JP2007305733A - Solid laser apparatus - Google Patents

Solid laser apparatus Download PDF

Info

Publication number
JP2007305733A
JP2007305733A JP2006131528A JP2006131528A JP2007305733A JP 2007305733 A JP2007305733 A JP 2007305733A JP 2006131528 A JP2006131528 A JP 2006131528A JP 2006131528 A JP2006131528 A JP 2006131528A JP 2007305733 A JP2007305733 A JP 2007305733A
Authority
JP
Japan
Prior art keywords
laser medium
laser
solid
heat sink
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006131528A
Other languages
Japanese (ja)
Other versions
JP4795107B2 (en
Inventor
Takayuki Yanagisawa
隆行 柳澤
Yoshihito Hirano
嘉仁 平野
Shuhei Yamamoto
修平 山本
Koji Seki
浩二 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006131528A priority Critical patent/JP4795107B2/en
Publication of JP2007305733A publication Critical patent/JP2007305733A/en
Application granted granted Critical
Publication of JP4795107B2 publication Critical patent/JP4795107B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a solid laser apparatus capable of fixing a laser medium so that the medium cannot move, and reducing distortion in laser operation. <P>SOLUTION: The solid laser apparatus is provided with a thin plate-like laser medium 1 for absorbing an excitation light to generate a gain, a heat sink 3 for discharging heat of the laser medium 1 to the outside, and a bonding agent 2 for bonding the laser medium 1 to the heat sink 3. The apparatus has a relation of Ts≥Td≥Th and a relation of α(Ts-Td)≈η(Ts-Th), where α is a linear expansion coefficient in a junction surface of the laser medium 1, η is a linear expansion coefficient of the heat sink 3, Ts is a curing temperature of the bonding agent 2, Td is an operation temperature of the laser medium 1, and Th is an operation temperature of the heat sink 3. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、レーザレーダ用レーザ装置や加工用レーザ装置に好適な薄板状の固体レーザ装置に関するものである。   The present invention relates to a thin plate-like solid-state laser device suitable for a laser device for laser radar and a laser device for processing.

薄板型レーザ媒質は、レーザ媒質が薄い板形状に加工されたものである。板形状を構成する面のうち、最も面積の大きい面の一方からレーザ光を入射し、入射面に対向する反射面で反射させて、レーザ光を板の厚さ方向に伝搬させながら増幅する。従って、薄板型レーザ媒質の反射面に歪みが発生した場合、増幅されたレーザ光のビーム品質が悪く(ビームの輝度が低く)なったり、回折損失により固体レーザ装置の効率が低下したりするといった問題が発生する。なお、板の外形は円形のディスクや多角形等、任意の形状を有する。   The thin plate type laser medium is obtained by processing a laser medium into a thin plate shape. Laser light is incident from one of the surfaces having the largest area among the surfaces constituting the plate shape, reflected by a reflecting surface facing the incident surface, and amplified while propagating the laser light in the thickness direction of the plate. Therefore, when distortion occurs on the reflecting surface of the thin plate type laser medium, the beam quality of the amplified laser beam is deteriorated (the luminance of the beam is low), or the efficiency of the solid-state laser device is reduced due to diffraction loss. A problem occurs. The outer shape of the plate has an arbitrary shape such as a circular disk or a polygon.

さらに、薄板型レーザ媒質は、レーザ発振、または、増幅のためのミラーとして使用されるので、レーザ媒質が動いてしまうと、入射するレーザ光の光軸がずれて、個体レーザ装置の出力が低下してしまうとともに、出射するレーザ光の光軸がずれてしまう。従って、レーザ媒質が動かないようにレーザ媒質を頑強に固定する必要がある。   Further, since the thin plate type laser medium is used as a mirror for laser oscillation or amplification, if the laser medium moves, the optical axis of the incident laser beam is shifted and the output of the individual laser device is reduced. As a result, the optical axis of the emitted laser beam is shifted. Therefore, it is necessary to firmly fix the laser medium so that the laser medium does not move.

一方、励起された薄板状レーザ媒質で発生した熱を排熱するために、上記反射面にはヒートシンクが接合される。この接合には、熱硬化型の接着剤や半田が用いられるが、接合による加熱時にレーザ媒質とヒートシンクの熱膨張量が異なると、冷却時に応力による歪みや破壊が発生する。従って、この歪みを抑制するため、レーザ媒質の線膨張係数とほぼ同じ線膨張係数を有するヒートシンクを接合する手法が一般に用いられている。   On the other hand, a heat sink is bonded to the reflecting surface in order to exhaust heat generated in the excited thin plate-like laser medium. For this joining, a thermosetting adhesive or solder is used. If the thermal expansion amount of the laser medium and the heat sink is different during heating by joining, distortion or breakage due to stress occurs during cooling. Therefore, in order to suppress this distortion, a method of joining a heat sink having a linear expansion coefficient substantially the same as the linear expansion coefficient of the laser medium is generally used.

しかし、薄板型レーザ媒質では、発熱体となるレーザ媒質とヒートシンクの間に誘電体全反射膜と接合剤による熱抵抗が発生するため、励起光が入射してレーザ媒質で熱が発生したとき(動作時)は、レーザ媒質からヒートシンクへの熱抵抗により、レーザ媒質の温度とヒートシンク温度に差が発生する。この温度差によって、レーザ媒質とヒートシンクの線膨張係数が同じ場合でも、熱による膨張量が異なり、ヒートシンクがレーザ媒質に応力を加えてしまう。   However, in the thin plate type laser medium, a thermal resistance is generated by the dielectric total reflection film and the bonding agent between the laser medium serving as a heating element and the heat sink, so when excitation light is incident and heat is generated in the laser medium ( During operation, a difference occurs between the temperature of the laser medium and the heat sink temperature due to the thermal resistance from the laser medium to the heat sink. Due to this temperature difference, even when the linear expansion coefficient of the laser medium and the heat sink is the same, the amount of expansion due to heat differs, and the heat sink applies stress to the laser medium.

