EP1955100B1 - Optical instrument comprising an input cavity wherein is arranged a mirror - Google Patents

Optical instrument comprising an input cavity wherein is arranged a mirror Download PDF

Info

Publication number
EP1955100B1
EP1955100B1 EP06842045A EP06842045A EP1955100B1 EP 1955100 B1 EP1955100 B1 EP 1955100B1 EP 06842045 A EP06842045 A EP 06842045A EP 06842045 A EP06842045 A EP 06842045A EP 1955100 B1 EP1955100 B1 EP 1955100B1
Authority
EP
European Patent Office
Prior art keywords
cavity
mirror
envelope
optical instrument
instrument
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06842045A
Other languages
German (de)
French (fr)
Other versions
EP1955100A1 (en
Inventor
Olivier Chanal
David Valentini
Christophe Devilliers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1955100A1 publication Critical patent/EP1955100A1/en
Application granted granted Critical
Publication of EP1955100B1 publication Critical patent/EP1955100B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/181Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation

Definitions

  • the invention relates to an optical instrument comprising an entrance cavity in which is placed a so-called primary mirror mirror.
  • the invention applies to any optical instrument comprising a mirror requiring a very high thermal stability, to limit the thermoelastic deformations, especially over short periods, for example one to two hours.
  • the invention is particularly but not exclusively applicable to optical instruments used in the spatial field such as optical instruments embedded on satellites (typically telescopes).
  • Telescopes of documents US-A1-2003 / 0112512 and WO-A2-01 / 65297 comprise an inlet cavity comprising a rigid inner envelope around the primary mirror and a second envelope consisting of a thermal insulating material disposed over the entire perimeter of the cavity.
  • the present invention aims to solve this problem.
  • the invention proposes a solution to the problem of very high thermal stability required at the primary mirror of an optical instrument. Its purpose is to provide a solution with respect to short-period fluctuations in the case of optical instruments from satellites of low orbit to geostationary satellites.
  • the proposed solution consists in producing an input cavity of the instrument comprising a rigid envelope creating a thermal inertia of all or part of the cavity.
  • the thermal inertia of this envelope located in the immediate vicinity of the primary mirror where the radiative exchanges are the most important, limits the temperature fluctuations of the cavity and, consequently, the temperature fluctuations of the mirror.
  • the present invention more particularly relates to an optical instrument comprising at least one mirror called primary mirror (3), placed in a cavity (2), the primary mirror having an active face capable of being subjected to instantaneous variations of the radiative flux incident, where the cavity comprises a rigid inner envelope (20) around the mirror constituting at least a portion of the cavity, the envelope being made of a material having a thermal inertia so as to dampen the instantaneous variations of the incident radiative flux thus allowing to limit the temperature fluctuations of this cavity and, consequently, the temperature fluctuations of the mirror.
  • the rigid inner envelope extends over a first portion of the cavity defined as being close to the mirror, this portion going from the mirror to a distance d less than the total length 1 of the input cavity of the instrument.
  • the first envelope is made of aluminum or any other material with a high thermal inertia (eg Beryllium).
  • the aluminum casing has a thickness of about 1 mm.
  • the cavity further comprises a second envelope made of a thermal insulating material disposed over the entire perimeter of the cavity and at the bottom of the latter, that is to say behind the mirror.
  • the second envelope covers the first and extends this first cavity part for form a second part in continuity with the first ( figure 2 ).
  • the second envelope consists of an insulating multilayer structure (MLI).
  • the instrument further comprises active means for controlling the temperature of the mirror.
  • the invention applies to telescopes aboard satellites irrespective of the size of their primary mirror.
  • the instrument 1 described has a cavity 2 for receiving the mirror 3, said primary mirror, and attaching it to the instrument by conventional fixing means 5.
  • the mirror is in a tubular cavity of a diameter slightly greater than its own so as to come to the periphery of this mirror.
  • the mirror 3 is centered in the cavity and its active face turned towards the entrance of the cavity locating place of a secondary mirror 4.
  • the cavity is made by a thermal insulation envelope made by a so-called MLI multi-layer insulating blanket (Multi Layered Insulation) painted in black on the inside of the cavity and exhibiting strong variations in temperature.
  • MLI multi-layer insulating blanket Multi Layered Insulation
  • the proposed solution is to use an input cavity for the optical instrument 1 having a high thermal inertia.
  • the cavity 2 comprises at least a portion in a material with high inertia vis-à-vis rapid fluctuations in temperature.
  • the input cavity of the instrument made in accordance with the invention is less sensitive to external fluctuations, especially with respect to rapid orbital-type fluctuations.
  • the input cavity 2 of the optical instrument 1 comprises a rigid inner envelope 20 around the mirror 3 made of a material having a thermal inertia damping the instantaneous variations of the incident radiative flux.
  • the thermal inertia envelope limits the temperature fluctuations of the cavity and, consequently, the temperature fluctuations of the mirror.
  • the rigid envelope with thermal inertia 20 is in tubular form and forms part of the input cavity of the optical instrument 1.
  • the casing 20 constitutes the entire cavity 2.
  • the length of the casing 20 corresponds to that of the inlet cavity 2.
  • the casing goes from the primary mirror 3 to the casing 2. entrance of the cavity corresponding to the location of the secondary mirror 4.
  • the envelope 20 will preferably have a length less than that of the input cavity while remaining sufficiently long to ensure its damping function of instantaneous variations in the radiative flux. incident.
  • This exemplary embodiment is illustrated by the diagram of the figure 2 , the casing constituting only part of the cavity 2.
  • the diameter of the envelope 20 is slightly greater than that of the primary mirror 3 so that the latter may be placed on the periphery of the mirror 3.
  • the cavity portion having a thermal inertia or the entire cavity having this thermal inertia with respect to the thermal fluctuations is covered with a thermal insulation jacket 21 of multilayer type "MLI".
  • Only part of the cavity comprises a rigid envelope with thermal inertia as represented on the figure 2 , and the insulation envelope 21 covering this cavity portion, extends over the entire length of the inlet cavity, its inner surface being in the extension of the inner surface of the thermal inertia envelope 20.
  • a material such as aluminum having a high heat capacity and a good thermal conductivity can be used advantageously to achieve the thermal inertia envelope.
  • the inner face of the cavity portion A made of aluminum 20 is painted black for optical reasons, and the outer face is isolated from the instrument 1 with the MLI-type insulating multilayer jacket 21 in order to maintain a temperature level. low enough to regulate the mirror around 20 ° C.
  • the modification of the structure of the input cavity of the proposed optical instrument makes it possible to attenuate the variations in incident flux seen by the active face of the mirror, and in particular the flux coming from the near cavity.
  • a cavity comprising an aluminum tubular casing 1.2 m long and 1 mm thick in the environment close to the primary mirror of 1.3 m in diameter is sufficient to obtain these results.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Telescopes (AREA)
  • Switches Operated By Changes In Physical Conditions (AREA)
  • Push-Button Switches (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Mirrors, Picture Frames, Photograph Stands, And Related Fastening Devices (AREA)
  • Lasers (AREA)

