EP1956215B1 - Turbine à gaz comprenant un circuit de refroidissement isolé - Google Patents

Turbine à gaz comprenant un circuit de refroidissement isolé Download PDF

Info

Publication number
EP1956215B1
EP1956215B1 EP08101137.1A EP08101137A EP1956215B1 EP 1956215 B1 EP1956215 B1 EP 1956215B1 EP 08101137 A EP08101137 A EP 08101137A EP 1956215 B1 EP1956215 B1 EP 1956215B1
Authority
EP
European Patent Office
Prior art keywords
gas turbine
turbine engine
tubes
passages
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08101137.1A
Other languages
German (de)
English (en)
Other versions
EP1956215A3 (fr
EP1956215A2 (fr
Inventor
Philip Caruso
Dwight Davidson
Yang Liu
William Parker
Roger Walker
Sivaraman Vedhagiri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of EP1956215A2 publication Critical patent/EP1956215A2/fr
Publication of EP1956215A3 publication Critical patent/EP1956215A3/fr
Application granted granted Critical
Publication of EP1956215B1 publication Critical patent/EP1956215B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • F01D9/065Fluid supply or removal conduits traversing the working fluid flow, e.g. for lubrication-, cooling-, or sealing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/06Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas
    • F02C6/08Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas the gas being bled from the gas-turbine compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/231Preventing heat transfer

