EP1954479A2 - Method and apparatus for vacuum forming an elastomeric tire - Google Patents

Method and apparatus for vacuum forming an elastomeric tire

Info

Publication number
EP1954479A2
EP1954479A2 EP05857805A EP05857805A EP1954479A2 EP 1954479 A2 EP1954479 A2 EP 1954479A2 EP 05857805 A EP05857805 A EP 05857805A EP 05857805 A EP05857805 A EP 05857805A EP 1954479 A2 EP1954479 A2 EP 1954479A2
Authority
EP
European Patent Office
Prior art keywords
mold
canister
cover
core
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05857805A
Other languages
German (de)
French (fr)
Inventor
Richard A. Steinke
Theodore M. Love
James G. Moore
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Love Theodore M
MOORE, JAMES G.
STEINKE, RICHARD A.
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1954479A2 publication Critical patent/EP1954479A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/08Building tyres
    • B29D30/10Building tyres on round cores, i.e. the shape of the core is approximately identical with the shape of the completed tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/0601Vulcanising tyres; Vulcanising presses for tyres
    • B29D30/0661Rigid cores therefor, e.g. annular or substantially toroidal cores

Definitions

  • This invention pertains to methods and apparatus for vacuum forming an elastomeric transport tire containing a core of belts, plies and beads.
  • the present invention is in a new and unique vacuum forming apparatus for use in an automated method for forming a transport tire from an elastomeric material that includes a core of optimally positioned belts, plies and beads, to provide a balanced transport tire.
  • U.S. Patent No.4,573,394 sets out a tire mold having a cavity that is for receiving and finally shaping the tire.
  • the patent is defined by a surface that is for contacting the exterior of the tire during tire curing .
  • the cavity is fluid connected to a single vacuum source for evacuating air from within the cavity during an early portion of a tire curing cycle to prevent air and any other iluid from becoming trapped between the tire and the surface that defines the cavity that will become the tire
  • the present invention provides for both an
  • a core of plies, belts and beads for use in the vacuum forming apparatus of the invention is set out in a U.S. Patent Application for a "Tire Core Package for Use in Manufacturing a Tire With Belts, Plies and Beads and Process of Tire Manufacture" Serial No. 10/143,678, filed 05/13/2002,
  • the present invention is a new approach to forming a transport tire from an elastomeric
  • Patent Applications of two of the inventors entitled, "Method and Apparatus for Forming a Core of Plies, Belts and Beads and For Positioning the Core in a Mold For Forming an Elastomeric Tire
  • Another object of the present invention is to provide a vacuum apparatus for forming an elastomeric tire with a core of plies, belts and beads is encapsulated therein in a single operation, where air is removed from the elastomeric material mixture prior to its passage into the mold and the elastomeric material is pulled, under vacuum, through the mold, filling essentially all the voids
  • Another object of the present invention is to provide a vacuum casting apparatus that includes
  • a canister that is initially placed under a deep vacuum as it receives a volume of mixed elastomer
  • Another object of the present invention is to provide a mold with a cavity as a component
  • a top end to receive a mix of elastomeric material constituents and is subj ected to a deep vacuum that
  • Another object of the present invention is to provide for connection of the reservoir canister
  • elastomeric material mix is pulled into the mold cavity, traveling through and across, to fully encapsulate, the tire core, forming a homogenous tire.
  • Another object of the present invention is to provide a vacuum forming apparatus where a
  • Still another object of the present invention is to provide a vacuum forming apparatus for
  • the elastomeric material mixture before its passage into a mold wherethrough the material is pulled, under a low level vacuum, to completely permeate througn ana arouna a core oi piics, oelts and beads and spacers maintained in the mold cavity, forming, in a single molding operation, a tire that
  • Still another object of the present invention is to provide, a mandrel whereon a core of plies,
  • canister to receive a mixture of elastomeric material constituents for connection to a vacuum source
  • the air-free mixture then passed through a valve into the mold cavity that is connected to a low level
  • Still another object of the present invention is to provide for seals for maintaining canister
  • Still another object of the present invention is to provide a vacuum forming apparatus for casting a transport tire containing a core of plies, belts and beads in a single operation, producing a
  • the present invention is in a vacuum forming apparatus that receives a mold arranged
  • a mold canister which outer mold is easily opened to allow for removal of a tire formed therein.
  • vacuums that are preferably generated by separate vacuum sources.
  • the canister Upon receipt of a set volume of the elastomeric material mix the canister is sealed and is
  • the vacuum is pulled through a port in the cannister, and is operated
  • the canister is opened through a needle valve and is open to outside air
  • the needle valve is required to be closed before the canister is empty and comes under ambient air conditions as are present in the canister. After cooling, the mold is broken open and a completed transport tire
  • a transport tire includes : passing a volume of mixed elastomeric material constituents into
  • a mold canister that is preferably, but may not necessarily be, centered in the mold that includes inner
  • the inner mold to function as, or includes a mandrel portion, whereon a core of plie, belts
  • the invention may take physical form in certain parts and arrangement of parts, used to form
  • Fig. 1 shows an exploded perspective view taken from above a bottom hub plate whereto a
  • cylindrical hub manifold is being fitted with studs turned into the bottom hub plate, forming an inner
  • Fig. 2A shows the inner mold components of Fig. 1 receiving a pair of hard foam core
  • Fig. 2B shows all but a pair of the hard foam core segments assembled to the bottom hub as a mandrel for receiving a core of plies, belts and beads for a transport tire core laid-up thereon;
  • Fig. 3 A shows the completion of the hard foam core segments assembly and with a top hub
  • Fig. 3B shows the top hub plate being bolted onto the top of the cylindrical hub manifold
  • Fig.4A shows the hard core assembly of Fig. 3B as having been mounted onto an axle that is fitted to a pivoting arm, with the hard core assembly shown rotated ninety degrees, showing an
  • Fig.4B shows a top plan sectional view taken along the line 4B- 4B of Fig.4A looking down on the hard foam core assembly with the expander cone large diameter end slid along the expander cone to the center of the hard core assembly, showing the plies sleeve aligned for fitting over the
  • Fig. AC is a view like that of Fig.4B except that the plies sleeve end has been drawn over and
  • Fig. 5A is a view like that of Fig. 4C only showing a pair of bladder and hard plate
  • Fig. 5B is a view like that of Fig. 5 A only showing the left bladder and hard plate assembly
  • Fig. 5C is a view like that of Fig. 5B that additionally shows the right bladder and hard plate fitted into the plies cords sleeve end and showing a bead maintained by the hard plate edge against
  • Fig. 5D is a view like that of Fig. 5C only showing a press plate engaging the expanded left
  • Fig. 5E is a view like that of Fig. 5D only showing the press plate as having been urged
  • Fig. 5F is a view like that of Fig. 5E only showing the press plate as having been moved to
  • Fig. 6A shows a top plan view like that of Fig. 4B except that the expander cone is shown fitted over the hard core assembly whereon the plies and beads have been assembled, and a separator, that is a layer of cotton batting, as having been applied therearound, and showing a first belt sleeve
  • Fig. 6B shows the hard core assembly with the plies ends extending up the hard core
  • Fig. 7A shows a view like that of Fig. 6B only showing a layer of cotton batting wound
  • Fig. 7B shows a view like that of Fig. 7A and additionally illustrates, with a spool, that a continuous cord is being rolled off the spool, and is wound around the crown that has been covered by a separator layer of cotton batting;
  • Fig. 7C shows a view like that of Fig. 7B only with the wound tire cord shown as covering the crown;
  • Fig. 8A shows the hard core assembly, with the tire core wound thereon, removed from the axle and positioned onto a mold base;
  • Fig. 8B shows one of a number of tread segments that are fitted together to form the exterior or outer mold
  • Fig. 8C shows the tread segments of Fig. 8B assembled into the mold outer wall
  • Fig. 8D shows a top plate installed onto the assembly of Fig. 8C showing a center opening
  • Fig. 8E shows a view like that of Fig. 8D only showing a dome shaped cover mounting a head end of center cylindrical canister fitted onto the outer mold cover with the center cylindrical canister fitted into, and extending upwardly from, a center opening, and showing first and second vacuum ports fitted, respectively, into the side of the center cylindrical canister and the top of the dome shaped cover;
  • Fig.9 A shows a sectional view taken along the line 9 A - 9A of Fig.8E with the dome shaped cover lifted off of the outer mold top, with arrows B illustrating the dome cover as being lowered onto the outer mold top that contains the core of belts, plies and beads laid up on an inner mold mandrel portion, showing, with arrow C, movement of a pouring head into an opening through the top of a deep vacuum canister, and showing with arrow D movement of a needle valve into a bottom end throat of the deep vacuum cylindrical canister;
  • Fig. 9B is a view like that of Fig.9A only showing the dome shaped cover as having closed over the outer mold top, with a pour of an elastomeric material, arrow E, passed through the pouring head into the deep vacuum canister and showing, with arrow F, a high level vacuum being pulled through a canister port, with that pulled air, shown as arrows G, passing out of the elastomeric material pour, and shows a low level vacuum, shown as arrow H, being pulled through a cover port, pulling air, shown as arrows I, from within the mold cavity and area under the cover;
  • Fig. 9C is a view like that of Fig. 9B, only showing the pouring head closed, with the elastomeric material sans air contained in the deep vacuum canister and with the canister port shown as open, admitting ambient air, arrow K, into the canister, and showing the needle valve at the bottom of the canister as just opening, passing a flow of the elastomeric material therefrom, pushing
  • Fig.9D is a view like that of Fig.9C only showing most of the elastomeric material as having
  • Fig. 10 shows a side elevation exploded sectional view of a section of a tire manufactured
  • Fig. 11 shows an assembled view of the tire of Fig. 10.
  • Fig. 12 shows a block flow schematic of the steps practiced to form a tire of Figs. 10 and 11
  • the invention is in a process and apparatus for forming a transport tire with vacuum forming apparatus 90 of the invention, wherein a core of belts, plies and beads is optimumally positioned,
  • the vacuum forming apparatus 90 like
  • the Prior Art section of the present application provides for forming, in a single operation, an essentially perfectly balanced transport tire containing plies, belts and beads, with the tire then pulled from the mold.
  • Figs. 8E and 9A through 9D 3 employs a mold containing a mandrel
  • tread segments 45a and 45b into a cylinder, as shown in Figs. 2 A and 2B, to have the shape of a