Abstract

The instrument (1) has a cavity (2) comprising an inner rigid envelope (20) around a primary mirror (3) comprising an active surface subjected to instantaneous variations of an incident radiant flux. The envelope is constituted of a material e.g. aluminum or beryllium, having high thermal inertia to dampen the instantaneous variations. The envelope extends on a cavity part that is near the mirror, where the part moves from the mirror to a distance lesser than the total length of the cavity.

Description

L'invention concerne un instrument optique comprenant une cavité d'entrée dans laquelle est placé un miroir dit miroir primaire.The invention relates to an optical instrument comprising an entrance cavity in which is placed a so-called primary mirror mirror.

L'invention s'applique à tout instrument optique comprenant un miroir nécessitant une très grande stabilité thermique, pour limiter les déformées thermo-élastiques, en particulier sur de courtes périodes par exemple une à deux heures.The invention applies to any optical instrument comprising a mirror requiring a very high thermal stability, to limit the thermoelastic deformations, especially over short periods, for example one to two hours.

L'invention s'applique tout particulièrement mais non exclusivement aux instruments optiques utilisés dans le domaine spatial tels que les instruments optiques embarqués sur des satellites (typiquement des télescopes).The invention is particularly but not exclusively applicable to optical instruments used in the spatial field such as optical instruments embedded on satellites (typically telescopes).

En effet, certains instruments optiques tels que les télescopes nécessitent une très grande stabilité géométrique à température ambiante de leur miroir primaire, aussi bien à long terme qu'à court terme.Indeed, certain optical instruments such as telescopes require a very high geometric stability at room temperature of their primary mirror, both in the long term and in the short term.

Avec l'utilisation de nouveaux matériaux céramiques (à base de carbure de silicium : CeSiC, SiC, ...) pour la réalisation de miroirs, cette contrainte se traduit entre autre, par une stabilité thermique élevée en terme de variation de gradient dans l'épaisseur du miroir et en terme de fluctuation de température de la face active. Ces miroirs dits miroirs primaires, situés dans une cavité d'entrée de l'instrument, sont soumis directement ou indirectement aux variations de flux externes (solaire, terrestre ou albédo) sur l'orbite, et tout au long de l'année.With the use of new ceramic materials (based on silicon carbide: CeSiC, SiC, ...) for the production of mirrors, this constraint is reflected inter alia by a high thermal stability in terms of gradient variation in the mirror thickness and in terms of temperature fluctuation of the active face. These so-called primary mirror mirrors, located in an input cavity of the instrument, are directly or indirectly subjected to variations in external fluxes (solar, terrestrial or albedo) in the orbit, and throughout the year.

