EP1953455B1 - Injection system with double injector - Google Patents

Injection system with double injector Download PDF

Info

Publication number
EP1953455B1
EP1953455B1 EP08150474.8A EP08150474A EP1953455B1 EP 1953455 B1 EP1953455 B1 EP 1953455B1 EP 08150474 A EP08150474 A EP 08150474A EP 1953455 B1 EP1953455 B1 EP 1953455B1
Authority
EP
European Patent Office
Prior art keywords
injector
fuel
wall
air
air admission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08150474.8A
Other languages
German (de)
French (fr)
Other versions
EP1953455A1 (en
Inventor
Denis Sandelis
Michel Desaulty
Christophe Baudoin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of EP1953455A1 publication Critical patent/EP1953455A1/en
Application granted granted Critical
Publication of EP1953455B1 publication Critical patent/EP1953455B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/343Pilot flames, i.e. fuel nozzles or injectors using only a very small proportion of the total fuel to insure continuous combustion

Definitions

  • the invention relates to a fuel injection system in a turbomachine combustion chamber, and a turbomachine combustion chamber equipped with such a system.
  • the invention is intended for any type of turbomachine, terrestrial or aeronautical, and more particularly to aircraft turbojets.
  • a turbojet combustion chamber is generally annular in shape, centered on an axis X corresponding to the axis of rotation of the turbojet engine. It comprises two coaxial annular walls (or ferrules) of X axis, and a chamber bottom disposed between said walls, in the upstream region of said chamber, the upstream and the downstream being defined with respect to the normal direction of circulation of the gas inside the room. Said walls and the chamber bottom define the combustion chamber of the chamber.
  • a plurality of fuel injection systems in the chamber are attached to the chamber bottom and evenly distributed about the X axis.
  • the most common injection systems include a single fuel injector.
  • the design (i.e. shape, structure, choice of materials %) of combustion chambers equipped with single injector systems is now perfectly mastered and hereinafter referred to as conventional design chambers.
  • each injection system is fixed and positioned within a single hole provided for this purpose in the chamber bottom, so that the assembly of the injection system is relatively simple.
  • the temperature profile at the chamber outlet remains centered on a circle of determined diameter around the X axis, regardless of the operating speed of the turbojet engine. Such a temperature profile simplifies the design of the turbojet parts located downstream of the chamber.
  • double injector fuel injection systems In order to limit the emission of gaseous pollutants, double injector fuel injection systems have been developed.
  • the two injectors make it possible to create two combustion zones, one optimized for the idle speed of the turbojet and the other for the full throttle.
  • the document FR 2 706 021 describes an annular turbojet combustion chamber, equipped with several injection systems with double injector.
  • the chamber is centered on an X axis and the injection systems are distributed around the X axis, each system comprising two injectors arranged one after the other in a radial direction with respect to the X axis.
  • a first row of N injectors is arranged in a circle of diameter d, about the axis X
  • a second row of N injectors is arranged in a circle of diameter D, upper at d, around the X axis.
  • the injection system with double injector FR 2 706 021 has the disadvantage of being difficult to mount since it is necessary to position and fix each injector on the chamber bottom.
  • the design of the combustion chamber is more complex and much less controlled than the aforementioned conventional design (which results in particular in difficulties to ensure the thermal resistance and the life of some elements of the chamber).
  • the temperature profile at the chamber outlet varies significantly as a function of the turbojet engine operating speed and, in particular, this profile does not remain centered on a circle of determined diameter around the X axis. complicates the design of the turbojet parts located downstream of the combustion chamber.
  • the object of the invention is to propose a fuel injection system which is not very polluting and which can be used with a combustion chamber of conventional design, that is to say a chamber of the type that is equipped with combustion systems. injection to a single injector.
  • the injection system of the invention therefore comprises two injectors, which makes it possible to adapt the richness of the air / fuel mixture to the operating speed of the turbojet engine and to limit the emission of pollutant gases.
  • this type of system can be adapted to a conventional design chamber with, in particular, a single orifice in the chamber bottom for each injection system.
  • the second injector has a circular injection slot surrounding the first injector and, according to a second embodiment, it has a plurality of injection orifices arranged in a circle around the first injector.
  • the first injector, the first air intake passage and the second injector belong to a first assembly intended to be mounted on a second assembly comprising the second air intake passage, the second assembly being intended to be mounted on the combustion chamber.
  • the second set then serves as a guide for mounting the first.
  • the relative position of the first and second injectors is generally imposed by the conformation of the first set and therefore does not have to be adjusted during assembly.
  • the second assembly is mounted on the chamber bottom while maintaining a possibility of radial displacement around the injection axis I of the first injector, and can move along this axis relative to the first set, while remaining centered vis-à-vis the latter.
  • combustion chamber 10 of the figure 1 is represented in its environment, inside a turbojet engine.
  • This chamber 10 is annular, centered on the axis X which is also the axis of rotation of the turbojet engine.
  • This combustion chamber is called axial because it is oriented substantially along the X axis.
  • the invention could be applied to other types of turbomachines and other types of chambers, in particular so-called radial return combustion chambers, that is to say combustion chambers bent a portion of which is oriented substantially radially relative to the axis of rotation of the turbojet engine.
  • the combustion chamber 10 comprises two internal and external 12 annular walls (or ferrules). These walls 12, 14 are spaced apart and positioned coaxially around the axis X. These walls 12, 14 are interconnected by a bottom of chamber 16 disposed between them, in the upstream region of the chamber 10. The walls 12, 14 and the bottom 16 delimit between them, the combustion chamber of the chamber 10.
  • the chamber bottom 16 has a plurality of openings 18 evenly distributed around the axis of rotation X.
  • the chamber 10 also comprises baffles 19 mounted on the chamber bottom 16, at the periphery of the openings 18, so as to protect the bottom 16 of the high temperatures reached during the combustion.
  • a fuel injection system 20 Inside each opening 18 is mounted a fuel injection system 20 according to the invention. This system 20 is shown in detail on the figures 2 and 3 .
  • combustion chamber 10 is of conventional design, that is to say that its general shape, its structure, etc. are comparable to those of a combustion chamber equipped with injection systems with a single injector.
  • the combustion chamber 10 has been designed taking into account the particularities of the injection systems 20 and, in particular, the orifices 18 are of a size adapted to that of the injection systems 20 (larger in diameter than the systems conventional injection systems 20).
  • Each injection system 20 comprises, in its center, a first fuel injector 22 (also called pilot injector) for injecting fuel along an injection axis I.
  • the injection system 20 comprises, around the first injector 22 and in this order: a first air intake passage 24, an air intake duct 26, a second fuel injector 28, and a second air intake passage 30.
  • the injection system 20 has a substantial symmetry of revolution about the axis I, the elements constituting it being of generally annular shape, and distributed coaxially around this axis I.
  • the first and second air intake passages 24, 30 are air auger, that is to say, annular passages for printing a rotational movement (around the axis I) to the air that passes through them.
  • the compressed air passing through the intake passages 24 and 30 comes from the diffuser 17 of the turbojet engine (see FIG. Fig. 1 ).
  • the first and second injectors 22 and 28 are respectively fueled by supply lines (or ramps) 32 and 38.
  • the second injector 28 is fed by a single line 38.
  • the second Injector 28 can be fed by several pipes connected at different points of the circumference of the injector 28.
  • the first and second injectors 22 and 28 may be powered with the same or different fuels.
  • a specific arrangement for the use of hydrogen can be made for the second injector 28.
  • the first injector 22 makes it possible to inject a first cloud of fuel 42 (see figure 3 ) at the center of the injection system 20, via an injection port 23 centered on the axis I.
  • the fuel cloud 42 is generally conical, centered on the axis I.
  • the second injector 28 is of annular shape and makes it possible to inject, via a circular injection slot 29 centered on the axis I, a second fuel cloud 48 (see FIG. figure 3 ).
  • This second fuel cloud 48 is of generally annular shape, substantially centered on the axis I, and surrounds the first cloud 42.
  • the fuel emitted by the injectors 22 and 28 is mixed with air, this air coming from the air intake passages 24 and 30.
  • These passages 24 and 30 are respectively located around the injectors 22 and 28, upstream of the injection port 23 and the injection slot 29.
  • the second injector 28 is also configured to print a rotational movement (about the axis I) to the fuel cloud 48.
  • the rotational movement of the air from the passage intake 30 can be in the same direction (co-rotating) or opposite direction (counter-rotating) to that of the fuel cloud 48.
  • the first air intake passage 24 is delimited between inner and outer 43 and generally annular walls, centered on the axis I.
  • the inner wall 43 envelops the first injector 22.
  • the outer wall 44 extends downstream by a diverging wall 45, that is to say a wall defining a generally frustoconical duct, or bowl 61, whose section increases in the direction of flow of the first mixture air / fuel (ie from upstream to downstream).
  • the air intake duct 26 is defined between the walls 44 and 45, on the one hand, and a wall 46, on the other hand, the wall 46 surrounding the ducts. walls 44 and 45. Radial structural arms 47 connect the walls 44 and 46 and keep them apart.
  • the injection system 20 has a recess 49 upstream of the duct 26 and the passage 24.
  • this recess is cylindrical, of external diameter substantially corresponding to that of the conduit 26. Only the supply duct 32 of the first injector 22 passes through this recess 49.
  • the air intake duct 26 comprises a first series of outlet orifices 62 passing through the divergent wall 45, at the downstream end of this wall, these orifices 62 being arranged in a circle around the first injector 22 (in downstream of it). It further comprises a second series of outlet orifices 63 passing through the diverging wall 45 upstream of said first series of orifices 62, these orifices 63 being arranged in a circle around the first injector (downstream thereof) .
  • the orifices 62 and 63 are regularly distributed around the first injector 22.
  • the second injector 28 is arranged around the wall 46.
  • the first injector 22, the air intake passage 24, the bowl 61, the conduit 26 and the second injector 28 are all joined within a first assembly 51 defined by an outer wall 50.
  • This wall 50 is connected at the downstream ends of the walls 45 and 46, so that it contributes to delimiting a housing for the second injector 28 with the wall 46, and to delimit the duct 26 with the walls 44, 45 and 46.
  • the first assembly 51 is surrounded by a second assembly 52.
  • These assemblies 51 and 52 are mounted one after the other on the bottom wall 16 of the combustion chamber 10: first, the assembly 52 is mounted on this bottom wall, inside the orifice 18, then the assembly 51 is mounted inside the assembly 52.
  • the second assembly 52 comprises two inner annular walls 53 and outer 54, mutually spaced and delimiting between them the second air intake passage 30.
  • the outer wall 54 and the inner wall 53 are flared upstream so as not to hinder the assembly of the assembly 51 on the assembly 52, this assembly being performed by the rear of the assembly 52 (ie from upstream to downstream).
  • the outer wall 54 extending downstream by a cylindrical wall 55, then by a diverging wall 56.
  • the cylindrical wall 55 forms with the outer wall 50 an annular channel 57 inside which is injected the cloud of fuel 48.
  • This channel 57 is located in the extension of the second air intake passage 30, downstream of that -this.
  • the diverging wall 56 (in the manner of the wall 45) forms a frustoconical duct flared downstream, or bowl 71.
  • This diverging wall 56 is traversed, at its downstream end, by a series of orifices 72 arranged in circle around the second injector 28, downstream thereof.
  • the term “idle” module denotes the assembly comprising the first fuel injector 22 and the first air intake passage 24, and by "full gas” module the assembly comprising the second fuel injector 28 and the second air intake passage 30. Note that these modules do not correspond with the sets 51 and 52 described above. It will also be noted that these modules are arranged coaxially around the injection axis I.
  • an "idle” circuit comprising the supply duct 32 and the first injector 22, this circuit opening at the center of the injection system via the injection orifice 23; and a “full-gas” circuit comprising the supply duct 38 and the second injector 28, this circuit opening at the periphery of the injection system, via the injection slot 29.
  • the regulation of the operation of the idle and full throttle modules and, in particular, the evolution of the distribution of the fuel between the two modules as a function of the operating speed of the turbojet, are defined so as to limit the emissions of toxic gases on the whole. engine operation.
  • both modules may be used.
  • the idle module operates alone. Beyond a scheme corresponding to a thrust 10 to 30% thrust full throttle, both modules operate with adequate fuel distribution to limit emissions of toxic gases.
  • the first injector 22 injects the first cloud of fuel 42.
  • the first air intake passage 26 generates a swirling air flow which takes up the injected fuel and helps to ensure the spraying and mixing.
  • An air film f2 with a gyratory component is generated by the second set of orifices 63 of the air intake duct 26.
  • This f2 air film serves to: protect the diverging wall 45 against the risks of coking; to control the vortex precession movements generated by the first air intake passage 24, this movement being the source of instability of combustion; to control the axial position of the recirculation zone of the idle module so as to eliminate the risk of "flashback", to control the heat transfer at the end of the injector 22 and thus reduce the risk of coking of the circuit of fuel to the nose of the injector 22, and improve the propagation of the flame of the idle module to the full throttle module, during the transition between idle and full throttle.
  • An air film f1 is generated by the first series of orifices 62 of the air intake duct 26.
  • This function of the air film f1 is: to control the radial expansion of the fuel cloud 42 from the first injector 22, and to isolate it from the air coming from the second air intake passage 30, which makes it possible to maintain a level of richness sufficient to limit the formation of CO / CHx at idle; and to dampen the instabilities of combustion between the two modules.
  • the orifices 62 of the first series may all be of identical size, or of variable size (by sector) in order to improve the compromise between the performances in idle speed which require to isolate the combustion zone of the first air mixture. fuel, and the operability that is favored by an intercommunication between the idle zone and the full gas zone to ensure the propagation of the flame.
  • the injection of the second fuel cloud 48 can be done via a circular slot 29, as in the example of the figures, or via a plurality of holes distributed in a circle around the first injector 22.
  • the cloud fuel 48 can be injected in a co- or contra-rotational manner with respect to the gyratory flow from the second air intake passage 30.
  • the axial-radial inclination of the second air intake passage 30 allows to deliver an air flow whose speed field promotes penetration and a homogeneous mixture of the fuel, which allows for the second air / fuel mixture in the channel 57.
  • the bowl 71 is attached to the chamber bottom 16 and is crossed, upstream of the series of orifices 72, by one or more other series of orifices (not shown) which make it possible to take back the trickling fuel in wall 54 and thus to improve the qualities of the mixture produced in the channel 57.
  • the air film f3, resulting from the series of orifices 72, makes it possible to control the radial expansion of the second air / fuel mixture, which makes it possible to limit the interactions with the walls of the combustion chamber, detrimental to its behavior. thermal.
  • the orifices 72 may all be of identical size or of variable size (by sector) to ensure both a control of the expansion of the second air / fuel mixture towards the walls of the chamber and to promote the propagation of the flame between adjacent full-gas modules, especially during an ignition phase.
  • the scheme of the figure 4 represents the different flow zones generated by the injection system of the Figures 1 to 3 .
  • the idle module generates a recirculation zone A located around the injection axis I.
  • the characteristics of this recirculation zone are determined by the size of the bowl. 61 and the air flow of the idle module. They will determine the performance of the chamber in terms of re-ignition, stability and idling.
  • the second air intake passage 30 which belongs to the full-gas module, generates a direct swirling flow in the flow zone B, isolated from the recirculation zone A by the air film f1 from the first series of outlet orifices 62 of the air supply duct 26, this film of air f1 limiting the shear and therefore the mixing between the zones A and B.
  • the presence of the series of orifices 72 of the bowl 71 of the full-gas module avoids the interaction of the gases of the flow zone B with the walls of the combustion chamber 10.
  • the full-gas module generates a recirculation zone C located on either side of each injection system 20, and between the injection systems, at the bottom of the chamber.
  • the full-gas module has a wide range of stability allowing a significant adjustment latitude with respect to the transition from idling to full throttle. It should be noted that the slow-moving and full-throttle flows mix in the downstream part of the combustion chamber, in the zone marked D.
  • the idle module and the full-throttle module are carbureted, the fuel distribution being chosen so as to achieve a lean combustion, thus low NOx and smoke production on both modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

