EP1958176B1 - Verfahren zur bestimmung des horizontalen profils eines flugplans in entsprechung mit einem vorgeschriebenen vertikal-flugprofil - Google Patents

Verfahren zur bestimmung des horizontalen profils eines flugplans in entsprechung mit einem vorgeschriebenen vertikal-flugprofil Download PDF

Info

Publication number
EP1958176B1
EP1958176B1 EP06819557A EP06819557A EP1958176B1 EP 1958176 B1 EP1958176 B1 EP 1958176B1 EP 06819557 A EP06819557 A EP 06819557A EP 06819557 A EP06819557 A EP 06819557A EP 1958176 B1 EP1958176 B1 EP 1958176B1
Authority
EP
European Patent Office
Prior art keywords
points
distance
point
curvilinear
flight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06819557A
Other languages
English (en)
French (fr)
Other versions
EP1958176A1 (de
Inventor
Nicolas Marty
Gilles Francois
Elias Bitar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1958176A1 publication Critical patent/EP1958176A1/de
Application granted granted Critical
Publication of EP1958176B1 publication Critical patent/EP1958176B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • G08G5/0034Assembly of a flight plan

Definitions

  • the present invention relates to the definition, in a flight plan, of the horizontal profile of an air route with a vertical profile of flight and speed imposed at the departure and / or arrival, by means of a sequence of waypoints. and / or revolutions associated with local flight constraints and referred to as "D-Fix" for "Dynamic FIX" because they are not listed in a published navigation database such as those called "Waypoints".
  • the waypoints and / or turning points "Waypoints" listed in the ARINC-424 published navigation databases are used to define the most common air routes. For others, they are often used only to define departure and arrival trajectories in accordance with published approach procedures. Between these imposed approach trajectories on departure and arrival, the establishment of the air route uses "D-Fix" passing and / or turning points which play the same roles as the "Waypoints" aimed at manual piloting screw via the pilot or with respect to the autopilot through a flight management computer or autopilot equipment but the definition of which is the responsibility of the operator.
  • the problem of determining the horizontal profile of an air route is based on the determination of a direct curvilinear path of minimum length, bypassing the reliefs that can not be crossed with the vertical profile of flight and imposed speed. .
  • This determination of a direct curvilinear path is the result of the estimates of curvilinear distances in the presence of static constraints (obstacles to be circumvented) and dynamic (vertical profile of flight and speed).
  • static constraints obstacles to be circumvented
  • dynamic vertical profile of flight and speed
  • the aim of the present invention is to determine, by seeking a lower calculation cost, a sequence of "D-Fix" passing and / or turning points defining, with their associated constraints, an aerial flight plan route, ranging from from a starting point to a destination point respecting vertical profiles of flight and speed imposed at the departure and / or arrival and by guaranteeing a bypass of the surrounding reliefs.
  • the first curvilinear distance map having the starting point for origin of distance measurements is developed taking into account the static constraints due to the terrain and the prescribed overflight zones, and the dynamic stress due to the vertical flight and speed profile initially imposed while the second curvilinear distance map having the destination point as the origin of the distance measurements is derived from the set of obstacles to circumvent appeared in the first map of curvilinear distances.
  • the second curvilinear distance map having the destination point for origin of the distance measurements is developed taking into account the static constraints. terrain and controlled overflight zones and the dynamic stress due to the vertical profile of flight and speed imposed on arrival while the first curvilinear distance map starting from the origin of the distance measurements is developed at from the set of obstacles to avoid appearing in the second curvilinear distances map.
  • the set of obstacles to be circumvented is completed by the points of the first and second maps assigned estimates of curvilinear distance having discontinuities compared to those assigned to points of the near vicinity.
  • the set of obstacles to be circumvented taken into account in the curvilinear distance maps is supplemented by lateral safety margins according to the aircraft's ability to turn flat in its configuration of the moment, approaching the terrain and / or the prescribed overflight zone, resulting from the monitoring of the vertical flight profile and imposed speed.
  • the lateral safety margins added to the set of obstacles to be bypassed are determined from a curvilinear distance map having the set of obstacles to be circumvented as the origin of the distance measurements.
  • the local thickness of a safety lateral margin takes into account the local wind.
  • the local thickness of a safety lateral margin takes into account the change of course necessary to circumvent a terrain and / or a controlled overflight zone.
  • the local thickness of a safety lateral margin corresponds to a minimum radius of flat bend authorized for the aircraft in its configuration of the moment.
  • the maximum separation threshold of the chain of straight segments with respect to the sequence of points of the direct path is of the order of a minimum half-radius of flat bend allowed for the aircraft in its configuration of the moment. .
  • the curvilinear distance maps are developed by means of a propagation distance transform.
  • the approximation of the sequence of points of the direct path by a sequence of rectilinear segments is obtained by a progressive construction during which the starting point or destination of the direct path is taken as the origin of a first segment that it is made to grow by adding one by one consecutive points as long as it does not enter all the listed obstacles to be circumvented and that its deviation from the points of the direct path that it bypasses respects the arbitrary threshold maximum spacing allowed, other rectilinear segments constructed in the same way being added thereafter as the point of destination or departure respectively of the direct path is not reached.
  • the approximation of the sequence of points of the direct path by a sequence of rectilinear segments is obtained by a dichotomous construction during which the starting point and the destination point of the direct path are initially connected by a replaced rectilinear segment.
  • the method for determining the horizontal profile of a flight plan route is advantageously implemented during a flight, during a "Dir-to" request from a geographical point made by the flight crew. flight management computer of the aircraft.
  • the method for determining the horizontal profile of a flight plan route is advantageously used during the preparation of military or civil security missions.
  • the method for determining the horizontal profile of a flight plan route is advantageously implemented in a rejoining system of a fallback airport in the event of an engine failure.
  • the method for determining the horizontal profile of a flight plan route is advantageously implemented in a flight plan discontinuity management system.
  • the method for determining the horizontal profile of a flight plan route is advantageously implemented in a system for automatically joining predetermined positions for unmanned aircraft.
  • the method for determining the horizontal profile of a flight plan route is advantageously implemented, in a secure setting, in an automatic rejoining system of predetermined positions for an aircraft driven out of control.
  • the method which will be described, the determination or tracing of a horizontal airway profile respecting the terrain, zones with prescribed overflight and vertical profiles of flight and speed imposed on departure and / or arrival It relies on the technique of propagation distance transformations applied to air navigation, in a framework of static constraints consisting of reliefs to be bypassed and areas with prescribed overflight to be respected, and dynamic constraints constituted by a vertical profile of flight and imposed speed.
  • the propagation distance transforms initially appeared in image analysis to estimate distances between objects. These include chamfer mask distance transforms, examples of which are described by Ms. Gunilla Borgefors in an article entitled “Distance Transformation in Digital Images.” published in the journal: Computer Vision, Graphics and Image Processing, Vol. 34 pp. 344-378 in February 1986 .
  • the distance between two points of a surface is the minimum length of all possible paths on the surface starting from one of the points and ending in the other.
  • a chamfer mask distance transform estimates the distance of a pixel said pixel "goal" with respect to one or more pixels called "source” pixels by building progressively, starting from source pixels, the shortest possible path following the mesh of the pixels and ending in the goal pixel, and with the help of the distances found for the pixels of the image already analyzed and a table called chamfer mask listing the values of the distances between a pixel and its close neighbors.
