EP1955359B1 - Procede et dispositif pour transport axial par selection de masse au moyen d'un champ axial pulse - Google Patents

Procede et dispositif pour transport axial par selection de masse au moyen d'un champ axial pulse Download PDF

Info

Publication number
EP1955359B1
EP1955359B1 EP06790847.5A EP06790847A EP1955359B1 EP 1955359 B1 EP1955359 B1 EP 1955359B1 EP 06790847 A EP06790847 A EP 06790847A EP 1955359 B1 EP1955359 B1 EP 1955359B1
Authority
EP
European Patent Office
Prior art keywords
ions
group
field
axial
rods
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06790847.5A
Other languages
German (de)
English (en)
Other versions
EP1955359A4 (fr
EP1955359A1 (fr
Inventor
Alexander Loboda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DH Technologies Development Pte Ltd
Original Assignee
DH Technologies Development Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DH Technologies Development Pte Ltd filed Critical DH Technologies Development Pte Ltd
Publication of EP1955359A1 publication Critical patent/EP1955359A1/fr
Publication of EP1955359A4 publication Critical patent/EP1955359A4/fr
Application granted granted Critical
Publication of EP1955359B1 publication Critical patent/EP1955359B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/422Two-dimensional RF ion traps
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0027Methods for using particle spectrometers
    • H01J49/0031Step by step routines describing the use of the apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/426Methods for controlling ions
    • H01J49/427Ejection and selection methods

