EP1959476A1 - Mass spectrometer - Google Patents
Mass spectrometer Download PDFInfo
- Publication number
- EP1959476A1 EP1959476A1 EP07003392A EP07003392A EP1959476A1 EP 1959476 A1 EP1959476 A1 EP 1959476A1 EP 07003392 A EP07003392 A EP 07003392A EP 07003392 A EP07003392 A EP 07003392A EP 1959476 A1 EP1959476 A1 EP 1959476A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- electrodes
- mass spectrometer
- ions
- spectrometer according
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 150000002500 ions Chemical class 0.000 claims abstract description 47
- 239000000758 substrate Substances 0.000 claims abstract description 31
- 239000004065 semiconductor Substances 0.000 claims abstract description 25
- 238000005530 etching Methods 0.000 claims abstract description 13
- 230000001133 acceleration Effects 0.000 claims abstract description 11
- 238000000926 separation method Methods 0.000 claims abstract description 9
- 230000001419 dependent effect Effects 0.000 claims abstract description 8
- 238000000206 photolithography Methods 0.000 claims abstract description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 13
- 239000010703 silicon Substances 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000004020 conductor Substances 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 7
- 230000005496 eutectics Effects 0.000 claims description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 4
- 239000010931 gold Substances 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 239000005388 borosilicate glass Substances 0.000 claims description 3
- 229910052756 noble gas Inorganic materials 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 11
- 239000007789 gas Substances 0.000 description 8
- 235000012431 wafers Nutrition 0.000 description 8
- 238000010884 ion-beam technique Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- OFLYIWITHZJFLS-UHFFFAOYSA-N [Si].[Au] Chemical compound [Si].[Au] OFLYIWITHZJFLS-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/0013—Miniaturised spectrometers, e.g. having smaller than usual scale, integrated conventional components
- H01J49/0018—Microminiaturised spectrometers, e.g. chip-integrated devices, Micro-Electro-Mechanical Systems [MEMS]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/004—Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/26—Mass spectrometers or separator tubes
- H01J49/34—Dynamic spectrometers
- H01J49/40—Time-of-flight spectrometers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/44—Energy spectrometers, e.g. alpha-, beta-spectrometers
- H01J49/46—Static spectrometers
- H01J49/48—Static spectrometers using electrostatic analysers, e.g. cylindrical sector, Wien filter
- H01J49/482—Static spectrometers using electrostatic analysers, e.g. cylindrical sector, Wien filter with cylindrical mirrors
Definitions
- Mass spectrometers are widely used. While mass spectrometers were primarily used for scientific purposes, today there are more and more applications related to environmental protection, measurements of air quality for the detection of harmful gases, process monitoring and control, safety checks z. In airports, and the like. For this purpose, mass spectrometers are particularly suitable, which have small dimensions and are therefore easy to transport and use everywhere. Another requirement for large scale application is that these mass spectrometers are inexpensive to manufacture.
- a magnetic field separator In another mass spectrometer, a magnetic field separator is used ( WO 96/16430 ). However, this requires a certain minimum size, since on the one hand for the magnetic field separator very high magnetic field strengths must be present, while elsewhere the magnetic field must be shielded in order not to influence the ionization or ion optics.
- a mass spectrometer of the type mentioned at the outset has been developed for use in a microsystem which can be produced by the methods customary in microsystem technology ( DE 197 20 278 A1 ).
- This mass spectrometer has very small dimensions.
- the production is very complex, since it requires on the one hand self-supporting insulated grids for the acceleration of the ionization of the gas to be examined and on the other hand electrically contacted, galvanically grown structures of copper or nickel must be produced.
- the construction of the individual components is carried out separately on a total of four substrates, which must be connected to a monolithic system with a suitable construction and connection technology.
- the object of the invention is to provide a mass spectrometer of the type mentioned, which can be produced easily and inexpensively and is suitable for mass production.
- the function of the mass spectrometer with the mass-dependent separation of the ions by acceleration / deceleration is based on the fact that the acceleration through the fields of the electrodes different ions reach a different speed and due to these differences in speed, the separation takes place.
- the corresponding transmitted ion beam is not monochromatic, but also contains ions of greater or lesser mass, which had a greater or lesser start speed due to the thermal movement.
- the energy filter is provided in which between two electrodes with different, in particular opposite potential, the ions are deflected by 90 ° in a channel between the electrodes.
- the mass spectrometer is constructed completely planar and can be produced from wafers with the techniques of microelectronics.
- the components are arranged on a flat, nonconducting substrate on which the metallic connection wiring has first been applied.
- the ionization chamber, the electrodes for accelerating the electrons and ions, the detector for the ions and the energy filters are produced by photolithography and etching of a wafer applied to the substrate and the wiring, wherein all components are produced in a photolithographic and etching step. Subsequently, the components are then covered by a flat non-conductive substrate so as to obtain a closed unit.
- the electron source is a thermal emitter.
- the electron source comprises a plasma chamber having a rare gas feed passage and a microwave line for introducing and maintaining the plasma, the plasma chamber, the feed channel and the microwave line also being formed by etching the semiconductor die together with the others Parts are made.