L'invention concerne un système d'injection de carburant dans une chambre de combustion de turbomachine, et une chambre de combustion de turbomachine équipée d'un tel système. L'invention se destine à tout type de turbomachine, terrestre ou aéronautique, et plus particulièrement aux turboréacteurs d'avions.The invention relates to a fuel injection system in a turbomachine combustion chamber, and a turbomachine combustion chamber equipped with such a system. The invention is intended for any type of turbomachine, terrestrial or aeronautical, and more particularly to aircraft turbojets.

Une chambre de combustion de turboréacteur est généralement de forme annulaire, centrée sur un axe X correspondant à l'axe de rotation du turboréacteur. Elle comprend deux parois annulaires (ou viroles) coaxiales d'axe X, et un fond de chambre disposé entre lesdites parois, dans la région amont de ladite chambre, l'amont et l'aval étant définis par rapport au sens normal de circulation des gaz à l'intérieur de la chambre. Lesdites parois et le fond de chambre délimitent l'enceinte de combustion de la chambre.A turbojet combustion chamber is generally annular in shape, centered on an axis X corresponding to the axis of rotation of the turbojet engine. It comprises two coaxial annular walls (or ferrules) of X axis, and a chamber bottom disposed between said walls, in the upstream region of said chamber, the upstream and the downstream being defined with respect to the normal direction of circulation of the gas inside the room. Said walls and the chamber bottom define the combustion chamber of the chamber.

Une pluralité de systèmes d'injection de carburant dans la chambre sont fixés sur le fond de chambre et répartis régulièrement autour de l'axe X. Les systèmes d'injection les plus courants comprennent un seul injecteur de carburant. La conception (i.e. la forme, la structure, le choix des matériaux...) des chambres de combustion équipées de systèmes à un seul injecteur est aujourd'hui parfaitement maîtrisée et on parle ci-après de chambres de conception classique.A plurality of fuel injection systems in the chamber are attached to the chamber bottom and evenly distributed about the X axis. The most common injection systems include a single fuel injector. The design (i.e. shape, structure, choice of materials ...) of combustion chambers equipped with single injector systems is now perfectly mastered and hereinafter referred to as conventional design chambers.

Dans les chambres de conception classique, chaque système d'injection est fixé et positionné à l'intérieur d'un seul orifice prévu à cet effet dans le fond de chambre, de sorte que le montage du système d'injection est relativement simple. En outre, pendant la combustion, le profil des températures en sortie de chambre reste centré sur un cercle de diamètre déterminé autour de l'axe X, quel que soit le régime de fonctionnement du turboréacteur. Un tel profil de températures simplifie la conception des parties du turboréacteur situées en aval de la chambre.In conventionally designed chambers, each injection system is fixed and positioned within a single hole provided for this purpose in the chamber bottom, so that the assembly of the injection system is relatively simple. In addition, during combustion, the temperature profile at the chamber outlet remains centered on a circle of determined diameter around the X axis, regardless of the operating speed of the turbojet engine. Such a temperature profile simplifies the design of the turbojet parts located downstream of the chamber.

Cependant, avec les systèmes d'injection à un seul injecteur, il est difficile de contrôler la richesse du mélange air/carburant brûlé, en fonction du régime de fonctionnement du turboréacteur, i.e. régime ralenti ou plein gaz. Ainsi, pour certains régimes, la combustion s'accompagne d'une émission de gaz polluants (notamment des oxydes d'azote ou "NOx"), dangereux pour la santé et l'environnement.However, with single injector injection systems, it is difficult to control the richness of the burned air / fuel mixture, depending on the operating speed of the turbojet, i.e. idle or full throttle. Thus, for some systems, the combustion is accompanied by an emission of gaseous pollutants (including nitrogen oxides or "NOx"), dangerous for health and the environment.

Dans un souci de limiter l'émission de gaz polluants, des systèmes d'injection de carburant à double injecteur ont été développés. Les deux injecteurs permettent de créer deux zones de combustion, une optimisée pour le régime ralenti du turboréacteur et l'autre pour le régime plein gaz.In order to limit the emission of gaseous pollutants, double injector fuel injection systems have been developed. The two injectors make it possible to create two combustion zones, one optimized for the idle speed of the turbojet and the other for the full throttle.

Le document FR 2 706 021 décrit une chambre de combustion annulaire de turboréacteur, équipée de plusieurs systèmes d'injection à double injecteur. La chambre est centrée sur un axe X et les systèmes d'injection sont répartis autour de l'axe X, chaque système comprenant deux injecteurs disposés l'un après l'autre suivant une direction radiale par rapport à l'axe X. Ainsi, pour une chambre équipée de N systèmes d'injection, une première rangée de N injecteurs est disposée suivant un cercle de diamètre d, autour de l'axe X, et une deuxième rangée de N injecteurs est disposée suivant un cercle de diamètre D, supérieur à d, autour de l'axe X.The document FR 2 706 021 describes an annular turbojet combustion chamber, equipped with several injection systems with double injector. The chamber is centered on an X axis and the injection systems are distributed around the X axis, each system comprising two injectors arranged one after the other in a radial direction with respect to the X axis. for a chamber equipped with N injection systems, a first row of N injectors is arranged in a circle of diameter d, about the axis X, and a second row of N injectors is arranged in a circle of diameter D, upper at d, around the X axis.