  • an inner mold hub base 31 a as shown in Fig. 1 , is used.
  • the inner mold base 31 a is shown as having a center dish 32 with a center opening 33 that includes spaced elliptical
  • post includes a threaded nut 37 that is secured onto each post end 36a. Outwardly from the posts 36,
  • the hub base 31a is stepped upwardly into a Hp 38 and, outwardly from the Hp 38, it is stepped downwardly into a flat portion 39 that extends to the plate edge.
  • a cylindrical hub 40 is fitted onto the mold hub base 31a. Which cylindrical hub has a center opening 42 therethrough, has its lower end aligned to fit onto the center dish area 32, and is positioned thereon to align spaced elliptical ports 41 with the spaced elliptical ports 34 of the hub base.
  • the cylindrical hub 40 is maintained in position by fitting a rod 43 through a side longitudinal hole 44 and turning a rod threaded end 43a into a threaded hole 44a that is formed into a side of the hub base 31a.
  • Fig.2 A shows the hub 40 fitted onto the inner mold hub base 31a and is maintained thereon by the rod 43 threaded end 43a turned into the hub base threaded hole 44a, as shown in Fig. 1.
  • Fig. 2 A shows mounting holes of the hard foam core top and bottom sections 45 and 45b, respectively, that form the mandrel, with each hard form core section receiving one of the posts 36 fitted therethrough.
  • Fig.2B all but one pair of hard foam core top and bottom sections 45a,and 45b have been fitted onto posts 36, and nuts 37 are shown as having been turned onto the post threaded ends 36a.
  • Fig.3 A shows the top of the hub 40 with the hard foam core top and bottom sections 45 a and 45b assembled thereon, forming the mandrel, that is aligned with a hub top 31b with, it should be understood, the hub base and top, 31a and 3 Ib, respectively, being a mirror image of one another.
  • Fig. 3B shows the hub top 31b fitted onto the top of hub 40, with spaced elliptical ports 41 formed through the hub top 3 Ib that includes elliptical ports 47 that align with the elliptical ports 41 in hub 40 and the elliptical ports 34 in the hub base 31a, proving flow paths through the assembly, and showing bolts 47 each aligned for turning through the hub top 3 Ib and into a nut 37. With each nut 37 shown as having been turned onto a threaded end 36a of each post 36, completing the assembly of the inner mold 30, where the assembled hard foam core sections function as a mandrel for
  • axle 48 mounted through the aligned center openings 33 in the hub base and top 31 a and 31 b, as
  • pivot post 49 preferably includes a pivoting joint 50 that allows the inner mold 30 to be
  • a layer of spacing material 52 is wrapped around the inner mold 30 crown, that is preferably at least a two ply or layers of cotton batting.
  • An expander cone 53 that is shown as a truncated cone having a greater diameter forward end 53a and a lesser diameter rear end 53b, is fitted onto, to slide along axle 48.
  • the expander cone 53 is to receive a sleeve 54 that is sleeve woven from plies cord that, for a
  • Fig.4B shows the expander cone 53 as having had its forward end 53a moved over the edge
  • which expander cone, to allow such movement includes spaced parallel forward and rear inner walls 55a and 55b, respectively, that each have a center hole 56a and 56b therethrough that align to
  • axle 48 supports and guides the expander cone 53 as it is slid back and forth
  • Fig.4C shows the components of Fig.4B except that the forward portion of the plies sleeve
  • Fig. 5 A shows the view of Fig.4C, except that a pair of bladder and hard plate 60 have been
  • Each bladder and hard plate 60 includes a flexible bladder 62
  • hard plate 61 which hard plate is a hard metal or plastic and is for centering a bead to a side of the core in the core formation process.
  • the hard plate 61 is mounted onto a side of a balloon type bladder 62 that is to be filled with air under pressure through a valve stem 63. Beads 59 are shown
  • the sleeve 54 is shown as having been passed thereover.
  • Fig. 5B is a view like that of Fig. 5 A only showing the left side bladder and hard plate 60 as
  • Fig. 5C is a view like that of Fig. 5B only showing both of the bladder and hard plates 60 as
  • Fig. 5D is a view like that of Fig. 5C only showing the plies sleeve ends as having been cut
  • the plies sleeve 54 can be of lesser length to avoid having to cut
  • the plies sleeve ends 54a and 54b are off the sleeve ends and, also within the scope of this disclosure, the plies sleeve ends 54a and 54b
  • Fig. 5E shows the pressure plate 64 as having advanced into the bladder 63, as air is being withdrawn from the bladder, as illustrated by an outwardly pointing arrow, and shows the bladder as tending to fold around the shoulder of the inner mold 30. Which bladder folding tends to urge the
  • Fig. 5F is a view like that of Fig. 5E only showing the bladder 62 as having been further
  • bladder and hard plate 60 is identical, and which bladders and hard plates 60 can operate
  • plies ends can be folded across the mandrel crown, crossing one another,
  • Fig. 6A Shown in Fig. 6A the core of plies and belts of Figs.5 A through 5F has received a separator layer or layers 67 that are preferably sections of cotton batting installed around the inner mold 30 mandrel crown. Thereafter, a belt expander 68, that is like and functions like, and in practice may
  • a first belt 69 So arranged, as shown in Fig. 6A, a first belt 69
  • a second belt 69a can be passed over the belt expander 68 lesser diameter end and
  • the first belt 69 is fitted across the inner mold 30 crown,
  • a preferred spacing material is a four layer
  • a tire cord 72 that is shown in Fig. 7B being wound off of a spool illustrating a continuous
  • cord is applied by winding a strand of tire cord around the belt circumference, with the winding
  • a layer of a separator 70 that is a gauze material
  • the second belt 69a is installed over the separator 70. Should additional belts be required, each belt is separated from the belts below and above by a
  • a final separator layer 71 is applied over
  • a tire wrap 72 consisting of a winding of tire cord, that is preferably a Kevlar cord, is
  • the core 75 shown in Figs. 8A, 8C and 10, is turned and is moved onto an outer mold base 85, shown in Fig. 8C, that receives tread segments 86 or a ring having a tread formed around the
  • tread segments are individually numbered and are fitted
  • tread segments 86 for practicing the invention
  • seals 86a shown in Figs. 9A through 9D, fitted between the adjacent tread segments 86 and
  • tread segment seals 86a are provided for blocking a flow under vacuum of the
  • a seal 96 is fitted between an edge of a center hole 88a formed through
  • the core 75 is positioned.
  • the outer mold base 85 apparatus bottom plate 87 supports a combination bead alignment and needle valve positioning plate 92b, and has an outer grooved e ⁇ ge yJD tnat, ii ⁇ e rne rop bead alignment plate outer grooved edge 93a, supports the bead 59, and further includes a center opening 96a wherethrough a neck mid-portion 101 of a needle valve 100 travels up and down in operation
  • a plug 110 is provided that is fitted
  • the outer surface of the cylindrical canister 95 funnel area 107 and has a longitudinal center opening
  • a seal 112 is provides between the nozzle end 108 and plug hole 111 to prohibit a flow of elastomeric material up the
  • cylindrical canister 95 during vacuum forming operations.
  • the nozzle end 108 of the cylindrical canister 95 includes seal 112 and functions as a seat for the needle valve 100 head end 103 that is shown as having a cone shape, with the cone point to travel into the cylindrical canister 95 nozzle end until the slope of the head end 103 contacts the edge of the nozzle end 108, sealing off flow. Which head end 103 travel is provided when the needle
  • valve body 101 is moved up and down by lifting or lowering the valve body lower end 102.
  • nozzle end 108 can provide for needle valve movement, opening and closing the cylindrical canister to a flow of elastomeric materials out from the nozzle end 108, as set out herein below.
  • the cylindrical canister 95 is to receive a mixture of elastomeric constituents that, after
  • FIG.9B which pouring head 116 has a funnel shaped pouring end that is an inwardly sloping cone section that connects to a cylindrical nozzle end 117. Shown
  • the cylindrical housing top end 95b is ported to open through a pouring seat 118 that has
  • the cover 90 is lowered,
  • pouring head 116 is lowered into the pouring seat 118 as illustrated by arrow C, and the needle valve is moved upwardly, as illustrated at arrow D, to close the nozzle end 108. Thereafter, as shown in Fig. 9B, a measured amount of an elastomeric mix of constituents 126 is poured into
  • cylindrical canister 95 through the pouring seat 118, with an operator observing the canister filling through a sight glass 122 mounted in the surface 95a of the cylindrical canister.
  • a deep vacuum source Prior to which pouring, a deep vacuum source is connected to cylindrical canister port 125 that is fitted into
  • forming apparatus 90 to receive a flow of elastomeric material into the cylindrical canister 95, as illustrated in Fig. 9B.
  • Which elastomeric material is a mixture of constituents that are combined
  • the preferred constituents are a
  • FIG. 9B is a view like Fig. 9a and additionally shows the pouring head 116 as having been seated in the pouring seat 118 with aurethane pour 126, as shown by arrow E, being poured through
  • cylindrical canister 95 port 125 pulling air out of the elastomeric materials mixture that was
  • a low level vacuum shown as arrow H, is pulled
  • Fig.9C is a view like that of Fig. 9B and additionally shows a desired volume of elastomeric material mix as having been poured into the cylindrical canister 95. Whereafter, the high level vacuum is removed from the canister port 125 that is opened to atmosphere, illustrated by arrow J,
  • bottom bead alignment plate 92b to flow into the annular moid cavity and through the core 75 of
  • Fig. 9D is a view like that of Fig.9C and additionally shows the elastomeric materials pour as having passed through the needle valve 100 and is distributed throughout the mold cavity that is the annular area between the inner and outer molds that contains the core 75 of plies, belts and beads,
  • valve head end 103 which elastomeric material is shown as having filled the cavity and is just
  • the cylindrical canister 95 port remains open, shown as arrow J, to ambient air during which elastomeric material flow through the cavity between the inner and outer molds as air is exhausted from beneath the cover 89 through the port 97.
  • the cover 89 is lifted off of the outer mold top 88 and the outer mold is broken apart to remove the finished tire therefrom.
  • Which finished tire is like the tire 130 shown in Fig. 11 that includes the core 75 of Fig. 10.
  • Fig. 12 shows a block flow schematic of a summary of the steps performed in forming an elastomeric tire utilizing the vacuum forming apparatus 90 as described above.
  • Blocks 201 and 202
  • a dome shaped cover is fitted over the outer mold top surface, engaging seals
  • the pouring head has
  • a canister port pulling air out from the canister, as illustrated by block 205, and a low level vacuum of at least eighty five (85) per cent, and not greater than ninety five (95) per cent, is pulled through a port through the cover, pulling air out from beneath the cover and the mold, as illustrate by block 206.
  • a low level vacuum of at least eighty five (85) per cent, and not greater than ninety five (95) per cent, is pulled through a port through the cover, pulling air out from beneath the cover and the mold, as illustrate by block 206.
  • an elastomeric material that has been recently mixed from constituents is poured through the canister top, as illustrated by block 207, with the high level
  • the needle valve is opened, as illustrated by block 209, and the elastomeric material is