Jusqu'à présent, la régulation thermique de tels miroirs a été assurée par une régulation active de type radiatif en face arrière. La régulation dite active est réalisée classiquement par des réchauffeurs pilotées par thermostats ou par logiciels embarqués couplés à des thermistances. Ce type de régulation permet de maintenir la température du miroir à un niveau défini et de compenser les variations de flux absorbés par la face avant au cours de l'année. En revanche, ce type de régulation ne permet pas de compenser les fluctuations orbitales dans le cadre de satellite en orbite basse, en raison du mode d'échange purement radiatif entre les réchauffeurs et le miroir.Until now, the thermal regulation of such mirrors has been ensured by active radiative type rear-panel control. The so-called active regulation is conventionally carried out by thermostats controlled heaters or by embedded software coupled to thermistors. This type of regulation makes it possible to maintain the temperature of the mirror at a defined level and to compensate for the variations in flux absorbed by the front face during the year. On the other hand, this type of regulation does not make it possible to compensate for orbital fluctuations in the context of satellite in low orbit, because of the purely radiative exchange mode between the heaters and the mirror.

D'autres solutions, de type optique active, existent mais sont coûteuses et complexes à mettre en oeuvre du fait de l'emploi d'une électronique dédiée et de tests fonctionnels complexes au sol, et elles présentent un risque de panne.Other active optical type solutions exist but are expensive and complex to implement because of the use of dedicated electronics and complex functional tests on the ground, and they present a risk of failure.

Les documents US-A1-2003/0112512 et JP-A-09133872 divulgent des telescopes spatiales embarqués sur des satellites. Le document WO-A2-01/65297 divulge une telescope terrestielle.The documents US-A1-2003 / 0112512 and JP-A-09133872 divulge space telescopes embedded on satellites. The document WO-A2-01 / 65297 divulge a terrestrial telescope.

Les telescopes des documents US-A1-2003/0112512 et WO-A2-01/65297 comprennent une cavité d'entrée comprenant une enveloppe interne rigide autour du miroir primair et un deuxième enveloppe constituée d'un matériel isolant thermique disposé sur tout le périmétre de la cavité.Telescopes of documents US-A1-2003 / 0112512 and WO-A2-01 / 65297 comprise an inlet cavity comprising a rigid inner envelope around the primary mirror and a second envelope consisting of a thermal insulating material disposed over the entire perimeter of the cavity.

Une régulation thermique directe de la face active permettrait d'obtenir un niveau de stabilité du miroir équivalent, mais cette solution est, à la connaissance du déposant, non réalisée et présenterait des risques de déformation thermo-élastique.Direct thermal regulation of the active face would provide a level of stability of the equivalent mirror, but this solution is, to the knowledge of the applicant, unrealized and present risks of thermo-elastic deformation.

La présente invention a pour but de résoudre ce problème.The present invention aims to solve this problem.

En effet, l'invention propose une solution au problème de très grande stabilité thermique demandée au niveau du miroir primaire d'un instrument optique. Elle a pour but d'apporter une solution vis à vis notamment de fluctuations de courtes périodes dans le cas d'instruments optique de satellites d'orbite basse à géostationnaire.Indeed, the invention proposes a solution to the problem of very high thermal stability required at the primary mirror of an optical instrument. Its purpose is to provide a solution with respect to short-period fluctuations in the case of optical instruments from satellites of low orbit to geostationary satellites.

La solution proposée consiste à réaliser une cavité d'entrée de l'instrument comprenant une enveloppe rigide créant une inertie thermique de tout ou partie de la cavité.
L'inertie thermique de cette enveloppe, située à proximité immédiate du miroir primaire où les échanges radiatifs sont les plus importants, permet de limiter les fluctuations de température de la cavité et, par conséquent, les fluctuations de température du miroir.
The proposed solution consists in producing an input cavity of the instrument comprising a rigid envelope creating a thermal inertia of all or part of the cavity.
The thermal inertia of this envelope, located in the immediate vicinity of the primary mirror where the radiative exchanges are the most important, limits the temperature fluctuations of the cavity and, consequently, the temperature fluctuations of the mirror.

La présente invention a plus particulièrement pour objet un instrument optique comprenant au moins un miroir dit miroir primaire (3), placé dans une cavité (2), le miroir primaire comportant une face active susceptible d'être soumise à des variations instantanées du flux radiatif incident, où la cavité comporte une enveloppe interne rigide (20) autour du miroir constituant au moins une partie de la cavité, cette enveloppe étant constituée d'un matériau présentant une inertie thermique de manière à amortir les variations instantanées du flux radiatif incident permettant ainsi de limiter les fluctuations de température de cette cavité et, par conséquent, les fluctuations de température du miroir.The present invention more particularly relates to an optical instrument comprising at least one mirror called primary mirror (3), placed in a cavity (2), the primary mirror having an active face capable of being subjected to instantaneous variations of the radiative flux incident, where the cavity comprises a rigid inner envelope (20) around the mirror constituting at least a portion of the cavity, the envelope being made of a material having a thermal inertia so as to dampen the instantaneous variations of the incident radiative flux thus allowing to limit the temperature fluctuations of this cavity and, consequently, the temperature fluctuations of the mirror.