S'il présente l'avantage d'être peu polluant, le système d'injection à double injecteur de FR 2 706 021 , a pour inconvénient d'être difficile à monter puisqu'il faut positionner et fixer chaque injecteur sur le fond de chambre. En outre, la conception de la chambre de combustion est plus complexe et bien moins maîtrisée que la conception classique précitée (ce qui se traduit notamment par des difficultés à assurer la tenue thermique et la durée de vie de certains éléments de la chambre). Enfin, lors de la combustion, le profil des températures en sortie de chambre varie significativement en fonction du régime de fonctionnement du turboréacteur et, en particulier, ce profil ne reste pas centré sur un cercle de diamètre déterminé autour de l'axe X. Ceci complique la conception des parties du turboréacteur situées en aval de la chambre de combustion.If it has the advantage of being low pollutant, the injection system with double injector FR 2 706 021 has the disadvantage of being difficult to mount since it is necessary to position and fix each injector on the chamber bottom. In addition, the design of the combustion chamber is more complex and much less controlled than the aforementioned conventional design (which results in particular in difficulties to ensure the thermal resistance and the life of some elements of the chamber). Finally, during combustion, the temperature profile at the chamber outlet varies significantly as a function of the turbojet engine operating speed and, in particular, this profile does not remain centered on a circle of determined diameter around the X axis. complicates the design of the turbojet parts located downstream of the combustion chamber.

L'invention a pour but de proposer un système d'injection de carburant peu polluant qui puisse être utilisé avec une chambre de combustion de conception classique, c'est-à-dire une chambre du type de celles qui sont équipées de systèmes d'injection à un seul injecteur.The object of the invention is to propose a fuel injection system which is not very polluting and which can be used with a combustion chamber of conventional design, that is to say a chamber of the type that is equipped with combustion systems. injection to a single injector.

Ce but est atteint grâce à un système d'injection de carburant dans une chambre de combustion de turbomachine, comprenant :

  • des premier et deuxième injecteurs de carburant, le premier injecteur étant positionné au centre du système d'injection, de manière à injecter un premier nuage de carburant, et le deuxième injecteur entourant le premier injecteur de manière à injecter un deuxième nuage de carburant de forme générale annulaire, autour du premier nuage de carburant; et
  • des premier et deuxième passages d'admission d'air associés respectivement aux premier et deuxième injecteurs, de manière à former, respectivement, des premier et deuxième mélanges air/carburant.
Un tel système d'injection est décrit dans EP 1 193 450 A1 . Le système d'injection selon l'invention comprend, en outre, un conduit d'admission d'air avec des orifices de sortie débouchant entre les premier et deuxième injecteurs, de manière à créer un film d'air séparateur entre les zones de combustion respectives des premier et deuxième mélanges air/carburant.This object is achieved by means of a fuel injection system in a turbomachine combustion chamber, comprising:
  • first and second fuel injectors, the first injector being positioned in the center of the injection system, so as to inject a first cloud of fuel, and the second injector surrounding the first injector so as to inject a second form of fuel cloud general ring around the first cloud of fuel; and
  • first and second air intake passages respectively associated with the first and second injectors, so as to form, respectively, first and second air / fuel mixtures.
Such an injection system is described in EP 1 193 450 A1 . The injection system according to the invention further comprises an air intake duct with outlet openings opening between the first and second injectors, so as to create a separating air film between the combustion zones. respective first and second air / fuel mixtures.

Le système d'injection de l'invention comprend donc deux injecteurs, ce qui permet d'adapter la richesse du mélange air/carburant au régime de fonctionnement du turboréacteur et de limiter l'émission de gaz polluants.The injection system of the invention therefore comprises two injectors, which makes it possible to adapt the richness of the air / fuel mixture to the operating speed of the turbojet engine and to limit the emission of pollutant gases.

En outre, du fait du positionnement du deuxième injecteur autour du premier, ce type de système peut être adapté sur une chambre de conception classique avec, notamment, un seul orifice ménagé dans le fond de chambre pour chaque système d'injection.In addition, because of the positioning of the second injector around the first, this type of system can be adapted to a conventional design chamber with, in particular, a single orifice in the chamber bottom for each injection system.

Selon un premier exemple de réalisation du deuxième injecteur, celui-ci présente une fente d'injection circulaire entourant le premier injecteur et, selon un deuxième exemple de réalisation, celui-ci présente plusieurs orifices d'injection disposés en cercle autour du premier injecteur.According to a first embodiment of the second injector, it has a circular injection slot surrounding the first injector and, according to a second embodiment, it has a plurality of injection orifices arranged in a circle around the first injector.

Selon un mode de réalisation particulier, le premier injecteur, le premier passage d'admission d'air et le deuxième injecteur appartiennent à un premier ensemble destiné à être monté sur un deuxième ensemble comprenant le deuxième passage d'admission d'air, ce deuxième ensemble étant destinée à être monté sur la chambre de combustion.According to a particular embodiment, the first injector, the first air intake passage and the second injector belong to a first assembly intended to be mounted on a second assembly comprising the second air intake passage, the second assembly being intended to be mounted on the combustion chamber.

Grâce à un tel système, on peut d'abord positionner et monter le deuxième ensemble sur le fond de chambre, sans être gêné par les injecteurs, puis monter le premier ensemble sur le deuxième. Le deuxième ensemble sert alors de guide pour le montage du premier.With such a system, one can first position and mount the second set on the chamber floor, without being bothered by the injectors, then mount the first set on the second. The second set then serves as a guide for mounting the first.

On notera que la position relative des premier et deuxième injecteurs est généralement imposée par la conformation du premier ensemble et n'a donc pas à être ajustée lors du montage.Note that the relative position of the first and second injectors is generally imposed by the conformation of the first set and therefore does not have to be adjusted during assembly.

Selon un mode de réalisation particulier, le deuxième ensemble est monté sur le fond de chambre en conservant une possibilité de déplacement radial autour de l'axe d'injection I du premier injecteur, et peut se déplacer suivant cet axe par rapport au premier ensemble, tout en restant centré vis-à-vis de ce dernier.According to a particular embodiment, the second assembly is mounted on the chamber bottom while maintaining a possibility of radial displacement around the injection axis I of the first injector, and can move along this axis relative to the first set, while remaining centered vis-à-vis the latter.

L'invention et ses avantages seront bien compris à la lecture de la description détaillée qui suit, d'un exemple de système d'injection selon l'invention. Cette description fait référence aux figures annexées, sur lesquelles :

  • la figure 1 représente un exemple de chambre de combustion équipée d'un exemple de système d'injection selon l'invention, en demi-coupe axiale suivant l'axe de rotation du turboréacteur;
  • la figure 2 représente le système d'injection de la figure 1, seul, en perspective et en coupe axiale suivant l'axe d'injection du premier injecteur;
  • la figure 3 représente le système d'injection de la figure 1, seul, en coupe axiale suivant l'axe d'injection du premier injecteur;
  • la figure 4 est une vue de détail, en demi-coupe axiale suivant l'axe d'injection du premier injecteur, du système d'injection et d'une partie de la chambre de combustion de la figure 1. Sur cette figure sont représentées les zones d'écoulements des différents fluides traversant le système d'injection.
The invention and its advantages will be clearly understood on reading the following detailed description of an example of an injection system according to the invention. This description refers to the appended figures, in which:
  • the figure 1 represents an example of a combustion chamber equipped with an example of an injection system according to the invention, in axial half section along the axis of rotation of the turbojet engine;
  • the figure 2 represents the injection system of the figure 1 , alone, in perspective and in axial section along the injection axis of the first injector;
  • the figure 3 represents the injection system of the figure 1 , alone, in axial section along the injection axis of the first injector;
  • the figure 4 is a detail view, in axial half-section along the injection axis of the first injector, the injection system and a part of the combustion chamber of the figure 1 . This figure shows the flow zones of the different fluids passing through the injection system.

L'exemple de chambre de combustion 10 de la figure 1 est représenté dans son environnement, à l'intérieur d'un turboréacteur. Cette chambre 10 est annulaire, centrée sur l'axe X qui est aussi l'axe de rotation du turboréacteur. Cette chambre de combustion est dite axiale, car elle est orientée sensiblement suivant l'axe X.The example of combustion chamber 10 of the figure 1 is represented in its environment, inside a turbojet engine. This chamber 10 is annular, centered on the axis X which is also the axis of rotation of the turbojet engine. This combustion chamber is called axial because it is oriented substantially along the X axis.

L'invention pourrait s'appliquer à d'autres types de turbomachines et à d'autres types de chambres, notamment aux chambres de combustion dites radiales à retour, c'est-à-dire des chambres de combustion coudées dont une portion est orientée sensiblement radialement par rapport à l'axe de rotation du turboréacteur.The invention could be applied to other types of turbomachines and other types of chambers, in particular so-called radial return combustion chambers, that is to say combustion chambers bent a portion of which is oriented substantially radially relative to the axis of rotation of the turbojet engine.

La chambre de combustion 10 comprend deux parois annulaires (ou viroles) internes 12 et externes 14. Ces parois 12, 14 sont mutuellement écartées et positionnées coaxialement autour de l'axe X. Ces parois 12, 14 sont reliées entre elles par un fond de chambre 16 disposé entre celles-ci, dans la région amont de la chambre 10. Les parois 12, 14 et le fond 16 délimitent entre eux, l'enceinte de combustion de la chambre 10.The combustion chamber 10 comprises two internal and external 12 annular walls (or ferrules). These walls 12, 14 are spaced apart and positioned coaxially around the axis X. These walls 12, 14 are interconnected by a bottom of chamber 16 disposed between them, in the upstream region of the chamber 10. The walls 12, 14 and the bottom 16 delimit between them, the combustion chamber of the chamber 10.

Le fond de chambre 16 présente une pluralité d'ouvertures 18 réparties régulièrement autour de l'axe de rotation X. La chambre 10 comprend également des déflecteurs 19 montés sur le fond de chambre 16, à la périphérie des ouvertures 18, de manière à protéger le fond 16 des hautes températures atteintes lors de la combustion.The chamber bottom 16 has a plurality of openings 18 evenly distributed around the axis of rotation X. The chamber 10 also comprises baffles 19 mounted on the chamber bottom 16, at the periphery of the openings 18, so as to protect the bottom 16 of the high temperatures reached during the combustion.

A l'intérieur de chaque ouverture 18 est monté un système d'injection de carburant 20 selon l'invention. Ce système 20 est représenté en détail sur les figures 2 et 3.Inside each opening 18 is mounted a fuel injection system 20 according to the invention. This system 20 is shown in detail on the figures 2 and 3 .