- the electrodes for mass-dependent separation of the ions by acceleration / deceleration are at an advantageous Embodiment designed as a time-of-flight mass separator and arranged.
- a first gate electrode arrangement the ion beam is pulsed. Only short ion pulses reach the drift path, where the pulse diverges due to the different velocities of the ions.
- the ion pulse is scanned. Different maturities corresponding to different masses. The energy filter then ensures that only ions with exactly one energy reach the detector and are registered there.
- a larger number of electrodes are provided in the measuring path, which are subjected to alternating electrical voltages which "migrate" from one end to the other end with the ions. Only the ions at exactly the speed corresponding to the "rate of migration” of the electric fields always pass through electrodes to which no voltage is currently applied. All other ions that are out of sync move between electrodes that are being applied with an electrical voltage so that they are deflected to the side.
- the detector for the ions is advantageously designed as a Faradaydetektor. In another advantageous embodiment, which has greater sensitivity, the detector for the ions is designed as an electron multiplier.
- the electrodes for accelerating the electrons may be two apertured electrodes to which different electrical potentials can be applied. These Electrodes may also be made of the semiconductor material such that the prior art grating arrangement for accelerating electrons of the prior art (US Pat. DE 197 20 278 A ), which is difficult to manufacture, is avoided.
- the mass spectrometer has a microcontroller, by which it is controlled.
- the metallic conductors of the wiring and the electrodes are advantageously electrically connected by eutectic semiconductor metal contacts.
- bumps of a suitable metal are arranged on the wires or printed conductors in the corresponding places, which form the eutectic semiconductor metal contacts during bonding with the semiconductor chip.
- the semiconductor material is doped silicon.
- a particularly advantageous metal for the eutectic contacts is gold.
- the non-conductive substrates are advantageously made of borosilicate glass or quartz glass.
- the invention is also characterized by a method for producing the mass spectrometer.
- the metal wiring on which metal pads for connection to the semiconductor electrodes are disposed is applied to a flat non-conductive substrate. Cores are then etched into the die in order for the semiconductor resistor to contact only the metal pads but not the wiring during bonding.
- the Semiconductor platelets are then applied to the substrate and arranged on the same a mask for photolithography. The alignment of the mask with respect to the wiring and gold pads can be done optically by using light of a wavelength for which the silicon wafer is transparent. For silicon, a wavelength above 1.2 ⁇ m is suitable.
- the semiconductor die is then locally etched in one step to create the components of the mass spectrometer. Subsequently, the semiconductor wafer is covered with a second non-conductive substrate.
- At the second non-conductive substrate can be applied in advance, a further wiring to z. B. electrodes of electrode pairs to each other.
- the finished semiconductor chip is shown, which in this embodiment is made of doped silicon and in which the corresponding components are produced by etching.
- the spectrometer has a supply channel a for the sample gas, which is passed into the ionization chamber b .
- the electrons required for the ionization with an energy of typically 70 eV are extracted from a plasma chamber d and accelerated between two aperture openings c lying at different potentials.
- the entire area between the apertures is evacuated to the sides of the system.
- the noble gas is supplied via the channel e of the plasma chamber d . It is excited by the microwave waveguide f with microwaves to generate the plasma and thereby release the required electrons.
- the pressure in the plasma chamber is controlled by the pre-pressure upstream of channel e or a connected capillary.
- the ions from the ionization chamber b are extracted by an electric field between the chamber wall and ion optics g on a further aperture, accelerated with defined energy and focused.
- the ion beam is pulsed at the first gate electronics array h .
- the ion pulse is scanned.
- the energy filter k ensures that ions only reach the detector 1 with exactly one energy and are registered there.
- FIG. 3 and 4 show another embodiment, which in the area of the accelerating electrodes of the embodiment of the Fig. 1 and 2 different.
- An alternating voltage is applied to the electrodes m of the traveling-field separator, so that ions which pass between electrodes which are currently subjected to a voltage are deflected to the side and removed from the beam. Only the ions at exactly the right speed, passing through the electrodes when there is no voltage across them, reach the energy filter k , whose two electrodes on both sides of the quarter-circle-shaped channel are at opposite potentials, so only ions with a well-defined one Let energy through. These ions then strike the detector 1 again .
- FIGS. 5 and 6 is different from the one of Fig. 1 and 2 in that, instead of a noble gas plasma, a thermal emitter n is used to release the electrons required for the ionization.
- FIGS. 7 and 8 the electrode area of the mass spectrometer according to the invention is shown.
- the support for the system is the borosilicate glass 1, to which metallic conductor tracks 2 are applied in order to connect the electrodes electrically.
- the structure of the electrodes is in Fig. 8 shown in section.
- Fig. 9 the principle of manufacturing the mass spectrometer is shown.
- etching in the silicon wafer recesses 8 are generated, which provide in the finished mass spectrometer for the required distance between the metallic interconnects 2 on the carrier substrate 1 and the silicon wafer 6 .
