WO2023214129A1 - Method for injecting a hydrogen-air mixture for a turbine engine burner - Google Patents

Method for injecting a hydrogen-air mixture for a turbine engine burner Download PDF

Info

Publication number
WO2023214129A1
WO2023214129A1 PCT/FR2023/000071 FR2023000071W WO2023214129A1 WO 2023214129 A1 WO2023214129 A1 WO 2023214129A1 FR 2023000071 W FR2023000071 W FR 2023000071W WO 2023214129 A1 WO2023214129 A1 WO 2023214129A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
air
channel
internal channel
combustion
Prior art date
Application number
PCT/FR2023/000071
Other languages
French (fr)
Inventor
Stéphan ZURBACH
Romain LE DORTZ
Original Assignee
Safran
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran filed Critical Safran
Publication of WO2023214129A1 publication Critical patent/WO2023214129A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00002Gas turbine combustors adapted for fuels having low heating value [LHV]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00013Reducing thermo-acoustic vibrations by active means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • F23R3/14Air inlet arrangements for primary air inducing a vortex by using swirl vanes

Definitions

  • the present disclosure relates to the field of power processes for gas turbine injection devices such as aircraft turbomachines powered by dihydrogen and air.
  • gas turbine injection devices such as aircraft turbomachines powered by dihydrogen and air.
  • Burners made according to this principle do not guarantee the absence of flashback in the dihydrogen injection device and have a complex geometry. Such burners have a high production cost, a high pressure loss and are specific to a given combustion chamber architecture.
  • lean injection systems At the level of injection and combustion, two main technological configurations for hydrogen-air injection systems applied to gas turbines exist, namely lean injection systems and rich injection systems. .
  • lean combustion supply processes tend to generate significant thermo-acoustic instabilities which can damage these systems whereas stable combustion is necessary to avoid not affect engine performance.
  • Rich-burning feed processes tend to emit more pollutants than lean-burning processes if they are not sized correctly.
  • the present disclosure proposes an injection method, for an injection device in a combustion chamber of an aircraft turbomachine, said injection device comprising an internal channel surrounded by an external annular channel , said channels opening into said combustion chamber of said gas turbine, the process comprising an injection of a dihydrogen-air mixture with a hydrogen content greater than the stoichiometric dosage in said internal channel and an injection of air into said external annular channel so as to produce, at the outlet of said internal channel, a first flame front resulting from a rich combustion surrounded by a second flame front resulting from a lean combustion, after ignition of the mixture.
  • the dihydrogen-air mixture may have a hydrogen content greater than 2.
  • said dihydrogen-air mixture may have a hydrogen content greater than or equal to 4.
  • An air flow in the external annular channel can be chosen such that the overall richness at the outlet of the internal channel and external annular channel assembly is fixed between 0.15 and 0.5 depending on the operating points of the turbomachine.
  • the injection of the dihydrogen/air mixture and the injection device can be configured to create said first front at the outlet of the internal channel of flame, resulting from the rich combustion of said mixture and hang it on a peripheral lip of the internal channel.
  • the hydrogen richness of the mixture can be chosen so that said rich combustion takes place with a flame front temperature lower than 1800 K, which preserves the combustion chamber.
  • the hydrogen content of the mixture can be chosen so that the first flame front is laminar and has a Lewis number greater than 1 limiting thermo-diffusive instabilities and thus avoiding flashback phenomena.
  • the mixture burned in the first flame front generates residual gases which are advantageously burned in the second flame front stabilized by the supply of air from the external annular channel.
  • the richness of the second flame front is such that the second flame front can be maintained at a temperature below 1800K.
  • the air injected by the annular channel can be rotated by an annular swirl so as to make the second flame front turbulent and so that this second flame front is not attached to the lip of the internal channel.
  • positioning the downstream end of the internal channel upstream of the downstream end of the external annular channel makes it possible to optimize the mixing between the gases resulting from the first combustion and the air injected by the external channel.
  • FIG. 1 shows a turbomachine comprising an injection device arranged in an annular bottom of an annular combustion chamber in three configurations;
  • FIG. 2 shows a first schematic example in sectional side view of an injection device to which the method of the present disclosure applies;
  • FIG. 3 shows a schematic view of the device of Figure 2 in a combustion situation;
  • FIG. 4 shows a plurality of possible configurations (figures. A, B, C, D, E) of internal channel of a device to which the method of the present disclosure applies;
  • FIG. 5 shows a plurality of examples of annular channel output configurations ( Figures A, B, C) for a device to which the method of the present disclosure applies.