Pour limiter la masse de l'instrument, l'enveloppe interne rigide s'étend sur une première partie de la cavité définie comme étant à proximité du miroir, cette partie allant du miroir jusqu'à une distance d inférieure à la longueur 1 totale de la cavité d'entrée de l'instrument.To limit the mass of the instrument, the rigid inner envelope extends over a first portion of the cavity defined as being close to the mirror, this portion going from the mirror to a distance d less than the total length 1 of the input cavity of the instrument.

La première enveloppe est en d'aluminium ou tout autres matériaux présentant une forte inertie thermique (ex. : Béryllium).The first envelope is made of aluminum or any other material with a high thermal inertia (eg Beryllium).

Avantageusement, l'enveloppe en aluminium a une épaisseur d'environ 1mm.Advantageously, the aluminum casing has a thickness of about 1 mm.

Selon une autre caractéristique, la cavité comporte en outre une deuxième enveloppe constituée d'un matériau isolant thermique disposé sur tout le périmètre de la cavité et au fond de cette dernière c'est-à-dire derrière le miroir.According to another characteristic, the cavity further comprises a second envelope made of a thermal insulating material disposed over the entire perimeter of the cavity and at the bottom of the latter, that is to say behind the mirror.

La deuxième enveloppe recouvre la première et prolonge cette première partie de cavité pour former une deuxième partie en continuité avec la première (figure 2).The second envelope covers the first and extends this first cavity part for form a second part in continuity with the first ( figure 2 ).

Avantageusement, la deuxième enveloppe est constituée d'une structure multicouche isolante (MLI).Advantageously, the second envelope consists of an insulating multilayer structure (MLI).

Selon une autre caractéristique, l'instrument comprend en outre des moyens actifs de contrôle de la température du miroir.According to another characteristic, the instrument further comprises active means for controlling the temperature of the mirror.

L'invention s'applique à des télescopes à bord de satellites quelle que soit la taille de leur miroir primaire.The invention applies to telescopes aboard satellites irrespective of the size of their primary mirror.

D'autres particularités et avantages de l'invention apparaîtront clairement à la lecture de la description qui est faite ci-après et qui est donnée à titre d'exemple illustratif et non limitatif et en regard des dessins sur lesquels :

  • la figure 1 représente une coupe longitudinale d'un instrument optique
  • la figure 2 représente une coupe longitudinale de l'instrument optique selon un mode de réalisation.
Other features and advantages of the invention will become clear from reading the description which is given below and which is given by way of illustrative and nonlimiting example and with reference to the drawings in which:
  • the figure 1 represents a longitudinal section of an optical instrument
  • the figure 2 represents a longitudinal section of the optical instrument according to one embodiment.

L'instrument 1 décrit comporte une cavité 2 permettant de recevoir le miroir 3, dit miroir primaire, et de le fixer à l'instrument par des moyens de fixation 5 classiques. Généralement le miroir est dans une cavité tubulaire d'un diamètre légèrement supérieur au sien de manière à venir en périphérie de ce miroir. Le miroir 3 est centré dans la cavité et sa face active tournée vers l'entrée de la cavité lieu d'emplacement d'un miroir secondaire 4.The instrument 1 described has a cavity 2 for receiving the mirror 3, said primary mirror, and attaching it to the instrument by conventional fixing means 5. Generally the mirror is in a tubular cavity of a diameter slightly greater than its own so as to come to the periphery of this mirror. The mirror 3 is centered in the cavity and its active face turned towards the entrance of the cavity locating place of a secondary mirror 4.

Dans l'état de la technique la cavité est réalisée par une enveloppe d'isolation thermique réalisée par une couverture d'isolation dite multicouche MLI (Multi Layered Insulation) peinte en noir coté interne à la cavité et qui présente de fortes variations de température.In the state of the art, the cavity is made by a thermal insulation envelope made by a so-called MLI multi-layer insulating blanket (Multi Layered Insulation) painted in black on the inside of the cavity and exhibiting strong variations in temperature.

Plutôt que d'utiliser une enveloppe d'isolation classique, la solution proposée consiste à utiliser une cavité d'entrée pour l'instrument d'optique 1 ayant une forte inertie thermique. Pour cela la cavité 2 comprend au moins une partie dans un matériau à forte inertie vis-à-vis des fluctuations rapides de températures. Ainsi, la cavité d'entrée de l'instrument réalisée conformément à l'invention est moins sensible aux fluctuations externes, notamment vis à vis des fluctuations rapides de type orbitales.Rather than using a conventional insulation envelope, the proposed solution is to use an input cavity for the optical instrument 1 having a high thermal inertia. For this, the cavity 2 comprises at least a portion in a material with high inertia vis-à-vis rapid fluctuations in temperature. Thus, the input cavity of the instrument made in accordance with the invention is less sensitive to external fluctuations, especially with respect to rapid orbital-type fluctuations.

A cette fin, la cavité d'entrée 2 de l'instrument optique 1 comprend une enveloppe interne rigide 20 autour du miroir 3 constituée d'un matériau présentant une inertie thermique amortissant les variations instantanées du flux radiatif incident. L'enveloppe à inertie thermique limite les fluctuations de température de la cavité et, par conséquent, les fluctuations de température du miroir.To this end, the input cavity 2 of the optical instrument 1 comprises a rigid inner envelope 20 around the mirror 3 made of a material having a thermal inertia damping the instantaneous variations of the incident radiative flux. The thermal inertia envelope limits the temperature fluctuations of the cavity and, consequently, the temperature fluctuations of the mirror.