- the depth of the etching pits 8 is designed so that the gold pads 3 come into contact with the bottom of the etching pit 8 when joining substrate 1 and silicon platelets 6 .
- the arrangement thus produced according to I is then bonded in step II .
- step III after applying a corresponding mask and exposure by etching, the desired structure is produced.
- the upper substrate 7 shown in I, II and III is not actually present at these steps. It also carries a conductor and is then bonded to the device at IV , electrodes being connected by the conductor disposed on the upper substrate 7 .
- the production of the mass spectrometer can take place in uniform steps in wafers.
- the final mass spectrometer shown in the figures may have dimensions as small as 5x10 mm. Due to the small size and low demands on the pumping power of a vacuum pump are made.
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Electron Tubes For Measurement (AREA)
Abstract
Description
Die Erfindung betrifft ein Massenspektrometer, das aufweist:
- eine Ionisationskammer mit einem Zuführkanal für das zu untersuchende Gas,
- eine Elektronenquelle zum Ionisieren des zu untersuchenden Gases,
- Elektroden zum Beschleunigen der ionisierenden Elektronen,
- Elektroden zum masseabhängigen Separieren der Ionen durch Beschleunigung/Verzögerung derselben,
- einen Detektor für die separierten Ionen, und
- eine Verdrahtung mit metalliscehn Drähten.
- an ionization chamber with a feed channel for the gas to be examined,
- an electron source for ionizing the gas to be examined,
- Electrodes for accelerating the ionizing electrons,
- Electrodes for mass-dependent separation of the ions by acceleration / deceleration of the same,
- a detector for the separated ions, and
- a wiring with metalliscehn wires.
Massenspektrometer finden vielfache Anwendung. Während früher Massenspektrometer in erster Linie wissenschaftlichen Zwecken dienten, gibt es heutzutage immer mehr Anwendungen im Zusammenhang mit Umweltschutz, Messungen der Luftqualität zum Feststellen von schädlichen Gasen, Prozessüberwachung und -kontrolle, Sicherheitsüberprüfungen z. B. in Flughäfen, und dergleichen. Für diese Zwecke sind insbesondere Massenspektrometer geeignet, die kleine Abmessungen haben und daher leicht zu transportieren und überall einzusetzen sind. Ein weiteres Erfordernis ist für die Anwendung im großen Umfang, dass diese Massenspektrometer kostengünstig herzustellen sind.Mass spectrometers are widely used. While mass spectrometers were primarily used for scientific purposes, today there are more and more applications related to environmental protection, measurements of air quality for the detection of harmful gases, process monitoring and control, safety checks z. In airports, and the like. For this purpose, mass spectrometers are particularly suitable, which have small dimensions and are therefore easy to transport and use everywhere. Another requirement for large scale application is that these mass spectrometers are inexpensive to manufacture.
Durch kleine Größe zeichnen sich vorbekannte Massenspektrometer aus, die einen Quadrupolmassenseparator aufweisen (
Bei einem weiteren Massenspektrometer wird ein Magnetfeldseparator verwendet (
Ein Massenspektrometer der eingangs genannten Art wurde für den Einsatz in einem Mikrosystem entwickelt, das mit den in der Mikrosystemtechnik üblichen Methoden hergestellt werden kann (
Die Aufgabe der Erfindung besteht in der Schaffung eines Massenspektrometers der eingangs genannten Art, das einfach und kostengünstig hergestellt werden kann und für die Massenproduktion geeignet ist.The object of the invention is to provide a mass spectrometer of the type mentioned, which can be produced easily and inexpensively and is suitable for mass production.
Die erfindungsgemäße Lösung besteht bei einem Massenspektrometer der eingangs genannten Art darin,
- dass es einen als 90°-Sektor ausgeführten Energiefilter für die Ionen aufweist,
- es vollständig planar aufgebaut ist,
- die Komponenten auf einem ebenen nichtleitenden Substrat angeordnet sind,
- die Ionisationskammer, die Elektroden zum Beschleunigen der Elektronen und Ionen, der Detektor für die Ionen und der Energiefilter durch Photolithographie und Ätzen eines auf das Substrat und die Verdrahtung aufgebrachten dotierten Halbleiterplättchens hergestellt sind und die vorgenannten Teile durch ein zweites flaches nichtleitendes Substrat bedeckt sind.
- that it has an energy filter designed as a 90 ° sector for the ions,
- it is completely planar,
- the components are arranged on a flat non-conductive substrate,
- the ionization chamber, the electrodes for accelerating the electrons and ions, the detector for the ions and the energy filter are produced by photolithography and etching a doped semiconductor chip applied to the substrate and the wiring and the aforementioned parts are covered by a second flat non-conductive substrate.