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tyre Moulding (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

A vacuum forming apparatus and process for its use in forming a transport tire from an elastomeric material that includes a mold having a cavity or annular area wherein a transport tire core (75) of plies, belt and beads is laid-up on a mandrel located within the mold. The mold receives a cover (89) fitted in sealing engagement over the mold top (91) and a cylindrical canister (95) is fitted through the center of which cover (89) and the mold center that is open at a top end (105) to receive a pour of an elastomeric material mixture and includes a needle valve (100) in its lower end that exhausts into one end of the mold annular area. Th cylindrical canister (95) includes a port (125) for connection to a deep vacuum source and the cover includes a port (97) that is for connection to a low level vacuum source.

Description

PETITION
Your Petitioner, Richard A. Steinke, Theodore M. Love and James G. Moore, citizens of the
United States of America and residents, respectively, of Boulder City, Clark County, Nevada, Las Vegas, Clark County, Nevada, and Boulder City,jClark County Nevada, pray that Letters
Patent be granted to them for their new and useful
METHOD AND APPARATUS FOR VACUUM FORMING AN ELASTOMERIC TIRE
set forth in the following specification: S P E C I F I C A T I O N BACKGROUND OF INVENTION
Field of The Invention
This invention pertains to methods and apparatus for vacuum forming an elastomeric transport tire containing a core of belts, plies and beads.
Prior Art
The present invention is in a new and unique vacuum forming apparatus for use in an automated method for forming a transport tire from an elastomeric material that includes a core of optimally positioned belts, plies and beads, to provide a balanced transport tire.
Heretofore it was recognized that venting air from a tire tread mold cavity early in a casting process could eliminate the necessity for venting the cavity through spaced holes in the mold that materials from the tread flowed into during casting and formed proj ections or "tits". Such extensions or "tits"projected from the tread surface and were either pulled off when the tire was removed from the mold, had to be cut off or wore off during tire use. To prevent this undesirable cosmetic anomaly it was recognized that air could be vented from the mold cavity just before tread casting, eliminating a necessity for providing flow passages or vents from the tire tread mold while still obtaining a smooth, un-pocketed or un-blemished, finished tread surface. Examples of such an introduction of a vacuum into a tire mold just prior to forming a tire tread are shown in U.S. Patents No.'s 4,573,894 and 5,152,951.
U.S. Patent No.4,573,394 sets out a tire mold having a cavity that is for receiving and finally shaping the tire. The patent is defined by a surface that is for contacting the exterior of the tire during tire curing . The cavity is fluid connected to a single vacuum source for evacuating air from within the cavity during an early portion of a tire curing cycle to prevent air and any other iluid from becoming trapped between the tire and the surface that defines the cavity that will become the tire
tread. Visual effects in the form of voids in the tire exterior are, thus eliminated.
Like the '894 patent, U.S. Patent No. 5,152,951 also provides for the elimination of fluid
from the mold cavity during an early portion of a tire curing cycle. The patent provides for fluid
evacuation through a space between the surfaces of the mold parts that defines the mold parting line
region. Both patents provide a single vacuum source and its connection to the mold cavity for
forming the tire side wall and tread surfaces. Whereas, the present invention provides for both an
evacuation of air from the elastomeric mixture prior to its introduction into the mold cavity, and for
pulling the air free mixture through the mold. With that flow filling the area between inner and outer
mold walls, traveling through the core of plies, belts and beads, to form a finished transport tire that is free of voids or pockets.
A core of plies, belts and beads for use in the vacuum forming apparatus of the invention is set out in a U.S. Patent Application for a "Tire Core Package for Use in Manufacturing a Tire With Belts, Plies and Beads and Process of Tire Manufacture" Serial No. 10/143,678, filed 05/13/2002,
of two of the inventor, and is presently pending. This patent application sets out a process, utilizing
a sandwich of pre-cured elastomer layers between layers of plies and belts formed over a mandrel
for fitting into a mold, for forming a tire utilizing a spin casting method. Also, one of the inventors
of the present application is the sole inventor of a U.S. Patent Application for an "Elastomeric Tire
With Arch Shaped Shoulders" filed 05/28/2004, assigned Serial No. 10/856652.
The present invention is a new approach to forming a transport tire from an elastomeric
material from earlier patent applications for spin casting apparatus and methods for use in such spin s casting apparatus for forming a transport tire that are shown and discussed in a recently tiled U-S.
Patent Applications of two of the inventors, entitled, "Method and Apparatus for Forming a Core of Plies, Belts and Beads and For Positioning the Core in a Mold For Forming an Elastomeric Tire
and the Formed Elastomeric Tire", filed 06/04/2004, Assigned Serial No. 10/860997, and an
"Improved Method and Apparatus for Forming a Core of Plies, Belts and Beads and for Positioning
the Core in a Mold for Forming an Elastomeric Tire", filed 08/2/04, assigned Serial No. 10/809/807.
All of which earlier patents are directed to spin casting methods and apparatus and do not involve
a vacuum forming apparatus and method as does the present invention.
SUMMARY QF THE INVENTION
It is a principal object of the present invention to provide a vacuum forming apparatus and method for its use for forming a transport tire containing a core of plies, belts and beads encapsulated therein that are optimally positioned to provide essentially a perfectly balanced tire.
Another object of the present invention is to provide a vacuum apparatus for forming an elastomeric tire with a core of plies, belts and beads is encapsulated therein in a single operation, where air is removed from the elastomeric material mixture prior to its passage into the mold and the elastomeric material is pulled, under vacuum, through the mold, filling essentially all the voids
in, between and through the core layers to form a homogenous tire where the core of plies, belts and
beads is optimally positioned therein.
Another object of the present invention is to provide a vacuum casting apparatus that includes
a canister that is initially placed under a deep vacuum as it receives a volume of mixed elastomer
constituents, with the vacuum pulling air from the mixture, and whereafter the canister is opened to
atmosphere and the column of the air-free mixture is allowed to pass through a canister exhaust valve and travel into a mold cavity that is at a low-level vacuum, wherein a core ot plies, belts and
beads is maintained in a cavity between inner and outer mold surfaces, with the low level vacuum
pulling the air-free mixture across the core, filling the mold cavity, and is allowed to cure into a
homogeneous finished tire.
Another object of the present invention is to provide a mold with a cavity as a component
of a vacuum forming apparatus with a reservoir that connects to a vacuum source that is opened at
a top end to receive a mix of elastomeric material constituents and is subj ected to a deep vacuum that
draws the air from the mixture in preparation for its passage through a vent valve into the mold
cavity that is under a low-level vacuum.
Another object of the present invention is to provide for connection of the reservoir canister
with the mold annular area that contains a mandrel whereon a tire core of plies, belts and beads with separators has been laid up and crowned by a wrap of tire cord, with the mold cavity is under a low- level vacuum, and the reservoir canister is under a deep vacuum such that air trapped in an elastomeric mix pour therein is removed and, when the canister valve is opened, the air-free
elastomeric material mix is pulled into the mold cavity, traveling through and across, to fully encapsulate, the tire core, forming a homogenous tire.
Another object of the present invention is to provide a vacuum forming apparatus where a
core of tire belts, plies and beads will be encapsulated at an optimum position in a finished tire to
provide a near perfectly balanced finished tire.
Still another object of the present invention is to provide a vacuum forming apparatus for
manufacturing an elastomeric tire where, in the formation process, essentially all air is removed from
the elastomeric material mixture before its passage into a mold wherethrough the material is pulled, under a low level vacuum, to completely permeate througn ana arouna a core oi piics, oelts and beads and spacers maintained in the mold cavity, forming, in a single molding operation, a tire that
is ready for removal from the mold after cooling.
Still another object of the present invention is to provide, a mandrel whereon a core of plies,
belts and beads with spacer is laid up, for fitting in the vacuum forming apparatus that includes a
canister to receive a mixture of elastomeric material constituents for connection to a vacuum source
to provide a deep vacuum in the canister that removes trapped air from elastomeric mixture, with
the air-free mixture then passed through a valve into the mold cavity that is connected to a low level
vacuum that pulls the mixture through the tire, forming a transport tire.