L'enveloppe rigide à inertie thermique 20 se présente sous forme tubulaire et constitue partie de la cavité d'entrée de l'instrument d'optique 1.The rigid envelope with thermal inertia 20 is in tubular form and forms part of the input cavity of the optical instrument 1.

Sur le schéma de la figure 1, l'enveloppe 20 constitue toute la cavité 2. Dans ce cas, la longueur de l'enveloppe 20 correspond à celle de la cavité d'entrée 2. L'enveloppe va dans ce cas, du miroir primaire 3 jusqu'à l'entrée de la cavité qui correspond à l'emplacement du miroir secondaire 4.On the diagram of the figure 1 the casing 20 constitutes the entire cavity 2. In this case, the length of the casing 20 corresponds to that of the inlet cavity 2. In this case, the casing goes from the primary mirror 3 to the casing 2. entrance of the cavity corresponding to the location of the secondary mirror 4.

Pour des raisons de limitation de la masse de l'instrument optique, l'enveloppe 20 aura de préférence une longueur inférieure à celle de la cavité d'entrée tout en restant suffisamment longue pour assurer sa fonction d'amortisseur des variations instantanées du flux radiatif incident. Cet exemple de réalisation est illustré par le schéma de la figure 2, l'enveloppe 20 constituant une partie seulement de la cavité 2.For reasons of limitation of the mass of the optical instrument, the envelope 20 will preferably have a length less than that of the input cavity while remaining sufficiently long to ensure its damping function of instantaneous variations in the radiative flux. incident. This exemplary embodiment is illustrated by the diagram of the figure 2 , the casing constituting only part of the cavity 2.

Le diamètre de l'enveloppe 20 est légèrement supérieur à celui du miroir primaire 3 de manière à ce que cette dernière puisse être placée en périphérie du miroir 3.The diameter of the envelope 20 is slightly greater than that of the primary mirror 3 so that the latter may be placed on the periphery of the mirror 3.

La partie de cavité présentant une inertie thermique ou la totalité de la cavité présentant cette inertie thermique par rapport aux fluctuations thermiques est recouverte d'une enveloppe d'isolation thermique 21 de type multicouche « MLI ».The cavity portion having a thermal inertia or the entire cavity having this thermal inertia with respect to the thermal fluctuations is covered with a thermal insulation jacket 21 of multilayer type "MLI".

Seulement une partie de la cavité comprend une enveloppe rigide à inertie thermique tel que représenté sur la figure 2, et l'enveloppe d'isolation 21 recouvrant cette partie de cavité, s'étend sur toute la longueur de la cavité d'entrée, sa surface interne étant dans le prolongement de la surface interne de l'enveloppe à inertie thermique 20.Only part of the cavity comprises a rigid envelope with thermal inertia as represented on the figure 2 , and the insulation envelope 21 covering this cavity portion, extends over the entire length of the inlet cavity, its inner surface being in the extension of the inner surface of the thermal inertia envelope 20.

Un matériau tel que l'aluminium présentant une forte capacité calorifique ainsi qu'une bonne conductibilité thermique, peut être utilisé avantageusement pour réaliser l'enveloppe à inertie thermique.A material such as aluminum having a high heat capacity and a good thermal conductivity, can be used advantageously to achieve the thermal inertia envelope.

La face interne de la partie A de cavité réalisée en aluminium 20 est peinte en noir pour des raisons optiques, et la face externe est isolée de l'instrument 1 avec l'enveloppe 21 multicouche isolante de type MLI afin de maintenir un niveau de température suffisamment bas permettant la régulation du miroir aux alentour de 20°C.The inner face of the cavity portion A made of aluminum 20 is painted black for optical reasons, and the outer face is isolated from the instrument 1 with the MLI-type insulating multilayer jacket 21 in order to maintain a temperature level. low enough to regulate the mirror around 20 ° C.

Selon le besoin, la solution proposée peut être encore améliorée avec des moyens 6 et 7 illustrés sur la figure 2, classiquement utilisés pour le contrôle de la température à savoir :