Die Funktion des Massenspektrometers mit der massenabhängigen Separierung der Ionen durch Beschleunigung/Verzögerung beruht darauf, dass durch die Beschleunigung durch die Felder der Elektroden verschieden schwere Ionen eine unterschiedliche Geschwindigkeit erreichen und aufgrund dieser Geschwindigkeitsunterschiede die Separierung erfolgt. Der entsprechende durchgelassene Ionenstrahl ist aber nicht monochromatisch, sondern enthält auch Ionen größerer oder kleinerer Masse, die aufgrund der thermischen Bewegung eine größere oder kleinere Startgeschwindigkeit hatten. Um diese nicht monochromatischen Ionen auszufiltern, ist der Energiefilter vorgesehen, in dem zwischen zwei Elektroden mit unterschiedlichem, insbesondere entgegengesetzten Potenzial die Ionen um 90° in einem Kanal zwischen den Elektroden umgelenkt werden. Durch diese Maßnahme wird eine höhere Genauigkeit erhalten.The function of the mass spectrometer with the mass-dependent separation of the ions by acceleration / deceleration is based on the fact that the acceleration through the fields of the electrodes different ions reach a different speed and due to these differences in speed, the separation takes place. The corresponding transmitted ion beam is not monochromatic, but also contains ions of greater or lesser mass, which had a greater or lesser start speed due to the thermal movement. In order to filter out these non-monochromatic ions, the energy filter is provided in which between two electrodes with different, in particular opposite potential, the ions are deflected by 90 ° in a channel between the electrodes. By this measure, a higher accuracy is obtained.
Der besondere Vorteil der Erfindung besteht aber darin, dass das Massenspektrometer vollständig planar aufgebaut ist und mit den Techniken der Mikroelektronik aus Wafern hergestellt werden kann. Die Komponenten sind auf einem ebenen nichtleitenden Substrat angeordnet, auf dem zunächst die metallische Anschlussverdrahtung aufgebracht worden ist. Die Ionisationskammer, die Elektroden zum Beschleunigen der Elektronen und Ionen, der Detektor für die Ionen und der Energiefilter sind durch Photolithographie und Ätzen eines auf das Substrat und die Verdrahtung aufgebrachten Halbleiterplättchens hergestellt, wobei in einem photolithographischen und Ätzschritt alle Komponenten erzeugt werden. Anschließend werden dann die Komponenten durch ein flaches nichtleitendes Substrat bedeckt, um so eine geschlossene Einheit zu erhalten.The particular advantage of the invention, however, is that the mass spectrometer is constructed completely planar and can be produced from wafers with the techniques of microelectronics. The components are arranged on a flat, nonconducting substrate on which the metallic connection wiring has first been applied. The ionization chamber, the electrodes for accelerating the electrons and ions, the detector for the ions and the energy filters are produced by photolithography and etching of a wafer applied to the substrate and the wiring, wherein all components are produced in a photolithographic and etching step. Subsequently, the components are then covered by a flat non-conductive substrate so as to obtain a closed unit.
Bei einer vorteilhaften Ausführungsform ist die Elektronenquelle ein thermischer Emitter. Bei einer anderen vorteilhaften Ausführungsform weist die Elektronenquelle eine Plasmakammer mit einem Zuführkanal für ein Edelgas und mit einer Mikrowellenleitung zum Einleiten von Mikrowellen zur Erzeugung und Aufrechterhaltung des Plasmas auf, wobei die Plasmakammer, der Zuführkanal und die Mikrowellenleitung ebenfalls durch Ätzen des Halbleiterplättchens zusammen mit den anderen Teilen hergestellt sind.In an advantageous embodiment, the electron source is a thermal emitter. In another advantageous embodiment, the electron source comprises a plasma chamber having a rare gas feed passage and a microwave line for introducing and maintaining the plasma, the plasma chamber, the feed channel and the microwave line also being formed by etching the semiconductor die together with the others Parts are made.
Die Elektroden zur massenabhängigen Separierung der Ionen durch Beschleunigung/Verzögerung sind bei einer vorteilhaften Ausführungsform als Flugzeitmassenseparator ausgebildet und angeordnet. In einer ersten Gateelektrodenanordnung wird der Ionenstrahl gepulst. Es gelangen so nur kurze Ionenpulse in die Driftstrecke, wo der Puls aufgrund der unterschiedlichen Geschwindigkeiten der Ionen auseinanderläuft. An einer zweiten Gatelektrodenanordnung wird der Ionenpuls abgetastet. Unterschiedliche Laufzeiten entsprechend dabei unterschiedlichen Massen. Durch den Energiefilter wird dann sichergestellt, dass nur Ionen mit genau einer Energie den Detektor erreichen und dort registriert werden.The electrodes for mass-dependent separation of the ions by acceleration / deceleration are at an advantageous Embodiment designed as a time-of-flight mass separator and arranged. In a first gate electrode arrangement, the ion beam is pulsed. Only short ion pulses reach the drift path, where the pulse diverges due to the different velocities of the ions. At a second gate electrode arrangement, the ion pulse is scanned. Different maturities corresponding to different masses. The energy filter then ensures that only ions with exactly one energy reach the detector and are registered there.