On notera que la chambre de combustion 10 est de conception classique, c'est-à-dire que sa forme générale, sa structure, etc. sont comparables à celles d'une chambre de combustion équipée de systèmes d'injection à un seul injecteur. Bien entendu, la chambre de combustion 10 a été conçue en tenant compte des particularités des systèmes d'injection 20 et, notamment, les orifices 18 sont de taille adaptée à celle des systèmes d'injection 20 (de diamètre plus grand que celui des systèmes d'injection classiques 20).It will be noted that the combustion chamber 10 is of conventional design, that is to say that its general shape, its structure, etc. are comparable to those of a combustion chamber equipped with injection systems with a single injector. Of course, the combustion chamber 10 has been designed taking into account the particularities of the injection systems 20 and, in particular, the orifices 18 are of a size adapted to that of the injection systems 20 (larger in diameter than the systems conventional injection systems 20).

Chaque système d'injection 20 comprend, en son centre, un premier injecteur 22 de carburant (également appelé injecteur pilote) permettant d'injecter du carburant suivant un axe d'injection I. Le système d'injection 20 comprend, autour du premier injecteur 22 et dans cet ordre : un premier passage d'admission d'air 24, un conduit d'admission d'air 26, un deuxième injecteur de carburant 28, et un deuxième passage d'admission d'air 30.Each injection system 20 comprises, in its center, a first fuel injector 22 (also called pilot injector) for injecting fuel along an injection axis I. The injection system 20 comprises, around the first injector 22 and in this order: a first air intake passage 24, an air intake duct 26, a second fuel injector 28, and a second air intake passage 30.

Le système d'injection 20 présente une sensible symétrie de révolution autour de l'axe I, les éléments le constituant étant de forme générale annulaire, et répartis coaxialement autour de cet axe I.The injection system 20 has a substantial symmetry of revolution about the axis I, the elements constituting it being of generally annular shape, and distributed coaxially around this axis I.

Dans l'exemple, les premier et deuxième passages d'admission d'air 24, 30, sont des vrilles d'air, c'est-à-dire des passages annulaires permettant d'imprimer un mouvement de rotation (autour de l'axe I) à l'air qui les traverse. L'air comprimé traversant les passages d'admission 24 et 30 provient du diffuseur 17 du turboréacteur (voir fig. 1).In the example, the first and second air intake passages 24, 30 are air auger, that is to say, annular passages for printing a rotational movement (around the axis I) to the air that passes through them. The compressed air passing through the intake passages 24 and 30 comes from the diffuser 17 of the turbojet engine (see FIG. Fig. 1 ).

Les premier et deuxième injecteurs 22 et 28 sont respectivement alimentés en carburant par des conduites (ou rampes) d'alimentation 32 et 38. Dans l'exemple, le deuxième injecteur 28 est alimenté par une seule conduite de 38. Alternativement, le deuxième injecteur 28 peut être alimenté par plusieurs conduites connectées en différents points de la circonférence de l'injecteur 28.The first and second injectors 22 and 28 are respectively fueled by supply lines (or ramps) 32 and 38. In the example, the second injector 28 is fed by a single line 38. Alternatively, the second Injector 28 can be fed by several pipes connected at different points of the circumference of the injector 28.

Les premier et deuxième injecteurs 22 et 28 peuvent être alimentés avec des carburants identiques ou différents. En particulier, un arrangement spécifique à l'utilisation d'hydrogène peut être réalisé pour le deuxième injecteur 28.The first and second injectors 22 and 28 may be powered with the same or different fuels. In particular, a specific arrangement for the use of hydrogen can be made for the second injector 28.

Le premier injecteur 22 permet d'injecter un premier nuage de carburant 42 (voir figure 3) au centre du système d'injection 20, via un orifice d'injection 23 centré sur l'axe I. Le nuage de carburant 42 est de forme générale conique, centrée sur l'axe I.The first injector 22 makes it possible to inject a first cloud of fuel 42 (see figure 3 ) at the center of the injection system 20, via an injection port 23 centered on the axis I. The fuel cloud 42 is generally conical, centered on the axis I.

Le deuxième injecteur 28 est de forme annulaire et permet d'injecter, via une fente d'injection circulaire 29 centrée sur l'axe I, un deuxième nuage de carburant 48 (voir figure 3). Ce deuxième nuage de carburant 48 est de forme générale annulaire, sensiblement centrée sur l'axe I, et entoure le premier nuage 42.The second injector 28 is of annular shape and makes it possible to inject, via a circular injection slot 29 centered on the axis I, a second fuel cloud 48 (see FIG. figure 3 ). This second fuel cloud 48 is of generally annular shape, substantially centered on the axis I, and surrounds the first cloud 42.

Le carburant émis par les injecteurs 22 et 28 est mélangé à de l'air, cet air provenant des passages d'admission d'air 24 et 30. Ces passages 24 et 30 sont respectivement situés autour des injecteurs 22 et 28, en amont de l'orifice d'injection 23 et de la fente d'injection 29.The fuel emitted by the injectors 22 and 28 is mixed with air, this air coming from the air intake passages 24 and 30. These passages 24 and 30 are respectively located around the injectors 22 and 28, upstream of the injection port 23 and the injection slot 29.

Selon un exemple de réalisation, le deuxième injecteur 28 est également configuré de manière à imprimer un mouvement de rotation (autour de l'axe I) au nuage de carburant 48. Dans ce cas, le mouvement de rotation de l'air provenant du passage d'admission 30 peut être de même sens (co-rotatif) ou de sens opposé (contra-rotatif) à celui du nuage de carburant 48.According to an exemplary embodiment, the second injector 28 is also configured to print a rotational movement (about the axis I) to the fuel cloud 48. In this case, the rotational movement of the air from the passage intake 30 can be in the same direction (co-rotating) or opposite direction (counter-rotating) to that of the fuel cloud 48.

Le premier passage d'admission d'air 24 est délimité entre des parois intérieure 43 et extérieure 44, de forme générale annulaire, centrées sur l'axe I.The first air intake passage 24 is delimited between inner and outer 43 and generally annular walls, centered on the axis I.

La paroi intérieure 43 enveloppe le premier injecteur 22.The inner wall 43 envelops the first injector 22.

La paroi extérieure 44 se prolonge vers l'aval par une paroi divergente 45, c'est-à-dire une paroi définissant un conduit de forme générale tronconique, ou bol 61, dont la section augmente dans le sens d'écoulement du premier mélange air/carburant (i.e. de l'amont vers l'aval).The outer wall 44 extends downstream by a diverging wall 45, that is to say a wall defining a generally frustoconical duct, or bowl 61, whose section increases in the direction of flow of the first mixture air / fuel (ie from upstream to downstream).

Le conduit d'admission d'air 26 est défini entre les parois 44 et 45, d'une part, et une paroi 46, d'autre part, la paroi 46 entourant les parois 44 et 45. Des bras structuraux radiaux 47 relient les parois 44 et 46 et les maintiennent mutuellement écartées. Pour que le conduit d'admission d'air 26 et le premier passage d'admission d'air 24 soient bien alimentés en air, le système d'injection 20 présente un évidement 49 en amont du conduit 26 et du passage 24. Dans l'exemple, cet évidement est cylindrique, de diamètre extérieur correspondant sensiblement à celui du conduit 26. Seul le conduit d'alimentation 32 du premier injecteur 22 traverse cet évidement 49.The air intake duct 26 is defined between the walls 44 and 45, on the one hand, and a wall 46, on the other hand, the wall 46 surrounding the ducts. walls 44 and 45. Radial structural arms 47 connect the walls 44 and 46 and keep them apart. In order for the air intake duct 26 and the first air intake passage 24 to be well supplied with air, the injection system 20 has a recess 49 upstream of the duct 26 and the passage 24. For example, this recess is cylindrical, of external diameter substantially corresponding to that of the conduit 26. Only the supply duct 32 of the first injector 22 passes through this recess 49.

Le conduit d'admission d'air 26 comprend une première série d'orifices 62 de sortie traversant la paroi divergente 45, au niveau de l'extrémité aval de cette paroi, ces orifices 62 étant disposés en cercle autour du premier injecteur 22 (en aval de celui-ci). Il comprend, en outre, une deuxième série d'orifices 63 de sortie traversant la paroi divergente 45 en amont de ladite première série d'orifices 62, ces orifices 63 étant disposés en cercle autour du premier injecteur (en aval de celui-ci). Avantageusement, les orifices 62 et 63 sont régulièrement répartis autour du premier injecteur 22.The air intake duct 26 comprises a first series of outlet orifices 62 passing through the divergent wall 45, at the downstream end of this wall, these orifices 62 being arranged in a circle around the first injector 22 (in downstream of it). It further comprises a second series of outlet orifices 63 passing through the diverging wall 45 upstream of said first series of orifices 62, these orifices 63 being arranged in a circle around the first injector (downstream thereof) . Advantageously, the orifices 62 and 63 are regularly distributed around the first injector 22.

Le deuxième injecteur 28 est disposé autour de la paroi 46.The second injector 28 is arranged around the wall 46.

Le premier injecteur 22, le passage d'admission d'air 24, le bol 61, le conduit 26 et le deuxième injecteur 28 sont tous réunis au sein d'un premier ensemble 51 délimité par une paroi extérieure 50. Cette paroi 50 est reliée aux extrémités aval des parois 45 et 46, de sorte qu'elle contribue à délimiter un logement pour le deuxième injecteur 28 avec la paroi 46, et à délimiter le conduit 26 avec les parois 44, 45 et 46.The first injector 22, the air intake passage 24, the bowl 61, the conduit 26 and the second injector 28 are all joined within a first assembly 51 defined by an outer wall 50. This wall 50 is connected at the downstream ends of the walls 45 and 46, so that it contributes to delimiting a housing for the second injector 28 with the wall 46, and to delimit the duct 26 with the walls 44, 45 and 46.

Le premier ensemble 51 est entouré par un deuxième ensemble 52. Ces ensembles 51 et 52 sont montés l'un après l'autre sur la paroi de fond 16 de la chambre de combustion 10 : d'abord on monte l'ensemble 52 sur cette paroi de fond, à l'intérieure de l'orifice 18, puis on monte l'ensemble 51 à l'intérieur de l'ensemble 52.The first assembly 51 is surrounded by a second assembly 52. These assemblies 51 and 52 are mounted one after the other on the bottom wall 16 of the combustion chamber 10: first, the assembly 52 is mounted on this bottom wall, inside the orifice 18, then the assembly 51 is mounted inside the assembly 52.