Definitions

  • the present invention relates generally to mass spectrometry, and more particularly relates to a method and apparatus for selective axial transport using pulsed axial field.
  • mass spectrometers are known, and are widely used for trace analysis to determine the structure of ions. These spectrometers typically separate ions based on the mass-to-charge ratio ("m/z") of the ions.
  • m/z mass-to-charge ratio
  • the mass spectrometer system has an elongated rod set having an entrance end, an exit end, a plurality of rods and a central longitudinal axis.
  • the method comprises: a) admitting a first plurality of groups of ions into the entrance end of the rod set; b) producing a field between the plurality of rods to confine the first plurality of groups of ions in the rod set; c) selecting a first mass/charge range for a first group of ions in the first plurality of groups of ions; d) providing to a rod pair in the rod set a first radial excitement field to radially displace the first group of ions within the first mass/charge range from the central longitudinal axis, and concurrently retaining a second group of ions closer to the central longitudinal axis than the first group of ions, the second group of ions being within a second mass/charge range disjoint from the first mass/charge range; and then e) providing a first axial force acting on the first group of ions by providing an axial acceleration field, the axial acceleration field being provided by applying a quadrupolar DC voltage to the plurality of rods, wherein the quadrupolar DC voltage
  • a mass spectrometer system comprising: a) an ion source; b) a rod set, the rod set having a plurality of rods extending along a longitudinal axis, an entrance end for admitting ions from the ion source, and an exit end for ejecting ions traversing the longitudinal axis of the rod set; c) a voltage supply module for producing an RF field between the plurality of rods of the rod set; and, d) a controller for controlling the voltage supply module to provide to a rod pair in the rod set a radial excitement field to, i) during an excitation phase of operation, radially displace a first group of ions within a selected mass/charge range from the central longitudinal axis, and concurrently retain a second group of ions closer to the central longitudinal axis than the first group of ions, the second group of ions being within a second mass/charge range disjoint from the selected mass/
  • the quadrupole rod set 120 in which a dipolar auxiliary AC signal can be provided to one of the rod pairs.
  • the quadrupole rod set 120 comprises a pair of X-rods 122 and a pair of Y-rods 124 to which RF voltage can be applied (in a known manner) by RF voltage source 126 to provide radial confinement of ions.
  • the exit end of the quadrupole rod set 120 can be blocked by supplying an appropriate voltage to an exit electrode at the exit end.
  • an auxiliary dipolar signal can be provided to X-rods 122 without being provided to Y-rods 124, by AC voltage source 128 (in a known manner).
  • the RF voltage supplied to the X-rods and Y-rods comprises a quadrupolar DC component.
  • the quadrupolar DC component applied to the X-rods is opposite in polarity to the quadrupolar DC component applied to the Y-rods.
  • the quadrupolar DC applied to the X-rods and Y-rods is applied in such a way that its magnitude may be varied along the lengths of the rods.
  • the quadrupolar DC applied to the X-rods and the Y-rods may be kept constant along the length of the rods.
  • the quadrupolar DC profile provided along one pair of rods in the rod set diminishes linearly from a maximum at the entrance end of the rod set to a minimum at the exit end of the rod set, while the quadrupolar DC profile applied to the other pair of rods in the rod set increases linearly from a minimum at the entrance end of the rod set to a maximum at the exit end of the rod set.
  • the quadrupolar DC components applied to both pairs of rods of the quadrupolar rod set can be made constant along the length of the rod set by simply making both of these quadrupolar DC voltages equal to zero.
  • segmented rod sets are provided.
  • the quadrupolar DC voltages applied to the rod sets may be made uniform along the length of the rods without necessarily being zero.
  • the derived axial force resulting from a linear variation in the DC quadrupolar voltage applied to the rods can be calculated, for the two-dimensional mid-section of a linear quadrupole rod set, by considering the contribution to the potential of the quadrupolar DC.
  • FIG. 2 there is illustrated in a schematic diagram, an ion guide 218 in accordance with a first aspect of the present invention.
  • Figure 1 For brevity, the description of Figure 1 will not be repeated with respect to Figure 2 . Instead, and for clarity, elements analogous to those described above in connection with Figure 1 will be designated using the same reference numerals, plus 100.
  • a quadrupolar DC voltage Ua1 can be applied to the X-rods 222 at an entrance end 218a of the ion guide 218, and a exit quadrupolar DC voltage Ua2 can be supplied to the X-rods 222 at an exit end 218b of the ion guide 218.
  • an entrance quadrupolar DC voltage Ub1 can be supplied to the Y-rods 224 at the entrance end 218a of the ion guide 218, while an exit quadrupolar DC voltage Ub2 can be supplied to the Y-rods 224 at the exit end 218b of the ion guide 218.
  • Quadrupolar DC voltages Ua1, Ua2, Ub1 and Ub2 are all controlled by a controller 240.
  • Electrodes S1 and S2 can be used to provide entrance and exit barriers.
  • the four-quadrupolar rods may be made as segmented rods, or employ a semiconductive coat to provide a linear voltage gradient along the axis.
  • the axial field created by one pair of rods cancels the field created by the other pair of rods such that ions that are near the axis do not encounter significant force pushing them in the axial direction.
  • ions that have been excited such that they are closer to one of the pairs of rods than to the other pair of rods will encounter a field pushing them axially in one direction and will accordingly be accelerated.
  • the axial acceleration mode can be turned off. Then, a small voltage on the exit barrier S2 at the exit end 218b of the ion guide 218 can be used to keep all of the ions in the trap except for the ions accelerated toward the exit end 218b.
  • the above-described method of pulsing an axial acceleration field for selective axial mass transport involves the following steps.
  • the first step multiple precursor ions of interest can be trapped and isolated.
  • Ua1 can equal Ua2 and Ub1 can equal Ub2 such that no axial acceleration field is provided.
  • S1 and S2 can be, and in some embodiments are, greater than Ua1 to prevent ions from escaping from either the entrance end 218a or the exit end 218b of the ion guide.
  • either filtered noise fields (FNF) or stored waveform inverse fourier transforms (SWIFT) can be used to isolate precursor ions of interest.
  • step 2 the precursor ion with the lowest mass-to-charge (m/z) can be excited using dipolar excitement voltage 227, which is also controlled by controller 240.
  • dipolar excitement voltage 227 which is also controlled by controller 240.
  • S1 and S2 are both greater than Ua1 in order to longitudinally contain the ions.
  • step 3 an axial acceleration mode is used to accelerate the ions excited in step 2 toward the exit end 218b of the ion guide 218.
  • Ua1 is not equal to Ua2
  • Ub1 is not equal to Ub2 such that the non-zero quadrupolar DC voltage gradient along the ion guide 218 gives rise to a derived axial force (according to equation 4) that acts on ions that are radially displaced from the central axis.
  • E z avr z U z z 0 * x 0 2 2 ⁇ r 2
  • E z avr the average axial force
  • x 0 the excitation amplitude.
  • Ua1 and Ub2 may both be positive 5 Volts, while Ub1 and Ua2 are both negative 5 Volts. This voltage configuration can be desirable as it keeps the DC voltages low which is advantageous for extending the mass range of ions stored in the trap.
  • this axial acceleration step S1 and S2 remain greater than Ua1, as it is still important to keep the ions axially trapped within the ion guide 218. Further, this axial acceleration step must continue for sufficient time for the excited ions to acquire sufficient axial energy to get past S2 in step 4.
  • the voltage S2 applied to the exit electrode can be dropped to be, for example, just above 0.5*(Ua1+ Ub1) to let excited ions get past the exit electrode and out of the trap, while retaining the other ions.
  • steps 2 to 4 can be repeated for other precursor ions of interest isolated in step 1.
  • the amplitude of the RF voltage can be increased.
  • the RF voltage amplitude can be maintained while the frequency of the auxiliary signal can be readjusted to coincide with the frequency of motion of each new precursor ion of interest.
  • steps 1 to 5 can be repeated using a new group of ions.
  • the ions may be mass selectively ejected in different orders.
  • step 2 the precursor ion with the highest m/z could be excited using dipolar excitement voltage 227, and subsequently ejected using steps 3 and 4. Then, the amplitude of the RF voltage could be successively decreased to bring ions of lower mass into resonance with the low-amplitude dipolar auxiliary signal.
  • the RF voltage can be both increased and decreased during a cycle to excite ions of different m/z in different orders.
  • FIG. 3 there is illustrated in a schematic diagram, an ion guide 318 in accordance with a further aspect of the invention.
  • the description of Figure 2 is not repeated with respect to Figure 3 .
  • elements analogous to those described above in connection with Figure 2 will be designated using the same reference numerals, with 100 added.
  • both the X-rods 322 and Y-rods 324 can be coated with a high-dielectric insulating layer 332.
  • this insulating layer 332 is capable of isolating a minimum of 10 Volts DC.
  • This insulating layer 332 can, in turn, coated with a thin resistive coating 330.