Bei einem Wanderfeldseparator ist in der Messstrecke eine größere Anzahl von Elektroden vorgesehen, die mit elektrischen Wechselspannungen beaufschlagt werden, die von einem Ende zum anderen Ende mit den Ionen "wandern". Nur die Ionen mit genau der Geschwindigkeit, die der "Wanderungsgeschwindigkeit" der elektrischen Felder entspricht, bewegen sich immer durch Elektroden hindurch, an die gerade keine Spannung angelegt ist. Alle anderen Ionen, die nicht im Takt sind, bewegen sich zwischen Elektroden, an die gerade eine elektrische Spannung angelegt ist, so dass sie zur Seite abgelenkt werden.In the case of a traveling-field separator, a larger number of electrodes are provided in the measuring path, which are subjected to alternating electrical voltages which "migrate" from one end to the other end with the ions. Only the ions at exactly the speed corresponding to the "rate of migration" of the electric fields always pass through electrodes to which no voltage is currently applied. All other ions that are out of sync move between electrodes that are being applied with an electrical voltage so that they are deflected to the side.
Der Detektor für die Ionen ist vorteilhafterweise als Faradaydetektor ausgebildet. Bei einer anderen vorteilhaften Ausführungsform, die größere Empfindlichkeit hat, ist der Detektor für die Ionen als Elektronenvielfacher ausgebildet.The detector for the ions is advantageously designed as a Faradaydetektor. In another advantageous embodiment, which has greater sensitivity, the detector for the ions is designed as an electron multiplier.
Die Elektroden zum Beschleunigen der Elektronen können zwei mit Blendenöffnungen versehene Elektroden sein, an die unterschiedliche elektrische Potenziale anlegbar sind. Diese Elektroden können ebenfalls aus dem Halbleitermaterial hergestellt werden, so dass die vorbekannte Gitteranordnung zum Beschleunigen der Elektronen des Standes der Technik (
Vorteilhafterweise weist das Massenspektrometer einen Mikrocontroller auf, durch den es gesteuert wird.Advantageously, the mass spectrometer has a microcontroller, by which it is controlled.
Die metallischen Leiter der Verdrahtung und die Elektroden sind vorteilhafterweise durch eutektische Halbleiter-Metall-Kontakte elektrisch verbunden. Zu diesem Zweck sind auf den Drähten oder Leiterbahnen auf den entsprechenden Stellen Höcker aus einem geeigneten Metall angeordnet, die beim Bonden mit dem Halbleiterplättchen die eutektischen Halbleiter-Metall-Kontakte bilden.The metallic conductors of the wiring and the electrodes are advantageously electrically connected by eutectic semiconductor metal contacts. For this purpose, bumps of a suitable metal are arranged on the wires or printed conductors in the corresponding places, which form the eutectic semiconductor metal contacts during bonding with the semiconductor chip.
Bei einer besonders vorteilhaften Ausführungsform ist das Halbleitermaterial dotiertes Silizium. Ein besonders vorteilhaftes Metall für die eutektischen Kontakte ist Gold.In a particularly advantageous embodiment, the semiconductor material is doped silicon. A particularly advantageous metal for the eutectic contacts is gold.
Die nichtleitenden Substrate bestehen vorteilhafterweise aus Borosilikatglas oder Quarzglas.The non-conductive substrates are advantageously made of borosilicate glass or quartz glass.
Die Erfindung zeichnet sich auch durch ein Verfahren zum Herstellen des Massenspektrometers aus. Gemäß diesen Verfahren wird auf ein flaches nichtleitendes Substrat die metallische Verdrahtung aufgebracht, auf der Metallpads für Verbindung mit den Halbleiterelektroden angeordnet sind. In das Halbleiterplättchen werden dann der Verdrahtung entsprechende Vertiefungen eingeätzt, damit das Halbleiremetrial nur mit den Metallpads, nicht aber mit der Verdrahtung beim Bonden in Kontakt kommt. Anschließend wird das Halbleiterplättchen dann auf das Substrat aufgebracht und auf dasselbe eine Maske für Photolithographie angeordnet. Die Ausrichtung der Maske in Bezug auf die Verdrahtung und Goldpads kann dabei optisch erfolgen, indem Licht mit einer Wellenlänge verwendet wird, für das das Siliziumplättchen durchsichtig ist. Für Silizium ist dabei eine Wellenlänge oberhalb von 1,2 µm geeignet. Nach entsprechender Belichtung und Entfernung der Maske wird dann das Halbleiterplättchen in einem Schritt lokal geätzt, um die Komponenten des Massenspektrometers zu erzeugen. Anschließend wird das Halbleiterplättchen mit einem zweiten nicht leitenden Substrat abgedeckt.The invention is also characterized by a method for producing the mass spectrometer. According to these methods, the metal wiring on which metal pads for connection to the semiconductor electrodes are disposed is applied to a flat non-conductive substrate. Cores are then etched into the die in order for the semiconductor resistor to contact only the metal pads but not the wiring during bonding. Subsequently, the Semiconductor platelets are then applied to the substrate and arranged on the same a mask for photolithography. The alignment of the mask with respect to the wiring and gold pads can be done optically by using light of a wavelength for which the silicon wafer is transparent. For silicon, a wavelength above 1.2 μm is suitable. After appropriate exposure and mask removal, the semiconductor die is then locally etched in one step to create the components of the mass spectrometer. Subsequently, the semiconductor wafer is covered with a second non-conductive substrate.