Le deuxième ensemble 52 comprend deux parois annulaires intérieure 53 et extérieure 54, mutuellement écartées et délimitant entre elles le deuxième passage d'admission d'air 30. La paroi extérieure 54 et la paroi intérieure 53 sont évasées vers l'amont afin de ne pas gêner le montage de l'ensemble 51 sur l'ensemble 52, ce montage s'effectuant par l'arrière de l'ensemble 52 (i.e. de l'amont vers l'aval).The second assembly 52 comprises two inner annular walls 53 and outer 54, mutually spaced and delimiting between them the second air intake passage 30. The outer wall 54 and the inner wall 53 are flared upstream so as not to hinder the assembly of the assembly 51 on the assembly 52, this assembly being performed by the rear of the assembly 52 (ie from upstream to downstream).

La paroi extérieure 54 se prolongeant vers l'aval par une paroi cylindrique 55, puis par une paroi divergente 56.The outer wall 54 extending downstream by a cylindrical wall 55, then by a diverging wall 56.

La paroi cylindrique 55 forme avec la paroi extérieure 50 un canal annulaire 57 à l'intérieur duquel est injecté le nuage de carburant 48. Ce canal 57 se situe dans le prolongement du deuxième passage d'admission d'air 30, en aval de celui-ci.The cylindrical wall 55 forms with the outer wall 50 an annular channel 57 inside which is injected the cloud of fuel 48. This channel 57 is located in the extension of the second air intake passage 30, downstream of that -this.

La paroi divergente 56 (à la manière de la paroi 45) forme un conduit tronconique évasé vers l'aval, ou bol 71. Cette paroi divergente 56 est traversée, au niveau de son extrémité aval, par une série d'orifices 72 disposés en cercle autour du deuxième injecteur 28, en aval de celui-ci.The diverging wall 56 (in the manner of the wall 45) forms a frustoconical duct flared downstream, or bowl 71. This diverging wall 56 is traversed, at its downstream end, by a series of orifices 72 arranged in circle around the second injector 28, downstream thereof.

La structure du système d'injection 20 de la figure 1 étant bien comprise, on va maintenant s'intéresser aux fonctions et avantages d'un tel système.The structure of the injection system 20 of the figure 1 being well understood, we will now be interested in the functions and advantages of such a system.

Ci-après, on désigne par module "ralenti", ou module pilote, l'ensemble comprenant le premier injecteur de carburant 22 et le premier passage d'admission d'air 24, et par module "plein gaz" l'ensemble comprenant le deuxième injecteur de carburant 28 et le deuxième passage d'admission d'air 30. On notera que ces modules ne correspondent pas avec les ensembles 51 et 52 précédemment décrits. On notera également que ces modules sont disposés coaxialement autour de l'axe d'injection I.Hereinafter, the term "idle" module, or pilot module, denotes the assembly comprising the first fuel injector 22 and the first air intake passage 24, and by "full gas" module the assembly comprising the second fuel injector 28 and the second air intake passage 30. Note that these modules do not correspond with the sets 51 and 52 described above. It will also be noted that these modules are arranged coaxially around the injection axis I.

De la même manière, on définit deux circuits de carburant : un circuit "ralenti" comprenant le conduit d'alimentation 32 et le premier injecteur 22, ce circuit débouchant au centre du système d'injection via l'orifice d'injection 23; et un circuit "plein gaz" comprenant le conduit d'alimentation 38 et le deuxième injecteur 28, ce circuit débouchant en périphérie du système d'injection, via la fente d'injection 29.In the same way, two fuel circuits are defined: an "idle" circuit comprising the supply duct 32 and the first injector 22, this circuit opening at the center of the injection system via the injection orifice 23; and a "full-gas" circuit comprising the supply duct 38 and the second injector 28, this circuit opening at the periphery of the injection system, via the injection slot 29.

La régulation du fonctionnement des modules ralenti et plein gaz et, notamment, l'évolution de la répartition du carburant entre les deux modules en fonction du régime de fonctionnement du turboréacteur, sont définies de manière à limiter les émissions de gaz toxiques sur l'ensemble de fonctionnement du moteur.The regulation of the operation of the idle and full throttle modules and, in particular, the evolution of the distribution of the fuel between the two modules as a function of the operating speed of the turbojet, are defined so as to limit the emissions of toxic gases on the whole. engine operation.

Lors du démarrage ou du redémarrage du moteur (i.e. phases d'allumage et de propagation de la flamme) les deux modules peuvent être utilisés.When starting or restarting the engine (i.e. ignition and flame propagation phases) both modules may be used.

Durant la phase d'enroulement et aux faibles régimes, le module ralenti fonctionne seul. Au-delà d'un régime correspondant à une poussée de 10 à 30 % de la poussée plein gaz, les deux modules fonctionnent avec une répartition de carburant adéquate pour limiter les émissions de gaz toxiques.During the winding phase and at low speeds, the idle module operates alone. Beyond a scheme corresponding to a thrust 10 to 30% thrust full throttle, both modules operate with adequate fuel distribution to limit emissions of toxic gases.

En référence à la figure 3, on va maintenant s'intéresser aux écoulements d'air et de carburant traversant le module ralenti.With reference to the figure 3 we will now focus on air and fuel flows through the idle module.

Le premier injecteur 22 injecte le premier nuage de carburant 42. Le premier passage d'admission d'air 26 génère un écoulement d'air tourbillonnant qui reprend le carburant injecté et contribue à en assurer la pulvérisation et le mélange.The first injector 22 injects the first cloud of fuel 42. The first air intake passage 26 generates a swirling air flow which takes up the injected fuel and helps to ensure the spraying and mixing.

Un film d'air f2 doté d'une composante giratoire, est généré par la deuxième série d'orifices 63 du conduit d'admission d'air 26. Ce film d'air f2 a pour fonctions : de protéger la paroi divergente 45 contre les risques de cokéfaction ; de contrôler les mouvements de précession du vortex généré par le premier passage d'admission d'air 24, ce mouvement pouvant être l'origine d'instabilité de combustion ; de piloter la position axiale de la zone de recirculation du module ralenti de manière à supprimer le risque de "flash-back", à contrôler le transfert thermique à l'extrémité de l'injecteur 22 et ainsi réduire les risques de cokéfaction du circuit de carburant au nez de l'injecteur 22, et améliorer la propagation de la flamme du module ralenti vers le module plein gaz, lors de la transition entre un régime ralenti et un régime plein gaz.An air film f2 with a gyratory component is generated by the second set of orifices 63 of the air intake duct 26. This f2 air film serves to: protect the diverging wall 45 against the risks of coking; to control the vortex precession movements generated by the first air intake passage 24, this movement being the source of instability of combustion; to control the axial position of the recirculation zone of the idle module so as to eliminate the risk of "flashback", to control the heat transfer at the end of the injector 22 and thus reduce the risk of coking of the circuit of fuel to the nose of the injector 22, and improve the propagation of the flame of the idle module to the full throttle module, during the transition between idle and full throttle.

Un film d'air f1 est généré par la première série d'orifices 62 du conduit d'admission d'air 26. Ce film d'air f1 a pour fonctions : de piloter l'expansion radiale du nuage de carburant 42 issue du premier injecteur 22, et de l'isoler de l'air venant du deuxième passage d'admission d'air 30, ce qui permet de maintenir un niveau de richesse suffisant pour limiter la formation de CO/CHx au ralenti ; et d'amortir les instabilités de combustion entre les deux modules. On notera que les orifices 62 de la première série peuvent être tous de taille identique, ou de taille variable (par secteur) afin d'améliorer le compromis entre les performances en régime ralenti qui nécessitent d'isoler la zone de combustion du premier mélange air/carburant, et l'opérabilité qui est favorisée par une intercommunication entre la zone ralenti et la zone plein gaz afin d'assurer la propagation de la flamme.An air film f1 is generated by the first series of orifices 62 of the air intake duct 26. This function of the air film f1 is: to control the radial expansion of the fuel cloud 42 from the first injector 22, and to isolate it from the air coming from the second air intake passage 30, which makes it possible to maintain a level of richness sufficient to limit the formation of CO / CHx at idle; and to dampen the instabilities of combustion between the two modules. It will be noted that the orifices 62 of the first series may all be of identical size, or of variable size (by sector) in order to improve the compromise between the performances in idle speed which require to isolate the combustion zone of the first air mixture. fuel, and the operability that is favored by an intercommunication between the idle zone and the full gas zone to ensure the propagation of the flame.

On notera que d'autres films d'air peuvent être générés par d'autres séries d'orifices et, notamment, par des séries d'orifices 73 et 74 ménagées au niveau de l'extrémité du conduit d'admission d'air 26 et représentées en pointillés sur la figure 3. Ces séries d'orifices 73 et 74 génèrent des films d'air de refroidissement et, notamment, le film d'air des orifices 73 permet de refroidir le rebord aval du bol 61.It should be noted that other air films can be generated by other series of orifices and, in particular, by series of orifices 73 and 74. arranged at the end of the air intake duct 26 and shown in dotted lines on the figure 3 . These series of orifices 73 and 74 generate cooling air films and, in particular, the air film of the orifices 73 makes it possible to cool the downstream rim of the bowl 61.

On va maintenant s'intéresser aux écoulements d'air et de carburant traversant le module plein gaz.We will now focus on air and fuel flows through the full gas module.

On rappelle que l'injection du deuxième nuage de carburant 48 peut se faire via une fente circulaire 29, comme dans l'exemple des figures, ou via une pluralité d'orifices répartis en cercle autour du premier injecteur 22. Par ailleurs, le nuage de carburant 48 peut être injecté de manière co- ou contra-rotative par rapport à l'écoulement giratoire issu du deuxième passage d'admission d'air 30. L'inclinaison axialo-radiale du deuxième passage d'admission d'air 30 permet de délivrer un écoulement d'air dont le champ de vitesse favorise la pénétration et un mélange homogène du carburant, ce qui permet de réaliser le deuxième mélange air/carburant dans le canal 57. Le bol 71 est attaché au fond de chambre 16 et est traversé, en amont de la série d'orifices 72, par une ou plusieurs autres séries d'orifices (non représentées) qui permettre de reprendre le carburant ruisselant en paroi 54 et d'améliorer ainsi les qualités du mélange réalisé dans le canal 57.It is recalled that the injection of the second fuel cloud 48 can be done via a circular slot 29, as in the example of the figures, or via a plurality of holes distributed in a circle around the first injector 22. Moreover, the cloud fuel 48 can be injected in a co- or contra-rotational manner with respect to the gyratory flow from the second air intake passage 30. The axial-radial inclination of the second air intake passage 30 allows to deliver an air flow whose speed field promotes penetration and a homogeneous mixture of the fuel, which allows for the second air / fuel mixture in the channel 57. The bowl 71 is attached to the chamber bottom 16 and is crossed, upstream of the series of orifices 72, by one or more other series of orifices (not shown) which make it possible to take back the trickling fuel in wall 54 and thus to improve the qualities of the mixture produced in the channel 57.