Still another object of the present invention is to provide for seals for maintaining canister
and mold integrity when they are subjected, respectively, to a deep vacuum and a low level vacuum.
Still another object of the present invention is to provide a vacuum forming apparatus for casting a transport tire containing a core of plies, belts and beads in a single operation, producing a
homogenous tire that is essentially perfectly balanced.
The present invention is in a vacuum forming apparatus that receives a mold arranged
therewith that includes of an inner mold that maintains a mandrel whereon is built-up a core of plies, belts and beads with spacers or separators therebetween. Which inner mold mandrel is for fitting
into an outer mold whose annular surface has the shape of the outer surface of a transport tire, and
which outer mold is easily opened to allow for removal of a tire formed therein. A mold canister
is provided that is to receive a mix of elastomeric constituents and connects to a deep vacuum source
for removing air from which mix. With, after air removal, the mix is passed through a needle valve
into an annular area between the inner mold mandrel and the outer mold that is under a low level vacuum that pulls the mix through the mold. The elastomeric material mix is passed through and around to encapsulate the tire core. Seals are provided within the apparatus, between a cover and
outer mold top, around the mold body, and at the canister, to contain both the deep and low level
vacuums that are preferably generated by separate vacuum sources.
Upon receipt of a set volume of the elastomeric material mix the canister is sealed and is
subjected to a deep vacuum. The vacuum is pulled through a port in the cannister, and is operated
until the mix in the canister is essentially free of all the air that had been trapped therein during the
mixing process. Thereafter, with the mold maintained under a low level vacuum that is pulled through a port in the cover, the canister is opened through a needle valve and is open to outside air,
and vents into the mold annular or hub area, pulling the air free elastomeric mix therein by the low level vacuum. The mix passes through and around the core, thoroughly penetrating and bonding to all the core constituent threads and cords, with any air in the mold traveling ahead of the mix flow
to the cover port wherethrough the low level vacuum is being pulled, hi practice, the needle valve is required to be closed before the canister is empty and comes under ambient air conditions as are present in the canister. After cooling, the mold is broken open and a completed transport tire
containing perfectly positioned core of plies, belts and beads, is removed therefrom.
In a practice of the method, utilizing the apparatus of the invention, for forming, in a single
operation, a transport tire includes : passing a volume of mixed elastomeric material constituents into
a mold canister that is preferably, but may not necessarily be, centered in the mold that includes inner
and outer mold components, and is easily opened after casting for removal of a finished transport
tire. With the inner mold to function as, or includes a mandrel portion, whereon a core of plie, belts
and beads, with spacer or separators therebetween, has been laid-up thereon, and the annular inner surface of the outer mold has a tire tread pattern embossed therearound.
DESCRIPTION OF THE DRAWINGS
The invention may take physical form in certain parts and arrangement of parts, used to form
the apparatus of and practice the steps of the invention that are herein shown as a preferred
embodiment and will be described in detail in this specification and illustrated in the accompanying
drawings which form a part hereof:
Fig. 1 shows an exploded perspective view taken from above a bottom hub plate whereto a
cylindrical hub manifold is being fitted with studs turned into the bottom hub plate, forming an inner
mold for use with the apparatus of the invention, practicing the process of the invention;
Fig. 2A shows the inner mold components of Fig. 1 receiving a pair of hard foam core
segments fitted over the studs;
Fig. 2B shows all but a pair of the hard foam core segments assembled to the bottom hub as a mandrel for receiving a core of plies, belts and beads for a transport tire core laid-up thereon;
Fig. 3 A shows the completion of the hard foam core segments assembly and with a top hub
plate fitted onto the hard foam core segments;
Fig. 3B shows the top hub plate being bolted onto the top of the cylindrical hub manifold;
Fig.4A shows the hard core assembly of Fig. 3B as having been mounted onto an axle that is fitted to a pivoting arm, with the hard core assembly shown rotated ninety degrees, showing an
expander cone aligned with the side of the hard core assembly, and showing a sleeve woven from
ply cords aligned to fit over the expander cone smaller end;
Fig.4B shows a top plan sectional view taken along the line 4B- 4B of Fig.4A looking down on the hard foam core assembly with the expander cone large diameter end slid along the expander cone to the center of the hard core assembly, showing the plies sleeve aligned for fitting over the
expander cone small diameter end;
Fig. AC is a view like that of Fig.4B except that the plies sleeve end has been drawn over and
beyond the hard core assembly;
Fig. 5A is a view like that of Fig. 4C only showing a pair of bladder and hard plate
assemblies for bead centering and plies cords positioning aligned with the ends of the plies sleeve;
Fig. 5B is a view like that of Fig. 5 A only showing the left bladder and hard plate assembly,
that is a bead centering plate, as having passed into the plies cords sleeve end to where the hard plate contacts the side of the hard core assembly and showing a bead maintained by the hard plate edge
against the hard core assembly left side;
Fig. 5C is a view like that of Fig. 5B that additionally shows the right bladder and hard plate fitted into the plies cords sleeve end and showing a bead maintained by the hard plate edge against
the hard core assembly right side;
Fig. 5D is a view like that of Fig. 5C only showing a press plate engaging the expanded left
bladder, and with the bladder inflated;
Fig. 5E is a view like that of Fig. 5D only showing the press plate as having been urged
against the expanded bladder as air is removed, at a controlled rate, from the bladder, causing the
bladder to fold the plies cords over the bead and up the left side of the hard core assembly;
Fig. 5F is a view like that of Fig. 5E only showing the press plate as having been moved to
its limit of travel against the bladder and has been deflated to extend the bladder around the hard core
assembly shoulders, pushing the plies cords ahead of the bladder surface; Fig. 6A shows a top plan view like that of Fig. 4B except that the expander cone is shown fitted over the hard core assembly whereon the plies and beads have been assembled, and a separator, that is a layer of cotton batting, as having been applied therearound, and showing a first belt sleeve
fitted onto the expander cone and a second belt sleeve, that is shown as a weave formed from
crossing sections of belt cord, aligned with the expander cone smaller end and showing, with arrows
A, the belt sleeve traveling up the expander core;
Fig. 6B shows the hard core assembly with the plies ends extending up the hard core
assembly sides, with spacers arranged between the plies and belt and with a final layer of tire cord
wound around the crown;
Fig. 7A shows a view like that of Fig. 6B only showing a layer of cotton batting wound
around the core circumference;
Fig. 7B shows a view like that of Fig. 7A and additionally illustrates, with a spool, that a continuous cord is being rolled off the spool, and is wound around the crown that has been covered by a separator layer of cotton batting;
Fig. 7C shows a view like that of Fig. 7B only with the wound tire cord shown as covering the crown;
Fig. 8A shows the hard core assembly, with the tire core wound thereon, removed from the axle and positioned onto a mold base;
Fig. 8B shows one of a number of tread segments that are fitted together to form the exterior or outer mold;
Fig. 8C shows the tread segments of Fig. 8B assembled into the mold outer wall;
Fig. 8D shows a top plate installed onto the assembly of Fig. 8C showing a center opening
in wherethrough a center cylindrical canister of a vacuum forming apparatus of the invention is fitted;
Fig. 8E shows a view like that of Fig. 8D only showing a dome shaped cover mounting a head end of center cylindrical canister fitted onto the outer mold cover with the center cylindrical canister fitted into, and extending upwardly from, a center opening, and showing first and second vacuum ports fitted, respectively, into the side of the center cylindrical canister and the top of the dome shaped cover;
Fig.9 A shows a sectional view taken along the line 9 A - 9A of Fig.8E with the dome shaped cover lifted off of the outer mold top, with arrows B illustrating the dome cover as being lowered onto the outer mold top that contains the core of belts, plies and beads laid up on an inner mold mandrel portion, showing, with arrow C, movement of a pouring head into an opening through the top of a deep vacuum canister, and showing with arrow D movement of a needle valve into a bottom end throat of the deep vacuum cylindrical canister;
Fig. 9B is a view like that of Fig.9A only showing the dome shaped cover as having closed over the outer mold top, with a pour of an elastomeric material, arrow E, passed through the pouring head into the deep vacuum canister and showing, with arrow F, a high level vacuum being pulled through a canister port, with that pulled air, shown as arrows G, passing out of the elastomeric material pour, and shows a low level vacuum, shown as arrow H, being pulled through a cover port, pulling air, shown as arrows I, from within the mold cavity and area under the cover;