  • this thin resistive coating 330 offers an end-to-end resistance on each rod of 1 ⁇ to 100 M ⁇ .
  • both the resistive coating 330 and insulating layer 332 should be as thin as possible.
  • quadrupolar DC can be applied at one end of the X-rods 322 and Y-rods 324 by variable DC quadrupolar voltage sources 328a and 328b respectively.
  • the DC quadrupolar voltages provided by variable DC quadrupolar voltage sources 328a and 328b are opposite in polarity.
  • Variable DC quadrupolar voltage sources 328a and 328b can be controlled as described below by a controller 340.
  • Controller 340 can also controllably add a dipolar excitement voltage to at least one of the X-rods 322 and Y-rods 324.
  • the ground connection for the sources 328a and 328b and to potentiometers 331 can be superimposed onto the RF voltage supplied by RF supply 326.
  • the ion guide 318 of Figure 3 can be used for mass selective axial transport using pulsed quadrupolar DC.
  • a first plurality of groups of ions would be admitted into the entrance end of the ion guide 318, each group of ions in this plurality of group of ions having a different m/z.
  • An RF confinement field could be provided in a known manner between the X-rods 322 and Y-rods 324 to radially confine this first plurality of groups of ions in the rod set.
  • a user/operator can then select a first mass/charge ratio (m/z) for a first group of ions in the first plurality of groups of ions.
  • the user can then operate the controller 340 to provide a first radial excitation field using a dipolar excitation voltage.
  • This first radial excitation field displaces the first group of ions, which have the first selected mass/charge range, from the central longitudinal axis.
  • a second group of ions which has a second mass/charge range disjoint from the first selected mass/charge range is retained closer to the central longitudinal axis of the ion guide 318 than the excited first group of ions. This can be done by selecting a first RF amplitude of the RF field to bring the first group of ions into resonance with the dipolar electrical signal.
  • an axial acceleration field is provided to provide a first axial force acting on the first group of ions.
  • the axial acceleration field can be provided, and in some embodiments is provided, by providing a first quadrupolar DC voltage to the X-rods 322 and a second quadrupolar DC voltage to the Y-rods 324 using DC quadrupolar voltage sources 328a and 328b respectively.
  • the first quadrupolar DC voltage is opposite in polarity to the second quadrupolar DC voltage. Both the first and second quadrupolar DC voltages are provided to the resistive coating 330.
  • the end-to-end resistance of the resistive coating 330 results in a drop in potential in both the first quadrupolar DC voltage and the second quadrupolar DC voltage along the length of the X-rods 322 and Y-rods 324.
  • the axial acceleration field provided by the first quadrupolar DC voltage and the second quadrupolar voltage is generated along the length of the rod set.
  • the resistive coating 330 may be provided along only a portion of the rods such that the axial acceleration field varies along only this portion of the length of the rod set. Assuming the resistance of the resistive coating 330 is substantially uniform, the first and second quadrupolar DC voltages will vary linearly along the length of the ion guide 318, creating a constant axial force that acts on the first group of ions.
  • the axial acceleration field is maintained for long enough to impart sufficient momentum to the first group of ions to axially eject this first group of ions past an exit barrier field provided at the exit end of the ion guide 318.
  • the exit barrier field is sufficient to impede axial ejection of the second group of ions from the exit end.
  • the axial acceleration field is not provided at the same time as the radial excitement field, as the axial acceleration field may skew the effect of the radial excitement field, such that ions of slightly differing m/z are radially excited at different points along the length of the ion guide 318.
  • the first and second quadrupolar DC voltages can be eliminated, such that no quadrupolar DC gradient is provided along the lengths of the ion guide 318.
  • the axial force derived from this axial acceleration field would not be provided during radial excitement of the first group of ions.
  • the radial excitement field would also be interrupted while the axial acceleration field would be provided. This could be done by simply interrupting the dipolar excitement voltage.
  • Rod sets as described in Figure 3 may be constructed in any number of different ways.
  • a stainless steel rod 0.003" smaller in radius than the desired final radius may be coated with a layer of alumina approximately 0.010" thick.
  • the rod may be machined to the desired radius, resulting in a layer of alumina of thickness 0.003".
  • the alumina-coated rod would then be masked, and the resistive coating 330 applied.
  • resistive coating 330 can be very thin, perhaps having a thickness of 10 microns or less, the thickness of resistive coating 330 need not significantly affect the radial dimension of the rods.
  • metal bands may be applied to each end of the rods 322 and 324 to facilitate good ohmic contact with lead wires from variable DC quadrupolar voltage sources 328a and 328b at one end, and with lead wires 329 at the other end.
  • ordinary stainless steel rods 322 and 324 may be coated with a high-dielectric polymer (the resistive coating 330), which is sufficiently resistive such that a 10 micron layer suffices to withstand 100 Volts DC. Subsequently, ions are implanted in the polymer layer to a depth of only a few microns to create the resistive coating 330.
  • the resistive coating 330 a high-dielectric polymer
  • metal bands at the ends insure good ohmic contact between the resistive coating 330 and, at one end, lead wires from variable DC quadrupolar voltage sources 328a and 328b, and, at the other end, lead wires 329.
  • a third method of making the rod set of Figure 3 involves chemical vapour deposition (CVD) of an insulating layer from [2,2]-para-cyclophane paralyne to an average depth of 23 ⁇ m, followed by CVD of a resistive coating of hydrogenated amorphous silicon (a-Si:H) film of estimated thickness ⁇ 0.5 ⁇ m.
  • CVD chemical vapour deposition
  • FIG 4 there is illustrated in a schematic view, an ion guide 420 in accordance with a third aspect of the present invention.
  • an ion guide 420 in accordance with a third aspect of the present invention.
  • the description of Figure 3 is not repeated with respect to Figure 4 .
  • elements analogous to those described above in connection with Figure 3 will be designated using the same reference numerals with 100 added.
  • the ion guide 420 is divided into a plurality of segments 425.
  • the exit of the ion guide 420 is located on the right side of Figure 4 .
  • An exit electrode 427a is provided at the exit end of the ion guide 420, while an entrance electrode 427b is provided at the entrance end.
  • the same RF voltage can be applied to each segment of the ion guide to radially confine the ion beam.
  • an individual voltage - Ui for the i th segment for example - can be superimposed with the RF voltage.
  • Each voltage Ui can be individually selected and can comprise quadrupolar DC component voltage, such that all of the quadrupolar DC voltages together can provide any desired profile along the axis of the ion guide 420.
  • individual voltages U1 and U2 are supplied to their respective segments by independently controllable power supplies PS1 and PS2.
  • Each individual power supply PSi comprises an associated resistor 426 and an associated capacitor 428, and is controlled by controller 440.
  • the resistors 426 are primarily responsible for determining the particular quadrupolar DC voltage applied to their respective segments, while the capacitors 428 are predominantly responsible for determining the AC voltage provided to their respective segments.
  • different DC and AC voltages may be applied to different segments of the ion guide 420.
  • the quadrupolar DC provided by PS1 to the first segment may slightly exceed the quadrupolar DC voltage supplied by PS2 to the second segment, which may, in turn, slightly exceed the DC quadrupolar voltage supplied by PS3 (not shown) to the third segment.
  • the overall quadrupolar DC voltage profile provided may be represented by a step function, in which the quadrupolar DC voltage remains constant over each segment in the plurality of segments 425 of the ion guide 420, and then changes abruptly to a different quadrupolar DC voltage at a new segment.
  • this step function can approach a straight line, such that differentiating with respect to the axial coordinate z can yield a force that approaches being axially uniform.
  • the voltage Ui(t) applied to each individual segment can, as shown, be a function of time.
  • the quadrupolar DC component of Ui can be a function of time.
  • the resulting quadrupolar DC voltage gradient creates a derived axial force that acts on the precursor ion that has been excited in step 2 and thereby displaced towards one of the rod pairs: the derived axial force pushes that exited ion towards the exit end. Then, in step 4, the same quadrupolar DC voltage is once again applied to all of the segments in the plurality of segments 425.
  • FIG. 5 there is illustrated in a schematic view, an ion guide 520 in accordance with a fourth aspect of the present invention.
  • the same reference numerals with 100 added are used to designate elements analogous to those described above in connection with Figure 4 .
  • Figure 4 is not repeated with respect to Figure 5 .
  • the quadrupolar DC voltage profile applied to the ion guide 520 of Figure 5 is determined by the power supply 522, end resistors 529 and inter-segment resistors 526.
  • Power supply 522 is controlled by controller 540.
  • the inter-segment resistors 526 are used to enable the quadrupolar DC voltage profile to be supplied by only the single DC power supply 522.