An dem zweiten nicht leitenden Substrat kann dabei vorher eine weitere Verdrahtung aufgebracht sein, um z. B. Elektroden von Elektrodenpaaren miteinander zu verbinden.At the second non-conductive substrate can be applied in advance, a further wiring to z. B. electrodes of electrode pairs to each other.
Die Erfindung wird im Folgenden anhand von vorteilhaften Ausführungsformen unter Bezugnahme auf die beigefügten Zeichnungen beschrieben. Es zeigen:
- Fig. 1
- die prinzipielle Anordnung der wesentliche Teile einer vorteilhaften Ausführungsform des Massenspektrometers ohne Verdrahtung und nichtleitende Substrate;
- Fig. 2
- einen Schnitt entlang der Linie A-A von
Fig. 1 , wobei die nichtleitenden Substrate mit dargestellt sind. - Fig. 3
- in einer ähnlichen Darstellung wie
Fig. 1 eine andere Ausführungsform; - Fig. 4
- in ähnlicher Darstellung wie
Fig. 2 einen Schnitt entsprechend der Linie A-A vonFig. 3 - Fig. 5 und Fig. 6
den Figuren 1 und 2 bzw. 3 und 4 entsprechende Darstellungen einer dritten Ausführungsform;- Fig. 7
- eine Draufsicht auf die Beschleunigungselektrodenanordnung;
- Fig. 8
- einen Schnitt entlang der Linie A-A von
Fig. 7 ; und - Fig. 9
- das Prinzip der Herstellung des Massenspektrometers der Erfindung.
- Fig. 1
- the basic arrangement of the essential parts of an advantageous embodiment of the mass spectrometer without wiring and non-conductive substrates;
- Fig. 2
- a section along the line AA of
Fig. 1 , wherein the non-conductive substrates are shown. - Fig. 3
- in a similar representation as
Fig. 1 another embodiment; - Fig. 4
- in a similar representation as
Fig. 2 a section corresponding to the line AA ofFig. 3 - Fig. 5 and Fig. 6
- the
Figures 1 and 2 and Figures 3 and 4 are respective views of a third embodiment; - Fig. 7
- a plan view of the acceleration electrode assembly;
- Fig. 8
- a section along the line AA of
Fig. 7 ; and - Fig. 9
- the principle of manufacturing the mass spectrometer of the invention.
In
Die Ionen aus der Ionisationskammer b werden durch ein elektrisches Feld zwischen Kammerwand und Ionenoptik g auf eine weitere Blendenöffnung extrahiert, mit definierter Energie beschleunigt und fokussiert. Der Ionenstrahl wird an der ersten Gateelektronikanordnung h gepulst. Somit gelangen nur kurze Ionenpulse in die Driftstrecke i, wo der Puls aufgrund der unterschiedlichen Geschwindigkeiten der Ionen auseinanderläuft. An der zweiten Geldelektrodenanordnung j wird der Ionenpuls abgetastet. Der Energiefilter k stellt sicher, dass Ionen nur mit genau einer Energie den Detektor l erreichen und dort registriert werden.The ions from the ionization chamber b are extracted by an electric field between the chamber wall and ion optics g on a further aperture, accelerated with defined energy and focused. The ion beam is pulsed at the first gate electronics array h . Thus, only short ion pulses reach the drift path i , where the pulse diverges due to the different velocities of the ions. At the second money electrode arrangement j , the ion pulse is scanned. The energy filter k ensures that ions only reach the
Die Ausführungsform der
In
In
Die Herstellung des Massenspektrometers kann in einheitlichen Schritten in Wafern erfolgen. Das fertige Massenspektrometer, das in den Figuren gezeigt ist, kann Abmessungen von so klein wie 5x10 mm haben. Aufgrund der kleinen Größe sind auch nur geringe Anforderungen an die Pumpleistung einer Vakuumpumpe gestellt.The production of the mass spectrometer can take place in uniform steps in wafers. The final mass spectrometer shown in the figures may have dimensions as small as 5x10 mm. Due to the small size and low demands on the pumping power of a vacuum pump are made.