この歪みを低減する接合方法として、接着剤を用いる方法がある(例えば、特許文献1参照)。この接着剤は、熱伝導性繊維が絡み合った伸縮性生地と、この伸縮性生地に含浸された熱硬化性樹脂とを備えるものであり、特に、接着物の応力を低減するためには、上記熱硬化性樹脂として、ガラス転移温度が常温以下となる成分を含むことが望ましい。上記熱硬化性樹脂は、通常使用される外気温が常温であるため、接着剤の温度がガラス転移温度よりも高くなっている。上記熱硬化性樹脂は、ガラス転移温度以下では半固形状態となっており、接合時に発生する熱膨張差を、上記熱硬化性樹脂と上記伸縮性生地で熱膨張差を吸収して、接合物への応力を緩和し、歪みを低減する。   As a bonding method for reducing this distortion, there is a method using an adhesive (see, for example, Patent Document 1). This adhesive comprises a stretchable fabric in which thermal conductive fibers are entangled with each other, and a thermosetting resin impregnated in this stretchable fabric. In particular, in order to reduce the stress of the adhesive, As the thermosetting resin, it is desirable to include a component having a glass transition temperature of room temperature or lower. In the thermosetting resin, since the outside temperature that is usually used is room temperature, the temperature of the adhesive is higher than the glass transition temperature. The thermosetting resin is in a semi-solid state below the glass transition temperature, and the thermal expansion difference generated at the time of bonding is absorbed by the thermosetting resin and the stretchable fabric to join the bonded product. Relieve stress and reduce strain.

特開2005−232207号公報JP 2005-232207 A

しかしながら、従来の薄板型の固体レーザ装置では、レーザ媒質とヒートシンクの線膨張係数がほぼ同じになるようにヒートシンク材料を選定しているので、レーザ媒質の温度とヒートシンク温度が異なる動作時においては、熱による膨張量が異なり、レーザ媒質に歪みが発生するという問題点があった。   However, in the conventional thin plate type solid state laser device, the heat sink material is selected so that the linear expansion coefficients of the laser medium and the heat sink are almost the same. There is a problem in that the amount of expansion due to heat differs and distortion occurs in the laser medium.

また、従来の接着剤を用いた薄板型の固体レーザ装置では、硬化後の接着剤の温度が熱硬化性樹脂のガラス転移温度よりも高いため、薄板を完全に固定することが出来ず、励起で発生した発熱による温度上昇や、外気温の変化による温度変化により、薄板が動いてしまうという問題点があった。   Also, in a thin plate type solid state laser device using a conventional adhesive, since the temperature of the adhesive after curing is higher than the glass transition temperature of the thermosetting resin, the thin plate cannot be completely fixed and excited. There is a problem that the thin plate moves due to a temperature rise due to heat generated in the room and a temperature change due to a change in the outside air temperature.

この発明は、上述のような課題を解決するためになされたもので、その目的は、レーザ媒質が動かないように固定することができ、レーザ動作時の歪みを低減することができる固体レーザ装置を得るものである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to fix the laser medium so that it does not move, and to reduce distortion during laser operation. Is what you get.

この発明に係る固体レーザ装置は、励起光を吸収して利得を発生する薄板状のレーザ媒質と、前記レーザ媒質の熱を外部に排熱する冷却手段と、前記レーザ媒質と前記冷却手段を接合する接合剤とを備えた固体レーザ装置であって、前記レーザ媒質の接合面内における線膨張係数をα、前記冷却手段の線膨張係数をη、前記接合剤の硬化温度をTs、前記レーザ媒質の動作温度をTd、前記冷却手段の動作温度をThとそれぞれ表すと、Ts≧Td≧Thの関係を有するとともに、α(Ts−Td)≒η(Ts−Th)の関係を有するものである。   A solid-state laser device according to the present invention includes a thin plate-like laser medium that absorbs excitation light and generates gain, a cooling unit that exhausts heat of the laser medium to the outside, and the laser medium and the cooling unit are joined. A linear expansion coefficient in the bonding surface of the laser medium, a linear expansion coefficient of the cooling means η, a curing temperature of the bonding agent Ts, and the laser medium. When the operating temperature of Td is expressed as Td and the operating temperature of the cooling means is expressed as Th, there is a relationship of Ts ≧ Td ≧ Th and a relationship of α (Ts−Td) ≈η (Ts−Th). .

この発明に係る固体レーザ装置は、レーザ媒質が動かないように固定することができ、レーザ動作時の歪みを低減することができるという効果を奏する。   The solid-state laser device according to the present invention has an effect that the laser medium can be fixed so as not to move, and distortion during laser operation can be reduced.

実施の形態1.
この発明の実施の形態1に係る固体レーザ装置について図1及び図2を参照しながら説明する。図1は、この発明の実施の形態1に係る固体レーザ装置の構成を示す断面図である。なお、以降では、各図中、同一符号は同一又は相当部分を示す。
Embodiment 1 FIG.
A solid-state laser device according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 is a cross-sectional view showing a configuration of a solid-state laser apparatus according to Embodiment 1 of the present invention. In the following, in each figure, the same reference numerals indicate the same or corresponding parts.

図1において、この実施の形態1に係る固体レーザ装置は、励起光を吸収して利得を発生する薄板状のレーザ媒質1と、レーザ媒質1の熱を外部に排熱するヒートシンク(冷却手段)3と、レーザ媒質1とヒートシンク3を接合する接合剤2とが設けられている。   In FIG. 1, a solid-state laser device according to the first embodiment includes a thin plate-like laser medium 1 that absorbs excitation light and generates a gain, and a heat sink (cooling means) that exhausts heat from the laser medium 1 to the outside. 3 and a bonding agent 2 for bonding the laser medium 1 and the heat sink 3 are provided.