  • the quadrupolar DC voltage profile varies between the plurality of segments 525 of the ion guide 520 based on the resistances of the inter-segment resistors 526.
  • the quadrupolar DC voltage applied to the plurality of segments 525 changes uniformly from segment to segment along the length of the ion guide 520.
  • a single RF/AC voltage supply 524 provides RF/AC voltage to each of the segments in the plurality of segments 525 via capacitors 528. Assuming that each of the capacitors 528 has an appropriate capacitance, the same RF/AC voltage will be applied to each segment.
  • the quadrupolar DC voltage supply means 522 will not, in some embodiments, provide a quadrupolar DC voltage gradient along the length of the ion guide 520.
  • no DC quadrupolar voltage gradient is provided along the length of the ion guide 520 while the multiple precursor ions of interests are being admitted to the entrance of the ion guide 520 and are being trapped by RF/AC voltage supply 525 providing an RF field to the rods to radially contain the ions, while suitable exit and entrance barrier voltages are provided to exit and entrance electrodes 527a and 527b respectively to axially contain the ions.
  • the quadrupolar DC voltage supply means 522 can be turned on to supply the quadrupolar DC voltage to the plurality of segments 525 of the ion guide 520. Due to the inter-segment resistors 526, the quadrupolar DC voltage applied varies from segment to segment, thereby creating the derived axial force that acts on the excited ions.
  • the DC voltage supply means 522 can once again be turned off such that the quadrupolar DC voltage is constant along the lengths of the ion guide 520.
  • the exit barrier voltage S2 provided to exit electrode 527a can then be reduced to just above the DC voltage supplied to all of the rods so that the excited ions pass through the exit barrier while the unexcited ions are retained.
  • the quadrupolar DC voltage profile varies between the plurality of segments 525 based on the resistance of the resistors 526.
  • the shape of this voltage profile will typically be defined by the resistance of resistors 526. In some situations, however, it may be desirable to allow the quadrupolar DC voltage profile to be changed more readily.
  • FIG. 6 there is illustrated in a schematic view, an ion guide 620 in accordance with a fifth aspect of the invention.
  • the same reference numerals, with 100 added, are used to designate elements analogous to those described above in connection with Figure 5 .
  • the description of Figure 5 is not repeated with respect to Figure 6 .
  • a single RF/AC power supply 624 is linked via capacitors 628 to each segment in the plurality of segments 625 of the ion guide 620.
  • the shape of the RF/AC voltage profile provided to the ion guide 620 is predetermined by the values of the capacitors 628, although, of course, the magnitude of these AC voltage profiles can be changed by AC power supply 624.
  • individual and independently controllable DC power supplies are provided for each segment in the plurality of segments 625. Each of the DC power supplies is controlled by controller 640. Each of these individual power supplies is connected to an associated segment by a resistor 626. In this case, the DC voltage profile provided along the ion guide 620 can be varied by independently controlling the individual DC power supplies for each of the segments.
  • ion guide 620 of Figure 6 allows the quadrupolar DC voltage profile to be more readily controlled than in the case of the ion guide 520 of Figure 5 , it achieves this at the cost of greater complexity. That is, it provides independent controllable DC power supplies for each segment in the plurality of segments 625. In contrast, the ion guide 520 of Figure 5 requires but a single DC power supply 522 and a single RF/AC power supply 524.
  • FIG. 7 there is illustrated in a schematic view, an ion guide 720 in accordance with a sixth aspect of the invention.
  • the same reference numerals, with 100 added, are used to designate elements analogous to those described above in connection with Figure 6 .
  • the description of Figure 6 is not repeated with respect to Figure 7 .
  • the ion guide 720 of Figure 7 comprises only a single power supply 721, which is responsible for providing the RF/AC voltage and quadrupolar DC voltage to each of the segments in the plurality of segments 725. That is, as shown in Figure 7 , power supply 721 is directly linked to the first and last segments in the plurality of segments 725. The intermediate segments between the first and last segments, are coupled along an RF path by capacitive dividers 728, and the RF voltage supplied by the power supply 721 is supplied to these individual segments via these capacitive dividers 728. The capacitances of these capacitive dividers 728 define the RF voltage profile along the length of the ion guide 720.
  • the capacitances of the capacitive dividers 728 are chosen to be sufficiently large such that the RF voltage will not drop appreciably over the length of the rods. However, in some applications, it may be desirable to vary the magnitude of quadrupolar RF along the length of the rods by increasing or varying the capacitances of the capacitive dividers 728.
  • Quadrupolar DC voltage is directly provided to the first and last segments by the power supply means 721.
  • the intermediate segments between the first and last segments are coupled along a DC path by resistors 726 and the DC voltage supplied by the power supply 721 is supplied to the individual segments via these resistors 726.
  • the resistances of resistors 726 define the quadrupolar DC voltage profile along the length of the ion guide 720. As described above in connection with Figure 5 , a uniform quadrupolar DC profile can be provided along the length of the ion guide 720 by simply making the quadrupolar DC voltage supplied equal to zero Volts.
  • step 802 of the flowchart of Figure 8 ions are admitted into the entrance end of the rod set. Then, in step 804, the ions are trapped in the rod set by producing an exit field at the exit electrode of the rod set adjacent to the exit end of the rod set, and by producing an RF field between the rods of the rod set to radially confine the ions in the rod set.
  • Step 804 can also include collisional cooling and focusing that are commonly accomplished by providing sufficient pressure of a buffer gas in the trap region.
  • step 806 a mass-to-charge ratio for separating the ions into at least two different groups of ions is selected.
  • the mass-to-charge ratio selected will be the lowest mass-to-charge ratio among the precursor ions.
  • the selected precursor ions are excited in the radial dimension using an excitation voltage as described above.
  • the excitation field can have a dipolar component, a quadrupolar component or any other suitable components and their superpositions.
  • no or very little quadrupolar DC voltage gradient is provided to the rod set, such that no quadrupolar DC component field, in particular, or axial acceleration field, in general, is provided.
  • an axial acceleration field is provided.
  • the dipole excitement field is turned off before this axial acceleration field is provided.
  • the axial acceleration field is provided by providing a quadrupolar DC voltage gradient to the rod set, which quadrupolar DC voltage gradient gives rise to a derived axial force.
  • the ions within the rod set were divided between a first group of ions, which were moved radially outward away from the central axis of the rod set, and a second group of ions that were not excited and thus remained grouped around the central axis.
  • the axial acceleration field or derived axial force acts on the first group of ions to a much greater extent than the second group of ions, accelerating this first group of ions toward the exit end of the rod set.
  • step 812 the exit barrier voltage is lowered sufficiently to allow the first group of ions, which have been accelerated towards the exit end of the rod set in step 810, to pass through the exit barrier, while being kept strong enough to concurrently retain the second group of ions.
  • the first group of ions after axial ejection, can be further processed. This may be merely by detection, or, alternatively, may involve further processing steps, such as, for example, fragmentation.
  • the second group of ions may be axially ejected for further processing in step 818. This axial ejection of the second group of ions would proceed in substantially the same way as that employed for the first group of ions.
  • the second group of ions would be excited using a dipolar excitement voltage as described above, and by changing the RF amplitude of the RF field so as to bring the second group of ions into resonance with the dipolar excitement voltage.
  • no or little quadrupolar DC voltage gradient would be provided to the rod set while this second group of ions is being excited.
  • an axial acceleration field can be provided to push the second group of ions toward the exit barrier.
  • the exit barrier voltage can then be lowered sufficiently to allow the second group of ions to pass through the exit barrier, while retaining any other non-accelerated ions. Additional groups of ions of different m/z can subsequently be ejected in an analogous manner.
  • the tandem mass spectrometer arrangement 900 includes an ion source 902, which emits ions into a mass selective ejection trap 904, such as the ion guides of any of Figures 3 to 7 .
  • the ion source 902 can be any suitable ion source.
  • ESI electro-spray ionization
  • MALDI matrix assisted laser desorption/ionization
  • EI electron impact
  • the ion source can provide a continuous stream of ions or a pulsed stream of ions.
  • the ions are trapped in the mass selective ejection trap 904.
  • One convenient mode of operation is when the ion source generates a pulsed stream of ions and the pulses are synchronized with the axial ejection trap operating cycle. In this case, the ions generated by the ion source can be accumulated in the axial ejection trap and processed.