  • Figure 1 represents three examples of installation configurations of an injection device 2 on a turbomachine 1 depending on the orientation of the annular bottom of an annular combustion chamber 4 , 4', 4” of the turbomachine: either the combustion chamber 4” is oriented substantially along a longitudinal axis 4' is transverse to said longitudinal axis ', 4” or on an external ferrule.
  • the injection device can be, as illustrated in Figure 2, an injection device which comprises an internal channel 6 and an external annular channel 8.
  • the external channel 8 is centered on the internal channel 6 and in the case of tubular channels, the internal channel 6 and the external annular channel 8 are coaxial. These channels open into the combustion chamber 4, 4', 4” of the device of Figure 1.
  • the internal and external channels are circular in cross section.
  • An ignition device not shown allows the ignition of the gases leaving the channels to initiate combustion.
  • This injection device 2 is used in the present disclosure in a configuration for which a rich dihydrogen-air mixture is injected into the internal channel 6 while air is injected into the external channel 8. Therefore , the combustion comprises a first combustion rich in dihydrogen at the outlet of the internal or central channel 6. and a second so-called lean combustion which is carried out around a flame created by the first combustion.
  • the present invention thus provides an injection process which comprises an injection of a dihydrogen-air mixture 12a with a hydrogen richness greater than the stoichiometric dosage in the internal channel 6 of the injection device and a injection of air 26a into the external annular channel 8 so as to produce, at the outlet of said internal channel 6, a first flame front 30 resulting from a rich combustion surrounded by a second flame front 31 resulting from a poor combustion.
  • the internal channel 6 then forms a rich dihydrogen-air mixture injection tube 12a and the external annular channel 8 forms an air injection tube 26a.
  • the rich mixture 12a of air and dihydrogen is injected from an inlet 10 located at an upstream end of the internal channel 6.
  • the internal channel 6 has an internal diameter d.
  • the choice of the internal diameter d of the channel depends on the desired thermal power.
  • a downstream end 16 of the internal channel 6 is arranged upstream with respect to a downstream end 24 of the external annular channel 8.
  • the downstream end 24 of the external annular channel 8 is arranged at a distance r from the downstream end 16 of the internal channel 6 towards the downstream.
  • This external annular channel 8 has an internal diameter D.
  • the external annular channel 8 is configured to receive a second gas which is air 26a. This gas enters the external annular channel via an inlet 26a arranged at the upstream end of said external annular channel.
  • An annular twist 28 is housed at said upstream end of the external annular channel 8. This twist can be radial or axial.
  • This annular spinner 28 is arranged at a distance L from the downstream end 36 of the external annular channel 8. The air 26a passing through the external annular channel is rotated by the external spinner 28. This generates a swirling assembly which will help to unhook the second flame front from the central channel outlet.
  • the dihydrogen-air premix 12a is injected into the internal channel 6, formed by a tube creating a central injection conduit.
  • the premix has a richness greater than two, i.e. greater than 2 masses of hydrogen for 1 mass of air, and can even be richer than four at least in certain operating configurations.
  • the pure air 26a injected into the annular channel 8 around the internal channel 6 is injected in a quantity calculated so as to target an overall injection richness of between 0.15 and 0.5, which amounts to overall combustion. poor.
  • the pure air 26a is rotated in the annular channel 8 by the external axial or radial spinner 28 located upstream of the outlet plane 16a of the downstream end 16 of the central conduit for injecting the rich dihydrogen-air mixture.
  • the lip 16 of the internal channel 6 is here set back relative to the exit plane 24a of the annular channel 8.
  • the combustion process of the present document thus carries out a staged combustion of the hydrogen in order to bypass the zone of formation of nitrogen oxides by means of the combustion of the dihydrogen-rich air premixture. in a first zone, the internal flame 30, and the combustion of the residual gases in a second zone, the flame 31 around the flame 30.
  • the integrity of the hearth is also ensured because by carrying out combustion at high and low levels, the flame temperatures are less important than by carrying out combustion under stoichiometric conditions. Potential flame fronts from stoichiometric zones that could be present are not attached to the lips of the injector, which limits damage to the injector.