  • a chamfer mask is in the form of a table with a layout of boxes reproducing the pattern of a pixel surrounded by his close neighbors.
  • a box with a value of 0 marks the pixel taken as the origin of the distances listed in the table.
  • Around this central box agglomerate peripheral boxes filled with non-zero proximity distance values and taking again the disposition of the pixels of the neighborhood of a pixel supposed to occupy the central box.
  • the proximity distance value in a peripheral box is that of the distance separating a pixel occupying the position of the relevant peripheral box from a pixel occupying the position of the central box. Note that the proximity distance values are distributed in concentric circles.
  • a third circle of eight cells corresponding to the eight pixels of the third rank, which are closest to the pixel of the central cell while remaining outside the line, the column and the diagonals occupied by the pixel of the central cell, are assigned a proximity distance value D3.
  • the chamfer mask can cover a more or less extended neighborhood of the pixel of the central square by listing the values of the proximity distances of a more or less large number of concentric circles of pixels of the neighborhood. It can be reduced to the first two circles formed by the pixels of the neighborhood of a pixel occupying the central box or being extended beyond the first three circles formed by the pixels of the neighborhood of the pixel of the central box. It is usual to stop at first three circles as for the chamfer mask shown in figure 3 .
  • the values of the proximity distances D1, D2, D3 which correspond to Euclidean distances are expressed in a scale whose multiplicative factor allows the use of integers at the price of a certain approximation.
  • G. Borgefors adopts a scale corresponding to a multiplicative factor 3 or 5.
  • a chamfer mask retaining the first two circles of values of proximity distance therefore of dimensions 3 ⁇ 3, G.
  • Borgefors gives at the first proximity distance D1 which corresponds to a step on the abscissa or the ordinate and also to the multiplicative scale factor, the value 3 and, at the second proximity distance which corresponds to the root of the sum of the squares of the rungs on the abscissa and on the ordinate x 2 + there 2 , the value 4.
  • a chamfer mask retaining the first three circles, therefore of dimensions 5x5
  • the gradual construction of the shortest possible path to a target pixel starting from source pixels and following the pixel mesh is done by regular scanning of the pixels of the image by means of the chamfer mask.
  • the pixels of the image are assigned an infinite distance value, in fact a sufficiently large number to exceed all values of the measurable distances in the image, with the exception of the source pixel or pixels that are assigned a zero distance value.
  • the initial distance values assigned to the goal points are updated during the scanning of the image by the chamfer mask, an update consisting in replacing a distance value assigned to a goal point with a new lower value. resulting from a distance estimation made on the occasion of a new application of the chamfer mask at the point of interest considered.
  • a distance estimation by applying the chamfer mask to a goal pixel consists in listing all the paths going from this goal pixel to the source pixel and passing through a pixel of the neighborhood of the goal pixel whose distance has already been estimated during the same scan , to search among the listed routes, the shortest path (s) and to adopt the length of the shortest path (s) as the distance estimate.
  • the progressive search for the shortest possible paths starting from a source pixel and going to the different pixels of the image gives rise to a phenomenon of propagation in directions of the pixels which are the closest neighbors to the pixel in analysis and whose distances are listed in the chamfer mask.
  • the directions of the nearest neighbors of a non-varying pixel are considered as propagation axes of the chamfer mask distance transform.
  • the scanning order of the pixels in the image affects the reliability of the distance estimates and their updates because the paths taken into account depend on them. In fact, it is subject to a regularity constraint which makes that if the pixels of the image are spotted according to the lexicographic order (pixels ranked in increasing order line by line starting from the top of the image and progressing towards the bottom of the image, and from left to right within a line), and if a pixel has been analyzed before a pixel q then a pixel p + x must be analyzed before the pixel q + x.
  • the lexicographic orders inverse lexicographic (scanning of the pixels of the image line by line from bottom to top and, at within a line, from right to left), transposed lexicography (scanning of the pixels of the image column by column from left to right and, within a column, from top to bottom), inverse transposed lexicography (scanning of pixels per column from right to left and within a column from bottom to top) satisfy this regularity condition and more generally all scans in which rows and columns are scanned from right to left or from left to right.
  • Borgefors advocates a double scan of pixels in the image, once in the lexicographic order and another in the inverse lexicographic order.
  • the analysis of the image by means of the chamfer mask can be done according to a parallel method or a sequential method.
  • a parallel method we consider the distance propagations from all points of the mask that are passed over the entire image in several sweeps until no more change in the estimates of distance.
  • distance propagations are only considered for half of the points of the mask. The upper half of the mask is passed over all the points of the image by scanning according to the lexicographic order and then the lower half of the mask on all the points of the image according to the inverse lexicographic order.
  • the figure 2a shows, in the case of the sequential method and a lexicographic scan pass from the upper left corner to the lower right corner of the image, the boxes of the chamfer mask of the figure 1 used to list the paths from a goal pixel placed on the central square (box indexed by 0) to the source pixel through a pixel of the neighborhood whose distance has already been estimated during the same scan .
  • These boxes are eight in number, arranged in the upper left part of the chamfer mask. There are therefore eight paths listed for the shortest search whose length is taken for estimation of the distance.
  • the figure 2b shows, in the case of the sequential method and a scan pass in the inverse lexicographic order from the lower right corner to the upper left corner of the image, the boxes of the chamfer mask of the figure 1 used to list the paths from a goal pixel placed on the central square (box indexed by 0) to the source pixel through a neighborhood pixel whose distance has already been the subject of a estimate during the same scan.
  • These boxes are complementary to those of the figure 2a . They are also eight in number but arranged in the lower right part of the chamfer mask. There are still eight paths listed for the shortest search whose length is taken for distance estimation.
  • the propagation distance transform of which the principle has just been summarily recalled was originally conceived for the analysis of the positioning of objects in an image but it was not slow to be applied to the estimation of the distances on a relief map extracted from a database of elevations of the land with regular mesh of the terrestrial surface. Indeed, such a map does not explicitly have a metric since it is drawn from the elevations of the points of the mesh of a database of elevations of the terrain of the zone represented.
  • the chamfer mask distance transform is applied to an image whose pixels are the elements of the terrain elevation database belonging to the map, i.e., elevation values. associated with latitude geographic coordinates; longitude of the grid nodes of the geographic location grid used for measurements, sorted, as on the map, by latitude and longitude increasing or decreasing according to a two-dimensional array of latitude and longitude coordinates.
  • Some field navigation systems for mobiles such as robots use the chamfer mask distance transform to estimate curvilinear distances taking into account impassable areas due to their rugged configurations. To do this, they associate, with elements of the elevation database of the land contained in the map, a forbidden zone attribute which indicates, when activated, an impassable or forbidden zone and inhibits any other update. than an initialization, of the distance estimation made by the chamfer mask distance transform.
  • Aerial regulation overflight restrictions are achieved through the use of specific attributes of regulatory constraints listing, at each point, the requirements of the aviation regulations: overflight prohibition, minimum overflight height or altitude permitted , authorized altitude ranges, heading or slope constraints that must also be satisfied for the distance propagated to a point to be retained.
  • attributes of aviation regulatory constraints can be periodically entered into the terrain elevation database based on planned regulatory validity durations or when preparing a flight plan. They can also be dynamically downloaded into an on-board terrain elevation database for regions in the vicinity of the aircraft's predictable route.