  • the trap can be open for a certain duration allowing ions to accumulate and then closed preventing further ions from coming in during further steps of processing.
  • an additional accumulation ion trap can be placed upstream of the axial ejection trap.
  • the accumulation trap can continue to accumulate ions even when the axial ejection trap is closed. Accumulated ions will then be sent to the axial ejection trap when it is ready to receive the ions.
  • the duration of the ion accumulation interval and the ion beam intensity control the number of ions collected in the trap. This number should be kept below a certain limit to avoid the influence of space charge effects on the operation of the trap. The limit is often referred to as space charge capacity of the trap.
  • the beam intensity is high it may be necessary to admit only a fraction of ions while rejecting the rest of them to keep the number of ions within the space charge capacity limit.
  • one method to improve utilization of the ions is to filter the ion stream and retain only the ions of interest. Then, the space charge capacity is not wasted to store the ions that are of no interest. This can be accomplished, for example, by applying filtered noise filter (FNF) or simulated waveform inverse Fourier transform (SWIFT) technique during the accumulation step.
  • FNF filtered noise filter
  • WIFT simulated waveform inverse Fourier transform
  • a particular group of ions of a selected mass-to-charge ratio, are selected. Again, as described above in connection with Figure 8 , this group of ions is first subjected to a dipole excitement field to move them radially away from the central axis. Other ions of different m/z, are concurrently retained closer to the central axis. Then, a quadrupolar DC voltage gradient is provided to the rod set, which, in turn, gives rise to a derived axial force, which pushes the excited group of ions toward the exit end of the mass selective ejection trap 904.
  • Sufficient momentum is provided to this selected group of ions to enable them to pass through the barrier at the exit of the mass selective ejection trap 904 and from thence into the fragmentation cell 906.
  • the selected group of ions can be fragmented and then axially ejected and subjected to detection in mass spectrometer 908.
  • a second selected group of ions can be axially ejected from the mass selective trap 904, in the same manner as that described above with respect to the first selected group of ions, to the fragmentation cell 906, for subsequent fragmentation and downstream detection by mass spectrometer 908.
  • the mass spectrometer system 1000 comprises four elongated sets of rods; Q0, T1, T2 and Q2, with orifice plates IQ1 after rod set Q0, IQ2, before rod set T2, IQ3 between rod sets T2 and Q2 and IQ4 after rod set Q2. Additional sets of stubby rods ST1 and ST2 are provided between orifice plate IQ1 and rod set T1, and between rod set T1 and orifice plate IQ2 respectively.
  • rod set T1 may be any of the rod sets of Figures 3 to 7 or any other rod set suitable for implementing the mass selective axial transport of the method of Figure 8 .
  • Ions from the ion source may be, and in some embodiments are, cooled in Q0, which may be, and in some embodiments is, maintained at a pressure of approximately 1.08 x 10 -7 bar (approximately 8 x 10 -2 Torr).
  • Stubby rods ST1 are provided between orifice plate IQ1 and rod set T1 to focus the flow of ions into rod set T1.
  • T1 may have a length of 10 cm, with a space charge capacity of approximately two million singly charged ions.
  • the pressure in T1 can be maintained at 4 x 10 -8 bar (3 x 10 -5 Torr).
  • T1 can operate at a cooling and isolation interval of 100 ms and a mass selective ejection cycle of 5 ms per cycle per precursor. For example, at a cycle of 100 ms if 20 precursors are chosen. In some embodiments, T1 may have an operating rate of 5 Hz assuming 20 precursor ions, and the maximum average ion current out of Q2 would be approximately 10 Mions/sec.
  • the precursor ions of interests can be, and in some embodiments are, isolated using notched FNF or SWIFT excitations. Alternatively, quadrupolar RF and DC filtering, or a combination of both, or any other suitable method may be used to isolate the precursor ions of interest.
  • the ions can be, and in some embodiments are, axially ejected from T1, through ST2, IQ2, T2 and IQ3 to Q2.
  • IQ2. has a large elliptical orifice to accommodate the ion beam from T1, T2 can be used for collisional dampening of radial energy of the excited ions. In addition, it can provide a convenient way to achieve higher energies for CID.
  • the offset voltage of T2 can be increased to a desired level. Ions stored in T2 will remain in it until the exit barrier (IQ3) is lowered and the ions exit into collision cell.
  • the axial velocity of ions will be determined by the potential difference between T2 and Q2. Since T2 operates at high RF voltage it can readily tolerate high offset voltage.
  • the offset voltage of Q2 on the other hand can be limited due to constraints on the following stages of the mass spectrometer. For example, if Q2 is coupled to an orthogonal injection Time-of-Flight (TOF) instrument the Q2 offset voltage can be fixed and linked to the other parameters of TOF mass analyzer.
  • TOF Time-of-Flight
  • the T2 offset voltage can be kept at a fixed potential while Q2 offset voltage is lowered to obtain the desired collision energy.
  • Trapping barrier IQ4 can be used to prevent ions from leaving Q2. Once the ions fragment and settle down the offset of Q2 can be brought to the desired level. Only then the IQ4 barrier can be opened to allow ions to proceed to the following stages of the instrument starting at the desired Q2 offset potential.
  • T1 and Q2 can be provided to ensure CID fragmentation of the precursor ions.
  • other means of modification of precursor ions such as photo-fragmentation, ion/neutral bombardment, electron capture/transfer dissociation or ion reactions and so on may be used.
  • the ions Once the ions are within Q2, they can be further analyzed by any suitable mass analyzer.
  • the fragment ions can be accumulated in Q2 and sent back to T1.
  • fragment ions of different kinds can be selectively ejected using a radial excitement field and a pulsed axial acceleration field in the manner described above and axially ejected back to Q2 for further fragmentation.
  • they can be further analyzed to obtain a fragmentation mass spectrum recording for every fragment of the ion of interest.
  • a second fragment ion of interest can be axially ejected from T1 using a radial excitement field and a pulsed axial acceleration field as described above.
  • fragmentation mass spectra of fragments can be obtained, instead of only one fragment being isolated and fragmented in a particular operation.
  • further fragmentation steps could be taken to increase the information obtainable from a single run.
  • precursor ions of interest are isolated in T1 and then sent directly to Q2 for fragmentation. Once the fragments are collected in Q2 they can be returned to T1 and then sequentially processed according to the method of Fig. 8 .
  • a set of fragmentation mass spectra of the fragment ions will be collected providing information that is often referred to as MS 3 .
  • FIG. 11 there is illustrated in a schematic diagram, a linear ion trap mass spectrometer system 1100 in accordance with a tenth aspect of the present invention.
  • Figure 10 the description of Figure 10 is not repeated with respect to Figure 11 .
  • the linear ion trap mass spectrometer system 1100 of Figure 11 is similar to the linear ion trap mass spectrometer 1000 of Figure 10 .
  • the linear ion trap mass spectrometer system 1100 includes an additional elongated rod set T3, which takes the place of T2 in the linear ion trap mass spectrometer system 1000.
  • T2 of mass spectrometer system 1100 is analogous to T1 of the mass spectrometer system 1000 ( Figure 10 ).
  • multiple precursor ions can be isolated in T1. Different RF voltages can then be independently applied to T1 and T2, to store and isolate precursor ions in T1 while T2 is mass selectively ejecting another portion of ions.
  • This setup is particularly useful when working with a high intensity continuous ion beam as it can get around duty cycle losses in the axial ejection trap.
  • the setup shown in Fig.11 can allow continuous accumulation and isolation of ions of interest in T1. Since the ions in T1 can be isolated (i.e. unwanted ions can be removed) the rate of space charge accumulation can be reduced; therefore T1 can accumulate the ions for a longer period of time sufficient to process all the ions of interest in T2.
  • the mass spectrometer system 1100 of Figure 11 can be used to process a continuous ion beam while reducing losses of ions of interest.
  • quadrupolar DC component field instead of a quadrupolar DC component field being provided, other suitable means may be employed to provide an axial acceleration field, which exerts a force on ions relative to their displacement from the central axis of the mass spectrometer.
  • auxiliary electrodes can be added to the rod set. These electrodes can be sloped (see Loboda A, Krutchinsky A., Loboda O., McNabb J., Spicer V., Ens W., Standing K.G. Eur. J. Mass Spectrom. 2000; 6: 531 ) to create an axial field. By applying voltages of opposite polarities to the opposite pairs of these electrodes the axial field can be kept at zero near the axis.
  • an axial field produced by the main rod set is counteracted by the axial filed produced by the auxiliary electrodes such that the axial field in the center of the rod set is kept at zero while the axial field away from the center of the rod set is non-zero and therefore can accelerate a group of ions that have high amplitude or radial oscillations. All such modifications or variations are within the scope of the invention as defined by the claims appended hereto.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electron Tubes For Measurement (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Claims (24)