Fig. 9C is a view like that of Fig. 9B, only showing the pouring head closed, with the elastomeric material sans air contained in the deep vacuum canister and with the canister port shown as open, admitting ambient air, arrow K, into the canister, and showing the needle valve at the bottom of the canister as just opening, passing a flow of the elastomeric material therefrom, pushing
U air ahead of the flow of elastomeric material, shown as arrows I, that is pulled by the low level
vacuum, arrow H;
Fig.9D is a view like that of Fig.9C only showing most of the elastomeric material as having
been evacuated from the deep vacuum canister, through the needle valve that has been closed, and
showing the elastomeric material as having passed through and around core of plies, belts and beads
and separator layers maintained on the inner mold mandrel, and with the elastomeric material shown
as having passed up the canister side and just entering the area beneath the dome shaped cover,
following the air flow, arrow I, out from the outer mold through cover port wherethrough is being
pulled a low level vacuum, arrow H, completing the tire formation;
Fig. 10 shows a side elevation exploded sectional view of a section of a tire manufactured
by the process and with the apparatus of the invention as has been removed from the outer mold of Fig. 9D;
Fig. 11 shows an assembled view of the tire of Fig. 10; and
Fig. 12 shows a block flow schematic of the steps practiced to form a tire of Figs. 10 and 11
utilizing the vacuum forming apparatus of the invention.
DETAILED DESCRIPTION
The invention is in a process and apparatus for forming a transport tire with vacuum forming apparatus 90 of the invention, wherein a core of belts, plies and beads is optimumally positioned,
forming a transport tire that is like the tire 130 of Fig.l 1. The vacuum forming apparatus 90, like
earlier spin casting processes and apparatus such as those of the inventors identified hereinabove in
the Prior Art section of the present application, provides for forming, in a single operation, an essentially perfectly balanced transport tire containing plies, belts and beads, with the tire then pulled from the mold.
Like earlier spin casting apparatus and methods of manufacture for practice thereon, as set
out in the Prior Art section of the present application, the vacuum forming apparatus of the
invention, as herein shown in Figs. 8E and 9A through 9D3 employs a mold containing a mandrel
in its cavity portion whereon is laid up a core of plies, belts and beads with separators fitted
therebetween. One such arrangement of a mandrel as the outer surface of an inner mold that is used
to lay up thereon a core of plies, belts and beads is set out in Figs. 1, 2A, 2B, 3 A, 3B, 4A through
4C5 5A through 5F, 6A, 6B, and 7A through 7C. With a final core formed on the inner mold
mandrel shown in Fig. 8A, and with an outer mold for containing the inner mold shown assembled
in Figs. 8B through 8D. It should, however, be understood that the inner mold with its mandrel portion and outer mold arrangements can be varied, and other mold arrangements can be substituted therefore, within the scope of this disclosure, to operate with the vacuum forming apparatus 90 of the invention, as set out in Figs. 8E, and 9A through 9D to manufacture a transport tire that is like
the tire 130, as shown in Fig.11.
For forming the inner mold 30 of Fig. 3B, that includes a mandrel formed by assembling
tread segments 45a and 45b into a cylinder, as shown in Figs. 2 A and 2B, to have the shape of a
transport tire inner surface, an inner mold hub base 31 a, as shown in Fig. 1 , is used. The inner mold base 31 a is shown as having a center dish 32 with a center opening 33 that includes spaced elliptical
ports 34, and is stepped upwardly into a continuous shelf 35 that posts 36 are mounted to, to extend
at right angles therefrom. Which posts 36 are located at spaced intervals to one another, and each
post includes a threaded nut 37 that is secured onto each post end 36a. Outwardly from the posts 36,
11 the hub base 31a is stepped upwardly into a Hp 38 and, outwardly from the Hp 38, it is stepped downwardly into a flat portion 39 that extends to the plate edge. Shown in Fig. 1, a cylindrical hub 40 is fitted onto the mold hub base 31a. Which cylindrical hub has a center opening 42 therethrough, has its lower end aligned to fit onto the center dish area 32, and is positioned thereon to align spaced elliptical ports 41 with the spaced elliptical ports 34 of the hub base. The cylindrical hub 40 is maintained in position by fitting a rod 43 through a side longitudinal hole 44 and turning a rod threaded end 43a into a threaded hole 44a that is formed into a side of the hub base 31a.
Fig.2 A shows the hub 40 fitted onto the inner mold hub base 31a and is maintained thereon by the rod 43 threaded end 43a turned into the hub base threaded hole 44a, as shown in Fig. 1. Fig. 2 A shows mounting holes of the hard foam core top and bottom sections 45 and 45b, respectively, that form the mandrel, with each hard form core section receiving one of the posts 36 fitted therethrough. With, in Fig.2B, all but one pair of hard foam core top and bottom sections 45a,and 45b have been fitted onto posts 36, and nuts 37 are shown as having been turned onto the post threaded ends 36a.
Fig.3 A shows the top of the hub 40 with the hard foam core top and bottom sections 45 a and 45b assembled thereon, forming the mandrel, that is aligned with a hub top 31b with, it should be understood, the hub base and top, 31a and 3 Ib, respectively, being a mirror image of one another. Fig. 3B shows the hub top 31b fitted onto the top of hub 40, with spaced elliptical ports 41 formed through the hub top 3 Ib that includes elliptical ports 47 that align with the elliptical ports 41 in hub 40 and the elliptical ports 34 in the hub base 31a, proving flow paths through the assembly, and showing bolts 47 each aligned for turning through the hub top 3 Ib and into a nut 37. With each nut 37 shown as having been turned onto a threaded end 36a of each post 36, completing the assembly of the inner mold 30, where the assembled hard foam core sections function as a mandrel for
building up tire core 75 of Fig. 8 A thereon.
To prepare for forming which tire core 75, as shown in Fig. 4A, the inner mold 30 has had
an axle 48 mounted through the aligned center openings 33 in the hub base and top 31 a and 31 b, as
part of a build stand that allows the inner mold 30 to be pivoted from a horizontal attitude through
ninety degrees, and with the axle 48 extending at a right angle outwardly from a pivot post 49.
Which pivot post 49 preferably includes a pivoting joint 50 that allows the inner mold 30 to be
pivoted to a horizontal attitude, and with the base 51 thereof arranged to allow for three hundred sixty degrees of rotation.
To begin to form the core of plies, belts and beads 75, as shown in Fig. 10, that is for
positioning in the vacuum forming apparatus of the invention, as shown in Fig. 4A, a layer of spacing material 52 is wrapped around the inner mold 30 crown, that is preferably at least a two ply or layers of cotton batting. An expander cone 53, that is shown as a truncated cone having a greater diameter forward end 53a and a lesser diameter rear end 53b, is fitted onto, to slide along axle 48. The expander cone 53 is to receive a sleeve 54 that is sleeve woven from plies cord that, for a
practice of the invention, is preferably rayon or cotton cord that, in practice, has been found to accept a flow of the elastomeric material into the cord surface, providing a weld of the cord and elastomer
that is resistive to separation. Which sleeve, as needed, can include strands of an elastic material
woven therein to allow for expansion as the sleeve is fitted over the expander cone lesser diameter
rear end 53b and drawn therealong.
Fig.4B shows the expander cone 53 as having had its forward end 53a moved over the edge
of the layer of spacing material 52 to approximately the center of the inner mold 30 mandrel crown. Which expander cone, to allow such movement, includes spaced parallel forward and rear inner walls 55a and 55b, respectively, that each have a center hole 56a and 56b therethrough that align to
receive the axle 48. The axle 48 supports and guides the expander cone 53 as it is slid back and forth
therealong.
Fig.4C shows the components of Fig.4B except that the forward portion of the plies sleeve
54 has been pulled across the inner mold 30 mandrel, with the back section still supported by the
expander cone 53.
Fig. 5 A shows the view of Fig.4C, except that a pair of bladder and hard plate 60 have been
aligned with the plies sleeve 54 ends. Each bladder and hard plate 60 includes a flexible bladder 62
and hard plate 61 , which hard plate is a hard metal or plastic and is for centering a bead to a side of the core in the core formation process. The hard plate 61 is mounted onto a side of a balloon type bladder 62 that is to be filled with air under pressure through a valve stem 63. Beads 59 are shown
as having been slid along the sleeve 54 into position to receive the hard plate ends 61 fitted there against and showing a separator layer 52 wrapped around the inner mold 30. So arranged, the sleeve 54 is shown as having been passed thereover.
Fig. 5B is a view like that of Fig. 5 A only showing the left side bladder and hard plate 60 as
having passed into the plies sleeve 54 end to where the hard plate 61 edge 61 a is in engagement with the bead 59, through the sleeve 54. Which bladder and hard plate 60 passage is made possible by