  • the identification of a direct curvilinear path corresponding to the one or one of the shortest paths at the base of the curvilinear distance estimation made for the destination point in a curvilinear distance map developed without taking into account dynamic constraints and having the starting point for origin of its distance measurements can be obtained by drawing up a second and a third curvilinear distance maps covering the same region.
  • the second card differs from the first by the displacement at the point of goal, from the point taken for origin of the measures of curvilinear distance.
  • the third map adopts for curvilinear distance estimation in each of its points, the sum of the curvilinear distance estimates made for the point concerned, in the first and second maps.
  • the points of the third curvilinear distance map, taken by the curvilinear path direct are an uninterrupted chain of points from the point of departure to the point of destination, all of which are assigned the minimum sum of curvilinear distance estimates because, if they were not, there would be a shorter path, which is impossible by definition.
  • the chain of points may be in a larger set of related points all affected a minimum sum of curvilinear distance estimates, in the form of a series of parallelogram-like surfaces giving different possibilities for tracing a path of minimum length. In this case, we adopt the least sinuous layout following the diagonals of the parallelogram shapes.
  • the approximation is continued until the vertical flight profile is assimilated when climbing to the cruising altitude from the starting point to a single rectilinear segment with a constant slope.
  • the same simplification is made for the vertical flight profile when descending from the cruising altitude towards the point of destination while the aircraft must consume its potential and kinetic energies.
  • simplifications are not restrictive because it is always possible to dispense with them in the various steps of the method for locating a direct curvilinear path that will be described and to replace the single-segment segments with constant slopes by the segment sequences. rectilinear they approximate.
  • a vertical flight profile comprising a climb 30 with a constant slope starting from the altitude from the starting point to a cruising altitude followed by a landing 31, 32 at the cruising altitude and then a descent 33 with a constant slope to the altitude of the point of destination.
  • the identification of a direct curvilinear path leading from the starting point to the destination point is obtained by decomposing the vertical flight and speed profile into a one-way profile shown in FIG. figure 4a and in a back profile shown at the figure 4b .
  • the profile go to show figure 4a consists of the climb 30 with a constant slope from the altitude of the starting point to the cruising altitude, extended indefinitely by the level 31 of cruise altitude. It corresponds to a dynamic stress determinable from the starting point, usable for the elaboration of a draft of the first curvilinear distance map faithful on the only beginning of the path since this dynamic constraint takes into account only the first half of the vertical profile flight and imposed speed.
  • the return profile shown in reverse order to the figure 4b consists of the 32 level at cruise altitude, continued by the descent 33 constant slope to the point of destination. It corresponds to a dynamic stress determinable from the destination point, usable for the development of a draft of a second map of curvilinear distances faithful on the only end of the path since this dynamic constraint takes into account only the second half of the vertical profile flight and imposed speed.
  • the materialization of the shortest path from the point of departure to the point of destination is obtained by decomposing the vertical profile of flight and speed into a degenerate forward profile shown in FIG. figure 6a consisting of a simple bearing 51 at cruise altitude corresponding to a lack of dynamic stress and a return profile shown in the reverse order to the figure 6b , consisting of a descent 50 constant slope to the point of destination.
  • the thickness in the horizontal plane of the safety lateral margin may be taken to be equal to the minimum radius of flat bend, which is imposed on the aircraft according to its performance, the desired comfort and its airspeed TAS taking into account or not the local wind.
  • R TAS 2 boy Wut . tan ⁇ roll ⁇ roll being a maximum roll angle and g being the acceleration of gravity.
  • the local wind changes the apparent radius of a flat turn by increasing it when coming from the opposite side of the bend or from the rear and reducing it when it comes from the inside at the bend or from the front .
  • the apparent radius can be likened to half the transverse distance, relative to the aircraft, from the point of the turn where the aircraft will reach a change of heading of 180 °.
  • the thickness in the horizontal plane of the lateral margin can be made dependent on the change of course necessary to bypass, for example, as described in the French patent application filed by the plaintiff 24/9/2004 under the number 04 10149 , by making it depend at a point on the contour of an obstacle to be bypassed, a scale coefficient in (1 + sin ⁇ min (
  • the grid reproduces a four-sided polygonal pattern, typically squares or rectangles, and may also replicate other polygonal patterns such as triangles or hexagons.
  • the figure 7 shows the sets 1 of points where a curvilinear distance estimate has proved impossible and the 2 sets of points where Discrepancies occur between curvilinear distance estimates for neighboring points that emerge at the first stage of the path materialization process when developing the first draft curvilinear distance map by applying to the region image overflown, a chamfer mask distance transform originating from distance measurements, the starting point of the path and respecting static constraints constituted by the relief and / or by restricted circulation zones and dynamic stresses constituted an imposed altitude according to the distance traveled from the starting point 10 of the path corresponding to the forward profile part ( figure 4a ) a vertical flight and speed profile (ascending from the starting point to the cruising flight altitude extended indefinitely by a landing).
  • the sets 1 of points where a curvilinear distance estimation has proved impossible for the chamfer mask distance transform to have been able to find a path leading to it represent the zones to be bypassed because inaccessible for the aircraft if it wants to respect the forward profile part ( figure 4a ) of the vertical profile of flight and imposed speed.
  • the sets 2 of points where discontinuities appear between the curvilinear distance estimates for neighboring points indicate reliefs that can not be reached directly so to bypass.
  • the figure 8 shows the sets 1 'of points where a curvilinear distance estimation has proved impossible and the sets 2' of points where discontinuities appear between the estimates of curvilinear distances for neighboring points which emerge at the second stage of the materialization process during the development of the second draft of curvilinear distance map by application to the image of the overflown region, a chamfer mask distance transform originated from distance measurements at the point of destination of the path and respecting the same static constraints as the first draft, constituted by the relief and / or by restricted circulation zones and dynamic stresses consisting of an altitude imposed as a function of the distance traveled from the destination point of the corresponding path to the return profile part ( figure 4b ) the vertical flight and speed profile (landing at cruising flight altitude followed by a descent approaching the destination point).
  • the figure 9 shows the fusion 3, by union, of the obstacles to be circumvented appearing in the two blanks (sets 1, 1 'of points where an estimate of curvilinear distance proved impossible and sets 2, 2' of points where discontinuities appear between estimates curvilinear distance for neighboring points).
  • the figure 11 shows the magnification, by a safety lateral margin 6, of all the merged obstacles 3 resulting from the first and second blanks of curvilinear distance maps.
  • the lateral margin 6 is thinner around the departure points 10 and destination 20 because of the reduced speed of the aircraft.
  • the set 7 of the points of the shortest paths is in the form of an uninterrupted chain of points thickening at the neighborhood of the points of departure and destination to take forms 8, 9 parallelogram.
  • the figure 13 represents, on the location grid of a curvilinear distance map, a set of points of the shortest paths between a starting point 11 and a destination point 12 with, for each point or cell of the geographical location grid making part of the whole, the numerical estimate of the curvilinear distance from the starting point 11 and a pattern background depending on the number of minimum length paths used by the propagation distance transform providing the curvilinear distance estimates.
  • the lightest pattern background is assigned to cells borrowed by a single path of minimum length and the most dense pattern background to cells borrowed by two paths of minimum length.