Le film d'air f3, issu de la série d'orifices 72, permet de contrôler l'expansion radiale du deuxième mélange air/carburant, ce qui permet de limiter les interactions avec les parois de la chambre de combustion, préjudiciables à sa tenue thermique. On notera que les orifices 72, peuvent être tous de tailles identiques, ou de tailles variables (par secteur) pour assurer à la fois un contrôle de l'expansion du deuxième mélange air/carburant vers les parois de la chambre et favoriser la propagation de la flamme entre des modules plein gaz voisins, notamment lors d'une phase d'allumage.The air film f3, resulting from the series of orifices 72, makes it possible to control the radial expansion of the second air / fuel mixture, which makes it possible to limit the interactions with the walls of the combustion chamber, detrimental to its behavior. thermal. It should be noted that the orifices 72 may all be of identical size or of variable size (by sector) to ensure both a control of the expansion of the second air / fuel mixture towards the walls of the chamber and to promote the propagation of the flame between adjacent full-gas modules, especially during an ignition phase.

Le schéma de la figure 4 représente les différentes zones d'écoulement générées par le système d'injection des figures 1 à 3. Ainsi, le module ralenti génère une zone de recirculation A localisée autour de l'axe d'injection I. Les caractéristiques de cette zone de recirculation (volume, temps de séjour moyen de l'écoulement, richesse) sont déterminées par la taille du bol 61 et le débit d'air du module ralenti. Elles vont déterminer les performances de la chambre en terme de rallumage, de stabilité et d'émission au ralenti.The scheme of the figure 4 represents the different flow zones generated by the injection system of the Figures 1 to 3 . Thus, the idle module generates a recirculation zone A located around the injection axis I. The characteristics of this recirculation zone (volume, average residence time of the flow, richness) are determined by the size of the bowl. 61 and the air flow of the idle module. They will determine the performance of the chamber in terms of re-ignition, stability and idling.

Le deuxième passage d'admission d'air 30 qui appartient au module plein gaz, génère un écoulement tourbillonnant direct dans la zone d'écoulement B, isolé de la zone de recirculation A par le film d'air f1 issu de la première série d'orifices 62 de sortie du conduit d'alimentation d'air 26, ce film d'air f1 limitant le cisaillement et donc le mélange entre les zones A et B. Par ailleurs, la présence de la série d'orifices 72 du bol 71 du module plein gaz évite l'interaction des gaz de la zone d'écoulement B avec les parois de la chambre de combustion 10. Le module plein gaz génère une zone de recirculation C localisée de part et d'autre de chaque système d'injection 20, et entre les systèmes d'injection, en fond de chambre. Grâce à ces zones de recirculation C, le module plein gaz présente une large plage de stabilité autorisant une latitude de réglage importante en ce qui concerne la transition du régime ralenti au régime plein gaz. On notera que les écoulements ralentis et plein gaz se mélangent dans la partie aval de la chambre de combustion, dans la zone repérée D.The second air intake passage 30 which belongs to the full-gas module, generates a direct swirling flow in the flow zone B, isolated from the recirculation zone A by the air film f1 from the first series of outlet orifices 62 of the air supply duct 26, this film of air f1 limiting the shear and therefore the mixing between the zones A and B. Moreover, the presence of the series of orifices 72 of the bowl 71 of the full-gas module avoids the interaction of the gases of the flow zone B with the walls of the combustion chamber 10. The full-gas module generates a recirculation zone C located on either side of each injection system 20, and between the injection systems, at the bottom of the chamber. Thanks to these recirculation zones C, the full-gas module has a wide range of stability allowing a significant adjustment latitude with respect to the transition from idling to full throttle. It should be noted that the slow-moving and full-throttle flows mix in the downstream part of the combustion chamber, in the zone marked D.

En régime ralenti, seul le module ralenti, donc seule la zone de recirculation A, est carburée. Les contraintes de dimensionnement relatives à la stabilité du foyer pour un débit de carburant donné correspondant à la butée de décélération imposent, de fait, un fonctionnement de type combustion riche dès le régime ralenti dit OACI (7 % de poussée). La présence de la zone de mélange D juste en aval de la zone de recirculation A fait du foyer du système d'injection, un foyer de type "Rich burn quick Quench Lean" dit RQL. La production de NOx reste donc faible même pour des moteurs dont les caractéristiques thermodynamiques au ralenti sont suffisamment sévères pour conduire potentiellement à la formation d'une quantité significative de NOx (par exemple un turbopropulseur de type TP400).In idle mode, only the idle module, so only the recirculation zone A, is carbureted. The dimensioning constraints relating to the stability of the focus for a given fuel flow corresponding to the deceleration abutment, in fact, require a rich combustion type operation from the idle speed called ICAO (7% thrust). The presence of the mixing zone D just downstream of the recirculation zone A makes the focus of the injection system a focus of the type "Rich burn Quick Quench Lean" called RQL. The production of NOx therefore remains low even for engines whose thermodynamic characteristics at idle are sufficiently severe to potentially lead to the formation of a significant amount of NOx (for example a TP400 turboprop).

En fonctionnement plein gaz, le module ralenti et le module plein gaz sont carburés, la répartition de carburant étant choisie de manière à réaliser une combustion pauvre, donc faiblement productrice de NOx et de fumée sur les deux modules.In full-throttle operation, the idle module and the full-throttle module are carbureted, the fuel distribution being chosen so as to achieve a lean combustion, thus low NOx and smoke production on both modules.

Claims (12)

  1. A fuel injector system for injecting fuel into a turbomachine combustion chamber, the system comprising:
    first and second fuel injectors, the first injector (22) being positioned at the center of the injector system (20) so as to inject a first fuel spray (42), and the second injector (28) surrounding the first injector so as to inject a second fuel spray (48) of generally annular shape around the first fuel spray; and
    first and second air admission passages (24, 30) associated respectively with the first and second injectors (22, 28) in such a manner as to form respective first and second air/fuel mixtures,
    characterized in that it further comprises an air admission duct (22) with outlet orifices (62) opening out between the first and second injectors in such a manner as to create a separator air film (f1) between the respective combustion zones of the first and second air/fuel mixtures.
  2. A fuel injector system according to claim 1, wherein the second injector (28) presents a circular injection slot (29) surrounding the first injector.
  3. A fuel injector system according to claim 1, wherein the second injector presents a plurality of injection orifices disposed in a circle around the first injector.
  4. An injector system according to any one of claims 1 to 3, wherein the first injector (22), the first air admission passage (24), and the second injector (28) form part of a first assembly (51) designed to be mounted on a second assembly (52) comprising the second air admission passage (30), said second assembly (52) being designed to be mounted on said combustion chamber (10).
  5. An injector system according to any one of claims 1 to 4, comprising, around the first injector (22) and in this order: the first air admission passage (24), the air admission duct (26), the second injector (28), and the second air admission passage (30).
  6. An injector system according to any one of claims 1 to 5, wherein the first air admission passage (24) is defined between two annular walls, an inner wall (43), and an outer wall (44), the outer wall (44) being extended downstream by a diverging wall (45).
  7. An injector system according to claim 6, wherein said air admission duct (26) includes a first series of outlet orifices (62) passing through said diverging wall (45) near the downstream end thereof, said orifices being disposed in a circle around the first injector (22).
  8. An injector system according to claim 7, wherein said air admission duct (26) includes a second series of outlet orifices (63) passing through said diverging wall (45) upstream from said first series of outlet orifices (62), said orifices being disposed in a circle around the first injector (22).
  9. An injector system according to any one of claims 1 to 8, wherein the second air admission passage (30) is defined between two annular walls, an inner wall (53), and an outer wall (54), the outer wall (54) being extended downstream by a diverging wall (56), said diverging wall being pierced, near its downstream end, by a series of orifices (72) disposed in a circle around the second injector (28).
  10. A turbomachine combustion chamber fitted with an injector system (20) according to any one of the preceding claims.
  11. A combustion chamber according to claim 10, comprising inner and outer annular walls (12, 14) that are mutually spaced apart, a chamber end wall (16) disposed between said walls in the upstream region of said chamber, and an injector system (20) according to claim 4, said second assembly (52) being secured to the end wall (16) of the chamber.
  12. A turbomachine including a combustion chamber according to claim 10 or claim 11.
EP08150474.8A 2007-01-23 2008-01-22 Injection system with double injector Active EP1953455B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0752820A FR2911667B1 (en) 2007-01-23 2007-01-23 FUEL INJECTION SYSTEM WITH DOUBLE INJECTOR.

Publications (2)

Publication Number Publication Date
EP1953455A1 EP1953455A1 (en) 2008-08-06
EP1953455B1 true EP1953455B1 (en) 2015-01-21

Family

ID=38474204

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08150474.8A Active EP1953455B1 (en) 2007-01-23 2008-01-22 Injection system with double injector

Country Status (6)

Country Link
US (1) US7942003B2 (en)
EP (1) EP1953455B1 (en)
JP (1) JP5142202B2 (en)
CA (1) CA2619421C (en)
FR (1) FR2911667B1 (en)
RU (1) RU2468297C2 (en)