  1. Procédé de mise en oeuvre d'un système de spectromètre de masse comportant un ensemble de tiges (120) allongées, l'ensemble de tiges comportant une extrémité d'entrée (218a), une extrémité de sortie (218b), une pluralité de tiges et un axe longitudinal central, le procédé comprenant :
    a) l'admission d'une première pluralité de groupes d'ions dans l'extrémité d'entrée de l'ensemble de tiges ;
    b) la production d'un champ entre la pluralité de tiges pour confiner la première pluralité de groupes d'ions dans l'ensemble de tiges ;
    c) la sélection d'une première plage de masse/charge pour un premier groupe d'ions dans la première pluralité de groupes d'ions ;
    d) la fourniture, à une paire de tiges dans l'ensemble de tiges, d'un premier champ d'excitation radiale pour déplacer radialement le premier groupe d'ions dans la première plage de masse/charge par rapport à l'axe longitudinal central, et la retenue simultanément d'un deuxième groupe d'ions plus près de l'axe longitudinal central que le premier groupe d'ions, le deuxième groupe d'ions étant dans une deuxième plage de masse/charge disjointe de la première plage de masse/charge ; et ensuite
    e) la fourniture d'une première force axiale agissant sur le premier groupe d'ions en fournissant un champ d'accélération axiale ;
    dans lequel la première force axiale n'est pas fournie pendant l'étape d) ;
    caractérisé en ce que
    le champ d'accélération axiale est fourni par l'application d'une tension continue quadripolaire à la pluralité de tiges, dans lequel la tension continue quadripolaire varie le long de la longueur des tiges.
  2. Procédé selon la revendication 1, dans lequel les étapes d) et e) ont lieu à différents instants de sorte que le premier champ d'excitation radiale n'est pas fourni pendant l'étape e).
  3. Procédé selon la revendication 1, dans lequel l'étape d) comprend l'application d'un premier signal auxiliaire dipolaire à une paire de tiges dans l'ensemble de tiges et la sélection d'une première amplitude RF du champ RF pour amener le premier groupe d'ions en résonance avec le premier signal auxiliaire dipolaire pour déplacer le premier groupe d'ions dans la direction radiale vers la paire de tiges.
  4. Procédé selon la revendication 1, dans lequel
    la pluralité de tiges comprend un premier ensemble de tiges et un deuxième ensemble de tiges, et l'étape (e) comprend la fourniture du champ d'accélération axiale en fournissant une première tension continue au premier ensemble de tiges et une deuxième tension continue au deuxième ensemble de tiges, la première tension continue ayant une polarité opposée à celle de la deuxième tension continue ; et
    le champ d'accélération axiale varie le long d'au moins une partie d'une longueur de l'ensemble de tiges pour fournir la première force axiale agissant sur le premier groupe d'ions.
  5. Procédé selon la revendication 4, dans lequel
    l'étape b) comprend la fourniture d'un champ de barrière de sortie à l'extrémité de sortie de l'ensemble de tiges pour empêcher l'éjection axiale du deuxième groupe d'ions à partir de l'extrémité de sortie ; et
    l'étape e) comprend la fourniture d'une quantité de mouvement suffisante au premier groupe d'ions pour pousser le premier groupe d'ions au-delà de la barrière de sortie.
  6. Procédé selon la revendication 5, comprenant en outre
    f) après la poussée du premier groupe d'ions au-delà de la barrière de sortie, la fourniture d'un deuxième champ d'excitation radiale pour déplacer radialement le deuxième groupe d'ions dans la deuxième plage de masse/charge par rapport à l'axe longitudinal central, et la retenue simultanément d'un troisième groupe d'ions plus près de l'axe longitudinal central que le deuxième groupe d'ions, le troisième groupe d'ions étant dans une troisième plage de masse/charge disjointe de la première plage de masse/charge et de la deuxième plage de masse/charge ; et ensuite
    g) la fourniture du champ d'accélération axiale pour fournir une deuxième force axiale agissant sur le deuxième groupe d'ions pour fournir une quantité de mouvement suffisante au deuxième groupe d'ions pour pousser le deuxième groupe d'ions au-delà de la barrière de sortie ;
    dans lequel la deuxième force axiale n'est pas fournie pendant l'étape f).
  7. Procédé selon la revendication 6, dans lequel
    les étapes d) et e) ont lieu à différents instants de sorte que le premier champ d'excitation radiale n'est pas fourni pendant l'étape e) ; et
    les étapes f) et g) ont lieu à différents instants de sorte que le deuxième champ d'excitation radiale n'est pas fourni pendant l'étape g).
  8. Procédé selon la revendication 7, dans lequel la première force axiale et la deuxième force axiale augmentent avec un déplacement radial par rapport à l'axe longitudinal central.
  9. Procédé selon la revendication 7, comprenant en outre
    avant l'étape a), l'isolement d'un premier groupe de précurseurs d'ions d'un échantillon d'ions, et ensuite la fragmentation du premier groupe de précurseurs d'ions pour fournir la première pluralité de groupes d'ions ;
    après la poussée du premier groupe d'ions au-delà de la barrière de sortie à l'étape e), la détection du premier groupe d'ions ; et
    après la poussée du deuxième groupe d'ions au-delà de la barrière de sortie à l'étape g), la détection du deuxième groupe d'ions.
  10. Procédé selon la revendication 5, dans lequel le procédé comprend en outre
    la réduction de la barrière de sortie après l'étape (e) pour faciliter l'éjection axiale du premier groupe d'ions ;
    l'augmentation de la barrière de sortie après l'éjection axiale du premier groupe d'ions ;
    la réduction de la barrière de sortie après l'étape (g) pour faciliter l'éjection axiale du deuxième groupe d'ions ; et
    l'augmentation de la barrière de sortie après l'éjection axiale du deuxième groupe d'ions.
  11. Procédé selon la revendication 4, dans lequel le système de spectromètre de masse comprend en outre un piège à ions en amont pour isoler la première pluralité de groupes d'ions à l'étape (a), et l'étape (a) comprend en outre l'éjection de la première pluralité de groupes d'ions du piège à ions en amont pour admettre la première pluralité de groupes d'ions dans l'extrémité d'entrée de l'ensemble de tiges.
  12. Procédé selon la revendication 11, comprenant en outre l'isolement d'une deuxième pluralité de groupes d'ions dans le piège à ions en amont après l'éjection de la première pluralité de groupes d'ions du piège à ions en amont.