  1. 1) un contrôle actif 7 de la température de l'enveloppe rigide à l'aide d'une régulation de type Proportionnel-Intégral-Dérivée, par exemple, ce qui permet de diminuer encore les fluctuations thermiques de l'enveloppe et donc du miroir.
  2. 2) l'association d'une régulation active du miroir en face arrière de type radiatif 6 qui devient, avec la présence de la cavité à forte inertie thermique, nettement plus efficace pour compenser des fluctuations de courte durée, de type orbitale. Ceci est du au fait que les variations instantanées du flux radiatif provenant de la cavité proche sont amorties, en raison de l'inertie de la cavité, par rapport aux variations provenant d'une cavité comprenant seulement une isolation de type MLI.
  3. 3) l'association d'une régulation active du miroir en face arrière de type radiatif, dont la boucle d'asservissement est pilotée par la température de la cavité, permettant ainsi d'anticiper et de compenser les fluctuations de température du miroir.
Depending on the need, the proposed solution can be further improved with means 6 and 7 illustrated on the figure 2 , conventionally used for temperature control, namely:
  1. 1) an active control 7 of the temperature of the rigid casing using a Proportional-Integral-Derivative type of regulation, for example, which makes it possible to further reduce the thermal fluctuations of the envelope and therefore of the mirror .
  2. 2) the combination of an active regulation of the radiative type rear-facing mirror 6 which becomes, with the presence of the cavity with high thermal inertia, significantly more effective to compensate for short-term orbital-type fluctuations. This is because instantaneous changes in radiative flux from the near cavity are damped, due to the inertia of the cavity, compared to variations from a cavity comprising only MLI-type isolation.
  3. 3) the association of an active control of the radiative type back-side mirror, the servo-control loop of which is controlled by the temperature of the cavity, thus making it possible to anticipate and compensate for the temperature fluctuations of the mirror.

A titre d'exemple une modélisation thermique d'un ensemble comprenant :
1 miroir primaire 3 de diamètre 1,3m

  • la cavité 2 étant munie d'une enveloppe rigide en aluminium 20 d'environ 1mm sur la moitié A de la longueur soit une longueur 1,2m,
  • la cavité 2 étant recouverte d'une enveloppe d'isolation 21 de type MLI recouvrant l'enveloppe d'aluminium et prolongeant l'enveloppe 20 pour constituer l'autre moitié B de la cavité,

1 miroir secondaire 4
1 baffle d'entrée 10,
a permis, pour un satellite en orbite basse, de quantifier les gains obtenus selon l'invention : Structure de la cavité de l'instrument optique. Variation orbitale de la température moyenne du miroir primaire (face active) Variation orbitale du gradient thermique dans l'épaisseur du miroir primaire (mK) (mK) Classique (cavité recouverte de MLI) 310 12,4 Moitié de la cavité avec enveloppe interne rigide en aluminium, non régulée 110 4,8 Moitié de la cavité avec enveloppe interne en aluminium, régulée 90 3,6 Régulation active du miroir (type radiatif) et moitié de la cavité avec enveloppe interne en aluminium (non régulée) 16 1,7 For example, a thermal modeling of an assembly comprising:
1 primary mirror 3 of diameter 1,3m
  • the cavity 2 being provided with a rigid aluminum casing 20 of about 1 mm on the half A of the length is a length of 1.2 m,
  • the cavity 2 being covered with an MLI-type insulation jacket 21 covering the aluminum envelope and extending the envelope 20 to form the other half B of the cavity,

1 secondary mirror 4
1 input cabinet 10,
allowed, for a satellite in low orbit, to quantify the gains obtained according to the invention: Structure of the cavity of the optical instrument. Orbital variation of the average temperature of the primary mirror (active side) Orbital variation of the thermal gradient in the thickness of the primary mirror (MK) (MK) Classic (cavity covered with PWM) 310 12.4 Half of the cavity with rigid internal aluminum casing, unregulated 110 4.8 Half of the cavity with internal aluminum casing, regulated 90 3.6 Active regulation of the mirror (radiative type) and half of the cavity with internal aluminum casing (unregulated) 16 1.7

Ainsi, la modification de la structure de la cavité d'entrée de l'instrument optique proposée permet d'atténuer les variations de flux incidents vues par la face active du miroir, et notamment les flux provenant de la cavité proche.Thus, the modification of the structure of the input cavity of the proposed optical instrument makes it possible to attenuate the variations in incident flux seen by the active face of the mirror, and in particular the flux coming from the near cavity.

Une cavité comprenant une enveloppe tubulaire en aluminium de 1,2m de long et 1mm d'épaisseur dans l'environnement proche du miroir primaire de 1,3m de diamètre suffit pour obtenir ces résultats.A cavity comprising an aluminum tubular casing 1.2 m long and 1 mm thick in the environment close to the primary mirror of 1.3 m in diameter is sufficient to obtain these results.

Une optimisation de la longueur de l'enveloppe rigide est nécessaire en fonction des exigences de stabilité demandées et du surcroît de masse généré.An optimization of the length of the rigid envelope is necessary according to the stability requirements requested and the increased mass generated.