Families Citing this family (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7878000B2 (en) * 2005-12-20 2011-02-01 General Electric Company Pilot fuel injector for mixer assembly of a high pressure gas turbine engine
JP5023526B2 (en) * 2006-03-23 2012-09-12 株式会社Ihi Combustor burner and combustion method
GB0625016D0 (en) * 2006-12-15 2007-01-24 Rolls Royce Plc Fuel injector
JP4364911B2 (en) * 2007-02-15 2009-11-18 川崎重工業株式会社 Gas turbine engine combustor
US9464573B2 (en) 2007-09-25 2016-10-11 Airbus Sas Method for operating a gas turbine engine, power supplying device for conducting such method and aircraft using such method
GB2456147B (en) * 2008-01-03 2010-07-14 Rolls Royce Plc Fuel Injector Assembly for Gas Turbine Engines
MY153097A (en) 2008-03-28 2014-12-31 Exxonmobil Upstream Res Co Low emission power generation and hydrocarbon recovery systems and methods
AU2009228283B2 (en) 2008-03-28 2015-02-05 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
AU2009303735B2 (en) 2008-10-14 2014-06-26 Exxonmobil Upstream Research Company Methods and systems for controlling the products of combustion
US8281597B2 (en) * 2008-12-31 2012-10-09 General Electric Company Cooled flameholder swirl cup
US20100170253A1 (en) * 2009-01-07 2010-07-08 General Electric Company Method and apparatus for fuel injection in a turbine engine
FR2943119B1 (en) * 2009-03-12 2011-03-25 Snecma FUEL INJECTION SYSTEMS IN A TURBOMACHINE COMBUSTION CHAMBER
US20100300102A1 (en) * 2009-05-28 2010-12-02 General Electric Company Method and apparatus for air and fuel injection in a turbine
US20100307160A1 (en) * 2009-06-03 2010-12-09 Vinayak Barve Convex Pilot Cone
JP5896443B2 (en) * 2009-06-05 2016-03-30 国立研究開発法人宇宙航空研究開発機構 Fuel nozzle
CN102597418A (en) 2009-11-12 2012-07-18 埃克森美孚上游研究公司 Low emission power generation and hydrocarbon recovery systems and methods
FR2956897B1 (en) * 2010-02-26 2012-07-20 Snecma INJECTION SYSTEM FOR TURBOMACHINE COMBUSTION CHAMBER, COMPRISING AIR INJECTION MEANS ENHANCING THE AIR-FUEL MIXTURE
SG10201505280WA (en) 2010-07-02 2015-08-28 Exxonmobil Upstream Res Co Stoichiometric combustion of enriched air with exhaust gas recirculation
JP5759543B2 (en) 2010-07-02 2015-08-05 エクソンモービル アップストリーム リサーチ カンパニー Stoichiometric combustion with exhaust gas recirculation and direct contact coolers
CN102971508B (en) 2010-07-02 2016-06-01 埃克森美孚上游研究公司 CO2 piece-rate system and the method separating CO2
AU2011271633B2 (en) 2010-07-02 2015-06-11 Exxonmobil Upstream Research Company Low emission triple-cycle power generation systems and methods
US20120023951A1 (en) * 2010-07-29 2012-02-02 Nishant Govindbhai Parsania Fuel nozzle with air admission shroud
US8662408B2 (en) * 2010-08-11 2014-03-04 General Electric Company Annular injector assembly and methods of assembling the same
US9003804B2 (en) * 2010-11-24 2015-04-14 Delavan Inc Multipoint injectors with auxiliary stage
US8899048B2 (en) * 2010-11-24 2014-12-02 Delavan Inc. Low calorific value fuel combustion systems for gas turbine engines
JP5546432B2 (en) 2010-11-30 2014-07-09 株式会社日立製作所 Gas turbine combustor and fuel supply method
US20120151928A1 (en) * 2010-12-17 2012-06-21 Nayan Vinodbhai Patel Cooling flowpath dirt deflector in fuel nozzle
US8312724B2 (en) * 2011-01-26 2012-11-20 United Technologies Corporation Mixer assembly for a gas turbine engine having a pilot mixer with a corner flame stabilizing recirculation zone
US9920932B2 (en) 2011-01-26 2018-03-20 United Technologies Corporation Mixer assembly for a gas turbine engine
FR2971039B1 (en) * 2011-02-02 2013-01-11 Turbomeca GAS TURBINE FUEL COMBUSTION CHAMBER INJECTOR WITH DOUBLE FUEL CIRCUIT AND COMBUSTION CHAMBER EQUIPPED WITH AT LEAST ONE SUCH INJECTOR
US8925325B2 (en) 2011-03-18 2015-01-06 Delavan Inc. Recirculating product injection nozzle
TWI564474B (en) 2011-03-22 2017-01-01 艾克頌美孚上游研究公司 Integrated systems for controlling stoichiometric combustion in turbine systems and methods of generating power using the same
TWI563165B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Power generation system and method for generating power
TWI593872B (en) 2011-03-22 2017-08-01 艾克頌美孚上游研究公司 Integrated system and methods of generating power
TWI563166B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated generation systems and methods for generating power
US8893500B2 (en) * 2011-05-18 2014-11-25 Solar Turbines Inc. Lean direct fuel injector
US8919132B2 (en) * 2011-05-18 2014-12-30 Solar Turbines Inc. Method of operating a gas turbine engine
JP5772245B2 (en) * 2011-06-03 2015-09-02 川崎重工業株式会社 Fuel injection device
US9188063B2 (en) * 2011-11-03 2015-11-17 Delavan Inc. Injectors for multipoint injection
CN104428490B (en) 2011-12-20 2018-06-05 埃克森美孚上游研究公司 The coal bed methane production of raising
US9423137B2 (en) * 2011-12-29 2016-08-23 Rolls-Royce Corporation Fuel injector with first and second converging fuel-air passages
DE102012002664A1 (en) 2012-02-10 2013-08-14 Rolls-Royce Deutschland Ltd & Co Kg Gasturbinenvormischbrenner
US9353682B2 (en) 2012-04-12 2016-05-31 General Electric Company Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation
US9784185B2 (en) 2012-04-26 2017-10-10 General Electric Company System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine
US10273880B2 (en) 2012-04-26 2019-04-30 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
US9212822B2 (en) * 2012-05-30 2015-12-15 General Electric Company Fuel injection assembly for use in turbine engines and method of assembling same
JP5924618B2 (en) * 2012-06-07 2016-05-25 川崎重工業株式会社 Fuel injection device
DE102012017065A1 (en) * 2012-08-28 2014-03-27 Rolls-Royce Deutschland Ltd & Co Kg Method for operating a lean burn burner of an aircraft gas turbine and apparatus for carrying out the method
FR2996287B1 (en) * 2012-09-28 2018-03-02 Safran Aircraft Engines INJECTION DEVICE FOR A TURBOMACHINE COMBUSTION CHAMBER
US9599070B2 (en) 2012-11-02 2017-03-21 General Electric Company System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system
US10215412B2 (en) 2012-11-02 2019-02-26 General Electric Company System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US9803865B2 (en) 2012-12-28 2017-10-31 General Electric Company System and method for a turbine combustor
US9708977B2 (en) 2012-12-28 2017-07-18 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US9611756B2 (en) 2012-11-02 2017-04-04 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US10107495B2 (en) 2012-11-02 2018-10-23 General Electric Company Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent
US9631815B2 (en) 2012-12-28 2017-04-25 General Electric Company System and method for a turbine combustor
US10161312B2 (en) 2012-11-02 2018-12-25 General Electric Company System and method for diffusion combustion with fuel-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system
US9574496B2 (en) 2012-12-28 2017-02-21 General Electric Company System and method for a turbine combustor
US9869279B2 (en) 2012-11-02 2018-01-16 General Electric Company System and method for a multi-wall turbine combustor
US10208677B2 (en) 2012-12-31 2019-02-19 General Electric Company Gas turbine load control system
US9581081B2 (en) 2013-01-13 2017-02-28 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9512759B2 (en) 2013-02-06 2016-12-06 General Electric Company System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation
TW201502356A (en) 2013-02-21 2015-01-16 Exxonmobil Upstream Res Co Reducing oxygen in a gas turbine exhaust
US9938861B2 (en) 2013-02-21 2018-04-10 Exxonmobil Upstream Research Company Fuel combusting method
US10221762B2 (en) 2013-02-28 2019-03-05 General Electric Company System and method for a turbine combustor
TW201500635A (en) 2013-03-08 2015-01-01 Exxonmobil Upstream Res Co Processing exhaust for use in enhanced oil recovery
US20140250945A1 (en) 2013-03-08 2014-09-11 Richard A. Huntington Carbon Dioxide Recovery
US9784182B2 (en) 2013-03-08 2017-10-10 Exxonmobil Upstream Research Company Power generation and methane recovery from methane hydrates
US9618261B2 (en) 2013-03-08 2017-04-11 Exxonmobil Upstream Research Company Power generation and LNG production
TWI654368B (en) 2013-06-28 2019-03-21 美商艾克頌美孚上游研究公司 System, method and media for controlling exhaust gas flow in an exhaust gas recirculation gas turbine system
US9835089B2 (en) 2013-06-28 2017-12-05 General Electric Company System and method for a fuel nozzle
US9631542B2 (en) 2013-06-28 2017-04-25 General Electric Company System and method for exhausting combustion gases from gas turbine engines
US9617914B2 (en) 2013-06-28 2017-04-11 General Electric Company Systems and methods for monitoring gas turbine systems having exhaust gas recirculation
US9903588B2 (en) 2013-07-30 2018-02-27 General Electric Company System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation
US9587510B2 (en) 2013-07-30 2017-03-07 General Electric Company System and method for a gas turbine engine sensor
US9951658B2 (en) 2013-07-31 2018-04-24 General Electric Company System and method for an oxidant heating system
US10030588B2 (en) 2013-12-04 2018-07-24 General Electric Company Gas turbine combustor diagnostic system and method
US9752458B2 (en) 2013-12-04 2017-09-05 General Electric Company System and method for a gas turbine engine
US10227920B2 (en) 2014-01-15 2019-03-12 General Electric Company Gas turbine oxidant separation system
US9863267B2 (en) 2014-01-21 2018-01-09 General Electric Company System and method of control for a gas turbine engine
US9915200B2 (en) 2014-01-21 2018-03-13 General Electric Company System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation
WO2015147951A2 (en) 2014-01-24 2015-10-01 United Technologies Corporation Axial staged combustor with restricted main fuel injector
US10079564B2 (en) 2014-01-27 2018-09-18 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
US20150285502A1 (en) * 2014-04-08 2015-10-08 General Electric Company Fuel nozzle shroud and method of manufacturing the shroud
US10047633B2 (en) 2014-05-16 2018-08-14 General Electric Company Bearing housing
US9885290B2 (en) 2014-06-30 2018-02-06 General Electric Company Erosion suppression system and method in an exhaust gas recirculation gas turbine system
US10655542B2 (en) 2014-06-30 2020-05-19 General Electric Company Method and system for startup of gas turbine system drive trains with exhaust gas recirculation
US10060359B2 (en) 2014-06-30 2018-08-28 General Electric Company Method and system for combustion control for gas turbine system with exhaust gas recirculation
US9819292B2 (en) 2014-12-31 2017-11-14 General Electric Company Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine
US9869247B2 (en) 2014-12-31 2018-01-16 General Electric Company Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation
US10788212B2 (en) 2015-01-12 2020-09-29 General Electric Company System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation
US10316746B2 (en) 2015-02-04 2019-06-11 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10253690B2 (en) 2015-02-04 2019-04-09 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10094566B2 (en) 2015-02-04 2018-10-09 General Electric Company Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation
US10267270B2 (en) 2015-02-06 2019-04-23 General Electric Company Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation
US10145269B2 (en) 2015-03-04 2018-12-04 General Electric Company System and method for cooling discharge flow
US10480792B2 (en) 2015-03-06 2019-11-19 General Electric Company Fuel staging in a gas turbine engine
US9897321B2 (en) 2015-03-31 2018-02-20 Delavan Inc. Fuel nozzles
US10385809B2 (en) 2015-03-31 2019-08-20 Delavan Inc. Fuel nozzles
FR3042023B1 (en) * 2015-10-06 2020-06-05 Safran Helicopter Engines ANNULAR COMBUSTION CHAMBER FOR TURBOMACHINE
EP3184898A1 (en) * 2015-12-23 2017-06-28 Siemens Aktiengesellschaft Combustor for a gas turbine
US10047959B2 (en) * 2015-12-29 2018-08-14 Pratt & Whitney Canada Corp. Fuel injector for fuel spray nozzle
WO2017116266A1 (en) * 2015-12-30 2017-07-06 General Electric Company Liquid fuel nozzles for dual fuel combustors
EP3403028B1 (en) * 2016-01-15 2021-02-24 Siemens Energy Global GmbH & Co. KG Combustor for a gas turbine
US10502425B2 (en) * 2016-06-03 2019-12-10 General Electric Company Contoured shroud swirling pre-mix fuel injector assembly
US11149952B2 (en) * 2016-12-07 2021-10-19 Raytheon Technologies Corporation Main mixer in an axial staged combustor for a gas turbine engine
US10801728B2 (en) * 2016-12-07 2020-10-13 Raytheon Technologies Corporation Gas turbine engine combustor main mixer with vane supported centerbody
RU173301U1 (en) * 2017-03-06 2017-08-21 Публичное акционерное общество "Научно-производственное объединение "Сатурн" FRONT DEVICE OF COMBUSTION CHAMBER OF A GAS TURBINE ENGINE
US11149948B2 (en) * 2017-08-21 2021-10-19 General Electric Company Fuel nozzle with angled main injection ports and radial main injection ports
US11480338B2 (en) * 2017-08-23 2022-10-25 General Electric Company Combustor system for high fuel/air ratio and reduced combustion dynamics
US11561008B2 (en) * 2017-08-23 2023-01-24 General Electric Company Fuel nozzle assembly for high fuel/air ratio and reduced combustion dynamics
EP3677839B1 (en) * 2017-08-28 2023-05-03 Kawasaki Jukogyo Kabushiki Kaisha Fuel injector
GB201820206D0 (en) * 2018-12-12 2019-01-23 Rolls Royce Plc A fuel spray nozzle
US11156360B2 (en) * 2019-02-18 2021-10-26 General Electric Company Fuel nozzle assembly
GB201909168D0 (en) * 2019-06-26 2019-08-07 Rolls Royce Plc Fuel injector
EP3910238A1 (en) * 2020-05-15 2021-11-17 Siemens Aktiengesellschaft Pilot cone
KR102322596B1 (en) * 2020-07-17 2021-11-05 두산중공업 주식회사 Nozzle assembly for combustor and gas turbine combustor including the same
RU208130U1 (en) * 2021-04-26 2021-12-06 Публичное Акционерное Общество "Одк-Сатурн" COMBUSTION CHAMBER FRONT WALL
DE102022207492A1 (en) 2022-07-21 2024-02-01 Rolls-Royce Deutschland Ltd & Co Kg Nozzle device for adding at least one gaseous fuel and one liquid fuel, set, supply system and gas turbine arrangement