Definitions

  • This invention relates generally to cooling circuits in gas turbine engines.
  • this invention relates to a device for providing cooling air to a gas turbine engine, comprising a insulation barrier to reduce the heat pickup by the cooling air from the surrounding hot gases.
  • Gas turbine engines are one of the most efficient means of producing energy. Gas turbine power, efficiency, and economics generally increase when the temperature of gas flowing through the turbine increases. A limiting factor of most gas turbine engines is the turbine inlet temperature, however, because the blade metal temperature generally must be kept below (760°C) 1400°F to avoid hot corrosion problems. Advances in air cooling and blade metallurgy have permitted the inlet temperatures of gas turbines to increase considerably.
  • the turbine can be operated with a combustion gas temperature higher than the metallurgical limit of the blade material.
  • Air cooling technology bleeds cooling air from the compressor and directs the cooling air to the stator, rotor, and other parts of the rotor and casing.
  • Current cooling technology relies on stator passages to convey cooling air from the outer surfaces of the casing to the engine centerline regions. Heat pickup in these configurations is significant, resulting in a pronounced reduction in both cycle efficiency and power output.
  • EP 1640587 discloses an example of a cooling system for a gas turbine and compressor guide blade. There exists a need to reduce the heat pickup in the stator passages such that the cooling air maintains a low temperature, desirably close to its inlet temperature. Such improvements will minimize the amount of cooling air required at the lowest temperature to maximize cycle efficiency and power output.
  • a gas turbine comprising a compressor comprising an insulated cooling circuit, a combustor, and a turbine.
  • the compressor comprises a compressor casing having a compression chamber and at least one stator and at least one rotor disposed in the compression chamber.
  • the at least one stator comprises a stator body having a plurality of passages extending therethrough from an outwardly positioned opening to an inwardly positioned opening, and a plurality of tubes for transporting cooling air through the stator body into the compression chamber.
  • the plurality of tubes extend through the respective plurality of passages from an inlet to an outlet and are spaced from walls of the respective passages to form an air gap between each tube and walls of the respective passages.
  • the insulated cooling circuit further comprises at least one spacer between the plurality of tubes and the walls of the respective passages.
  • the stagnant air gap comprises a high temperature insulation to further reduce heat transfer between the hot gas of the gas turbine engine and the cooling air of the cooling circuit.
  • a compressor of a gas turbine engine comprising an insulated cooling circuit.
  • the insulated cooling circuit minimizes the heat pickup of the cooling air, and accordingly, requires less cooling air to maximize cycle efficiency and power output. Embodiments of this invention are described in detail below and are illustrated in Fig. 1-5 .
  • a typical gas turbine engine 110 illustrated in Fig. 1 , comprises a compressor 112 in serial flow communication with a combustor 114, and a turbine 116.
  • the compressor 112 and turbine 116 may be coupled by a driveshaft 117, which also may couple the turbine 116 and drive an electrical generator (not shown).
  • the turbine further may comprise compressor and turbine casings 118, 120, which enclose a compressor chamber 119 and a turbine chamber 121, respectively.
  • the gas turbine engine 110 may be any engine which is commercially available from the General Electric Company, although the gas turbine engine 110 illustrated and described herein is exemplary only. Accordingly, the gas turbine engine 110 is not limited to the gas turbine engine as shown in Figure 1 and described herein, but rather, may be any gas turbine known to those of ordinary skill in the art.
  • the gas turbine engine 110 may comprise a multi-shaft gas turbine engine having two shafts for separately driving an electrical generator (not shown) and the compressor 112.
  • air may flow into the gas turbine engine 110 through the compressor chamber 119 and may be compressed. Compressed air then may be channeled to the combustor 114 where it may be mixed with fuel (not shown) and ignited. The expanding hot gases from the combustor 114 may drive the rotating turbine 116 and may exit (as indicated by arrows 124) the gas turbine engine 110 through an exhaust diffuser (not shown). Additionally, in some embodiments, exhaust gases from the turbine engine 110 may be supplied to a heat recovery steam generator (not shown) that generates steam for driving a steam turbine (not shown).
  • the compressor 112 illustrated in Figs. 1 and 2 , generally comprises the compressor casing 118 having the compressor chamber 119 and at least one rotor 126 and at least one stator 128 disposed in the compression chamber.
  • the at least one stator 128 comprises a stator body 210 having an insulated cooling circuit 310, illustrated in Fig. 3 .
  • the stator body 210 comprises a plurality of passages 312 extending therethrough, as represented by the broken lines of Fig. 2 .
  • the plurality of passages 312 have an outwardly positioned opening 314 and an inwardly positioned opening 316 in the stator body 210.
  • the outwardly positioned opening 314 is located further from the central region 318 of the gas turbine engine 110 than is the inwardly positioned opening 316.
  • the stator body 210 further comprises a plurality of tubes 320 for transporting a cooling air (as indicated by arrows) 322 to the compression chamber 119.
  • the plurality of tubes 320 transport the cooling air 322 to a central region (as indicated by the dashed lines) 318 of the gas turbine engine 110 near and about the driveshaft 117.