Claims (17)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07003392A EP1959476A1 (en) | 2007-02-19 | 2007-02-19 | Mass spectrometer |
CN200880005532.7A CN101636814B (en) | 2007-02-19 | 2008-02-19 | Mass spectrometer |
US12/526,163 US8134120B2 (en) | 2007-02-19 | 2008-02-19 | Mass spectrometer |
JP2009549804A JP2010519687A (en) | 2007-02-19 | 2008-02-19 | Mass spectrometer |
CA002678460A CA2678460A1 (en) | 2007-02-19 | 2008-02-19 | Mass spectrometer |
PCT/EP2008/001287 WO2008101669A1 (en) | 2007-02-19 | 2008-02-19 | Mass spectrometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07003392A EP1959476A1 (en) | 2007-02-19 | 2007-02-19 | Mass spectrometer |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1959476A1 true EP1959476A1 (en) | 2008-08-20 |
Family
ID=38235375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07003392A Withdrawn EP1959476A1 (en) | 2007-02-19 | 2007-02-19 | Mass spectrometer |
Country Status (6)
Country | Link |
---|---|
US (1) | US8134120B2 (en) |
EP (1) | EP1959476A1 (en) |
JP (1) | JP2010519687A (en) |
CN (1) | CN101636814B (en) |
CA (1) | CA2678460A1 (en) |
WO (1) | WO2008101669A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015132005A1 (en) * | 2014-03-06 | 2015-09-11 | Gregor Quiring | Device for ion separation by selective acceleration |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010018830A1 (en) | 2010-04-29 | 2011-11-03 | Bayer Technology Services Gmbh | A liquid vaporizer |
CN101963596B (en) * | 2010-09-01 | 2012-09-05 | 中国科学院广州地球化学研究所 | Rare gas determination system based on quadrupole mass spectrometer |
DE102011015595B8 (en) * | 2011-03-30 | 2015-01-29 | Krohne Messtechnik Gmbh | Method for controlling a synchronous ion shield mass separator |
JP5813536B2 (en) * | 2012-03-02 | 2015-11-17 | 株式会社東芝 | Ion source |
US9418827B2 (en) * | 2013-07-23 | 2016-08-16 | Hamilton Sundstrand Corporation | Methods of ion source fabrication |
JP6624482B2 (en) * | 2014-07-29 | 2019-12-25 | 俊 保坂 | Micro accelerator and micro mass spectrometer |
JP7018090B2 (en) * | 2020-04-08 | 2022-02-09 | 俊 保坂 | Ultra-small accelerator, ultra-small mass spectrometer and ion implanter |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0427532A2 (en) * | 1989-11-08 | 1991-05-15 | Schultz, J. Albert | High resolution mass spectrometry of recoiled ions for isotopic and trace elemental analysis |
US5486697A (en) * | 1994-11-14 | 1996-01-23 | California Institute Of Technology | Array of micro-machined mass energy micro-filters for charged particles |
WO1996011492A1 (en) * | 1994-10-07 | 1996-04-18 | Northrop Grumman Corporation | Miniaturized mass filter |
GB2391694A (en) * | 2002-08-01 | 2004-02-11 | Microsaic Systems Ltd | A monolithic micro-engineered quadrupole mass spectrometer |
US20050258514A1 (en) * | 2004-05-07 | 2005-11-24 | Stillwater Scientific | Microfabricated miniature grids |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2765890B2 (en) * | 1988-12-09 | 1998-06-18 | 株式会社日立製作所 | Plasma ion source trace element mass spectrometer |
JP2774878B2 (en) * | 1991-04-25 | 1998-07-09 | 株式会社日立製作所 | Secondary ion mass spectrometry of multilayer insulation samples |
US5466932A (en) * | 1993-09-22 | 1995-11-14 | Westinghouse Electric Corp. | Micro-miniature piezoelectric diaphragm pump for the low pressure pumping of gases |
US5492867A (en) * | 1993-09-22 | 1996-02-20 | Westinghouse Elect. Corp. | Method for manufacturing a miniaturized solid state mass spectrograph |
US5386115A (en) | 1993-09-22 | 1995-01-31 | Westinghouse Electric Corporation | Solid state micro-machined mass spectrograph universal gas detection sensor |
US5481110A (en) * | 1993-09-22 | 1996-01-02 | Westinghouse Electric Corp | Thin film preconcentrator array |
JPH09511614A (en) * | 1994-11-22 | 1997-11-18 | ノースロップ グルマン コーポレーション | Solid-state mass spectrometer General-purpose gas detection sensor |
DE19720278B4 (en) | 1997-05-13 | 2007-08-02 | Sls Micro Technology Gmbh | Miniaturized mass spectrometer |
JPH11250854A (en) * | 1998-03-02 | 1999-09-17 | Ulvac Corp | Analyzing method and device for incident ion on substrate in etching plasma |
US6815668B2 (en) * | 1999-07-21 | 2004-11-09 | The Charles Stark Draper Laboratory, Inc. | Method and apparatus for chromatography-high field asymmetric waveform ion mobility spectrometry |
US6396057B1 (en) * | 2000-04-18 | 2002-05-28 | Waters Investments Limited | Electrospray and other LC/MS interfaces |
EP1779409A2 (en) * | 2004-08-02 | 2007-05-02 | Owlstone Ltd | Ion mobility spectrometer |
EP1746631B1 (en) * | 2005-07-20 | 2013-06-19 | Microsaic Systems PLC | Microengineered nanospray electrode system |
-
2007
- 2007-02-19 EP EP07003392A patent/EP1959476A1/en not_active Withdrawn
-
2008
- 2008-02-19 CN CN200880005532.7A patent/CN101636814B/en not_active Expired - Fee Related
- 2008-02-19 CA CA002678460A patent/CA2678460A1/en not_active Abandoned
- 2008-02-19 US US12/526,163 patent/US8134120B2/en not_active Expired - Fee Related
- 2008-02-19 WO PCT/EP2008/001287 patent/WO2008101669A1/en active Application Filing
- 2008-02-19 JP JP2009549804A patent/JP2010519687A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0427532A2 (en) * | 1989-11-08 | 1991-05-15 | Schultz, J. Albert | High resolution mass spectrometry of recoiled ions for isotopic and trace elemental analysis |
WO1996011492A1 (en) * | 1994-10-07 | 1996-04-18 | Northrop Grumman Corporation | Miniaturized mass filter |
US5486697A (en) * | 1994-11-14 | 1996-01-23 | California Institute Of Technology | Array of micro-machined mass energy micro-filters for charged particles |
GB2391694A (en) * | 2002-08-01 | 2004-02-11 | Microsaic Systems Ltd | A monolithic micro-engineered quadrupole mass spectrometer |
US20050258514A1 (en) * | 2004-05-07 | 2005-11-24 | Stillwater Scientific | Microfabricated miniature grids |
Non-Patent Citations (1)
Title |
---|
YOON H J ET AL: "Fabrication of a novel micro time-of-flight mass spectrometer", SENSORS AND ACTUATORS A, ELSEVIER SEQUOIA S.A., LAUSANNE, CH, vol. 97-98, 1 April 2002 (2002-04-01), pages 441 - 447, XP004361634, ISSN: 0924-4247 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015132005A1 (en) * | 2014-03-06 | 2015-09-11 | Gregor Quiring | Device for ion separation by selective acceleration |
Also Published As
Publication number | Publication date |
---|---|
WO2008101669A1 (en) | 2008-08-28 |
CA2678460A1 (en) | 2008-08-28 |
CN101636814A (en) | 2010-01-27 |
US20100090103A1 (en) | 2010-04-15 |
US8134120B2 (en) | 2012-03-13 |
WO2008101669A8 (en) | 2008-12-24 |
CN101636814B (en) | 2013-01-23 |
JP2010519687A (en) | 2010-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1959476A1 (en) | Mass spectrometer | |
EP0208894B1 (en) | Time-of-flight mass spectrometer with an ion reflector | |
DE112007000146B4 (en) | Concentrating ionic conductor of a mass spectrometer, spectrometer and method | |
EP0403965B1 (en) | MS-MS-flight time mass spectrometer | |
DE69132461T2 (en) | METHOD AND DEVICE FOR TRACK ANALYSIS | |
DE3750928T2 (en) | Runtime mass spectrometry. | |
DE69604166T2 (en) | QUADRUPOL MASS SPECTROMETERS | |
DE69028650T2 (en) | Plasma etching method | |
DE112018001812T5 (en) | Multi-reflecting time-of-flight mass spectrometer | |
DE112013004685T5 (en) | Radio frequency (RF) ion guide for improved performance in mass spectrometers at high pressure | |
DE4442348C2 (en) | Method and device for improved mass resolution of a time-of-flight mass spectrometer with ion reflector | |
DE69431129T2 (en) | Ionizer for cycloid mass spectrometer | |
DE4041871C2 (en) | Mass spectrometer with plasma ion source | |
DE408288T1 (en) | ION MIRROR FOR A FLIGHT-TIME MASS SPECTROMETER. | |
DE112016002414B4 (en) | Mass analysis method using ion filtration | |
DE10324839B4 (en) | mass spectrometry | |
DE10335836B4 (en) | Mass spectrometry method with formation of multiple axial capture regions in an ion trap | |
DE3783476T2 (en) | MASS SPECTROMETER WITH SEPARATE ION SOURCE. | |
DE1598023A1 (en) | mass spectrometry | |
DE69810785T2 (en) | CHARGED PARTICLE ANALYSIS | |
DE102019205183A1 (en) | Method of making an ion trap | |
EP3778239B1 (en) | Method and device for parallel extruding of printing medium onto a substrate | |
EP3430640A1 (en) | Method for the ionisation of gaseous samples by means of dielectric barrier discharge and for the subsequent analysis of the generated sample ions in an analysis device | |
DE102004011691B4 (en) | Method for mass spectrometry | |
EP1817788B1 (en) | Flight time mass spectrometer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080312 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AXX | Extension fees paid |
Extension state: AL Payment date: 20090220 Extension state: BA Payment date: 20090220 Extension state: RS Payment date: 20090220 Extension state: HR Payment date: 20090220 Extension state: MK Payment date: 20090220 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BAYER TECHNOLOGY SERVICES GMBH |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BAYER INTELLECTUAL PROPERTY GMBH |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: LUDWIG-KROHNE GMBH & CO. KG Owner name: BAYER INTELLECTUAL PROPERTY GMBH |
|
TPAC | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: LUDWIG-KROHNE GMBH & CO. KG Owner name: BAYER AKTIENGESELLSCHAFT |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: LUDWIG-KROHNE GMBH & CO. KG Owner name: BAYER AKTIENGESELLSCHAFT |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20171010 |