  • the figure 13 shows that the simple fact of a path having all its points belonging to the set of points of the shortest paths does not guarantee that it is of minimum length. Only the paths following the arrows are suitable.
  • the figure 14 shows the direct curvilinear path 15 finally adopted taking into account the reliefs, areas with controlled overflight and the vertical profile of flight and speed to be respected. It follows the diagonals of the parallelogram forms 8, 9.
  • the rectilinear segments "D-Legs" are imposed a maximum deviation from the points of the direct curvilinear path that they short-circuit.
  • One way to determine the straight-line segments "D-Legs" of the flightable trajectory is to build them progressively starting from the start or end point by adding one to one of the points of the direct curvilinear path to the block of consecutive points of the segment. construction until it encroaches on the lateral margin of an obstacle to be circumvented or that its distance to one of the points of the direct curvilinear path which it bypasses reaches the maximum admitted deviation.
  • the segment under construction is then considered finished and the construction of the next segment started, until the point of arrival or departure is reached.
  • the sequence of rectilinear segments "D-Legs" obtained is then smoothed in the manner of the flight computer and then again compared to the contours of obstacles to bypass completed side margins safety.
  • the figure 15 illustrates the determination of the rectilinear segments "D-Legs" 30, 31, 32 of the sequence and consequently of the points of passage and / or revolving "D-Fix" from the direct curvilinear path formed of a chain of points 33 bypassing an obstacle 40 surrounded by a lateral safety margin 41 of a thickness 'a' corresponding to the minimum turning radius R of the aircraft.
  • the maximum gap 'b' of the segments with respect to the points 33 of the direct curvilinear path was set at half the thickness 'a' of the safety lateral margin 41.
  • the figure 15 show the rectilinear segments 30, 31, 32 obtained by applying the progressive construction method.
  • the point at the junction of the two rectilinear segments concerned is separated by a certain step from the safety lateral margin whose integrity has been brought into play and the two new rectilinear segments obtained verified with respect to their respect for the circumvention of obstacles and their margins of safety.
  • the construction of the segments is taken over either in the case of the progressive method of construction, by shortening the segment rectilinear whose transition is the end point, or in the case of the dichotomy method, by splitting this rectilinear segment. It is also possible to completely start the construction of rectilinear segments by changing the method or, as indicated above, to resume the process at the stage of locating the direct curvilinear path after having increased the lateral safety margin locally and momentarily.
  • the transitions 33 and 34 between the rectilinear segments 30, 31 and 32 are volitable because achievable by turns to the minimum radius allowed, without entering the side safety margin. If this had not been the case, at the transition 35, this transition would have been as shown, away from the safety side margin and the straight segments 30 and 31 deformed according to the rectilinear segments 30 'and 31' shown in dashed lines .
  • junction points of the rectilinear segments are taken as points of passage and / or revolving "D-Fix" with, as constraints associated profiles vertical flight and speed.
  • the figure 16 shows the points of passage and / or revolving "D-Fix" 151, 152, 153, 154 obtained from the direct curvilinear path 15 of the figure 14 .
  • Such a system for implementing the lateral flight plan tracing method can be used for different purposes. It can be used in a larger system of management of discontinuities in flight plans, in particular, for the joining of a geographical point during a request for join "Dir-to" by the crew to the management calculator of the flight of the aircraft, for the rejoining of a fallback airport in the event of an engine failure or for the automatic rejoining of predetermined positions for a drone or for an aircraft flown in a safe context.
  • the latter instead of seeking to join in a straight line the geographical point designated by the crew, develops a plan of vertical flight and speed and uses a lateral flight plan tracking system implementing the method described above which submits a provisional flight plan taking into account the relief, the zones with controlled overflight and the vertical flight profile and imposed speed, and ensures the follow-up of the provisional flight plan as soon as it has received the approval of the crew.
  • the figure 18 shows the diagram of an onboard system for managing an engine failure in a functional environment on board an aircraft. It makes cooperate a flight management computer 60 dialoguing with the crew of the aircraft through a human-machine interface MCDU ("Multipurpose Control Display Unit") 61 and acting on an automatic control equipment FG / C 62 ("Flight Guidance and Control") dedicated to maintaining the aircraft on its trajectory and controlling its moving surfaces, with engine failure detection equipment EFD 63 (“Engine Failure Detector”) that can be part of FADEC (“Full Authority Digital Engine Control”), with a system of choice for an AS 64 airport (Airport Selector) and with a TRS 65 (“Terrain Routing System”) ) implementing the method described above.
  • MCDU Multipurpose Control Display Unit
  • FG / C 62 Automatic control equipment
  • FADEC Full Authority Digital Engine Control
  • the points of passage and / or rotating "D-Fix" provided by the lateral flight plan tracing system TRS 65 are considered as points of passage and / or turning "Waypoints "classics to allow an operator their modification, displacement and deletion.
  • the figure 19 shows the diagram of an onboard device for managing discontinuities in flight plans in a functional environment on board an aircraft. It uses the same elements as the one of the figure 18 with the exception of the EFD 63 Engine Failure Detection Equipment and the AS 64 Airport Fallback Selection System.
  • a flight management calculator returns the hand to the pilot when he encounters a flight plan discontinuity in the execution of his automatic flight plan tracking function.
  • the pilot In the absence of a TRS 65 system, the pilot must resume manual steering on the path from the point of passage and / or turning "Waypoint” marking the beginning of the discontinuity to the crossing point and / or turning " Waypoint "marking the end of the discontinuity where he can re-engage the automatic map tracking function flight of the flight management computer.
  • the pilot can obtain, from a vertical flight and speed profile, a list of "D-Fix" passing and / or turning points defining a temporary flight plan straddling the discontinuity. which can be supported by the flight computer for automatic tracking and predictions of fuel consumption.
  • This discontinuity management feature of a flight plan is particularly suited to tactical military flight and helicopter flight. Indeed, helicopter airways are not yet standardized or published. Therefore, a frequent operational case consists of taking off from a heliport according to a published procedure, seeking to join another zone, possibly through a published approach procedure. Between the two procedures, the operator is responsible for establishing the road. The described method of describing the lateral flight plan is therefore particularly useful since it makes it possible to automatically determine the complement of the flight plan guaranteeing safety with respect to the terrain.
  • the figure 20 shows the diagram of an automatic device of automatic join of predetermined positions for an unmanned aircraft: UAV ("Unmanned Aerial Vehicle") or drone, in a functional environment on board an aircraft. It uses the same elements as the one of the figure 19 with the exception of the MCDU man-machine interface which is replaced by a COMM-66 ground-to-board communication module enabling a ground operator to control the unmanned aircraft.
  • UAV Unmanned Aerial Vehicle
  • MCDU man-machine interface which is replaced by a COMM-66 ground-to-board communication module enabling a ground operator to control the unmanned aircraft.
  • the flight management computer FMS 60 can be programmed to require the lateral flight plan tracking system 65, from a profile of vertical flight and speed, a list of points of passage and / or rotating "D-Fix" defining a joining flight plan of a predetermined fallback position stored in memory, from which the planned mission can be resumed .
  • the method of tracing lateral flight plan makes it possible to determine on the ground, during the preparation of a military or civil security mission, automatically, the areas in which an aircraft can evolve in view of its performance and the required safety margins.
  • the ground operator may decide to move the "D-Fix" crossing points and / or turning points obtained or to modify the passage altitudes at these "D-Fix" points to take into account account in the flight plan, constraints ignored in the tracing process.
  • the flight plan Once the flight plan is finalized, it can be loaded on board the aircraft like any flight plan with the existing means (data link, mission preparation memory, etc.).