  13. Procédé selon la revendication 12, dans lequel le système de spectromètre de masse comprend en outre l'un i) d'un module d'électroionisation par pulvérisation et ii) d'un module de désorption/ionisation laser assistée par matrice de hautes masses moléculaires pour fournir des ions de phase gazeuse au piège à ions en amont pour isoler par la suite la première pluralité de groupes d'ions et la deuxième pluralité de groupes d'ions.
  14. Procédé selon la revendication 4, dans lequel l'étape (b) comprend
    la fourniture d'un champ RF entre la pluralité de tiges pour confiner radialement la première pluralité de groupes d'ions dans l'ensemble de tiges ; et
    la fourniture d'un champ de barrière de sortie à l'extrémité de sortie de l'ensemble de tiges et d' un champ de barrière d'entrée à l'extrémité d'entrée de l'ensemble de tiges pour confiner axialement la première pluralité de groupes d'ions dans l'ensemble de tiges.
  15. Procédé selon la revendication 1, dans lequel le champ d'accélération axiale accélère le premier groupe d'ions dans une direction axiale unique.
  16. Système de spectromètre de masse comprenant :
    a) une source d'ions ;
    b) un ensemble de tiges (120), l'ensemble de tiges comportant une pluralité de tiges (222, 224) s'étendant le long d'un axe longitudinal, une extrémité d'entrée (218a) pour admettre les ions provenant de la source d'ions, et une extrémité de sortie (218b) pour éjecter les ions traversant l'axe longitudinal de l'ensemble de tiges (120) ;
    c) un module d'alimentation en tension pour produire un champ RF entre la pluralité de tiges de l'ensemble de tiges ; et
    d) un contrôleur (240) pour commander le module d'alimentation en tension pour fournir, à une paire de tiges dans l'ensemble de tiges, un champ d'excitation radiale pour :
    i) pendant une phase d'excitation de fonctionnement, déplacer radialement un premier groupe d'ions dans une plage de masse/charge sélectionnée par rapport à l'axe longitudinal central, et retenir simultanément un deuxième groupe d'ions plus près de l' axe longitudinal central que le premier groupe d'ions, le deuxième groupe d'ions étant dans une deuxième plage de masse/charge disjointe de la plage de masse/charge sélectionnée ; et ensuite
    ii) pendant une phase d'accélération axiale de fonctionnement, fournir une force axiale agissant sur le premier groupe d'ions en fournissant un champ d'accélération axiale ;
    dans lequel le contrôleur (240) peut en outre être utilisé pour commander le module d'alimentation en tension pour interrompre le champ d'accélération axiale pendant la phase d'excitation de fonctionnement de sorte que la force axiale déduite ne soit pas fournie pendant la phase d'excitation de fonctionnement ;
    caractérisé en ce que
    le champ d'accélération axiale est fourni en appliquant une tension continue quadripolaire à la pluralité de tiges, dans lequel la tension continue quadripolaire varie le long de la longueur des tiges.
  17. Système de spectromètre de masse selon la revendication 16, dans lequel, pendant la phase d'accélération axiale de fonctionnement, le contrôleur peut être utilisé pour commander le module d'alimentation en tension pour ajouter un champ de composante continue quadripolaire au champ RF produit entre la pluralité de tiges de l'ensemble de tiges.
  18. Système de spectromètre de masse selon la revendication 16, dans lequel le contrôleur peut en outre être utilisé pour commander le module d'alimentation en tension pour interrompre le champ d'excitation radiale pendant la phase d'accélération axiale de fonctionnement.
  19. Système de spectromètre de masse selon la revendication 16, dans lequel le contrôleur peut être utilisé pour fournir le champ d'excitation radiale en commandant le module d'alimentation en tension pour appliquer i) un signal auxiliaire dipolaire sélectionné à une paire de tiges dans l'ensemble de tiges ayant la même polarité que le premier groupe d'ions et ii) une amplitude RF sélectionnée du champ RF pour amener le premier groupe d'ions en résonance avec le signal auxiliaire dipolaire sélectionné pour déplacer le premier groupe d'ions dans la direction radiale vers la paire de tiges.
  20. Système de spectromètre de masse selon la revendication 19, dans lequel le contrôleur comprend un sous-module d'entrée d'utilisateur pour recevoir la plage de masse/charge sélectionnée d'un utilisateur, le contrôleur pouvant être utilisé pour déterminer l'amplitude RF sélectionnée du champ RF sur la base de la plage de masse/charge sélectionnée.
  21. Système de spectromètre de masse selon la revendication 16, dans lequel le contrôleur peut en outre être utilisé pour commander le module d'alimentation en tension pour
    fournir un champ de barrière de sortie à l'extrémité de sortie de l'ensemble de tiges pour empêcher l'éjection axiale du deuxième groupe d'ions à partir de l'extrémité de sortie ; et
    fournir une quantité de mouvement suffisante au premier groupe d'ions pour pousser le premier groupe d'ions au-delà de la barrière de sortie.
  22. Système de spectromètre de masse selon la revendication 21, dans lequel le contrôleur peut en outre être utilisé pour commander le module d'alimentation en tension pour
    réduire la barrière de sortie après la phase d'accélération axiale de fonctionnement pour faciliter l'éjection axiale du premier groupe d'ions ; et
    augmenter la barrière de sortie après l'éjection axiale du premier groupe d'ions pour retenir le deuxième groupe d'ions.
  23. Système de spectromètre de masse selon la revendication 16, dans lequel la force axiale augmente avec le déplacement radial par rapport à l'axe longitudinal central.
  24. Système de spectromètre de masse selon la revendication 16, dans lequel, pendant la phase d'accélération axiale de fonctionnement, le contrôleur peut être utilisé pour commander le champ d'accélération axiale pour accélérer le premier groupe d'ions dans une direction axiale unique.
EP06790847.5A 2005-11-30 2006-10-12 Procede et dispositif pour transport axial par selection de masse au moyen d'un champ axial pulse Not-in-force EP1955359B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US74064005P 2005-11-30 2005-11-30
PCT/CA2006/001692 WO2007062498A1 (fr) 2005-11-30 2006-10-12 Procede et dispositif pour transport axial par selection de masse au moyen d'un champ axial pulse