  • the plurality of tubes 320 extend through the respective plurality of passages 312 from respective inlets 324 to respective outlets 326 in the central region 318 of the gas turbine engine 110, and desirably proximate the inwardly positioned opening 316 so that the cooling air 322 flows from the outlets into the central region of the gas turbine engine.
  • proximate means that the outlets 326 of the plurality of tubes 320 are contiguous or nearly contiguous with the inwardly positioned openings 316.
  • the plurality of tubes 320 are spaced from the walls of the respective plurality of passages 312 to form an air gap 328 between the tubes and walls of the respective passages.
  • the air gap 328 is stagnant, meaning that the air gap comprises a pocket of air without the flow of any air, thereby restricting the mode of heat transfer through the stagnant air gap to natural convection. Accordingly, the stagnant air gap 328 provides an insulation barrier for the plurality of tubes 320, thereby minimizing the heat transfer between the stator body 210 and the plurality of tubes 320 transporting the cooling air 322.
  • stator body 210 further comprises a plurality of spacers 330 disposed in the passages 312 for spacing the tubes 320 from the walls of the passages 312.
  • stator body 210 further comprises a high temperature insulation disposed in the air gap 328 between the tubes 320 and the walls of the passages 312.
  • the plurality of tubes 320 are welded to the stator body 210. In an alternative embodiment, the plurality of tubes 320 are fastened to the stator body 210 with an air-tight tube fitting.
  • the plurality of tubes 320 comprise walls having a thickness from about 0.040 inches to about 0.080 inches.
  • the plurality of tubes 320 comprise materials that are resistant to high temperatures and corrosion.
  • the plurality of tubes 320 comprise a nickel alloy.
  • the plurality of tubes 320 comprises stainless steel.
  • the stator 128 comprises materials that are high strength and resistant to high temperatures and corrosion.
  • the stator 128 comprises CrMoV.
  • the stator 128 comprises cast iron or carbon steel.
  • the spacers 330 generally comprise materials that are resistant to high temperatures and wear.
  • the spacers 330 comprise a cobalt alloy.
  • the spacers 330 comprise a nickel alloy or stainless steel.
  • the air gap 328 desirably has a thickness (t) (illustrated in Figs. 5A-5C ) in the range of about 1.02 mm (0.040 inches) to about 2.03 mm (0.080 inches). In one embodiment, the air gap 328 has a thickness of about 1.27 mm (0.050 inches). The air gap 328 minimizes the heat pickup of the cooling air 322 between the inlet 324 and outlet 326 of the tubes 320.
  • the temperature change of the cooling air 322 between the inlet 324 and outlet 326 is no more than about 55.6°C (100°F), more desirably no more than about 27.8°C (50°F), even more desirably no more than about 13.9°C (25°F), and still even more desirably no more than about 5.56°C (10°F).
  • the flow rate of the cooling air 322 is in the range of about 0.91kg/s/channel (2.0 lbm/sec/channel) to about 1.36kg/s/channel (3.0 lbm/sec/channel) and the inlet 324 temperature of the cooling air 322 is in the range of about 260°C (500°F) to about 343°C (650°F).
  • the compressor 112 comprises a compressor casing 118 having a compression chamber 119 and comprises at least one stator 128 disposed in the compression chamber 119.
  • the at least one stator generally comprises a stator body 210 having a plurality of passages 312 having an outwardly positioned opening 314 and an inwardly positioned opening 316.
  • a cooling air 322 is transported through a plurality of tubes 320, which extend from respective inlets 324 through the plurality of passages 312, 324 to respective outlets 326 proximate the inwardly positioned opening 316.
  • the plurality of tubes 320 are welded or fastened by air-tight tube fittings to the walls of the passages 312. Spacers 330 between the tubes 320 and the walls of the passages 312 establish a desired stagnant air gap 328.
  • the stagnant air gap 328 provides an insulation barrier to the cooling air 322 flowing through the plurality of tubes 320.
  • a first length of tube 410 comprises a horizontal tube, the cross-section 412 of which is illustrated in Fig. 5A .
  • the first length of tube 410 joins a second length of tube 414 at an elbow 416, the second length of tube comprising an inclined tube.
  • the second length of tube 414 fits within a U shaped slot 418 sealed by a welded plate 420, the cross-section 422 of which is illustrated in Fig. 5B .
  • Two holes 424 in the side of the second length of tube 414 join a third length of tube 426, the third length of tube comprising two parallel tubes.
  • the end of the second length of tube 414 is sealed with an end cap 428.
  • the third length of tube 426 directs the cooling air into a elbow cavity 430 that directs the cooling air into a fourth length of tube 432, the fourth length of tube comprising a horizontal tube.
  • the fourth length of tube 432 comprises a diffuser-like turning guide 434, which minimizes energy loss and directs the cooling air into the fifth length of tube 436.
  • the fifth length of tube 436 comprises a flat channel, the cross-section 438 of which is illustrated in Fig. 5C , leading to the outlet 326 at the central region of the gas turbine engine 318.
  • This particular embodiment of an insulated tube passage system resulted in a 93% reduction in the temperature change of the cooling air between the inlet at the external casing of the stator and the outlet at the engine centerline region when compared to the prior art with a identical mass flow rate. Accordingly, for the same outlet temperature of cooling air, a smaller heat exchanger can be used to cool the compressor discharge temperature due to the fact that the inlet temperature of the cooling air can be set to a much higher value. With the same mass flow rate of cooling air, the insulated tube passage system will reject less heat to the bottoming cycle and thereby increase the combined cycle thermal efficiency and power output.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Motor Or Generator Cooling System (AREA)

Claims (10)

  1. Moteur à turbine à gaz (110) présentant une région centrale (318) autour d'un arbre d'entraînement longitudinal (117) s'étendant au travers du moteur à turbine à gaz, ledit moteur à turbine comprenant :
    une chambre de combustion (114) ;
    une turbine (116) ; et
    un compresseur (112) comprenant un carter de compresseur (118) présentant une chambre de compression (119) et au moins un stator (128) et au moins un rotor (126) disposés dans la chambre de compression (119),
    dans lequel l'au moins un stator (128) comprend
    un corps de stator (210) présentant une pluralité de passages (312) s'étendant au travers de celui-ci depuis une ouverture positionnée vers l'extérieur (314) à une ouverture positionnée vers l'intérieur (316) ; caractérisé en ce que le corps de stator comprend
    une pluralité de tubes (320) pour le transport d'air de refroidissement (322) au travers du corps de stator (210) dans la chambre de compression (119), ladite pluralité de tubes (320) transportant en utilisation l'air de refroidissement (322) dans la région centrale (318), chacun de la pluralité de tubes (320) s'étendant au travers de la pluralité respective de passages (312) d'une entrée (324) à une sortie (326) ; et
    dans lequel chaque tube (320) est espacé des parois des passages respectifs (312) pour former une fente d'air (328) entre chaque tube (320) et des parois des passages respectifs (312) pour isoler les tubes (320) du corps de stator (210).
  2. Moteur à turbine à gaz (110) selon la revendication 1, dans lequel la fente d'air (328) comprend de l'air stagnant.
  3. Moteur à turbine à gaz (110) selon une quelconque revendication précédente, dans lequel la fente d'air (328) comprend une épaisseur dans la plage d'environ 1,02 mm (0,040 pouce) à environ 2,03 mm (0,080 pouce).
  4. Moteur à turbine à gaz (110) selon la revendication 1, dans lequel une isolation de température élevée est prévue dans la fente d'air entre les tubes (320) et les parois des passages (312).
  5. Moteur à turbine à gaz (110) selon une quelconque revendication précédente, dans lequel la pluralité de tubes (320) s'étend depuis les entrées respectives (324) au travers des ouvertures positionnées vers l'extérieur respectives (314) et à la région centrale (318) au travers des sorties respectives (326) de la pluralité de tubes (320).
  6. Moteur à turbine à gaz (110) selon une quelconque revendication précédente, dans lequel le stator (128) comprend en outre une pluralité d'éléments d'écartement (330) disposés dans les passages (312) pour espacer les tubes (320) des parois des passages (312).
  7. Moteur à turbine à gaz (110) selon une quelconque revendication précédente, dans lequel les tubes (320) et le corps de stator (210) sont montés conjointement avec un raccord de tube étanche à l'air.
  8. Moteur à turbine à gaz (110) selon une quelconque revendication précédente, dans lequel l'air de refroidissement (322) présente un changement de température de pas plus d'environ 55,6 °C (100 °F) entre l'entrée (324) et la sortie (326) des tubes (320).
  9. Moteur à turbine à gaz (110) selon une quelconque revendication précédente, dans lequel l'air de refroidissement (322) comprend un débit dans la plage d'environ 0,91 kg/s/canal (2,0 lbm/sec/canal) à environ 1,36 kg/s/canal (3,0 lbm/sec/canal).
  10. Moteur à turbine à gaz (110) selon une quelconque revendication précédente, dans lequel l'air de refroidissement (322) comprend une température d'entrée (324) dans la plage d'environ 260 °C (500 °F) à environ 343 °C (650 °F).
EP08101137.1A 2007-02-06 2008-01-31 Turbine à gaz comprenant un circuit de refroidissement isolé Active EP1956215B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/671,933 US8182205B2 (en) 2007-02-06 2007-02-06 Gas turbine engine with insulated cooling circuit

Publications (3)

Publication Number Publication Date
EP1956215A2 EP1956215A2 (fr) 2008-08-13
EP1956215A3 EP1956215A3 (fr) 2014-08-27
EP1956215B1 true EP1956215B1 (fr) 2019-03-13

Family

ID=39102336

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08101137.1A Active EP1956215B1 (fr) 2007-02-06 2008-01-31 Turbine à gaz comprenant un circuit de refroidissement isolé

Country Status (3)

Country Link
US (1) US8182205B2 (fr)
EP (1) EP1956215B1 (fr)
JP (1) JP5328167B2 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9279341B2 (en) 2011-09-22 2016-03-08 Pratt & Whitney Canada Corp. Air system architecture for a mid-turbine frame module
US9194257B2 (en) 2012-08-08 2015-11-24 General Electric Company Turbine conduit sleeve system
WO2015041794A1 (fr) * 2013-09-17 2015-03-26 United Technologies Corporation Ensemble de profil aérodynamique constitué par un matériau résistant aux températures élevées
GB201321614D0 (en) * 2013-12-06 2014-01-22 Eaton Ltd Onboard inert gas generation system
KR101509382B1 (ko) 2014-01-15 2015-04-07 두산중공업 주식회사 댐핑 클램프를 구비한 가스 터빈
US10100738B2 (en) * 2015-01-20 2018-10-16 United Technologies Corporation Overcooled air cooling system with annular mixing passage
US10273812B2 (en) 2015-12-18 2019-04-30 Pratt & Whitney Canada Corp. Turbine rotor coolant supply system
EP3550106A1 (fr) 2018-04-06 2019-10-09 Frederick M. Schwarz Air de refroidissement pour moteur à turbine à gaz avec distribution d'air de refroidissement isolé thermiquement

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6398518B1 (en) * 2000-03-29 2002-06-04 Watson Cogeneration Company Method and apparatus for increasing the efficiency of a multi-stage compressor

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2680001A (en) * 1950-11-13 1954-06-01 United Aircraft Corp Arrangement for cooling turbine bearings
GB742241A (en) * 1951-02-15 1955-12-21 Power Jets Res & Dev Ltd Improvements in the cooling of turbines
US2780435A (en) * 1953-01-12 1957-02-05 Jackson Thomas Woodrow Turbine blade cooling structure
US3045965A (en) * 1959-04-27 1962-07-24 Rolls Royce Turbine blades, vanes and the like
US3271004A (en) * 1965-06-22 1966-09-06 Smuland Robert John Turbine vane adapted for high temperature operation
DE1957614C3 (de) * 1969-11-15 1974-03-14 Motoren- Und Turbinen-Union Muenchen Gmbh, 8000 Muenchen Laufschaufelkranz für Gasturbinentriebwerke mit hoher DrehzahL
GB1530256A (en) * 1975-04-01 1978-10-25 Rolls Royce Cooled blade for a gas turbine engine
US4156582A (en) * 1976-12-13 1979-05-29 General Electric Company Liquid cooled gas turbine buckets
GB1555587A (en) * 1977-07-22 1979-11-14 Rolls Royce Aerofoil blade for a gas turbine engine
US4418455A (en) * 1981-05-04 1983-12-06 Electric Power Research Institute, Inc. Method of manufacturing a fluid cooled blade or vane
US4492517A (en) * 1983-01-06 1985-01-08 General Electric Company Segmented inlet nozzle for gas turbine, and methods of installation
JPH01315698A (ja) * 1988-06-15 1989-12-20 Toshiba Corp 軸流圧縮機
US5212940A (en) * 1991-04-16 1993-05-25 General Electric Company Tip clearance control apparatus and method
GB2263946A (en) * 1992-02-04 1993-08-11 Bmw Rolls Royce Gmbh An arrangement for supplying cooling air to a gas turbine casing.
DE4411616C2 (de) * 1994-04-02 2003-04-17 Alstom Verfahren zum Betreiben einer Strömungsmaschine
JPH08270459A (ja) * 1995-03-30 1996-10-15 Hitachi Ltd ガスタービン設備及びガスタービン設備運転方法
JPH11315800A (ja) * 1998-04-30 1999-11-16 Toshiba Corp 空気圧縮機
ITMI991208A1 (it) * 1999-05-31 2000-12-01 Nuovo Pignone Spa Dispositivo per il posizionamento di ugelli di uno stadio statorico eper il raffreddamento di dischi rotorici in turbine a gas
EP1180578A1 (fr) * 2000-08-16 2002-02-20 Siemens Aktiengesellschaft Aubes statoriques pour une turbomachine
US6644921B2 (en) * 2001-11-08 2003-11-11 General Electric Company Cooling passages and methods of fabrication
JP2003314299A (ja) * 2002-04-23 2003-11-06 Toshiba Corp ガスタービン
US6884023B2 (en) * 2002-09-27 2005-04-26 United Technologies Corporation Integral swirl knife edge injection assembly
US7033135B2 (en) * 2003-11-10 2006-04-25 General Electric Company Method and apparatus for distributing fluid into a turbomachine
DE502004007566D1 (de) * 2004-09-22 2008-08-21 Siemens Ag Kühlsystem für eine Gasturbine und Verfahren zum Kühlen einer Gasturbine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6398518B1 (en) * 2000-03-29 2002-06-04 Watson Cogeneration Company Method and apparatus for increasing the efficiency of a multi-stage compressor