  • An exemplary embodiment provides, for operation under typical conditions of a gas turbine of a turboprop, a rich zone richness of the order of 4 for the dihydrogen-air mixture injected through the internal channel 6 , i.e. a richness well above the stoichiometric dosage of richness 1, and a supply of air by means of the annular channel 8 in a quantity such that the overall richness is fixed between 0.15 and 0.50 depending on the operating points of the turboprop.
  • Figure 4 shows various possible embodiments of the output of the internal channel 6 for injecting the premix.
  • the shape and thickness of the outlet 16 of the internal channel, 16a, 16b, 16c can be adjusted relative to the basic shape 16 of the internal channel shown in Figure 4(A).
  • the end 16a of the internal channel is formed as a recessed bevel
  • the end 16b always flares out as a bevel.
  • the end 16c of the internal channel flares but has a terminal face perpendicular to the longitudinal axis of the channel.
  • a swirler 17 is added in the internal channel 6 so as to homogenize the dihydrogen-air premix.
  • the latter can emerge from a wall 240 as shown in Figure 5 and have different channel outlet lip configurations:
  • the present disclosure thus concerns a process for injecting dihydrogen pre-mixed with air for an aeronautical gas turbine based on staged combustion for which: a. Combustion of the dihydrogen-air premix at high richness takes place in a first region and generates a first flame front attached to the lips of the injector; b. Rapid mixing of combustion products via air injection to be burned in a second region generating a second stable flame front.
  • This process allows in particular: a. To obtain aerodynamically stabilized flames over a wide operating range, b. To achieve combustion with very low nitrogen oxide emissions, i.e. To avoid the risk of flashback of the second flame front, d. To reduce noise pollution linked to the combustion of hydrogen, e. To guarantee the integrity and lifespan of the injector.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

The invention relates to an injection method for an injection device in a combustion chamber of an aircraft turbine engine, the injection device comprising an internal channel (6) surrounded by an external annular channel (8), the channels opening into the combustion chamber (4, 4') of the gas turbine, the method being characterised in that it comprises injecting a dihydrogen-air mixture (12a) with a hydrogen content greater than the stoichiometric amount into the internal channel (6) and injecting air into the external annular channel (8) so as to produce, at the outlet of the internal channel (6), a first flame front (30) resulting from rich combustion surrounded by a second flame front (31) resulting from lean combustion.

Description

Description Description
Titre : PROCEDE D’INJECTION DE MELANGE HYDROGENE-AIR POUR BRULEUR DE TURBOMACHINE Title: PROCESS FOR INJECTING HYDROGEN-AIR MIXTURE FOR TURBOMACHINE BURNER
Domaine technique Technical area
[0001] La présente divulgation relève du domaine des procédés d’alimentation des dispositifs d’injection de turbines à gaz telles que des turbomachines d’aéronefs alimentées par du dihydrogène et de l’air. Cela inclut notamment les applications aéronautiques civiles et militaires : hélicoptères, VTOL, drones, APU, turbogénérateurs, les appareils à voilure fixe pour l’aviation de loisir, d’affaire ou commerciale, turboréacteurs ou turbopropulseurs. [0001] The present disclosure relates to the field of power processes for gas turbine injection devices such as aircraft turbomachines powered by dihydrogen and air. This includes in particular civil and military aeronautical applications: helicopters, VTOL, drones, APUs, turbogenerators, fixed-wing aircraft for leisure, business or commercial aviation, turbojets or turboprops.
Technique antérieure Prior art
[0002] Les secteurs de la propulsion et notamment le secteur aéronautique font face à de grands enjeux environnementaux. L’intérêt d’avoir recours à une combustion utilisant du dihydrogène plutôt qu’à l’emploi de kérosène est de plus en plus fort car cette combustion de dihydrogène permettrait d’éviter les émissions polluantes carbonées telles que du dioxyde de carbone, du monoxyde de carbone, des hydrocarbures imbrûlés ou encore des particules fines et fumées. [0002] The propulsion sectors and in particular the aeronautics sector face major environmental challenges. The interest in using combustion using dihydrogen rather than using kerosene is increasingly strong because this combustion of dihydrogen would make it possible to avoid carbon polluting emissions such as carbon dioxide, monoxide carbon, unburned hydrocarbons or even fine and smoked particles.