Publications (3)

Publication Number Publication Date
EP1955359A1 EP1955359A1 (fr) 2008-08-13
EP1955359A4 EP1955359A4 (fr) 2011-01-12
EP1955359B1 true EP1955359B1 (fr) 2015-04-01

Family

ID=38091825

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06790847.5A Not-in-force EP1955359B1 (fr) 2005-11-30 2006-10-12 Procede et dispositif pour transport axial par selection de masse au moyen d'un champ axial pulse

Country Status (5)

Country Link
US (1) US7459679B2 (fr)
EP (1) EP1955359B1 (fr)
JP (1) JP5424085B2 (fr)
CA (1) CA2626089C (fr)
WO (1) WO2007062498A1 (fr)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7456389B2 (en) * 2006-07-11 2008-11-25 Thermo Finnigan Llc High throughput quadrupolar ion trap
US7633060B2 (en) * 2007-04-24 2009-12-15 Thermo Finnigan Llc Separation and axial ejection of ions based on m/z ratio
WO2008154296A2 (fr) * 2007-06-11 2008-12-18 Dana-Farber Cancer Institute, Inc. Système de spectroscopie de masse et procédé comprenant une grille d'excitation
GB2467466B (en) * 2007-07-12 2010-12-29 Micromass Ltd Linear ion trap with radially dependent extraction
GB0713590D0 (en) 2007-07-12 2007-08-22 Micromass Ltd Mass spectrometer
GB2461204B (en) * 2007-07-12 2010-11-10 Micromass Ltd Linear ion trap with radially dependent extraction
GB0718468D0 (en) * 2007-09-21 2007-10-31 Micromass Ltd Mass spectrometer
GB0800526D0 (en) * 2008-01-11 2008-02-20 Micromass Ltd Mass spectrometer
JP5709742B2 (ja) * 2008-06-09 2015-04-30 ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド 半径方向位置に伴って強度が増大する軸方向電場を提供する多極性イオン誘導
JP5777214B2 (ja) * 2008-06-09 2015-09-09 ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド タンデムイオントラップを操作する方法
US8101910B2 (en) * 2008-10-01 2012-01-24 Dh Technologies Development Pte. Ltd. Method, system and apparatus for multiplexing ions in MSn mass spectrometry analysis
WO2010044370A1 (fr) * 2008-10-14 2010-04-22 株式会社日立製作所 Spectromètre de masse et procédé de spectrométrie de masse
DE102008055899B4 (de) * 2008-11-05 2011-07-21 Bruker Daltonik GmbH, 28359 Lineare Ionenfalle als Ionenreaktor
EP2436025A1 (fr) * 2009-05-27 2012-04-04 DH Technologies Development Pte. Ltd. Piège à ions linéaire pour spectroscopie de masse en tandem
WO2010147759A2 (fr) * 2009-06-19 2010-12-23 Dow Corning Corporation Utilisation d'élastomères thermoplastiques de silicone ionomérique dans des dispositifs électroniques
EP2502258B1 (fr) * 2009-11-16 2021-09-01 DH Technologies Development Pte. Ltd. Appareil et procédé de couplage de signaux rf et ca pour l'alimentation d'un multipôle d'un spectromètre de masse
US20110260048A1 (en) * 2010-04-22 2011-10-27 Wouters Eloy R Ion Transfer Tube for a Mass Spectrometer Having a Resistive Tube Member and a Conductive Tube Member
WO2012016330A1 (fr) * 2010-08-04 2012-02-09 Dh Technologies Development Pte. Ltd. Piège à ions linéaire pour transfert assisté à amplitude radiale
JP5543912B2 (ja) * 2010-12-27 2014-07-09 日本電子株式会社 質量分析装置
WO2013098600A1 (fr) * 2011-12-27 2013-07-04 Dh Technologies Development Pte Ltd Procédé d'extraction d'ions avec un rapport m/z faible au moyen d'un piège ionique
EP2834837B1 (fr) * 2012-04-02 2020-10-28 DH Technologies Development Pte. Ltd. Systèmes et méthodes d'acquisition séquentielle par fenêtres sur une gamme de masse grâce à un piège à ions
JP6525980B2 (ja) * 2013-10-16 2019-06-05 ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド 質量分析のための多重化前駆体分離
EP3066682B1 (fr) * 2013-11-07 2021-03-31 DH Technologies Development PTE. Ltd. Multiplexage d'ions pour sensibilité améliorée
US9929002B2 (en) 2013-12-19 2018-03-27 Miromass Uk Limited High pressure mass resolving ion guide with axial field
GB201322515D0 (en) * 2013-12-19 2014-02-05 Micromass Ltd High pressure mass resolving ion guide with axial field
US10068756B2 (en) * 2014-06-25 2018-09-04 Hitachi High-Technologies Corporation Mass spectrometer
US10410849B2 (en) 2015-04-01 2019-09-10 Dh Technologies Development Pte. Ltd. Multipole ion guide
WO2017055978A1 (fr) * 2015-10-01 2017-04-06 Dh Technologies Development Pte. Ltd. Piège à ions linéaire à éjection axiale sélective de masse
US9899199B2 (en) * 2016-06-30 2018-02-20 Bruker Daltonics, Inc. Mass spectrometer comprising a radio frequency ion guide having continuous electrodes
CN109065437B (zh) * 2018-08-03 2020-04-24 北京理工大学 一种四极电场联合偶极电场的离子共振激发操作方法和装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11510946A (ja) * 1995-08-11 1999-09-21 エムディーエス ヘルス グループ リミテッド 軸電界を有する分光計
US6177668B1 (en) * 1996-06-06 2001-01-23 Mds Inc. Axial ejection in a multipole mass spectrometer
CA2256028C (fr) * 1996-06-06 2007-01-16 Mds Inc. Spectrometre de masse multipolaire a ejection axiale
US6504148B1 (en) * 1999-05-27 2003-01-07 Mds Inc. Quadrupole mass spectrometer with ION traps to enhance sensitivity
US6630662B1 (en) * 2002-04-24 2003-10-07 Mds Inc. Setup for mobility separation of ions implementing an ion guide with an axial field and counterflow of gas
US7071464B2 (en) * 2003-03-21 2006-07-04 Dana-Farber Cancer Institute, Inc. Mass spectroscopy system
JP4690641B2 (ja) * 2003-07-28 2011-06-01 株式会社日立ハイテクノロジーズ 質量分析計
EP1743357B8 (fr) * 2004-05-05 2016-02-24 DH Technologies Development Pte. Ltd. Procede et appareil d'ejection axiale a selectivite de masse

Also Published As

Publication number Publication date
JP2009517815A (ja) 2009-04-30
CA2626089C (fr) 2016-10-04
CA2626089A1 (fr) 2007-06-07
WO2007062498A1 (fr) 2007-06-07
EP1955359A4 (fr) 2011-01-12
EP1955359A1 (fr) 2008-08-13
JP5424085B2 (ja) 2014-02-26
US7459679B2 (en) 2008-12-02
US20070120053A1 (en) 2007-05-31

Similar Documents

Publication Publication Date Title
EP1955359B1 (fr) Procede et dispositif pour transport axial par selection de masse au moyen d'un champ axial pulse
JP2009517815A5 (fr)
US20180090305A1 (en) Ion Interface Device Having Multiple Confinement Cells and Methods of Use Thereof
EP1743357B1 (fr) Procede et appareil d'ejection axiale a selectivite de masse
EP2697638B1 (fr) Spectromètre de masse à séparation de mobilité d'ions/stockage d'ions à rapport cyclique élevé
EP2309531B1 (fr) Spectromètre de masse
US8629409B2 (en) Ion interface device having multiple confinement cells and methods of use thereof
US8637816B1 (en) Systems and methods for MS-MS-analysis
WO2005067000A2 (fr) Dispositifs d'extraction d'ions et procedes d'extraction selective d'ions
WO2013076307A2 (fr) Spectromètre à ions présentant un cycle de travail élevé
EP1341205A2 (fr) Méthode et dispositif d' ajustement de la charge dans un spectromètre de masse
JP2009541967A (ja) 質量分析計
US20080265155A1 (en) Separation and axial ejection of ions based on m/z ratio
GB2476964A (en) Electrostatic trap mass spectrometer
WO2012175517A2 (fr) Analyse ciblée pour une spectrométrie de masse tandem
JP2009117388A (ja) 質量分析装置
GB2447325A (en) The simultaneous ejection of ions of different polarities or mass ranges from an ion trap
GB2526360A (en) Method and apparatus for mass spectrometry of macromolecular complexes
US7709785B2 (en) Method and apparatus for mass selective axial transport using quadrupolar DC
US11031232B1 (en) Injection of ions into an ion storage device
WO2017055978A1 (fr) Piège à ions linéaire à éjection axiale sélective de masse
EP2715775B1 (fr) Structure multipôle simplifiée pour le transport, la sélection et le piégeage d'ions dans un système à vide
CN111696846A (zh) 质量范围改进的离子俘获方案
GB2591580A (en) Ion filtered devices
JP2005032476A (ja) 質量分析装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080530

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MDS ANALYTICAL TECHNOLOGIES, A BUSINESS UNIT OF M

Owner name: APPLIED BIOSYSTEMS (CANADA) LIMITED

A4 Supplementary search report drawn up and despatched

Effective date: 20101215

RIC1 Information provided on ipc code assigned before grant

Ipc: H01J 49/42 20060101AFI20101209BHEP

Ipc: H01J 49/26 20060101ALI20101209BHEP

Ipc: H01J 49/04 20060101ALI20101209BHEP

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DH TECHNOLOGIES DEVELOPMENT PTE. LTD.

17Q First examination report despatched

Effective date: 20140528

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602006044973

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01J0049260000

Ipc: H01J0049420000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: G01N 23/00 20060101ALI20141014BHEP

Ipc: H01J 49/00 20060101ALI20141014BHEP

Ipc: H01J 49/26 20060101ALI20141014BHEP

Ipc: H01J 49/04 20060101ALI20141014BHEP

Ipc: H01J 49/42 20060101AFI20141014BHEP

INTG Intention to grant announced

Effective date: 20141027

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006044973

Country of ref document: DE

Effective date: 20150507

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 719519

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150515

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150401

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 719519

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150401

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150803

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150702

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006044973

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150401

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

26N No opposition filed

Effective date: 20160105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151012

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20061012

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181029

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20181029

Year of fee payment: 13

Ref country code: FR

Payment date: 20181025

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006044973

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191012

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031