レーザ媒質1は、一般的な固体レーザ媒質を使用することができ、例えば、Nd;YAG、Yb;YAG等が用いられる。図示は省略したが、レーザ媒質1の板状の広い面の片側を入射面として「反射防止膜」が施され、入射するレーザ光のほぼ全てを透過し、レーザ媒質1の入射面と反対側の広い面は反射面として「全反射膜」が施され、入射面から入射したレーザ光のほぼ全てを反射する。反射防止膜は、誘電体薄膜の積層、全反射膜は誘電体薄膜の積層、または、金属膜の蒸着等を用いる。   As the laser medium 1, a general solid laser medium can be used. For example, Nd; YAG, Yb; YAG, or the like is used. Although not shown in the figure, an “antireflection film” is applied with one side of the wide plate-like surface of the laser medium 1 as the incident surface, and almost all of the incident laser light is transmitted and opposite to the incident surface of the laser medium 1. The wide surface is provided with a “total reflection film” as a reflection surface, and reflects almost all of the laser light incident from the incident surface. The antireflection film uses a laminate of dielectric thin films, and the total reflection film uses a laminate of dielectric thin films or vapor deposition of a metal film.

また、接合剤2は、金属半田や接着剤により実現可能である。   The bonding agent 2 can be realized by metal solder or an adhesive.

つぎに、この実施の形態1に係る固体レーザ装置の動作について図面を参照しながら説明する。図2は、この発明の実施の形態1に係る固体レーザ装置のレーザ媒質に歪みが発生する状況を説明するための図である。   Next, the operation of the solid-state laser device according to the first embodiment will be described with reference to the drawings. FIG. 2 is a diagram for explaining a situation in which distortion occurs in the laser medium of the solid-state laser device according to Embodiment 1 of the present invention.

接合剤2による接合時の温度(硬化温度)をTs、励起光が入射してレーザ媒質1で熱が発生したとき(動作時)のレーザ媒質1の温度をTd、動作時のヒートシンク3の温度をTh、常温をT0とし、Ts≧Td≧Thの関係を有する。また、レーザ媒質1の線膨張係数はα、ヒートシンク3の線膨張係数はηであり、次の式(1)の関係を有する。   The temperature (curing temperature) at the time of bonding with the bonding agent 2 is Ts, the temperature of the laser medium 1 when the excitation light is incident and heat is generated in the laser medium 1 (at the time of operation), Td, and the temperature of the heat sink 3 at the time of operation. Is Th, normal temperature is T0, and Ts ≧ Td ≧ Th. Further, the linear expansion coefficient of the laser medium 1 is α, and the linear expansion coefficient of the heat sink 3 is η, which has the relationship of the following formula (1).

α(Ts−Td)≒η(Ts−Th) 式(1)   α (Ts−Td) ≈η (Ts−Th) Equation (1)

接合時の温度Tsは、接合剤2が金属半田の場合、金属半田の融点に等しい。また、接合剤2が接着剤の場合、接着剤のガラス転移温度Tgよりも高い温度で接合しても、接着剤はTg以上では半固形状態となるため、レーザ媒質1が固定される温度はTgとなる。従って、接合剤2として接着剤を用いた場合、硬化時温度によらず、接合時の温度Tsはガラス転移温度Tgに等しい。   The bonding temperature Ts is equal to the melting point of the metal solder when the bonding agent 2 is metal solder. Further, when the bonding agent 2 is an adhesive, even if the bonding is performed at a temperature higher than the glass transition temperature Tg of the adhesive, the adhesive is in a semi-solid state at Tg or higher, so the temperature at which the laser medium 1 is fixed is Tg. Therefore, when an adhesive is used as the bonding agent 2, the bonding temperature Ts is equal to the glass transition temperature Tg regardless of the curing temperature.

ここで、図2を用いてレーザ媒質1に歪みが発生する状況を説明する。図2(A)に示すように、接合時の温度Tsにおいては、レーザ媒質1とヒートシンク3はお互いに応力を与えず、歪みは発生しない。   Here, the situation where distortion occurs in the laser medium 1 will be described with reference to FIG. As shown in FIG. 2A, at the bonding temperature Ts, the laser medium 1 and the heat sink 3 do not apply stress to each other, and no distortion occurs.

図2(B)に示すように、レーザ媒質1とヒートシンク3を接合温度Tsから常温T0に冷却した際、レーザ媒質1は、接合時の温度Tsでの大きさを基準として、割合α(Ts−T0)の大きさの変化が発生する。一方、ヒートシンク3は、割合η(Ts−T0)の大きさの変化が発生する。式(1)の関係より、Ts=Td、または、Ts=T0である場合を除いて、レーザ媒質1とヒートシンク3の変化量が異なるため、冷却によりレーザ媒質1にはヒートシンク3により応力が発生する。この時、α≧ηであるため、レーザ媒質1には引っ張り応力が発生する。   As shown in FIG. 2B, when the laser medium 1 and the heat sink 3 are cooled from the bonding temperature Ts to the room temperature T0, the laser medium 1 has a ratio α (Ts) based on the size at the bonding temperature Ts. -T0) changes in magnitude. On the other hand, the heat sink 3 changes in the magnitude of the ratio η (Ts−T0). Since the amount of change between the laser medium 1 and the heat sink 3 is different except for the case of Ts = Td or Ts = T0 from the relationship of the expression (1), stress is generated in the laser medium 1 by the heat sink 3 due to cooling. To do. At this time, since α ≧ η, a tensile stress is generated in the laser medium 1.