[0003] Un principe de brûleurs à micro-mélange d’air et de dihydrogène est connu. Les brûleurs réalisés selon ce principe ne garantissent pas l’absence de retour de flamme dans le dispositif d’injection de dihydrogène et possèdent une géométrie complexe. De tels brûleurs présentent un coût de réalisation élevé, une perte de charge élevée et sont spécifiques à une architecture de chambre de combustion donnée. [0003] A principle of micro-mixture burners of air and dihydrogen is known. Burners made according to this principle do not guarantee the absence of flashback in the dihydrogen injection device and have a complex geometry. Such burners have a high production cost, a high pressure loss and are specific to a given combustion chamber architecture.
[0004] Au niveau de l’injection et de la combustion, deux principales configurations technologiques pour les systèmes d’injection hydrogène-air appliqués aux turbines à gaz existent, à savoir les systèmes d’injection pauvre, et les systèmes d’injection riche. [0005] D’une manière plus générale, il est important d’avoir en tête que les procédés d’alimentation à combustion pauvre ont tendance à générer des instabilités thermo acoustiques importantes pouvant endommager ces systèmes alors qu’une combustion stable est nécessaire pour ne pas altérer les performances du moteur. Les procédés d’alimentation à combustion riche, quant à eux, ont tendance à émettre des polluants de manière plus importantes que les procédés à combustion pauvre s’ils ne sont pas dimensionnés correctement. [0004] At the level of injection and combustion, two main technological configurations for hydrogen-air injection systems applied to gas turbines exist, namely lean injection systems and rich injection systems. . [0005] More generally, it is important to bear in mind that lean combustion supply processes tend to generate significant thermo-acoustic instabilities which can damage these systems whereas stable combustion is necessary to avoid not affect engine performance. Rich-burning feed processes, on the other hand, tend to emit more pollutants than lean-burning processes if they are not sized correctly.
Problème technique Technical problem
[0006] L’utilisation de l’hydrogène implique plusieurs problématiques à prendre en considération au niveau de la chambre de combustion : [0006] The use of hydrogen involves several issues to be taken into consideration at the level of the combustion chamber:
[0007] A conditions thermodynamiques équivalentes en pression, température, richesse, la température adiabatique de la flamme d’une combustion hydrogène-air est plus élevée que la flamme issue d’une combustion kérosène-air. [0007] Under equivalent thermodynamic conditions in terms of pressure, temperature and richness, the adiabatic temperature of the flame from hydrogen-air combustion is higher than the flame from kerosene-air combustion.
[0008] De même, les vitesses de flammes issues d’une combustion hydrogène-air sont plus importantes que pour les flammes kérosène-air. Une vitesse de flamme importante peut entrainer des problématiques de retours de flamme dits flashback en anglais dans les systèmes d’injection, notamment au niveau des couches limites, et causer de sérieux dommages à ces systèmes, ou encore causer des problèmes de sécurité. [0008] Likewise, the flame speeds resulting from hydrogen-air combustion are greater than for kerosene-air flames. A high flame speed can lead to flashback problems in injection systems, particularly at the boundary layers, and cause serious damage to these systems, or even cause safety problems.
[0009] Les limites d’inflammabilité de l’hydrogène sont toutefois plus étendues que celles du kérosène et permettent d’enflammer un mélange hydrogène-air à des richesses plus faibles ou plus élevées que pour le kérosène, ce qui peut permettre d’atteindre finalement des températures de flamme plus faibles qu’avec l’utilisation du kérosène. [0009] The flammability limits of hydrogen are, however, wider than those of kerosene and make it possible to ignite a hydrogen-air mixture at lower or higher levels than for kerosene, which can make it possible to achieve ultimately lower flame temperatures than with the use of kerosene.
[0010] Enfin, la combustion de l’hydrogène avec l’air a tendance à émettre beaucoup plus de bruit qu’une combustion au kérosène classique et peut donc générer une pollution sonore importante au niveau des aéroports. [0010] Finally, the combustion of hydrogen with air tends to emit much more noise than combustion with conventional kerosene and can therefore generate significant noise pollution at airports.