appropriately filling or emptying the bladder 62 to a desired air pressure through the valve stem 63
to have a diameter where it can be fitted through the sleeve 54.
Fig. 5C is a view like that of Fig. 5B only showing both of the bladder and hard plates 60 as
having been passed into the plies sleeve ends, with the beads 59 held against the sides of the inner mold 30, and the plies sleeve 54 beginning to be folded around the beads 59.
Fig. 5D is a view like that of Fig. 5C only showing the plies sleeve ends as having been cut
to a lesser length to ends 54a and 54b and showing the bladder 62 of the left bladder and hard plate
60 as having been expanded with air, under pressure, passed through the stem 63, as illustrated by
an inwardly pointing arrow. With that expansion, the plies sleeve end 54a is elevated to align with
the side of the inner mold 30, and showing a pressure plate 64 in contact with, and pressing against,
the expanded bladder 62. Which pressure plate includes a flat piston end 65 whose forward face is
in contact with the expanded bladder 62, and a push rod end 66 that extends, at a right angle from,
the piston end rear face. Of course, the plies sleeve 54 can be of lesser length to avoid having to cut
off the sleeve ends and, also within the scope of this disclosure, the plies sleeve ends 54a and 54b
can be left long and folded over the inner mold crown.
Fig. 5E shows the pressure plate 64 as having advanced into the bladder 63, as air is being withdrawn from the bladder, as illustrated by an outwardly pointing arrow, and shows the bladder as tending to fold around the shoulder of the inner mold 30. Which bladder folding tends to urge the
cords of the plies sleeve end 54a away from the bead 59, with the cord ends folding onto the plies
sides, and stretched across the inner mold 30. Which operation can include coating the plies cords
above the beads with an adhesive, such as a pre cure elastomer, before the plies cords ends are
moved by the deflation of the bladder 62.
Fig. 5F is a view like that of Fig. 5E only showing the bladder 62 as having been further
deflated as air is continued to be withdrawn through stem 63. So arranged the bladder has flowed
around the inner mold 30 shoulders with, in that flow, the bladder surface has tended to stretch the
plies cords ends 53a away from bead 59 and urge the plies cords ends into close engagement with the plies cords above the bead. Which action tends to force any trapped air out from the bonding
material and between the plies cords and plies cords ends. While the operation of the left bladder
and hard plate 60 only has been shown, it should be apparent that the operation of the right side
bladder and hard plate 60 is identical, and which bladders and hard plates 60 can operate
simultaneously, producing, when the bladders and hard plates are removed, a core of plies and beads
that is ready to receive a belt or belts applied around the inner mold crown, as set out below.
The above description of Figs. 4A through 4C and 5 A through 5F sets out a process for
providing a core of plies and beads that are formed in layers on the mandrel portion of the inner mold 30. With, in Figs. 5 A through 5F, the plies cords are shown cut to fold to above the bead but
do not extend beyond the inner mold shoulders. Though, it should be understood within the scope
of this disclosure, that the plies ends can be folded across the mandrel crown, crossing one another,
dependent upon the lengths of the cord plies ends.
Shown in Fig. 6A the core of plies and belts of Figs.5 A through 5F has received a separator layer or layers 67 that are preferably sections of cotton batting installed around the inner mold 30 mandrel crown. Thereafter, a belt expander 68, that is like and functions like, and in practice may
be the same as the truncated cone plies expander 53, so long as its greater diameter end will fit over
the side of the inner mold whereon have been formed the plies with separator layers, extending to
at or near to the center of the inner mold crown. So arranged, as shown in Fig. 6A, a first belt 69
and, as required, a second belt 69a can be passed over the belt expander 68 lesser diameter end and
slid therealong, as illustrated by arrows A. The first belt 69 is fitted across the inner mold 30 crown,
followed by a separator layer 70, as shown in Fig. 6B, followed by the second belt 69a. Whereafter,
the belt expander 68 is removed and a top separator or spacer layer 71 is applied to the top surface of the second belt 69a, as shown in Figs. 6B and 7A. A preferred spacing material is a four layer
section of cotton batting that is approximately eight inches wide, and is wound circumferentially around the crown to hold the plies in place. The sides of which final separator spacer layer 71 are,
in turn, pulled down around the inner mold 30 shoulders, engaging the plies 54, as shown in Fig.7B.
Finally, a tire cord 72, that is shown in Fig. 7B being wound off of a spool illustrating a continuous
cord, is applied by winding a strand of tire cord around the belt circumference, with the winding
starting on one side of the crown and proceeding to the other crown side, as shown in Fig. 7C,
completing the assembly of the core of plies, belts and beads 75 of the invention as shown in Fig. 10.
For belt formation and application, as shown in Figs. 6 A and 6B, the sleeves of belts 69 and
69a are preferably formed separately by weaving methods where the belt cords are woven together to cross and have a twenty four degree cord angle to the center of the belt circumference, and after the first belt 69 is fitted to the inner mold, a layer of a separator 70, that is a gauze material,
preferably cotton batting, having approximately four layers, is wrapped around the first belt 69
circumference. Whereafter, the second belt 69a, as set out above, is installed over the separator 70. Should additional belts be required, each belt is separated from the belts below and above by a
separator, that is also preferably sections of cotton batting. A final separator layer 71 is applied over
the top belt. A tire wrap 72 consisting of a winding of tire cord, that is preferably a Kevlar cord, is
applied over the final separator layer 71, as described above and as shown in Fig. 7B, as being
wound off of a spool 73 and around the crown, with the winding traveling from one side of the
crown to the other. Such winding can be accomplished as by turning the inner mold and winding
a Kevlar cord across the inner mold circumference, completing the core 75 formation on the inner mold 30 mandrel.
The core 75, shown in Figs. 8A, 8C and 10, is turned and is moved onto an outer mold base 85, shown in Fig. 8C, that receives tread segments 86 or a ring having a tread formed around the
crown of its inner surface, not shown. The tread segments are individually numbered and are fitted
together, in numerical order, around the outer mold base 85, encircling the outer mold base and
forming a cylinder, as shown in Fig. 8C. Which tread segments 86, for practicing the invention,
include seals 86a, shown in Figs. 9A through 9D, fitted between the adjacent tread segments 86 and
between the tread segment 86 and the outer mold base 85 and outer mold top 88, shown in Fig. 8D,
with a sectional view of which outer mold base 85 and outer mold top 88 shown in Figs.9A through
9D. Which tread segment seals 86a are provided for blocking a flow under vacuum of the
elastomeric material out of the cavity between the inner and outer molds during vacuum forming, as discussed hereinbelow. As shown in Fig. 8D the outer mold top 88 has been fitted across the cylinder of tread segments 86 completing the outer mold. Which outer mold top 88 that includes a vacuum forming apparatus top cover 89 that includes a center opening 89a and is for fitting over
an apparatus top plate 91 that fits over a top bead alignment plate 92a, with a space 91a and 94, respectively, between the apparatus top plate 91 and the undersurface of the top bead alignement
plate 92a as a vent opening. A seal 96 is fitted between an edge of a center hole 88a formed through
the outer mold top 88, and the cylindrical canister 95 surface 95a, blocking passage of air
therethrough. With the seals 86a provided between the tread segments 86 and the outer mold top
88 and outer mold base 85 apparatus bottom plate 87, sealing off the mold annular cavity wherein
the core 75 is positioned.
The outer mold base 85 apparatus bottom plate 87 supports a combination bead alignment and needle valve positioning plate 92b, and has an outer grooved eαge yJD tnat, iiκe rne rop bead alignment plate outer grooved edge 93a, supports the bead 59, and further includes a center opening 96a wherethrough a neck mid-portion 101 of a needle valve 100 travels up and down in operation
of the vacuum forming apparatus 90 of the invention. To compensate for a difference in diameter
of the cylindrical canister 95 outer surface 95a from its top end 105 to a lower portion that necks in
from 106 as a funnel area 107to a nozzle end section 108, a plug 110 is provided that is fitted
through the opening 33 in a lower center dish 32. Which plug 110 is shaped to fit and seal against
the outer surface of the cylindrical canister 95 funnel area 107 and has a longitudinal center opening
111 wherethrough the nozzle end 108 of the cylindrical canister 95 is fitted. A seal 112 is provides between the nozzle end 108 and plug hole 111 to prohibit a flow of elastomeric material up the
cylindrical canister 95 during vacuum forming operations.
The nozzle end 108 of the cylindrical canister 95 includes seal 112 and functions as a seat for the needle valve 100 head end 103 that is shown as having a cone shape, with the cone point to travel into the cylindrical canister 95 nozzle end until the slope of the head end 103 contacts the edge of the nozzle end 108, sealing off flow. Which head end 103 travel is provided when the needle