一方、図2(C)に示すように、動作時には、接合時の温度Tsでの大きさを基準として、レーザ媒質1は割合α(Ts−Td)、ヒートシンク3は割合η(Ts−Th)の大きさの変化が発生する。従って、式(1)の関係より、接合時の温度Tsに対して、レーザ媒質1とヒートシンク3の変化量は一定となるため、レーザ媒質1に応力は発生しない。   On the other hand, as shown in FIG. 2C, during operation, the laser medium 1 has a ratio α (Ts−Td) and the heat sink 3 has a ratio η (Ts−Th) with reference to the size at the temperature Ts at the time of bonding. A change in the size of occurs. Therefore, since the change amount of the laser medium 1 and the heat sink 3 is constant with respect to the temperature Ts at the time of bonding from the relationship of the expression (1), no stress is generated in the laser medium 1.

レーザ媒質1は、固体レーザ装置が動作している状態において応力による歪みが発生しなければ良く、冷却時についてはレーザ媒質1が破壊さえしなければ、応力による歪みが発生しても問題ない。従って、上記のように構成すれば、固体レーザ装置が動作している時に歪みが発生せず、高輝度で効率の高いレーザ出力が可能な薄板型の固体レーザ装置を構成することができる。   The laser medium 1 only needs to be free from distortion due to stress when the solid-state laser device is operating, and there is no problem even if distortion due to stress occurs during cooling as long as the laser medium 1 does not break down. Therefore, if configured as described above, it is possible to configure a thin plate type solid-state laser device that does not generate distortion when the solid-state laser device is in operation and is capable of high-brightness and high-efficiency laser output.

例えば、レーザ媒質1としてYb:YAG(α≒7.7ppm)、接合剤2としてガラス転移温度Tg=90℃を有する接着剤を使用し、動作時の温度Td=60℃、Th=40℃とすると、ヒートシンク3に線膨張係数4.5ppmを持つAlN(窒化アルミニウム)を使用すれば、式(1)をほぼ満足する。   For example, Yb: YAG (α≈7.7 ppm) is used as the laser medium 1, an adhesive having a glass transition temperature Tg = 90 ° C. is used as the bonding agent 2, and the operating temperature Td = 60 ° C. and Th = 40 ° C. Then, if AlN (aluminum nitride) having a linear expansion coefficient of 4.5 ppm is used for the heat sink 3, the formula (1) is substantially satisfied.

さらに、接合剤2として融点が250℃の金属半田を用いた場合には、Ts=250℃となり、上記動作条件において、ヒートシンク3に線膨張係数7.2ppmを持つCuW(Cu85%、W15%)を使用すれば、式(1)をほぼ満足する。   Further, when metal solder having a melting point of 250 ° C. is used as the bonding agent 2, Ts = 250 ° C., and CuW (Cu 85%, W 15%) having a linear expansion coefficient of 7.2 ppm in the heat sink 3 under the above operating conditions. Is almost satisfied with the expression (1).

なお、ヒートシンク3の線膨張係数ηは式(1)を厳密に満足する必要はなく、レーザ媒質1、および、ヒートシンク3に歪みが発生しない程度に応力が小さくなればよい。また、適当な市販の接着剤を選択するか、または接着剤の成分を調整することにより、接着剤のガラス転移温度Tgは調整可能であり、式(1)をほぼ満足する組み合わせを選択することは容易である。   Note that the linear expansion coefficient η of the heat sink 3 does not have to strictly satisfy the expression (1), and it is sufficient that the stress is reduced to such an extent that the laser medium 1 and the heat sink 3 are not distorted. In addition, by selecting an appropriate commercially available adhesive, or by adjusting the components of the adhesive, the glass transition temperature Tg of the adhesive can be adjusted, and a combination that substantially satisfies Equation (1) should be selected. Is easy.

接合剤2に接着剤を用いた場合、一般的に接合温度を低くすることができ、動作時だけでなく、接合後の冷却時にも発生応力が小さくなる。本実施の形態では、特に、接合剤2として接着剤を用いたときに有効であり、また、接合温度と動作温度が近いほど、効果が大きい。接合剤2に接着剤を用いた場合、接着剤の温度がガラス転移温度Tgよりも高くなると、接着剤が半固形状となり、動作中にレーザ媒質1が動いてしまうことがある。従って、ガラス転移温度Tgはレーザ媒質1の動作温度Tdと等しいか、Tdよりも高いことが望ましい。一方、冷却時に発生する応力は接合温度Tsが高いほど大きくなるため、Tsは低いことが望ましい。従って、接合時の温度TsがTdと同じか、Tdよりもわずかに高い接合温度を有する接合剤2を選択すれば、動作時、冷却時ともに歪みの小さな薄板型レーザ媒質を構成することができる。   When an adhesive is used for the bonding agent 2, generally the bonding temperature can be lowered, and the generated stress is reduced not only during operation but also during cooling after bonding. In the present embodiment, it is particularly effective when an adhesive is used as the bonding agent 2, and the effect is greater as the bonding temperature and the operating temperature are closer. When an adhesive is used for the bonding agent 2, if the temperature of the adhesive becomes higher than the glass transition temperature Tg, the adhesive becomes semi-solid and the laser medium 1 may move during operation. Therefore, it is desirable that the glass transition temperature Tg is equal to or higher than the operating temperature Td of the laser medium 1. On the other hand, since the stress generated during cooling increases as the bonding temperature Ts increases, it is desirable that Ts be low. Accordingly, if the bonding agent 2 having a bonding temperature Ts equal to or slightly higher than Td is selected, a thin plate type laser medium with a small distortion can be formed during operation and during cooling. .