Exposé de l’invention [0011] Le présent document propose un procédé d’injection riche pré-mélangé dédié à la combustion de dihydrogène et d’air permettant de répondre aux problèmes techniques présentés précédemment. Presentation of the invention [0011] This document proposes a pre-mixed rich injection process dedicated to the combustion of dihydrogen and air making it possible to respond to the technical problems presented previously.
[0012] Plus précisément, la présente divulgation propose un procédé d’injection, pour un dispositif d’injection dans une chambre de combustion d’une turbomachine d’aéronef, ledit dispositif d’injection comportant un canal interne entouré par un canal annulaire externe, lesdits canaux débouchant dans ladite chambre de combustion de ladite turbine à gaz, le procédé comportant une injection d’un mélange dihydrogène-air de richesse en hydrogène supérieure au dosage stoechiométrique dans ledit canal interne et une injection d’air dans ledit canal annulaire externe en sorte de réaliser, au niveau de la sortie dudit canal interne, un premier front de flamme issu d’une combustion riche entouré par un second front de flamme issu d’une combustion pauvre, après allumage du mélange. [0012] More precisely, the present disclosure proposes an injection method, for an injection device in a combustion chamber of an aircraft turbomachine, said injection device comprising an internal channel surrounded by an external annular channel , said channels opening into said combustion chamber of said gas turbine, the process comprising an injection of a dihydrogen-air mixture with a hydrogen content greater than the stoichiometric dosage in said internal channel and an injection of air into said external annular channel so as to produce, at the outlet of said internal channel, a first flame front resulting from a rich combustion surrounded by a second flame front resulting from a lean combustion, after ignition of the mixture.
[0013] Le procédé pour lequel l’injection se fait en continu après allumage afin de faire fonctionner la turbine permet de réduire la température des fronts de flamme ce qui réduit la teneur en NOx des gaz brûlés et réduit l’usure de l’injecteur. [0013] The process for which the injection is carried out continuously after ignition in order to operate the turbine makes it possible to reduce the temperature of the flame fronts which reduces the NOx content of the burned gases and reduces the wear of the injector .
[0014] Les caractéristiques exposées dans les paragraphes suivants correspondent à des modes de réalisation pouvant être mises en oeuvre indépendamment les uns des autres ou en combinaison les uns avec les autres le cas échéant: The characteristics set out in the following paragraphs correspond to embodiments which can be implemented independently of each other or in combination with each other where appropriate:
[0015] Le mélange dihydrogène-air peut être d’une richesse en hydrogène supérieure à 2. [0015] The dihydrogen-air mixture may have a hydrogen content greater than 2.
[0016] Avantageusement, ledit mélange dihydrogène-air peut être d’une richesse en hydrogène supérieure ou égale à 4. Advantageously, said dihydrogen-air mixture may have a hydrogen content greater than or equal to 4.
[0017] Un débit d’air dans le canal annulaire externe peut être choisi tel que la richesse globale en sortie de l’ensemble canal interne et canal annulaire externe est fixée entre 0,15 et 0,5 en fonction des points de fonctionnement de la turbomachine. [0017] An air flow in the external annular channel can be chosen such that the overall richness at the outlet of the internal channel and external annular channel assembly is fixed between 0.15 and 0.5 depending on the operating points of the turbomachine.
[0018] L’injection du mélange dihydrogène/air et le dispositif d’injection peuvent être configurés pour créer au niveau de la sortie du canal interne ledit premier front de flamme, issu de la combustion riche dudit mélange et l’accrocher sur une lèvre périphérique du canal interne. [0018] The injection of the dihydrogen/air mixture and the injection device can be configured to create said first front at the outlet of the internal channel of flame, resulting from the rich combustion of said mixture and hang it on a peripheral lip of the internal channel.
[0019] La richesse en hydrogène du mélange peut être choisie pour que ladite combustion riche s’effectue avec une température de front de flamme inférieure à 1800 K ce qui préserve la chambre de combustion. The hydrogen richness of the mixture can be chosen so that said rich combustion takes place with a flame front temperature lower than 1800 K, which preserves the combustion chamber.
[0020] La richesse en hydrogène du mélange peut être choisie pour que le premier front de flamme soit laminaire et comporte un nombre de Lewis supérieur à 1 limitant les instabilités thermo-diffusives et évitant ainsi les phénomènes de flashback. The hydrogen content of the mixture can be chosen so that the first flame front is laminar and has a Lewis number greater than 1 limiting thermo-diffusive instabilities and thus avoiding flashback phenomena.