valve body 101 is moved up and down by lifting or lowering the valve body lower end 102. In
practice, for example, a servo motor operating a piston that connects to the valve body lower end 102
can provide for needle valve movement, opening and closing the cylindrical canister to a flow of elastomeric materials out from the nozzle end 108, as set out herein below.
The cylindrical canister 95 is to receive a mixture of elastomeric constituents that, after
mixing outside of the vacuum forming apparatus, is passed through a pouring head 116, as shown
in Fig.9B, and into the cylindrical canister 95. Which pouring head 116 has a funnel shaped pouring end that is an inwardly sloping cone section that connects to a cylindrical nozzle end 117. Shown
in Fig. 9A, the cylindrical housing top end 95b is ported to open through a pouring seat 118 that has
an inwardly sloping cone shaped section 119 to receive and seal at seal 120 against the wall of the
pouring head 116 inwardly sloping cone section.
To prepare the vacuum forming apparatus 90 to form a transport tire, the cover 90 is lowered,
as illustrated by arrows B, onto the vacuum forming apparatus top plate 91 , sealing thereover at seal
121, and passes along side of the surface 95a of the cylindrical canister 95, with a seal 127 fitted
between the cylindrical canister 95 surface 95a and the edge of the center hole 89a of the cover 89,
for containing the area under the cover. With the cover 89 maintained in place, to prepare for
casting, pouring head 116 is lowered into the pouring seat 118 as illustrated by arrow C, and the needle valve is moved upwardly, as illustrated at arrow D, to close the nozzle end 108. Thereafter, as shown in Fig. 9B, a measured amount of an elastomeric mix of constituents 126 is poured into
the cylindrical canister 95 through the pouring seat 118, with an operator observing the canister filling through a sight glass 122 mounted in the surface 95a of the cylindrical canister. Prior to which pouring, a deep vacuum source is connected to cylindrical canister port 125 that is fitted into
the side of the cylindrical canister, proximate to the top end thereon, and a low level vacuum source is connected to the cover port 97 fitted through the cover 89, completing preparation of the vacuum
forming apparatus 90 to receive a flow of elastomeric material into the cylindrical canister 95, as illustrated in Fig. 9B. Which elastomeric material is a mixture of constituents that are combined
outside of the mold for pouring into the cylindrical canister 95. The preferred constituents are a
liquid isocyanate and a liquid poly, respectively, that are selected to form, when combined and cured,
an elastomer having a desired hardness or derometer for an automobile or like transport tire. Fig. 9B is a view like Fig. 9a and additionally shows the pouring head 116 as having been seated in the pouring seat 118 with aurethane pour 126, as shown by arrow E, being poured through
the open end of which pouring head, flowing into the cylindrical canister, to fill the canister from
the nozzle end 108 up. During which canister filling a deep vacuum, arrow F, is pulled through the
cylindrical canister 95 port 125, pulling air out of the elastomeric materials mixture that was
entrapped therein during the elastomeric material constituents mixing, as shown by arrows G that
travels through the cylindrical canister port 125. During which canister filling, an operator views
the filling through the sight glass 122. Further, in preparation for the vacuum forming of a transport
tire within the vacuum forming apparatus 90, a low level vacuum, shown as arrow H, is pulled
through the cover port 97, pulling air, shown as arrows I, out of the mold cavity and the area under the cover 89.
Fig.9C is a view like that of Fig. 9B and additionally shows a desired volume of elastomeric material mix as having been poured into the cylindrical canister 95. Whereafter, the high level vacuum is removed from the canister port 125 that is opened to atmosphere, illustrated by arrow J,
allowing an inlet air flow shown as arrows K, in through the canister port 125. At which port 125 opening, the needle valve is opened, allowing for a flow of the elastomeric material mix 126, that
has had essentially all the air removed therefrom, to flow across the inverted cone shaped end 103
of the needle valve 100. Which elastomeric material mix 126 flow is shown as just proceeding out
from the nozzle end 108 and passing under the plug 110 and above the surface of the top of the
bottom bead alignment plate 92b, to flow into the annular moid cavity and through the core 75 of
plies, belts and beads therein, as shown in Fig. 9D.
Fig. 9D is a view like that of Fig.9C and additionally shows the elastomeric materials pour as having passed through the needle valve 100 and is distributed throughout the mold cavity that is the annular area between the inner and outer molds that contains the core 75 of plies, belts and beads,
forming the transport tire 130, as shown in Fig. 11, and the needle valve 100 is closed prior to
allowing air within the canister 95 to travel out of the nozzle end 108 across the surface of the needle
valve head end 103 . Which elastomeric material is shown as having filled the cavity and is just
passing up along the space the cylindrical canister 95 outer surface 95a and the walls of the center
openings 91 a and 94 of the vacuum forming apparatus top plate 91and the top bead alignment plate
92a, respectively. Which travel of the elastomeric material is in response to the low level vacuum,
shown as arrow H, that is being pulled through the cover vacuum port 97, with air ahead of the
elastomeric material flow, shown as arrows I, being pulled toward the cover port 97 and exhausting
through the cover vacuum port 97. The cylindrical canister 95 port remains open, shown as arrow J, to ambient air during which elastomeric material flow through the cavity between the inner and outer molds as air is exhausted from beneath the cover 89 through the port 97. Whereafter, the cover 89 is lifted off of the outer mold top 88 and the outer mold is broken apart to remove the finished tire therefrom. Which finished tire is like the tire 130 shown in Fig. 11 that includes the core 75 of Fig. 10.
Fig. 12 shows a block flow schematic of a summary of the steps performed in forming an elastomeric tire utilizing the vacuum forming apparatus 90 as described above. Blocks 201 and 202
illustrate the formation of the core of plies, belts and beads on a mandrel component of a inner mold
and the fitting of an outer mold thereto, forming a mold with the core occupying an annular area
between the inner and outer molds. In which fitting together seals are positioned between the inner
and outer mold segments to provide an air tight pathway through the annular area wherein the transport tire core 75 is maintained. For a vacuum forming apparatus 90, as illustrated by block 202
and described above, a dome shaped cover is fitted over the outer mold top surface, engaging seals
therebetween and the cylindrical cannister is fitted into center opening through the cover and
connected inner and outer molds, sealing to the cover hole edges and at the outer mold top, providing
a flow path from a needle valve end of the canister into the annular area containing the core to exit
alongside the cannister into the area under the cover. Illustrated by block 203, the pouring head has
been fitted into the canister top end and, as illustrated by block 204, the tapered head end of the
needle valve has been moved into sealing engagement with the end of the canister discharge tube
sealing off flow therethrough. So arranged, as high vacuum that is at least ninety six (96) per cent
is pulled through a canister port, pulling air out from the canister, as illustrated by block 205, and a low level vacuum of at least eighty five (85) per cent, and not greater than ninety five (95) per cent, is pulled through a port through the cover, pulling air out from beneath the cover and the mold, as illustrate by block 206. Thereafter, an elastomeric material that has been recently mixed from constituents is poured through the canister top, as illustrated by block 207, with the high level
vacuum to remove air from the elastomeric material mixture. When a desired volume or weight of elastomeric material has been poured into the canister, the high level vacuum is ended, as illustrated
by block 208, and the canister is opened to atmosphere. Simultaneously to opening the canister to
atmosphere the needle valve is opened, as illustrated by block 209, and the elastomeric material is
passed into the mold annular area, traveling through the core, with the needle valve closed prior to
a passage of air from the canister following the elastomeric material. An operator seeing elastomeric
material venting from the mold top plate closes the needle valve, as illustrated by block 210, if it has
not already been closed to prevent air passage, and ends the low vacuum draw through the cover port, as illustrated by block 211. The newly formed transport tire is allowed to cool and cure in the
mold, as illustrated by block 212, and then the mold is broken open and the transport tire removed, as illustrated by block 213.
While preferred embodiments of our invention in a vacuum forming apparatus for forming
a tire in a single operation, have been shown and described herein, it should be understood that
variations and changes are possible to the apparatus and method for its use in the formation of the
described tire, and the materials used, without departing from the subject matter coming within the
scope of the following claims, and a reasonable equivalency thereof, which claims we regard as our invention.