Also Published As

Publication number Publication date
US8182205B2 (en) 2012-05-22
EP1956215A3 (fr) 2014-08-27
US20090324397A1 (en) 2009-12-31
JP2008190530A (ja) 2008-08-21
EP1956215A2 (fr) 2008-08-13
JP5328167B2 (ja) 2013-10-30

Similar Documents

Publication Publication Date Title
EP1956215B1 (fr) Turbine à gaz comprenant un circuit de refroidissement isolé
JP6746335B2 (ja) ターボ機械のためのヒートパイプ温度管理システム
EP3499170B1 (fr) Entrée d'embouchure d'échangeur de chaleur
EP3196443A1 (fr) Réseau d'échangeur de chaleur
EP2834498B1 (fr) Système de refroidissement pour une aube de turbine
EP3075953A1 (fr) Système de gestion de température à caloduc pour une turbomachine
EP2358978B1 (fr) Appareil et procédé de refroidissement d un agencement de partie profilée de turbine dans une turbine à gaz
EP1543219B1 (fr) Conception de refroidissement faisant intervenir un generateur de turbulences pour une aube de turbine
GB2559739A (en) Stator vane section
US7137784B2 (en) Thermally loaded component
US20100257869A1 (en) Diffuser arranged between the compressor and the combustion chamber of a gas turbine
JP2011085135A (ja) 蒸気タービンロータを冷却するためのシステム及び方法
CN108699913B (zh) 用于涡轮发动机的冷却系统
US20170138265A1 (en) Heat exchangers and cooling methods for gas turbines
US8721265B1 (en) Multiple staged compressor with last stage airfoil cooling
EP0313194B1 (fr) Conduit entre turbines
KR101772837B1 (ko) 가스터빈 연소기 및 해당 연소기를 구비한 가스터빈
US10294810B2 (en) Heat exchanger seal segment for a gas turbine engine
EP2518277A1 (fr) Procédé et dispositif de refroidissement dans une turbine simple flux
JP2007046456A (ja) 高温ガスを搬送するガス集合パイプ
US11834993B1 (en) Engine exhaust reverse flow prevention
EP3354878B1 (fr) Échangeur de chaleur pour moteur à turbine à gaz
US20200003121A1 (en) Housing structure for a turbomachine, turbomachine and method for cooling a housing portion of a housing structure of a turbomachine
WO2020046379A1 (fr) Conception de transfert thermique pour capacité de transfert thermique progressif de canaux de refroidissement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F02C 7/18 20060101AFI20140721BHEP

17P Request for examination filed

Effective date: 20150227

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AKX Designation fees paid

Designated state(s): DE FR GB IT

AXX Extension fees paid

Extension state: MK

Extension state: RS

Extension state: BA

Extension state: AL

17Q First examination report despatched

Effective date: 20150713

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20181112

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008059313

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008059313

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20191216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20191224

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20211215

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602008059313

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: GENERAL ELECTRIC COMPANY, SCHENECTADY, NY, US

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231219

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240102

Year of fee payment: 17