なお、レーザ媒質1に軸方向で熱膨張率が異なる異方性材料を用いる場合、ヒートシンク材料にも同様の異方性を持つ材料を選択することが望ましい。この時、ヒートシンク3に接合された面内で、レーザ媒質1の線膨張係数β、および、γ(β<γ)を有し、ヒートシンク3の線膨張係数ε、および、ρ(ε<ρ)を有するとする。   When an anisotropic material having a different coefficient of thermal expansion in the axial direction is used for the laser medium 1, it is desirable to select a material having the same anisotropy as the heat sink material. At this time, the linear expansion coefficients β and γ (β <γ) of the laser medium 1 are provided in the plane bonded to the heat sink 3, and the linear expansion coefficients ε and ρ (ε <ρ) of the heat sink 3. Suppose that

ここで、
β(Ts−Td)≒ε(Ts−Th)
γ(Ts−Td)≒ρ(Ts−Th) 式(2)
の関係を有するようにヒートシンク3の動作温度Th、および、ヒートシンク材料を選択すれば、異方性を持つレーザ媒質に対しても、動作時に歪みの少ない薄板型の固体レーザ装置を構成することができる。
here,
β (Ts−Td) ≈ε (Ts−Th)
γ (Ts−Td) ≈ρ (Ts−Th) Equation (2)
If the operating temperature Th of the heat sink 3 and the heat sink material are selected so as to have the following relationship, a thin plate type solid-state laser device with less distortion during operation can be configured even for an anisotropic laser medium. it can.

実施の形態2.
この発明の実施の形態2に係る固体レーザ装置について図3を参照しながら説明する。図3は、この発明の実施の形態2に係る固体レーザ装置の構成を示す斜視図である。
Embodiment 2. FIG.
A solid-state laser device according to Embodiment 2 of the present invention will be described with reference to FIG. FIG. 3 is a perspective view showing a configuration of a solid-state laser apparatus according to Embodiment 2 of the present invention.

レーザ媒質1に軸方向で熱膨張率が異なる異方性材料を用いる場合、ヒートシンク材料にも同様の異方性を持つ材料を選択することが望ましいが、ヒートシンク3に適した熱伝導率が高い材料で異方性を持つ材料は少なく、異方性を持つレーザ媒質1に適したヒートシンク材料を選択することは難しい。   When an anisotropic material having a different coefficient of thermal expansion in the axial direction is used for the laser medium 1, it is desirable to select a material having the same anisotropy as the heat sink material, but the thermal conductivity suitable for the heat sink 3 is high. There are few materials having anisotropy, and it is difficult to select a heat sink material suitable for the laser medium 1 having anisotropy.

この実施の形態2では、異方性を持つレーザ媒質1Aと等方性のヒートシンク材料を用いて、動作時の歪みが小さな薄板型の固体レーザ装置の構成を開示するものである。   In the second embodiment, a configuration of a thin plate type solid-state laser device that uses an anisotropic laser medium 1A and an isotropic heat sink material and has a small distortion during operation is disclosed.

図3において、この実施の形態2に係る固体レーザ装置は、熱膨張率に異方性を有し、励起光を吸収して利得を発生する薄板状のレーザ媒質1Aと、レーザ媒質1Aの熱を外部に排熱するヒートシンク(冷却手段)3と、レーザ媒質1とヒートシンク3を接合する接合剤2とが設けられている。   In FIG. 3, the solid-state laser device according to the second embodiment has a thin plate-like laser medium 1A having anisotropy in thermal expansion coefficient and generating a gain by absorbing excitation light, and the heat of the laser medium 1A. A heat sink (cooling means) 3 for exhausting heat to the outside and a bonding agent 2 for bonding the laser medium 1 and the heat sink 3 are provided.

接合剤2及びヒートシンク3は、図1で示したものと同様の構成を示しており、特に明示しない限り、図1で示した接合剤2、ヒートシンク3と同様の機能を有する。   The bonding agent 2 and the heat sink 3 have the same configuration as that shown in FIG. 1, and have the same functions as the bonding agent 2 and the heat sink 3 shown in FIG. 1 unless otherwise specified.

レーザ媒質1Aは、図示は省略したが、レーザ媒質1Aの板状の広い面の片側を入射面として反射防止膜が施され、入射するレーザ光のほぼ全てを透過し、レーザ媒質1Aの入射面と反対側の広い面は反射面として全反射膜が施され、入射面から入射したレーザ光のほぼ全てを反射する。   Although not shown, the laser medium 1A is provided with an antireflection film with one side of the wide plate-like surface of the laser medium 1A as an incident surface, transmits almost all of the incident laser light, and enters the incident surface of the laser medium 1A. The wide surface opposite to the surface is provided with a total reflection film as a reflection surface, and reflects almost all of the laser light incident from the incident surface.

レーザ媒質1Aは、ヒートシンク3に接合された面内で、方向により異なる線膨張係数β、および、γを有し、β<γの関係を有する。接合剤2による接合時の温度をTs、励起光が入射してレーザ媒質1Aで熱が発生したとき(動作時)のレーザ媒質1Aの温度をTd、動作時のヒートシンク3の温度をThとし、Ts>Td>Thの関係を有する。ヒートシンク3の線膨張係数ηは、次の式(3)の関係を有する。   The laser medium 1 </ b> A has linear expansion coefficients β and γ that differ depending on directions in the plane bonded to the heat sink 3, and has a relationship of β <γ. The temperature at the time of bonding by the bonding agent 2 is Ts, the temperature of the laser medium 1A when the excitation light is incident and heat is generated in the laser medium 1A (at the time of operation) is Td, and the temperature of the heat sink 3 at the time of operation is Th. Ts> Td> Th. The linear expansion coefficient η of the heat sink 3 has the relationship of the following formula (3).

{(β+n・γ)/(1+n)}(Ts−Td)≒η(Ts−Th) 式(3)   {(Β + n · γ) / (1 + n)} (Ts−Td) ≈η (Ts−Th) Equation (3)

ここで、nはレーザ媒質1Aの圧縮応力限界と引っ張り応力限界の比(n=|圧縮応力限界/引っ張り応力限界|)である。レーザ媒質1Aとして用いられる結晶やガラス材料では、圧縮応力限界が引っ張り応力限界に比べて大きく、一般的にその比率は約3倍程度(n≒3)となる。   Here, n is a ratio between the compressive stress limit and the tensile stress limit of the laser medium 1A (n = | compressive stress limit / tensile stress limit |). In the crystal or glass material used as the laser medium 1A, the compressive stress limit is larger than the tensile stress limit, and the ratio is generally about three times (n≈3).