Claims

THE CLAIMS
We claim:
L A vacuum forming apparatus for manufacturing a transport tire containing a core of plies, belts and beads from an elastomeric material comprising, a mold formed from an inner mold that includes a mandrel whereon a transport tire core of plies, belt and beads are laid-up on, with said core maintained in an annular area of said mold between said inner mold and an outer mold that is arranged for mounting to said inner mold; means for sealing said annular area from an air flow from out side of said mold; a canister that is open through its top to pass a flow of elastomeric material and has a valve means fitted into said canister for providing a controlled flow therefrom of said elastomeric material into said annular area where said core of plies, belt and beads is positioned; passage means from said valve means into said annular area between said inner mold and outer mold; a first port means mounted into said canister for connection to a high level vacuum source for pulling air therethrough; a cover arranged for mounting onto said outer mold that has an open interior area that is connected to receive a flow from said annular area; and a second port means mounted into said cover for connection to a low level vacuum source.
2. The vacuum forming apparatus as recited in Claim 1 , wherein the canister is a cylinder that is fitted through the center of the joined inner and outer molds, with said cylinder open at its top end to receive a pouring head fitted therein that is open to pass a flow of a mixture of elastomeric constituents and is necked down at it lower end into a tube whose open end is a seat for a needle valve tapered head as the valve means.
3. The vacuum forming apparatus as recited in Claim 2, wherein the needle valve includes
T7 with the tapered head, a stem having a flat end that is opposite to its tapered head that is contacted
by a piston means for moving said flat end, stem and tapered head up and down along a hole formed
through a bottom bead alignment plate that is mounted across the bottom of the inner mold and has
an edge for positioning under a bottom bead of the core.
4. The vacuum forming apparatus as recited in Claim 3, further including a top bead
alignment plate that is mounted across the top of the inner mold and also includes an edge for
positioning above a top bead of the core.
5. The vacuum forming apparatus as recited in Claim 2, wherein the cover is formed to have
a dome shape having an open interior area, is for fitting across the outer mold top surface and
includes a seal arranged between said cover edge and said outer mold top surface, and the cylindrical canister is fitted through a cover center hole and includes a seal arranged between an edge of said
cover center hole and the outer surface of said cylindrical canister.
6. The vacuum forming apparatus as recited in Claim 4, wherein the passage means extends from the needle valve, between the bottom bead alignment plate, around the inner mold mandrel
whereon the core is laid-up and across the top bead alignment plate to vent along the outer surface of the cylindrical canister into the open area under the dome shaped cover.
7. The vacuum forming apparatus as recited in Claim 1 , wherein the canister includes a sight
glass fitted in the side thereof; and the first port means is an open tube that extends out from a top end of said canister.
8. The vacuum forming apparatus as recited in Claim 1, wherein the second port means is
an open tube that extends outwardly from the cover.
9. A process for forming an elastomeric transport tire with a vacuum forming apparatus utilizing a mold having an annular area wherein a core of plies, belt and beads is maintained on a mandrel comprising, assembling a mold having a core of plies, belts and beads maintained in an annular area that is open at opposite ends and said mold includes seals to prevent an outflow other than through said annular area opposite ends; fitting, in sealed engagement, a cover over a top of said mold that includes an open port mounted therethrough; positioning a canister having an open top that includes a vent port extending out from a top area and mounts a valve seat in a bottom end thereof to pass an elastomeric material flow through said valve seat and into one of said annular area opposite ends; and a valve means that includes a movable member to fit into and close over said valve seat, and with said valve means arranged to open into one end of said mold annular area to pass a liquid flow therefrom; applying a deep vacuum through said canister vent port to pull air from said cylinder; passing a measured flow of mixed elastomeric material into said canister through the open top, with said deep vacuum pulling air out from the elastomeric material mix; applying a low level vacuum through a port fitted through said cover that the mold annular area vents into; upon passage of a desired volume of elastomeric materials poured into said canister, the deep vacuum is removed and said port is open to atmosphere and the valve means is opened to pass the elastomeric material into the mold annular area that is pulled therethrough by the low level vacuum; closing said valve means before all the elastomeric material has flowed therefrom into said mold annular area; and discontinuing said low level vacuum; and, after the mold is allowed to cool, curing the elastomeric material, it is broken open and the newly formed transport tire is removed.
10. The process as recited in Claim 9, wherein the cover has a dome shape and the port is fitted through the top surface thereof and into a cavity between the cover and th top of the mold.
11. The process as recited in Claim 9, wherein the canister is cylindrical and is fitted through center openings through the cover and mold hub, and the valve means' islnόunted in "me canister bottom to vent into the lower end of the mold annular area.
12. The process as recited in Claim 11, wherein the valve means is a needle valve that includes a cone shaped top end to seat into the end of the canister, includes a straight stem fitted to slide up and down in a passage formed through a mold bottom plate, and includes a bottom end for mounting to a means for moving said needle valve bottom end up and down.
13. The process as recited in Claim 11, further including a sight glass mounted in the cylindrical canister, above the junction with the cover, that an operator observes the filling of the cylindrical canister with elastomeric material mix through.
14. The process as recited in Claim 11, wherein the elastomeric material mix is poured through a pouring head that is fitted, in sealing engagement, through the cylinder top end.
15. The process as recited in Claim 9, wherein the deep vacuum is at least ninety six (96) per cent.
16. The process as recited in Claim 9, wherein the low level vacuum is at least eighty five (85) percent, and is not greater than ninety five (95) per cent.
1f\
EP05857805A 2005-11-23 2005-11-23 Method and apparatus for vacuum forming an elastomeric tire Withdrawn EP1954479A2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2005/026911 WO2007061399A2 (en) 2005-11-23 2005-11-23 Method and apparatus for vacuum forming an elastomeric tire

Publications (1)

Publication Number Publication Date
EP1954479A2 true EP1954479A2 (en) 2008-08-13

Family

ID=38066743

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05857805A Withdrawn EP1954479A2 (en) 2005-11-23 2005-11-23 Method and apparatus for vacuum forming an elastomeric tire

Country Status (5)

Country Link
EP (1) EP1954479A2 (en)
JP (1) JP2009516609A (en)
CN (1) CN101287590A (en)
CA (1) CA2554804A1 (en)
WO (1) WO2007061399A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11845308B2 (en) * 2019-09-03 2023-12-19 James Andrew MCGHEE Tire emergency safety valve

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL302462A (en) * 1962-02-15
JPS533422B2 (en) * 1973-08-07 1978-02-06
JPS55150340A (en) * 1979-05-12 1980-11-22 Ohtsu Tire & Rubber Co Ltd Flexible hollow core for manufacturing casting tire
US4287930A (en) * 1980-04-11 1981-09-08 The Goodyear Tire & Rubber Company Tire and method of reinforcement
US4272309A (en) * 1980-05-01 1981-06-09 The Goodyear Tire & Rubber Company Process for molding reinforced articles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007061399A3 *

Also Published As

Publication number Publication date
WO2007061399A3 (en) 2008-04-24
CN101287590A (en) 2008-10-15
JP2009516609A (en) 2009-04-23
CA2554804A1 (en) 2007-05-23
WO2007061399A2 (en) 2007-05-31

Similar Documents

Publication Publication Date Title
US8114330B2 (en) Method for vacuum forming an elastomeric tire
CN1174119A (en) Destructible core for use, in particular, in assembling of tire
CN100475561C (en) Elastomeric tire with arch shaped shoulders
US7377596B2 (en) Urethane wheel having a metal core
US20070158010A1 (en) Plies sleeve for use in forming an elastomeric tire
AU2005324328A8 (en) Method and apparatus for forming a core of plies, belts and beads
US4743322A (en) Molding of elastomeric material components
EP1954479A2 (en) Method and apparatus for vacuum forming an elastomeric tire
US3963393A (en) Endless tread mold apparatus
CA2554864C (en) Improved method and apparatus for forming a core of plies, belts and beads and for positioning the core in a mold for forming an elastomeric tire
US20070269548A1 (en) Apparatus for vacuum forming a tire, wheel or other item from an elastomeric material
KR20080042645A (en) Method and apparatus for vacuum forming an elastomeric tire
US4116605A (en) Apparatus for producing retreading envelopes
CA1044418A (en) Manufacture of tubes
CN102085700B (en) Post cure rotational stations
CA1217906A (en) Apparatus for producing variable-rate spring
US4541978A (en) Extrusion-fill method of producing an elastomeric spring
FI79803B (en) FOERFARANDE OCH ANORDNING FOER FRAMSTAELLNING AV EN KORDFOERSTAERKT KOMPONENT.
CN112549862A (en) Non-pneumatic tire and method for manufacturing the same
JPS6021538B2 (en) Cordless tire manufacturing equipment
KR20090063281A (en) Improved method and apparatus for forming a core of plies, belts and beads and for positioning the core in a mold for forming an elastomeric tire
JPS60141539A (en) Manufacture of pneumatic tire with lug
ITMO940032A1 (en) METHOD FOR THE PRODUCTION OF ROLLERS COATED WITH LAYERS OF ELASTOSILICONIC MATERIAL, MACHINE AND FRAME FOR IMPLEMENTATION OF THE METHOD

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060905

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MOORE, JAMES, G.

Inventor name: LOVE, THEODORE, M.

Inventor name: STEINKE, RICHARD, A.

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MOORE, JAMES G.

Owner name: LOVE, THEODORE M.

Owner name: STEINKE, RICHARD A.

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MOORE, JAMES G.

Inventor name: LOVE, THEODORE M.

Inventor name: STEINKE, RICHARD A.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20081230