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Circuits Of Receivers In General (AREA)

Claims (20)

  1. Verfahren zur Bestimmung des horizontalen Profils einer Luftfahrzeug-Flugplanroute, die von einem Ausgangspunkt zu einem Zielpunkt führt, unter Beachtung der beim Abflug und/oder bei der Ankunft vorgeschriebenen vertikalen Flugprofile (30, 33, 50) und unter Berücksichtigung der Geländeform und von Zonen mit reglementiertem Überflug, dadurch gekennzeichnet, dass es die folgenden Schritte aufweist:
    - Erarbeiten von zwei Karten krummliniger Distanzen (Figuren 7, 8, 9), die eine den Ausgangspunkt (10) und den Zielpunkt (20) enthaltende Verlaufszone abdecken und eine gleiche Einheit (3) von zu umgehenden Hindernissen umfassen, unter Berücksichtigung der Geländeform, der Zonen mit reglementiertem Überflug und der beim Abflug und/oder bei der Ankunft vorgeschriebenen vertikalen Flug- und Geschwindigkeitsprofile (30, 33, 50), wobei die erste Karte den Ausgangspunkt als Ursprung der Distanzmessungen und die zweite den Zielpunkt als Ursprung der Distanzmessungen hat,
    - Erarbeiten einer dritten Karte krummliniger Distanzen durch Summierung, für jeden ihrer Punkte, der krummlinigen Distanzen, die ihnen in der ersten und der zweiten Karte krummliniger Distanzen zugewiesen sind,
    - Markieren in der dritten Karte krummliniger Distanzen einer zusammenhängenden Einheit (7) von Punkten gleicher Distanzen, die eine Verkettung von Parallelogrammen (8, 9) bilden, und/oder von Punkten, die die Ausgangs- (10) und Zielpunkte (20) verbinden,
    - Auswahl, aus der mit Punkten gleicher Distanzen markierten zusammenhängenden Einheit (7), einer Folge (15) von aufeinanderfolgenden Punkten, die vom Ausgangspunkt (10) zum Zielpunkt (20) gehen, indem sie über Diagonalen ihrer Parallelogramme (8, 9) verlaufen, direkte Strecke genannte Folge (15),
    - Näherung der Folge (15) von Punkten der direkten Strecke durch eine Kette von geraden Segmenten (30, 31, 32), die eine willkürliche Schwelle maximalen Abstands bezüglich der Punkte der Folge (15) und eine willkürliche Schwelle minimalen seitlichen Abstands bezüglich der Einheit (3) von zu umgehenden Hindernissen beachten, und
    - Wahl der Punkte (151, 152, 153, 154) der Zwischenverbindungen der geraden Segmente als Durchgangs- oder Drehpunkte des Flugplans.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass, wenn es nur ein beim Abflug vorgeschriebenes vertikales Flug- und Geschwindigkeitsprofil gibt, die erste Karte krummliniger Distanzen (Figur 7), die den Ausgangspunkt (10) als Ursprung der Distanzmessungen hat, unter Berücksichtigung der statischen Beanspruchungen aufgrund der Geländeform und der Zonen mit reglementiertem Überflug und der dynamischen Beanspruchung aufgrund des beim Abflug vorgeschriebenen vertikalen Flug- und Geschwindigkeitsprofils erarbeitet wird, während die zweite Karte krummliniger Distanzen, die den Zielpunkt als Ursprung der Distanzmessungen hat, ausgehend von der Einheit der zu umgehenden Hindernisse erarbeitet wird, die in der ersten Karte krummliniger Distanzen aufgetreten sind.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass, wenn es nur ein bei der Ankunft vorgeschriebenes vertikales Flug- und Geschwindigkeitsprofil gibt, die zweite Karte krummliniger Distanzen (Figur 8), die den Zielpunkt (20) als Ursprung der Distanzmessungen hat, unter Berücksichtigung der statischen Beanspruchungen aufgrund der Geländeform und der Zonen mit reglementiertem Überflug und der dynamischen Beanspruchung aufgrund des bei der Ankunft vorgeschriebenen vertikalen Flug- und Geschwindigkeitsprofils erarbeitet wird, während die erste Karte krummliniger Distanzen, die den Ausgangspunkt als Ursprung der Distanzmessungen hat, ausgehend von der Einheit von zu umgehenden Hindernissen erarbeitet wird, die in der zweiten Karte krummliniger Distanzen aufgetreten sind.
  4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass, wenn es beim Abflug und bei der Ankunft vorgeschriebene vertikale Flug- und Geschwindigkeitsprofile (30, 33) gibt, die erste und die zweite Karte krummliniger Distanzen ausgehend von einer Einheit (3) von zu umgehenden Hindernissen erarbeitet werden, die in zwei Entwürfen dieser Karten krummliniger Distanzen verzeichnet sind:
    - ein Entwurf (Figur 7) der ersten Karte krummliniger Distanzen, die den Ausgangspunkt (10) als Ursprung der Distanzmessungen hat, erarbeitet unter Berücksichtigung der statischen Beanspruchungen aufgrund der Geländeform und der Zonen mit reglementiertem Überflug und der dynamischen Beanspruchung aufgrund des beim Abflug vorgeschriebenen vertikalen Flug- und Geschwindigkeitsprofils (30), und
    - einen Entwurf (Figur 8) der zweiten Karte krummliniger Distanzen, die den Zielpunkt (20) als Ursprung der Distanzmessungen hat, erarbeitet unter Berücksichtigung der statischen Beanspruchungen aufgrund der Geländeform und der Zonen mit reglementiertem Überflug und der dynamischen Beanspruchung aufgrund des bei der Ankunft vorgeschriebenen vertikalen Flug- und Geschwindigkeitsprofils (33).
  5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Einheit (3) der zu umgehenden Hindernisse, die in den Karten krummliniger Distanzen berücksichtigt werden, durch die Punkte (2, 2') der ersten und zweiten Karte (Figuren 7 et 8) vervollständigt wird, denen krummlinige Distanz-Schätzungen zugewiesen sind, die Diskontinuitäten bezüglich denjenigen haben, die Punkten der nahen Umgebung zugewiesen sind.