ヒートシンク3がレーザ媒質1Aに与える応力は、ヒートシンク3とレーザ媒質1Aそれぞれの膨張率(=線膨張係数と温度差の積)の差に比例し、図3のβ方向の応力はβ(Ts−Td)−η(Ts−Th)、図3のγ方向の応力はγ(Ts−Td)−η(Ts−Th)にほぼ比例する。ここで、ηは式(3)の関係を有するので、Ts>Td>Thの関係より、β方向には圧縮応力が、γ方向には引っ張り応力が発生し、その比率は|β方向の圧縮応力/γ方向の引っ張り応力|=nとなる。従って、実際の応力が破壊限界応力を超えなければ、それぞれの方向で破壊限界応力と実際の応力の比率がほぼ等しくなるので、破壊限界からの同程度の余裕を実現することができる。   The stress applied to the laser medium 1A by the heat sink 3 is proportional to the difference in expansion coefficient (= product of linear expansion coefficient and temperature difference) between the heat sink 3 and the laser medium 1A, and the stress in the β direction in FIG. 3 is β (Ts− Td) −η (Ts−Th), and the stress in the γ direction in FIG. 3 is substantially proportional to γ (Ts−Td) −η (Ts−Th). Here, since η has the relationship of Equation (3), a compressive stress is generated in the β direction and a tensile stress is generated in the γ direction from the relationship of Ts> Td> Th. Stress / tensile stress in the γ direction | = n. Therefore, if the actual stress does not exceed the fracture limit stress, the ratio between the fracture limit stress and the actual stress is approximately equal in each direction, so that the same margin from the fracture limit can be realized.

このように構成すれば、異方性を持つレーザ媒質1Aと等方性のヒートシンク材料を用いて、動作時の歪みが小さな薄板型の固体レーザ装置を構成することができる。   If comprised in this way, the thin plate type solid-state laser apparatus with a small distortion at the time of operation | movement can be comprised using the laser medium 1A which has anisotropy, and an isotropic heat sink material.

例えば、レーザ媒質1AとしてNd:GdVO4(β≒4.4ppm、γ≒11.4ppm)、接合剤2としてガラス転移温度Tg≒80℃を有する接着剤を使用し、動作時の温度Td=60℃、Th=40℃とすると、ヒートシンク3に線膨張係数4.5ppmを持つAlN(窒化アルミニウム)を使用すれば、式(3)をほぼ満足する。   For example, Nd: GdVO4 (β≈4.4 ppm, γ≈11.4 ppm) is used as the laser medium 1A, an adhesive having a glass transition temperature Tg≈80 ° C. is used as the bonding agent 2, and an operating temperature Td = 60 ° C. Assuming that Th = 40 ° C., if AlN (aluminum nitride) having a linear expansion coefficient of 4.5 ppm is used for the heat sink 3, the expression (3) is substantially satisfied.

さらに、接合剤2として融点が250℃の金属半田を用いた場合には、Ts=250℃となり、上記動作条件において、ヒートシンク3に線膨張係数8.3ppmを持つCuW(Cu80%、W20%)を使用すれば、式(3)をほぼ満足する。   Further, when metal solder having a melting point of 250 ° C. is used as the bonding agent 2, Ts = 250 ° C., and CuW (Cu 80%, W 20%) having a linear expansion coefficient of 8.3 ppm in the heat sink 3 under the above operating conditions. Is almost satisfied with the expression (3).

なお、ヒートシンク3の線膨張係数ηは、式(3)を厳密に満足する必要はなく、それぞれの軸方向の応力が破壊限界応力に対して余裕を持つ範囲であれば良い。また、適当な市販の接着剤を選択するか、または接着剤の成分を調整することにより、接着剤のガラス転移温度Tgは調整可能であり、式(3)をほぼ満足する組み合わせを選択することは容易である。   Note that the linear expansion coefficient η of the heat sink 3 does not have to strictly satisfy the expression (3), and may be in a range in which each axial stress has a margin with respect to the fracture limit stress. In addition, by selecting an appropriate commercially available adhesive, or by adjusting the components of the adhesive, the glass transition temperature Tg of the adhesive can be adjusted, and a combination that substantially satisfies Equation (3) should be selected. Is easy.

接合剤2に接着剤を用いた場合、一般的に接合温度を低くすることができ、動作時だけでなく、接合後の冷却時にも発生応力が小さくなる。本実施の形態では、特に、接合剤2として接着剤を用いたときに有効であり、また、接合温度と動作温度が近いほど、効果が大きい。接合剤2に接着剤を用いた場合、接着剤の温度がガラス転移温度Tgよりも高くなると、接着剤が半固形状となり、動作中にレーザ媒質1Aが動いてしまうことがある。従って、ガラス転移温度Tgはレーザ媒質1Aの動作温度Tdと等しいか、Tdよりも高いことが望ましい。一方、冷却時に発生する応力は接合温度Tsが高いほど大きくなるため、Tsは低いことが望ましい。従って、接合時の温度TsがTdと同じか、Tdよりもわずかに高い接合温度を有する接合剤2を選択すれば、動作時、冷却時ともに歪みの小さな薄板型の固体レーザ装置を構成することができる。   When an adhesive is used for the bonding agent 2, generally the bonding temperature can be lowered, and the generated stress is reduced not only during operation but also during cooling after bonding. In the present embodiment, it is particularly effective when an adhesive is used as the bonding agent 2, and the effect is greater as the bonding temperature and the operating temperature are closer. When an adhesive is used as the bonding agent 2, if the temperature of the adhesive becomes higher than the glass transition temperature Tg, the adhesive becomes semi-solid, and the laser medium 1A may move during operation. Therefore, it is desirable that the glass transition temperature Tg is equal to or higher than the operating temperature Td of the laser medium 1A. On the other hand, since the stress generated during cooling increases as the bonding temperature Ts increases, it is desirable that Ts be low. Therefore, if a bonding agent 2 having a bonding temperature Ts equal to or slightly higher than Td is selected, a thin plate type solid-state laser device having a small distortion in both operation and cooling can be configured. Can do.