Claims (4)

  1. An optical instrument comprising at least one mirror, referred to as the primary mirror (3), arranged in a cavity (2), said primary mirror comprising an active surface that is susceptible to be subject to instantaneous variations of the incident radiation flux, said cavity comprising an internal rigid envelope (20) around said mirror, which constitutes at least part of said cavity, said envelope being made from material with thermal inertia, such as aluminium or any other materials with high thermal inertia, for example, beryllium, so as to absorb the instantaneous variations of the incident radiation flux, thus allowing the temperature fluctuations in said cavity and, consequently, the temperature fluctuations of said mirror to be limited, characterised in that the internal rigid envelope extends along a first part (A) of said cavity that is defined as being within the vicinity of said mirror, said part extending from said mirror up to a distance d that is less than the total length 1 of said cavity, and
    said cavity further comprises a second envelope (21) that is constituted by a thermal insulating material that is arranged over the entire perimeter of said cavity and at the bottom of said cavity, that is behind said mirror, said second envelope covering the first envelope and extending the first part (A) of said cavity so as to form a second part (B) that is continuous with the first part.
  2. The optical instrument according to claim 1, characterised in that the first envelope (20) is approximately 1mm thick.
  3. The optical instrument according to any one of claims 1 to 2, characterised in that the second envelope (21) is made from a multi-layer insulation structure (MLI).
  4. The optical instrument according to any one of the preceding claims, characterised in that it further comprises active means (6) and (7) for controlling the temperature of the mirror and of the rigid envelope.
EP06842045A 2005-11-28 2006-11-27 Optical instrument comprising an input cavity wherein is arranged a mirror Active EP1955100B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0553620A FR2894037B1 (en) 2005-11-28 2005-11-28 OPTICAL INSTRUMENT COMPRISING AN ENTRY CAVITY IN WHICH A MIRROR IS PLACED
PCT/FR2006/051234 WO2007060376A1 (en) 2005-11-28 2006-11-27 Optical instrument comprising an input cavity wherein is arranged a mirror

Publications (2)

Publication Number Publication Date
EP1955100A1 EP1955100A1 (en) 2008-08-13
EP1955100B1 true EP1955100B1 (en) 2012-05-02

Family

ID=36608592

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06842045A Active EP1955100B1 (en) 2005-11-28 2006-11-27 Optical instrument comprising an input cavity wherein is arranged a mirror

Country Status (11)

Country Link
US (1) US7855832B2 (en)
EP (1) EP1955100B1 (en)
JP (1) JP2009517699A (en)
CN (1) CN101375196B (en)
AT (1) ATE556334T1 (en)
BR (1) BRPI0619378B1 (en)
CA (1) CA2631339C (en)
ES (1) ES2385399T3 (en)
FR (1) FR2894037B1 (en)
IL (1) IL191735A (en)
WO (1) WO2007060376A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2920229B1 (en) * 2007-08-24 2009-12-18 Thales Sa IMPROVING THE PERFORMANCE OF OBSERVATION INSTRUMENTS BY USING VARIABLE EMISSIVITY COATINGS
CN103399389B (en) * 2013-07-30 2015-08-19 中国科学院长春光学精密机械与物理研究所 A kind of primary mirror Floatable supporting mechanism with oriented film
CN109239908A (en) * 2018-10-22 2019-01-18 中国科学院上海技术物理研究所 The support device of autocollimator under a kind of extreme temperature environment
US11874432B2 (en) 2020-03-02 2024-01-16 Airbus Defence And Space Sas Space optical instrument comprising an improved thermal guard
CN111650897B (en) * 2020-05-06 2022-03-15 江苏国富氢能技术装备股份有限公司 Intelligent production process of aluminum liner in intelligent production workshop of high-pressure hydrogen cylinder

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3791713A (en) * 1971-09-21 1974-02-12 A Mackay Reflecting telescope system
US4098476A (en) * 1977-06-07 1978-07-04 The United States Of America As Represented By The Secretary Of The Army Mechanical support
FR2543697B1 (en) * 1983-03-30 1985-08-23 Aerospatiale METHOD AND DEVICE FOR SUSPENSION AND DRIVE OF AN OSCILLATING SPATIAL TELESCOPE MIRROR
DD250784A1 (en) * 1986-07-01 1987-10-21 Zeiss Jena Veb Carl OPTICAL ARRANGEMENT WITH RADIAL AND AXIAL TEMPERATURE COMPENSATION
US5191469A (en) * 1988-03-17 1993-03-02 Margolis H Jay Afocal variation focusing system for mirrored optical systems
JPH01246519A (en) * 1988-03-29 1989-10-02 Toshiba Corp Dustproofing device for optical parts
GB2288271A (en) * 1994-04-07 1995-10-11 Marconi Gec Ltd Laser assembly incorporating fluid between laser cavity and housing
JPH07311347A (en) * 1994-05-18 1995-11-28 Yasuo Matsumoto Telescope
JP2795181B2 (en) * 1994-07-18 1998-09-10 日本電気株式会社 Light reflection telescope for satellite
JP2806329B2 (en) * 1995-11-08 1998-09-30 日本電気株式会社 Focusing adjustment device for telescopes for space vehicles
US6066850A (en) * 1996-09-17 2000-05-23 Canadian Space Agency Satellite attitude sensor using thermal imaging
JPH10290114A (en) * 1997-04-15 1998-10-27 Mitsubishi Electric Corp Antenna reflection mirror for space
US6101015A (en) * 1997-10-21 2000-08-08 Northeastern University Variable-coupling quasioptical electron resonance apparatus
JP2002166899A (en) * 2000-11-30 2002-06-11 Mitsubishi Electric Corp Reinforced container for space environment
JP3789812B2 (en) * 2001-12-17 2006-06-28 三菱電機株式会社 Space navigation optical instrument and its contaminant removal method
DE10224710B4 (en) * 2002-06-04 2005-12-08 Schott Ag Method for the hermetic packaging of optical components and optical components produced according to the method
CN1414784A (en) * 2002-09-09 2003-04-30 四川长虹电器股份有限公司 Projection television projecting subassembly
US20070063105A1 (en) * 2004-02-10 2007-03-22 Mann Alfred E Apparatus for controlling temperature in satellites
US7180067B2 (en) * 2005-02-15 2007-02-20 Raytheon Company Infrared imaging system with ellipsoid reflective warm baffle and method
US7374294B2 (en) * 2005-11-03 2008-05-20 Gerald Willey Method and apparatus for improving image quality in a reflecting telescope

Also Published As

Publication number Publication date
FR2894037A1 (en) 2007-06-01
IL191735A (en) 2013-02-28
US7855832B2 (en) 2010-12-21
BRPI0619378A2 (en) 2011-09-27
IL191735A0 (en) 2009-09-22
CA2631339A1 (en) 2007-05-31
CN101375196A (en) 2009-02-25
ES2385399T3 (en) 2012-07-24
ATE556334T1 (en) 2012-05-15
EP1955100A1 (en) 2008-08-13
CN101375196B (en) 2010-07-07
WO2007060376A1 (en) 2007-05-31
FR2894037B1 (en) 2007-12-28
US20100033855A1 (en) 2010-02-11
JP2009517699A (en) 2009-04-30
BRPI0619378B1 (en) 2018-03-06
CA2631339C (en) 2015-11-24

Similar Documents

Publication Publication Date Title
EP1955100B1 (en) Optical instrument comprising an input cavity wherein is arranged a mirror
EP2019038B1 (en) Solar protection device for a spatial instrument
FR3099132A1 (en) HOOD FOR VEHICLES, IN PARTICULAR FOR SUPERSONIC OR HYPERSONIC VEHICLES
FR3040777A1 (en) OPTICAL DETECTION ASSEMBLY COMPRISING AN IMPROVED THERMAL CONTROL OPTICAL DETECTOR, OBSERVATION INSTRUMENT AND SATELLITE COMPRISING SUCH AN OPTICAL SENSING ASSEMBLY
EP0362069A1 (en) Device for fixing an optical member such as a filter on a support
EP4066037B1 (en) Space optical instrument comprising improved thermal guard
FR3011326A1 (en) FLEXIBLE PRINTED CIRCUIT WITH LOW EMISSIVITY
EP2761632A1 (en) Coiled electronic power component comprising a heat sinking support
EP2175298A1 (en) System for stabilising a rigid structure subjected to thermoelastic deformations.
EP3624255A1 (en) Assembly for guiding radio waves and antenna comprising such an assembly
FR2945673A1 (en) MULTI-MEMBRANE FLEXIBLE WALL DEVICE FOR FILTERS AND MULTIPLEXERS OF THERMO-COMPENSATED TECHNOLOGY
JP2007305733A (en) Solid laser apparatus
FR2920229A1 (en) Observation optical device for spatial field, has variable emissivity lining covering internal wall of rigid cavity and having emissivity decreasing with temperature in cavity, so that temperature of optical unit has limited fluctuation
FR2939912A1 (en) SUPPORT ASSEMBLY OF A SECONDARY MIRROR OF A HIGH-STABILITY COMBINATION SPACE AND WITH LOW MECHANICAL INERTIA
FR3016238A1 (en) PHOTOVOLTAIC MODULE WITH OXIDE LAYER ISOLATION CONCENTRATION
FR3137333A1 (en) vehicle equipped with a heat-protected urea tank mounting bracket
FR2980626A1 (en) ELECTRONIC COIL POWER COMPONENT COMPRISING A THERMAL DRAINAGE SUPPORT
EP1450164A1 (en) Sensor with vibrating element and thermic radiation shield
FR3038057A1 (en) DEVICE FOR MEASURING THE TOPOGRAPHY OF A SURFACE OF A SYSTEM.
JP2014193700A (en) Thermal control plate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080527

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20081114

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602006029326

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: G02B0007180000

Ipc: G02B0005080000

RIC1 Information provided on ipc code assigned before grant

Ipc: G02B 7/18 20060101ALI20111027BHEP

Ipc: G02B 5/08 20060101AFI20111027BHEP

Ipc: G02B 7/192 20060101ALI20111027BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 556334

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006029326

Country of ref document: DE

Effective date: 20120628

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2385399

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120724

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120502

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120502

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120502

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120902

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120502

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120502

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 556334

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120903

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120502

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120502

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120502

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120502

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120502

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120502

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120502

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120502

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006029326

Country of ref document: DE

Effective date: 20130205

BERE Be: lapsed

Owner name: THALES

Effective date: 20121130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120802

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121127

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061127

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20181114

Year of fee payment: 13

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20191201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231019

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231211

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231024

Year of fee payment: 18

Ref country code: DE

Payment date: 20231017

Year of fee payment: 18