  6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Einheit (3) der zu umgehenden Hindernisse, die in den Karten krummliniger Distanzen berücksichtigt werden, durch seitliche Sicherheitsmargen (6) abhängig von den Fähigkeiten zum flachen Kurvenflug des Luftfahrzeugs in seinem momentanen Zustand beim Anflug auf die betroffene Geländeform und/oder die Zone mit reglementiertem Überflug vervollständigt wird, resultierend aus dem Verlauf des vorgeschriebenen vertikalen Flug- und Geschwindigkeitsprofils (30, 31, 32, 33).
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die seitlichen Sicherheitsmargen (6), die zur Einheit der aufgelisteten zu umgehenden Hindernisse hinzugefügt werden, ausgehend von einer Karte krummliniger Distanzen bestimmt werden, die die Einheit von zu umgehenden Hindernissen als Ursprung der Distanzmessungen hat.
  8. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die lokale Dicke einer seitlichen Sicherheitsmarge (6, 41) den lokalen Wind berücksichtigt.
  9. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die lokale Dicke einer seitlichen Sicherheitsmarge (6, 41) die Kursänderung berücksichtigt, die notwendig ist, um eine Geländeform und/oder eine Zone mit reglementiertem Überflug zu umgehen.
  10. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die lokale Dicke einer seitlichen Sicherheitsmarge (6, 41) dem minimalen Radius (R) einer flachen Kurve entspricht, die für das Luftfahrzeug im momentanen Zustand erlaubt ist.
  11. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Schwelle maximalen Abstands der Kette von geraden Segmenten bezüglich der Folge von Punkten der direkten Strecke in der Größenordnung eines halben minimalen Radius (R) einer flachen Kurve liegt, die für das Luftfahrzeug in seinem momentanen Zustand erlaubt ist.
  12. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Karten krummliniger Distanzen mittels einer Distanztransformation durch Ausbreitung erarbeitet werden.
  13. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Näherung der Folge (15) von Punkten der direkten Strecke durch eine Verkettung von geradlinigen Segmenten (30, 31, 32) durch eine progressive Konstruktion erhalten wird, während der der Ausgangspunkt (10) bzw. der Zielpunkt (20) der direkten Strecke als Ursprung für ein erstes Segment genommen wird, das vergrößert wird, indem einer nach dem anderen aufeinanderfolgende Punke hinzugefügt werden, so lange es nicht in die Einheit (40, 41) der zu umgehenden Hindernisse eindringt und seine Abweichung bezüglich der Punkte der direkten Strecke, die es überbrückt, die willkürliche Schwelle des maximal zugelassenen Abstands beachtet, wobei weitere geradlinige Segmente, die in gleicher Weise konstruiert sind, zu der Folge hinzugefügt werden, so lange der Zielpunkt bzw. der Ausgangspunkt der direkten Strecke nicht erreicht ist.
  14. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Näherung der Folge (15) von Punkten der direkten Strecke durch eine Verkettung von geradlinigen Segmenten durch eine dichotomische Konstruktion erhalten wird, während der der Ausgangspunkt und der Zielpunkt der direkten Strecke anfangs durch ein geradliniges Segment verbunden sind, das, sobald es in die Einheit der zu umgehenden Hindernissen eindringt oder seine Abweichung bezüglich der Punkte der direkten Strecke, die es überbrückt, die willkürliche Schwelle des maximal zugelassenen Abstands überschreitet, durch eine Verkettung von zwei geradlinigen Segmenten ersetzt wird, die sich an dem Punkt der direkten Strecke vereinen, der unter denjenigen, die es überbrückt, am weitesten abseits ist, wobei jedes neue Segment seinerseits von einer Verkettung von zwei neuen Segmenten ersetzt wird, die sich an dem Punkt der direkten Strecke vereinen, der unter den überbrückten Punkten der am weitesten abseits liegende ist, sobald es in die Einheit der zu umgehenden Hindernisse eindringt oder seine Abweichung bezüglich der Punkte der direkten Strecke, die es überbrückt, die willkürliche Schwelle des maximal zugelassenen Abstands überschreitet.
  15. System zum Erreichen eines Rückzug-Flughafens im Fall einer Motorpanne, dadurch gekennzeichnet, dass es das Verfahren nach Anspruch 1 anwendet.
  16. System zur Verwaltung der Flugplan-Diskontinuitäten, dadurch gekennzeichnet, dass es das Verfahren nach Anspruch 1 anwendet.
  17. System zum automatischen Erreichen vorbestimmter Positionen für ein unbemanntes Luftfahrzeug, dadurch gekennzeichnet, dass es das Verfahren nach Anspruch 1 anwendet.
  18. System zum automatischen Erreichen vorbestimmter Positionen für ein gesteuertes Luftfahrzeug außer Kontrolle, dadurch gekennzeichnet, dass es das Verfahren nach Anspruch 1 in einem Sicherheitsrahmen anwendet.
  19. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass es bei der Vorbereitung militärischer oder Zivilschutz-Einsätze angewendet wird.
  20. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass es während eines Flugs bei einer von der Besatzung an den Flugleitrechner des Luftfahrzeugs gestellten Anforderung "Dir-to" zum Erreichen eines geographischen Orts angewendet wird.
EP06819557A 2005-12-07 2006-11-16 Verfahren zur bestimmung des horizontalen profils eines flugplans in entsprechung mit einem vorgeschriebenen vertikal-flugprofil Not-in-force EP1958176B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0512420A FR2894367B1 (fr) 2005-12-07 2005-12-07 Procede de determination du profil horizontal d'un plan de vol respectant un profil de vol vertical impose
PCT/EP2006/068581 WO2007065781A1 (fr) 2005-12-07 2006-11-16 Procede de determination du profil horizontal d'un plan de vol respectant un profil de vol vertical impose