この発明の実施の形態1に係る固体レーザ装置の構成を示す断面図である。It is sectional drawing which shows the structure of the solid-state laser apparatus concerning Embodiment 1 of this invention. この発明の実施の形態1に係る固体レーザ装置のレーザ媒質に歪みが発生する状況を説明するための図である。It is a figure for demonstrating the condition where distortion generate | occur | produces in the laser medium of the solid-state laser apparatus concerning Embodiment 1 of this invention. この発明の実施の形態2に係る固体レーザ装置の構成を示す斜視図である。It is a perspective view which shows the structure of the solid-state laser apparatus concerning Embodiment 2 of this invention.

符号の説明Explanation of symbols

1、1A レーザ媒質、2 接合剤、3 ヒートシンク。   1, 1A laser medium, 2 bonding agent, 3 heat sink.

Claims (6)

励起光を吸収して利得を発生する薄板状のレーザ媒質と、
前記レーザ媒質の熱を外部に排熱する冷却手段と、
前記レーザ媒質と前記冷却手段を接合する接合剤とを備えた固体レーザ装置であって、
前記レーザ媒質の接合面内における線膨張係数をα、
前記冷却手段の線膨張係数をη、
前記接合剤の硬化温度をTs、
前記レーザ媒質の動作温度をTd、
前記冷却手段の動作温度をThとそれぞれ表すと、
Ts≧Td≧Thの関係を有するとともに、
α(Ts−Td)≒η(Ts−Th)の関係を有する
ことを特徴とする固体レーザ装置。
A thin plate-like laser medium that absorbs the excitation light and generates a gain;
Cooling means for exhausting heat of the laser medium to the outside;
A solid-state laser device comprising the laser medium and a bonding agent for bonding the cooling means,
Α is a linear expansion coefficient in the joining surface of the laser medium,
The linear expansion coefficient of the cooling means is η,
The curing temperature of the bonding agent is Ts,
The operating temperature of the laser medium is Td,
When the operating temperature of the cooling means is expressed as Th,
While having a relationship of Ts ≧ Td ≧ Th,
A solid-state laser device having a relationship of α (Ts−Td) ≈η (Ts−Th).
励起光を吸収して利得を発生する薄板状のレーザ媒質と、
前記レーザ媒質の熱を外部に排熱する冷却手段と、
前記レーザ媒質と前記冷却手段を接合する接合剤とを備えた固体レーザ装置であって、
前記レーザ媒質の接合面内における異方性の2つの線膨張係数をβ、γ(β<γ)、
前記冷却手段の接合面内における異方性の2つの線膨張係数をε、ρ(ε<ρ)、
前記接合剤の硬化温度をTs、
前記レーザ媒質の動作温度をTd、
前記冷却手段の動作温度をThとそれぞれ表すと、
Ts≧Td≧Thの関係を有するとともに、
β(Ts−Td)≒ε(Ts−Th)、
γ(Ts−Td)≒ρ(Ts−Th)の関係を有する
ことを特徴とする固体レーザ装置。
A thin plate-like laser medium that absorbs the excitation light and generates a gain;
Cooling means for exhausting heat of the laser medium to the outside;
A solid-state laser device comprising the laser medium and a bonding agent for bonding the cooling means,
Two anisotropic linear expansion coefficients in the joining surface of the laser medium are β, γ (β <γ),
Two anisotropic linear expansion coefficients in the joint surface of the cooling means are ε, ρ (ε <ρ),
The curing temperature of the bonding agent is Ts,
The operating temperature of the laser medium is Td,
When the operating temperature of the cooling means is expressed as Th,
While having a relationship of Ts ≧ Td ≧ Th,
β (Ts−Td) ≈ε (Ts−Th),
A solid-state laser device having a relationship of γ (Ts−Td) ≈ρ (Ts−Th).
励起光を吸収して利得を発生する薄板状のレーザ媒質と、
前記レーザ媒質の熱を外部に排熱する冷却手段と、
前記レーザ媒質と前記冷却手段を接合する接合剤とを備えた固体レーザ装置であって、
前記レーザ媒質の接合面内における異方性の2つの線膨張係数をβ、γ(β<γ)、
前記レーザ媒質の圧縮応力限界と引っ張り応力限界の比をn、
前記冷却手段の線膨張係数をη、
前記接合剤の硬化温度をTs、
前記レーザ媒質の動作温度をTd、
前記冷却手段の動作温度をThとそれぞれ表すと、
Ts≧Td≧Thの関係を有するとともに、
{(β+n・γ)/(1+n)}(Ts−Td)≒η(Ts−Th)の関係を有する
ことを特徴とする固体レーザ装置。
A thin plate-like laser medium that absorbs the excitation light and generates a gain;
Cooling means for exhausting heat of the laser medium to the outside;
A solid-state laser device comprising the laser medium and a bonding agent for bonding the cooling means,
Two anisotropic linear expansion coefficients in the joining surface of the laser medium are β, γ (β <γ),
The ratio of the compressive stress limit and the tensile stress limit of the laser medium is n,
The linear expansion coefficient of the cooling means is η,
The curing temperature of the bonding agent is Ts,
The operating temperature of the laser medium is Td,
When the operating temperature of the cooling means is expressed as Th,
While having a relationship of Ts ≧ Td ≧ Th,
A solid-state laser device having a relationship of {(β + n · γ) / (1 + n)} (Ts−Td) ≈η (Ts−Th).
前記レーザ媒質の圧縮応力限界と引っ張り応力限界の比n≒3である
ことを特徴とする請求項3記載の固体レーザ装置。
The solid-state laser device according to claim 3, wherein a ratio n≈3 of a compressive stress limit and a tensile stress limit of the laser medium.
前記接合剤は、接着剤である
ことを特徴とする請求項1から請求項4までのいずれかに記載の固体レーザ装置。
The solid-state laser device according to any one of claims 1 to 4, wherein the bonding agent is an adhesive.
前記接合剤の硬化温度Tsと前記レーザ媒質の動作温度Tdがほぼ等しい
ことを特徴とする請求項1から請求項5までのいずれかに記載の固体レーザ装置。
6. The solid-state laser device according to claim 1, wherein a curing temperature Ts of the bonding agent and an operating temperature Td of the laser medium are substantially equal.
JP2006131528A 2006-05-10 2006-05-10 Solid state laser equipment Expired - Fee Related JP4795107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006131528A JP4795107B2 (en) 2006-05-10 2006-05-10 Solid state laser equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006131528A JP4795107B2 (en) 2006-05-10 2006-05-10 Solid state laser equipment