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2706021B1 (en) 1993-06-03 1995-07-07 Snecma Combustion chamber comprising a gas separator assembly.
FR2751731B1 (en) * 1996-07-25 1998-09-04 Snecma BOWL DEFLECTOR ASSEMBLY FOR A TURBOMACHINE COMBUSTION CHAMBER
FR2753779B1 (en) * 1996-09-26 1998-10-16 AERODYNAMIC INJECTION SYSTEM FOR A FUEL AIR MIXTURE
US5865024A (en) * 1997-01-14 1999-02-02 General Electric Company Dual fuel mixer for gas turbine combustor
DE69930455T2 (en) * 1998-11-12 2006-11-23 Mitsubishi Heavy Industries, Ltd. Gas turbine combustor
US6389815B1 (en) * 2000-09-08 2002-05-21 General Electric Company Fuel nozzle assembly for reduced exhaust emissions
US6381964B1 (en) * 2000-09-29 2002-05-07 General Electric Company Multiple annular combustion chamber swirler having atomizing pilot
US6367262B1 (en) * 2000-09-29 2002-04-09 General Electric Company Multiple annular swirler
US6363726B1 (en) * 2000-09-29 2002-04-02 General Electric Company Mixer having multiple swirlers
US20020162333A1 (en) * 2001-05-02 2002-11-07 Honeywell International, Inc., Law Dept. Ab2 Partial premix dual circuit fuel injector
US6418726B1 (en) * 2001-05-31 2002-07-16 General Electric Company Method and apparatus for controlling combustor emissions
FR2832493B1 (en) * 2001-11-21 2004-07-09 Snecma Moteurs MULTI-STAGE INJECTION SYSTEM OF AN AIR / FUEL MIXTURE IN A TURBOMACHINE COMBUSTION CHAMBER
RU2226652C2 (en) * 2002-05-28 2004-04-10 Открытое акционерное общество "Авиадвигатель" Gas-turbine engine combustion chamber
US6986255B2 (en) * 2002-10-24 2006-01-17 Rolls-Royce Plc Piloted airblast lean direct fuel injector with modified air splitter
JP4065947B2 (en) * 2003-08-05 2008-03-26 独立行政法人 宇宙航空研究開発機構 Fuel / air premixer for gas turbine combustor
FR2859272B1 (en) * 2003-09-02 2005-10-14 Snecma Moteurs AIR / FUEL INJECTION SYSTEM IN A TURBOMACHINE COMBUSTION CHAMBER HAVING MEANS FOR GENERATING COLD PLASMA
RU38218U1 (en) * 2003-12-23 2004-05-27 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения им. П.И. Баранова" DEVICE FOR PREPARING AND SUBMITTING A FUEL-AIR MIXTURE TO THE COMBUSTION CHAMBER
US8511097B2 (en) * 2005-03-18 2013-08-20 Kawasaki Jukogyo Kabushiki Kaisha Gas turbine combustor and ignition method of igniting fuel mixture in the same
US7779636B2 (en) * 2005-05-04 2010-08-24 Delavan Inc Lean direct injection atomizer for gas turbine engines
US7878000B2 (en) * 2005-12-20 2011-02-01 General Electric Company Pilot fuel injector for mixer assembly of a high pressure gas turbine engine
FR2896030B1 (en) * 2006-01-09 2008-04-18 Snecma Sa COOLING A MULTIMODE INJECTION DEVICE FOR A COMBUSTION CHAMBER, IN PARTICULAR A TURBOREACTOR
US7762073B2 (en) * 2006-03-01 2010-07-27 General Electric Company Pilot mixer for mixer assembly of a gas turbine engine combustor having a primary fuel injector and a plurality of secondary fuel injection ports
JP4364911B2 (en) * 2007-02-15 2009-11-18 川崎重工業株式会社 Gas turbine engine combustor
JP4733195B2 (en) * 2009-04-27 2011-07-27 川崎重工業株式会社 Fuel spray system for gas turbine engine

Also Published As

Publication number Publication date
US7942003B2 (en) 2011-05-17
JP2008180495A (en) 2008-08-07
EP1953455A1 (en) 2008-08-06
RU2468297C2 (en) 2012-11-27
RU2008102394A (en) 2009-07-27
JP5142202B2 (en) 2013-02-13
CA2619421C (en) 2015-12-01
FR2911667B1 (en) 2009-10-02
US20080236165A1 (en) 2008-10-02
FR2911667A1 (en) 2008-07-25
CA2619421A1 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
EP1953455B1 (en) Injection system with double injector
CA2638223C (en) Fuel injector in a turbine engine combustion chamber
CA2588952C (en) Turbojet engine combustion chamber
CA2646959C (en) Injection system of a fuel and air mixture in a turbine engine combustion system
EP0214003B1 (en) Fuel injection nozzle with an enlarged screen for the combustion chamber of a gas turbine
FR2970553A1 (en) FLOW CONTROL SYSTEM IN A MULTITUBULAR FUEL INJECTOR
EP1342955A1 (en) Injection system for air-fuel mixture in a combustion chamber
CA2398669C (en) Tw0-head staged annular combustion chamber
FR2906868A1 (en) FUEL INJECTOR FOR GAS TURBINE ENGINE COMBUSTION CHAMBER
CA2907533A1 (en) Injection system for a combustion chamber of a turbine engine, comprising an annular wall having a convergent inner cross-section
EP3784958B1 (en) Injection system for an annular combustion chamber of a gas turbine
FR3084446A1 (en) MONOBLOCK COMBUSTION CHAMBER
FR3022986B1 (en) METHOD FOR IGNITING A TURBOMACHINE COMBUSTION CHAMBER
WO2022223914A1 (en) Diffusion cone for the rear part of a jet engine, incorporating a flame-holder ring at the trailing edge
WO2023214129A1 (en) Method for injecting a hydrogen-air mixture for a turbine engine burner
WO2024052611A1 (en) Device and method for injecting a hydrogen-air mixture for a turbine engine burner
FR3105985A1 (en) IMPROVED INJECTOR MULTIPOINT CIRCUIT
WO2024134072A1 (en) Hydrogen combustion device
FR3122695A1 (en) DOUBLE WALL DIFFUSION CONE DEFINING A COOLING PLENUM FOR THE BACK PART OF A TURBOJET
FR3122720A1 (en) DIFFUSION CONE FOR THE REAR PART OF A TURBOJET INTEGRATING AN AIR AND FUEL INJECTION SYSTEM
EP3771862A1 (en) Fuel injector nose for turbine engine comprising a chamber for internal rotation demarcated by a pin
FR3122719A1 (en) FLAME HOLDER FOR TURBOJET AFTERCOMBUSTION INCLUDING ARMS WITH SERRATED TRAILING EDGES
FR3057648A1 (en) LOW TURBOMACHINE COMBUSTION CHAMBER INJECTION SYSTEM
FR3028011A1 (en) FUEL COMBUSTION ARCHITECTURE SUITABLE FOR SLOW IDLING AND QUICK START
FR2973480A1 (en) Air-fuel mixture injection device for combustion chamber of aircraft turbojet, has air injection orifices arranged in extension of blades in direction of flow of air along blades when viewed along axial direction

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080129

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

AKX Designation fees paid

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140820

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008036424

Country of ref document: DE

Effective date: 20150305

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008036424

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20151022

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES, FR

Effective date: 20170719

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231219

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231219

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231219

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240102

Year of fee payment: 17