Publications (2)

Publication Number Publication Date
EP1958176A1 EP1958176A1 (de) 2008-08-20
EP1958176B1 true EP1958176B1 (de) 2009-04-08

Family

ID=36992716

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06819557A Not-in-force EP1958176B1 (de) 2005-12-07 2006-11-16 Verfahren zur bestimmung des horizontalen profils eines flugplans in entsprechung mit einem vorgeschriebenen vertikal-flugprofil

Country Status (6)

Country Link
US (1) US8090526B2 (de)
EP (1) EP1958176B1 (de)
AT (1) ATE428161T1 (de)
DE (1) DE602006006213D1 (de)
FR (1) FR2894367B1 (de)
WO (1) WO2007065781A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115116272A (zh) * 2021-03-19 2022-09-27 沃科波特有限公司 用于规划飞行器运行的方法、飞行器及其控制单元

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2906921B1 (fr) 2006-10-10 2010-08-13 Thales Sa Procede de formation d'une trajectoire d'urgence en 3d pour aeronef et dispositif de mise en oeuvre
US20090063032A1 (en) * 2007-08-30 2009-03-05 Honeywell International, Inc. Methods, systems, and apparatus for routing a vehicle to avoid an adverse condition
FR2920580B1 (fr) * 2007-08-31 2010-09-03 Thales Sa Procede de simplification de l'affichage d'elements stationnaires d'une base de donnees embarquee
US7885764B2 (en) * 2007-09-06 2011-02-08 GM Global Technology Operations LLC Method for adaptively constructing and revising road maps
FR2931265B1 (fr) * 2008-05-13 2015-12-11 Thales Sa Procede et dispositif pour l'aide a la maintenance d'un systeme
WO2009138989A2 (en) 2008-05-14 2009-11-19 Elbit Systems Ltd. Terrain awareness warning system forward looking protection envelope switching
FR2932279B1 (fr) 2008-06-10 2011-08-19 Thales Sa Dispositif et procede de surveillance des obstructions dans l'environnement proche d'un aeronef.
FR2932306B1 (fr) * 2008-06-10 2010-08-20 Thales Sa Procede et dispositif d'aide a la navigation pour un aeronef vis-a-vis des obstacles.
FR2935481B1 (fr) 2008-09-02 2011-02-11 Thales Sa Procede de surveillance des zones atmospheriques pour un aeronef
FR2937453B1 (fr) 2008-10-17 2010-10-22 Thales Sa Dispositif pour le calcul d'un plan de vol d'un aeronef
US8493412B2 (en) * 2008-10-31 2013-07-23 Honeywell Internatioal Inc. Methods and systems for displaying sensor-based images of an external environment
CN101465066B (zh) * 2009-01-15 2011-07-27 北京航空航天大学 飞机垂直占有率的获取方法
US8515596B2 (en) * 2009-08-18 2013-08-20 Honeywell International Inc. Incremental position-based guidance for a UAV
US8477062B1 (en) * 2009-09-29 2013-07-02 Rockwell Collins, Inc. Radar-based system, module, and method for presenting steering symbology on an aircraft display unit
JP5696987B2 (ja) * 2010-01-13 2015-04-08 独立行政法人 宇宙航空研究開発機構 乱気流回避操縦支援装置
US8918271B2 (en) * 2010-04-22 2014-12-23 Bae Systems Plc Flight planning methods and systems
FR2963120B1 (fr) 2010-07-20 2013-08-30 Airbus Operations Sas Procede et dispositif de gestion automatique d'une trajectoire laterale pour une descente d'urgence d'un aeronef
CN102506872B (zh) * 2011-11-28 2015-02-11 中国电子科技集团公司第五十四研究所 一种判定飞行航路偏离的方法
US20130226373A1 (en) * 2012-02-27 2013-08-29 Ge Aviation Systems Llc Methods for in-flight adjusting of a flight plan
JP2013246553A (ja) * 2012-05-24 2013-12-09 Toyota Motor Corp 軌道計画装置、軌道計画方法及び軌道計画プログラム
US9733644B2 (en) 2012-07-17 2017-08-15 Elwha Llc Unmanned device interaction methods and systems
US10019000B2 (en) 2012-07-17 2018-07-10 Elwha Llc Unmanned device utilization methods and systems
FR2994010B1 (fr) * 2012-07-27 2018-09-07 Thales Dispositif et procede de gestion de strategie de rejointe de points de navigation
US8843303B1 (en) * 2012-12-17 2014-09-23 Rockwell Collins, Inc. Risk-aware contingency flight re-planner system and related method
FR3007840B1 (fr) * 2013-06-28 2015-07-31 Dassault Aviat Procede de detection d'une panne d'au moins un capteur present sur un aeronef, mettant en oeuvre une boucle anemo-inertielle, et systeme associe
US9243910B1 (en) * 2013-08-27 2016-01-26 Rockwell Collins, Inc. Route image generating system, device, and method
JP6133506B2 (ja) * 2014-04-17 2017-05-24 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 飛行制限区域に対する飛行制御
US9483052B2 (en) * 2014-06-12 2016-11-01 The Boeing Company Aircraft departure profile generation compliant with noise abatement limits
FR3024231B1 (fr) * 2014-07-28 2019-12-20 Airbus Operations Procede et dispositif de determination d'une distance operationnelle d'un segment a terminaison indeterminee d'un plan de vol d'un aeronef.
CN104239635B (zh) * 2014-09-16 2017-06-23 武汉中原电子集团有限公司 一种内河电子海图上可航区域中心线自动绘制方法
CN104596516A (zh) * 2014-11-24 2015-05-06 中国海洋大学 基于动态新增毗邻区域的无人机覆盖航迹规划
JP6012777B2 (ja) * 2015-01-16 2016-10-25 富士重工業株式会社 経由地点設定装置及び経由地点設定プログラム
US9683864B2 (en) * 2015-02-24 2017-06-20 168 Productions, LLC System for providing aircraft landing instructions
CN113031654B (zh) 2015-03-31 2024-05-28 深圳市大疆创新科技有限公司 申请、批准在限制区域中操作飞行器的方法、设备和系统
EP3171133B1 (de) * 2015-11-19 2020-03-11 Sikorsky Aircraft Corporation Planung von kinematischer bewegung mit regionalen planungsbeschränkungen
US10134292B2 (en) * 2015-12-07 2018-11-20 Airbus Group India Private Limited Navigating and guiding an aircraft to a reachable airport during complete engine failure
US10121383B2 (en) * 2016-01-26 2018-11-06 Northrop Grumman Systems Corporation Terrain profile system
US9645581B1 (en) * 2016-02-04 2017-05-09 Zerotech (Shenzhen) Intelligence Robot Co., Ltd Method and apparatus for navigating unmanned aerial vehicle
US9834306B2 (en) * 2016-02-09 2017-12-05 Abdullah Almasoud Emergency unmanned aerial vehicle and method for deploying an unmanned aerial vehicle
ES2919138T3 (es) * 2016-06-21 2022-07-22 Ericsson Telefon Ab L M Métodos de dirección de ruta de vehículos aéreos no tripulados
US10710710B2 (en) 2016-10-27 2020-07-14 International Business Machines Corporation Unmanned aerial vehicle (UAV) compliance using standard protocol requirements and components to enable identifying and controlling rogue UAVS
CN109661694B (zh) * 2017-02-28 2022-03-29 深圳市大疆创新科技有限公司 控制无人飞行器飞行的方法和设备、限飞区生成方法和设备
CN107291101A (zh) * 2017-07-28 2017-10-24 江苏理工学院 一种无人机飞行自动控制方法、存储设备及无人机
FR3074349B1 (fr) * 2017-11-24 2020-11-13 Dassault Aviat Systeme de calcul de mission d'un aeronef, comportant un moteur de calcul de trajectoire de l'aeronef lors de la mission et procede associe
US20190236966A1 (en) * 2018-01-31 2019-08-01 General Electric Company Centralized registry for unmanned vehicle traffic management
FR3078583B1 (fr) * 2018-03-02 2020-03-13 Airbus Defence And Space Sas Systemes et procedes d'aide a l'evitement de collisions entre aeronefs ou navires
CN109344513B (zh) * 2018-10-12 2022-11-11 厦门市美亚柏科信息股份有限公司 一种最短路线规划方法、系统及计算机存储介质
US20200132467A1 (en) * 2018-10-30 2020-04-30 Navico Holding As Systems and associated methods for generating navigation charts and navigable routes in an open environment
CN109798909A (zh) * 2019-02-01 2019-05-24 安徽达特智能科技有限公司 一种全局路径规划的方法
US11551562B2 (en) * 2020-05-14 2023-01-10 The Boeing Company Efficient flight planning for regions with high elevation terrain
CN112037254A (zh) * 2020-08-11 2020-12-04 浙江大华技术股份有限公司 目标跟踪方法及相关装置
CN112180959A (zh) * 2020-09-24 2021-01-05 上海理工大学 一种空间飞行器全方位绕飞轨迹规划方法
CN112148033B (zh) * 2020-10-22 2024-06-14 广州极飞科技股份有限公司 无人机航线的确定方法、装置、设备及存储介质
CN112697135B (zh) * 2020-12-31 2022-03-18 广州极飞科技股份有限公司 路径缩短方法、装置、无人设备及存储介质
DE102021203809B4 (de) * 2021-03-16 2023-05-04 Continental Autonomous Mobility Germany GmbH Fahrverlaufsschätzung in einem Umfeldmodel
CN114035572B (zh) * 2021-10-09 2023-08-01 凤凰智能电子(杭州)有限公司 一种割草机器人的避障巡回方法及系统
CN114636417B (zh) * 2022-05-23 2022-09-02 珠海翔翼航空技术有限公司 基于图像识别的飞行器迫降路径规划方法、系统和设备
FR3137981A1 (fr) * 2022-07-18 2024-01-19 Airbus Procede et systeme de generation de trajectoire laterale d’un aeronef

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4862373A (en) * 1987-05-13 1989-08-29 Texas Instruments Incorporated Method for providing a collision free path in a three-dimensional space
US4821990A (en) * 1987-12-11 1989-04-18 Porter Toney L Flashlight holder
DE19604931A1 (de) * 1996-02-10 1997-08-14 Nfs Navigations Und Flugfuehru Verfahren zur Korrektur des Flugablaufs eines Fluggerätes
FR2749686B1 (fr) * 1996-06-07 1998-09-11 Sextant Avionique Procede pour l'evitement lateral par un vehicule d'une zone mobile
US6192314B1 (en) * 1998-03-25 2001-02-20 Navigation Technologies Corp. Method and system for route calculation in a navigation application
US6259988B1 (en) * 1998-07-20 2001-07-10 Lockheed Martin Corporation Real-time mission adaptable route planner
US6266610B1 (en) * 1998-12-31 2001-07-24 Honeywell International Inc. Multi-dimensional route optimizer
US7133771B1 (en) * 2002-08-29 2006-11-07 America Online, Inc. Automated route determination to avoid a particular maneuver
US7474960B1 (en) * 2002-12-30 2009-01-06 Mapquest, Inc. Presenting a travel route
FR2860292B1 (fr) * 2003-09-26 2005-12-02 Thales Sa Procede d'estimation de distance pour un mobile soumis a des contraintes dynamiques de parcours
FR2864312B1 (fr) * 2003-12-19 2006-07-14 Thales Sa Carte de manoeuvrabilite laterale pour mobile et son procede d'obtention
US7447593B2 (en) * 2004-03-26 2008-11-04 Raytheon Company System and method for adaptive path planning
FR2868835B1 (fr) 2004-04-09 2006-11-17 Thales Sa Procede de selection, pour un aeronef, d'un point d'acces a une zone de libre evolution laterale
FR2871878B1 (fr) 2004-06-18 2006-09-01 Thales Sa Procede de signalisation des marges laterales de manoeuvre existant de part et d'autre de la trajectoire du plan de vol d'un aeronef
FR2875899B1 (fr) 2004-09-24 2006-12-01 Thales Sa Dispositif et procede de signalisation de marges laterales de manoeuvre
FR2877721B1 (fr) * 2004-11-10 2007-01-19 Thales Sa Dispositif de representation cartographique des vitesses verticales minimales
US7194353B1 (en) * 2004-12-03 2007-03-20 Gestalt, Llc Method and system for route planning of aircraft using rule-based expert system and threat assessment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115116272A (zh) * 2021-03-19 2022-09-27 沃科波特有限公司 用于规划飞行器运行的方法、飞行器及其控制单元
CN115116272B (zh) * 2021-03-19 2023-12-15 沃科波特有限公司 用于规划飞行器运行的方法、飞行器及其控制单元

Also Published As

Publication number Publication date
WO2007065781A1 (fr) 2007-06-14
FR2894367A1 (fr) 2007-06-08
EP1958176A1 (de) 2008-08-20
US8090526B2 (en) 2012-01-03
US20080306680A1 (en) 2008-12-11
FR2894367B1 (fr) 2008-02-29
DE602006006213D1 (de) 2009-05-20
ATE428161T1 (de) 2009-04-15

Similar Documents

Publication Publication Date Title
EP1958176B1 (de) Verfahren zur bestimmung des horizontalen profils eines flugplans in entsprechung mit einem vorgeschriebenen vertikal-flugprofil
EP2178065B1 (de) Vorrichtung zum Berechnen eines Flugplans für ein Flugzeug
EP1614086B1 (de) Sicheres interaktives 3d-navigationsverfahren und einrichtung
EP2375299B1 (de) Flugsteuerungssystem eines unbemannten Flugzeugs
EP2171702B1 (de) Verfahren zur erzeugung eines konnektivitätsdiagramms der elemente eines flughafens zur rollunterstützung und entsprechende vorrichtungen
CA2796923C (en) Determining landing sites for aircraft
CA2458947C (fr) Procede et dispositif pour construire une image de synthese de l'environnement d'un aeronef et la presenter sur un ecran dudit aeronef
FR2887065A1 (fr) Procede et systeme d'aide au pilotage d'un aeronef volant a basse altitude
FR2892192A1 (fr) Procede d'aide a la navigation pour aeronef en situation d'urgence
FR2949897A1 (fr) Procede d'assistance au pilotage d'un aeronef et dispositif correspondant.
FR3002657A1 (fr) Procede d elaboration d un profil vertical de trajectoire comprenant des niveaux d altitude multiples
FR3038750A1 (fr) Procede d'integration d'un nouveau service de navigation dans un systeme avionique embarque a architecture ouverte de type client-serveur, en particulier d'un service de manoeuvre fim
FR3012630A1 (fr) Procede d'aide a la navigation pour un aeronef en descente et en approche a poussee reduite
FR2893146A1 (fr) Systeme d'evitement de terrain pour aeronefs de transport
FR3098336A1 (fr) Procédé de détermination de trajet d’un appareil aérien non habité et autres procédés associés
FR2991094A1 (fr) Dispositif de gestion de vol d'un aeronef adapte a la maitrise de contraintes de temps multiples et procede correspondant
FR2916053A1 (fr) Dispositif et procede d'extraction d'altitudes de terrain
EP4063794B1 (de) Verfahren und system zur berechnung der flugbahn zur landesteuerung eines flugzeugs
FR3038751A1 (fr) Procede d'integration d'une application d'optimisation de route (s) sous contraintes dans un systeme embarque avionique a architecture ouverte de type client serveur
EP3770555B1 (de) Navigation, die auf einer ausstrahlung für multiagenten basiert
KR20190107891A (ko) 에어웨이 설정방법
EP4083966A1 (de) Verfahren und system zur berechnung der seitlichen flugbahn eines luftfahrzeugs
WO2020187880A1 (fr) Détermination d'une trajectoire raccourcie d'un mobile évoluant dans un corridor
EP3564622A1 (de) Verfahren zur planung eines luftwegs für luftfahrzeug, entsprechendes planungssystem und mit einem solchen system ausgestattetes luftfahrzeug
Masson et al. Large aircraft engine-out takeoff path optimization

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080527

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FRANCOIS, GILLES

Inventor name: MARTY, NICOLAS

Inventor name: BITAR, ELIAS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602006006213

Country of ref document: DE

Date of ref document: 20090520

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090908

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090719

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090808

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

26N No opposition filed

Effective date: 20100111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

BERE Be: lapsed

Owner name: THALES

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090709

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091009

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101116

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181106

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006006213

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200603

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20201027

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20211108

Year of fee payment: 16

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130