Publications (2)

Publication Number Publication Date
JP2007305733A true JP2007305733A (en) 2007-11-22
JP4795107B2 JP4795107B2 (en) 2011-10-19

Family

ID=38839422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006131528A Expired - Fee Related JP4795107B2 (en) 2006-05-10 2006-05-10 Solid state laser equipment

Country Status (1)

Country Link
JP (1) JP4795107B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018522421A (en) * 2015-07-16 2018-08-09 ワイ−チャージ リミテッド System for optically supplying power wirelessly
WO2021025109A1 (en) * 2019-08-08 2021-02-11 国立大学法人大阪大学 Laser amplifier

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219733A (en) * 1988-07-07 1990-01-23 Mitsubishi Electric Corp Strain detector
JPH11163467A (en) * 1997-11-27 1999-06-18 Sony Corp Semiconductor device, its manufacturing method, and heat sink
JP2001085775A (en) * 1999-09-13 2001-03-30 Science & Tech Agency Solid laser device
JP2004319635A (en) * 2003-04-14 2004-11-11 Mitsubishi Electric Corp Power semiconductor device and manufacturing method thereof
JP2005019680A (en) * 2003-06-26 2005-01-20 Nec Electronics Corp Resin-molded semiconductor device and metallic mold for molding
WO2005091446A1 (en) * 2004-03-24 2005-09-29 Japan Science And Technology Agency Solid-state laser equipment
JP2006108262A (en) * 2004-10-01 2006-04-20 Sharp Corp Semiconductor laser element and its manufacturing method, semiconductor laser device, optical disk device, and electronic equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219733A (en) * 1988-07-07 1990-01-23 Mitsubishi Electric Corp Strain detector
JPH11163467A (en) * 1997-11-27 1999-06-18 Sony Corp Semiconductor device, its manufacturing method, and heat sink
JP2001085775A (en) * 1999-09-13 2001-03-30 Science & Tech Agency Solid laser device
JP2004319635A (en) * 2003-04-14 2004-11-11 Mitsubishi Electric Corp Power semiconductor device and manufacturing method thereof
JP2005019680A (en) * 2003-06-26 2005-01-20 Nec Electronics Corp Resin-molded semiconductor device and metallic mold for molding
WO2005091446A1 (en) * 2004-03-24 2005-09-29 Japan Science And Technology Agency Solid-state laser equipment
JP2006108262A (en) * 2004-10-01 2006-04-20 Sharp Corp Semiconductor laser element and its manufacturing method, semiconductor laser device, optical disk device, and electronic equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018522421A (en) * 2015-07-16 2018-08-09 ワイ−チャージ リミテッド System for optically supplying power wirelessly
WO2021025109A1 (en) * 2019-08-08 2021-02-11 国立大学法人大阪大学 Laser amplifier
WO2021024457A1 (en) * 2019-08-08 2021-02-11 国立大学法人大阪大学 Laser amplifier

Also Published As

Publication number Publication date
JP4795107B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
JP5330801B2 (en) Laser gain medium, laser oscillator and laser amplifier
JP5281922B2 (en) Pulse laser equipment
JP2004128139A (en) Laser beam generator and its manufacturing method
JP4879733B2 (en) Solid state laser equipment
US8406267B2 (en) Grazing-incidence-disk laser element
Tsunekane et al. High-power operation of diode edge-pumped, glue-bonded, composite Yb: Y3Al5O12 microchip laser with ceramic, undoped YAG pump light-guide
TWM541642U (en) Semiconductor and composite heat dissipation substrate structure
JP5389277B2 (en) Mode-controlled waveguide laser device
JP4795107B2 (en) Solid state laser equipment
JP2015109356A (en) Laser device, method for manufacturing laser device, laser processing device, and display device
JP5247795B2 (en) Optical module
JP2005043853A (en) Optical part and optical isolator provided with it
JP3221586B2 (en) Optical wavelength converter
JP2007299962A (en) Thin disk laser device
JP5267247B2 (en) Optical element for small laser
WO2005011075A1 (en) Solid laser exciting module and laser oscillator
JP6042083B2 (en) Semiconductor laser module and manufacturing method thereof
EP1670104B1 (en) Solid-state laser pumped module and laser oscillator
JPH11312832A (en) Semiconductor-laser exciting solid laser
JP6255805B2 (en) Laser module, solid-state laser device, and laser module manufacturing method
US20120234521A1 (en) Silicon carbide cladding slab based laser cooling device
JP2006286735A (en) Solid laser oscillation device
Kausas et al. Distributed face cooling scheme for tiny laser power scale-up
JPH114029A (en) Excitation-type solid-state laser device
JP5742127B2 (en) Optical module and solid-state laser device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110727

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees