLOGY LIMITED, IE

Free format text: FORMER OWNER: ZAMTEC LTD., DUBLIN, IE

Effective date: 20141127

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005043255

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

REG Reference to a national code

Ref country code: NL

Ref legal event code: TD

Effective date: 20150128

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005043255

Country of ref document: DE

Effective date: 20150112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141205

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20051205

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20181227

Year of fee payment: 14

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191205

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20201227

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20211227

Year of fee payment: 17

Ref country code: GB

Payment date: 20211227

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005043255

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221205

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230701