[0021] Le mélange brûlé dans le premier front de flamme génère des gaz résiduels qui sont avantageusement brûlés dans le second front de flamme stabilisé par l’apport d’air du canal annulaire externe. The mixture burned in the first flame front generates residual gases which are advantageously burned in the second flame front stabilized by the supply of air from the external annular channel.
[0022] La richesse du second front de flamme est telle que le second front de flamme peut être maintenu à une température inférieure à 1800K. The richness of the second flame front is such that the second flame front can be maintained at a temperature below 1800K.
[0023] L’air injecté par le canal annulaire peut être mis en rotation par une vrille annulaire en sorte de rendre le second front de flamme turbulent et de sorte que ce second front de flamme ne soit pas attaché à la lèvre du canal interne. The air injected by the annular channel can be rotated by an annular swirl so as to make the second flame front turbulent and so that this second flame front is not attached to the lip of the internal channel.
[0024] Avantageusement, positionner l’extrémité aval du canal interne en amont de l’extrémité aval du canal annulaire externe permet d’optimiser le mélange entre les gaz issus de la première combustion et l’air injecté par le canal externe. Advantageously, positioning the downstream end of the internal channel upstream of the downstream end of the external annular channel makes it possible to optimize the mixing between the gases resulting from the first combustion and the air injected by the external channel.
Brève description des dessins Brief description of the drawings
[0025] D’autres caractéristiques, détails et avantages de l’invention apparaîtront à la lecture de la description détaillée ci-après d’exemples de réalisation non limitatifs, et à l’analyse des dessins annexés, sur lesquels : Other characteristics, details and advantages of the invention will appear on reading the detailed description below of non-limiting examples of embodiment, and on analysis of the appended drawings, in which:
[0026] [Fig. 1 ] montre une turbomachine comprenant un dispositif d’injection agencé dans un fond annulaire d’une chambre annulaire de combustion selon trois configurations; [0026] [Fig. 1 ] shows a turbomachine comprising an injection device arranged in an annular bottom of an annular combustion chamber in three configurations;
[0027] [Fig. 2] montre un premier exemple schématique en vue de côté coupe d’un dispositif d’injection auquel s’applique le procédé de la présente divulgation; [0028] [Fig. 3] montre une vue schématique du dispositif de la figure 2 en situation de combustion; [0027] [Fig. 2] shows a first schematic example in sectional side view of an injection device to which the method of the present disclosure applies; [0028] [Fig. 3] shows a schematic view of the device of Figure 2 in a combustion situation;
[0029] [Fig. 4] montre une pluralité de configurations possibles (figures. A, B, C, D, E) de canal interne d’un dispositif auquel s’applique le procédé de la présente divulgation; [0029] [Fig. 4] shows a plurality of possible configurations (figures. A, B, C, D, E) of internal channel of a device to which the method of the present disclosure applies;
[0030] [Fig. 5] montre une pluralité d’exemples de configurations de sorties de canal annulaire (figures A, B, C) pour un dispositif auquel s’applique le procédé de la présente divulgation. [0030] [Fig. 5] shows a plurality of examples of annular channel output configurations (Figures A, B, C) for a device to which the method of the present disclosure applies.
Description des modes de réalisation Description of embodiments
[0031] Les dessins et la description ci-après contiennent des éléments pouvant non seulement servir à mieux faire comprendre l’invention, mais aussi contribuer à sa définition, le cas échéant. The drawings and the description below contain elements which can not only serve to better understand the invention, but also contribute to its definition, if necessary.
[0032] Il est maintenant fait référence à la figure 1 qui représente trois exemples de configurations d’implantation d’un dispositif d’injection 2 sur une turbomachine 1 en fonction de l’orientation du fond annulaire d’une chambre annulaire de combustion 4, 4’, 4” de la turbomachine: soit la chambre de combustion 4” est orientée sensiblement selon un axe longitudinal X, soit la chambre de combustion 4 est orientée selon un angle aigu par rapport à cet axe longitudinal, soit la chambre de combustion 4’ est transverse audit axe longitudinal X. Dans tous les cas, le dispositif d’injection 2 est implanté entre un compresseur 101 et une turbine haute pression 102, 103, 104, sur un fond annulaire de la chambre annulaire de combustion 4, 4’, 4” ou sur une virole externe. [0032] Reference is now made to Figure 1 which represents three examples of installation configurations of an injection device 2 on a turbomachine 1 depending on the orientation of the annular bottom of an annular combustion chamber 4 , 4', 4” of the turbomachine: either the combustion chamber 4” is oriented substantially along a longitudinal axis 4' is transverse to said longitudinal axis ', 4” or on an external ferrule.
[0033] Le dispositif d’injection peut être, comme illustré en figure 2, un dispositif d’injection qui comprend un canal interne 6 et un canal annulaire externe 8. Le canal externe 8 est centré sur le canal interne 6 et dans le cas de canaux tubulaires, le canal interne 6 et le canal annulaire externe 8 sont coaxiaux. Ces canaux débouchent dans la chambre de combustion 4, 4’, 4” du dispositif de la figure 1 . Les canaux interne et externe sont de section transversale circulaire. Un dispositif d’allumage non représenté permet l’inflammation des gaz en sortie des canaux pour initier la combustion. [0034] Ce dispositif d’injection 2 est employé dans la présente divulgation dans une configuration pour laquelle un mélange riche dihydrogène-air est injecté dans le canal interne 6 tandis que de l’air est injecté dans le canal externe 8. De ce fait, la combustion comporte une première combustion riche en dihydrogène en sortie du canal interne ou central 6. et une seconde combustion dite pauvre qui est réalisée autour d’une flamme créée par la première combustion. The injection device can be, as illustrated in Figure 2, an injection device which comprises an internal channel 6 and an external annular channel 8. The external channel 8 is centered on the internal channel 6 and in the case of tubular channels, the internal channel 6 and the external annular channel 8 are coaxial. These channels open into the combustion chamber 4, 4', 4” of the device of Figure 1. The internal and external channels are circular in cross section. An ignition device not shown allows the ignition of the gases leaving the channels to initiate combustion. This injection device 2 is used in the present disclosure in a configuration for which a rich dihydrogen-air mixture is injected into the internal channel 6 while air is injected into the external channel 8. Therefore , the combustion comprises a first combustion rich in dihydrogen at the outlet of the internal or central channel 6. and a second so-called lean combustion which is carried out around a flame created by the first combustion.
[0035] Pour l’injection dans le canal interne 6 et la combustion en sortie de ce canal, on dit que l’injection et la combustion sont riches, quand il y a du dihydrogène en excès par rapport à une combustion se déroulant à la stœchiométrie entre du dihydrogène et du dioxygène de l’air et que l’injection et la combustion sont pauvres quand on a du dioxygène en excès par rapport à cette combustion à la stœchiométrie. La combustion à la stœchiométrie est elle-même définie comme une combustion pour laquelle on a le bon nombre d’atomes d’hydrogène et d'oxygène nécessaires pour consommer tout le combustible et qu’il ne reste plus que de l'eau et du diazote dans les produits de combustion. [0035] For the injection into the internal channel 6 and the combustion at the outlet of this channel, we say that the injection and the combustion are rich, when there is excess dihydrogen compared to combustion taking place at the stoichiometry between dihydrogen and dioxygen in the air and that the injection and combustion are poor when there is excess dioxygen compared to this stoichiometric combustion. Stoichiometric combustion is itself defined as combustion for which we have the right number of hydrogen and oxygen atoms necessary to consume all the fuel and only water and carbon remain. dinitrogen in combustion products.
[0036] Selon la figure 3, la présente invention prévoit ainsi un procédé d’injection qui comporte une injection d’un mélange dihydrogène-air 12a de richesse en hydrogène supérieure au dosage stœchiométrique dans le canal interne 6 du dispositif d’injection et une injection d’air 26a dans le canal annulaire externe 8 en sorte de réaliser, au niveau de la sortie dudit canal interne 6, un premier front de flamme 30 issu d’une combustion riche entouré par un second front de flamme 31 issu d’une combustion pauvre. [0036] According to Figure 3, the present invention thus provides an injection process which comprises an injection of a dihydrogen-air mixture 12a with a hydrogen richness greater than the stoichiometric dosage in the internal channel 6 of the injection device and a injection of air 26a into the external annular channel 8 so as to produce, at the outlet of said internal channel 6, a first flame front 30 resulting from a rich combustion surrounded by a second flame front 31 resulting from a poor combustion.
[0037] Le canal interne 6 forme alors un tube d’injection de mélange riche dihydrogène-air 12a et le canal annulaire externe 8 forme un tube d’injection d’air 26a. The internal channel 6 then forms a rich dihydrogen-air mixture injection tube 12a and the external annular channel 8 forms an air injection tube 26a.
[0038] Le mélange riche 12a d’air et de dihydrogène est injecté depuis une entrée 10 située à une extrémité amont du canal interne 6. The rich mixture 12a of air and dihydrogen is injected from an inlet 10 located at an upstream end of the internal channel 6.
[0039] Le canal interne 6 comporte un diamètre interne d. Le choix du diamètre interne d du canal dépend d’une puissance thermique souhaitée. [0040] De retour à la figure 2, une extrémité aval 16 du canal interne 6 est agencée en amont par rapport à une extrémité aval 24 du canal annulaire externe 8. L’extrémité aval 24 du canal annulaire externe 8 est agencée à une distance r de l’extrémité aval 16 du canal interne 6 vers l’aval. Ce canal annulaire externe 8 comporte un diamètre interne D. The internal channel 6 has an internal diameter d. The choice of the internal diameter d of the channel depends on the desired thermal power. Returning to Figure 2, a downstream end 16 of the internal channel 6 is arranged upstream with respect to a downstream end 24 of the external annular channel 8. The downstream end 24 of the external annular channel 8 is arranged at a distance r from the downstream end 16 of the internal channel 6 towards the downstream. This external annular channel 8 has an internal diameter D.
[0041] Le canal annulaire externe 8 est configuré pour recevoir un second gaz qui est de l’air 26a. Ce gaz pénètre dans le canal annulaire externe par une entrée 26a agencée à l’extrémité amont dudit canal annulaire externe. The external annular channel 8 is configured to receive a second gas which is air 26a. This gas enters the external annular channel via an inlet 26a arranged at the upstream end of said external annular channel.
[0042] Une vrille annulaire 28 est logée à ladite extrémité amont du canal annulaire externe 8. Cette vrille peut être radiale ou axiale. Cette vrille annulaire 28 est agencée à une distance L de l’extrémité aval 36 du canal annulaire externe 8. L’air 26a traversant le canal annulaire externe est mis en rotation par la vrille externe 28. Cela génère un ensemble tourbillonnaire qui va aider à décrocher le second front de flamme de la sortie du canal central. An annular twist 28 is housed at said upstream end of the external annular channel 8. This twist can be radial or axial. This annular spinner 28 is arranged at a distance L from the downstream end 36 of the external annular channel 8. The air 26a passing through the external annular channel is rotated by the external spinner 28. This generates a swirling assembly which will help to unhook the second flame front from the central channel outlet.
[0043] Le prémélange dihydrogène-air 12a est injecté dans le canal interne 6, formé par un tube réalisant un conduit central d’injection. Le prémélange est de richesse supérieure à deux c’est à dire supérieur à 2 masses d’hydrogène pour 1 masse d’air et peut être même de richesse supérieure à quatre au moins dans certaines configurations de fonctionnement. The dihydrogen-air premix 12a is injected into the internal channel 6, formed by a tube creating a central injection conduit. The premix has a richness greater than two, i.e. greater than 2 masses of hydrogen for 1 mass of air, and can even be richer than four at least in certain operating configurations.
[0044] L’air pur 26a injecté dans le canal annulaire 8 autour du canal interne 6 est injecté en quantité calculée de manière à cibler une richesse globale d’injection comprise entre 0,15 et 0,5 ce qui revient à une combustion globalement pauvre. L’air pur 26a est mis en rotation dans le canal annulaire 8 par la vrille externe 28 axiale ou radiale située en amont du plan de sortie 16a de l’extrémité aval 16 du conduit central d’injection de mélange riche dihydrogène-air. [0044] The pure air 26a injected into the annular channel 8 around the internal channel 6 is injected in a quantity calculated so as to target an overall injection richness of between 0.15 and 0.5, which amounts to overall combustion. poor. The pure air 26a is rotated in the annular channel 8 by the external axial or radial spinner 28 located upstream of the outlet plane 16a of the downstream end 16 of the central conduit for injecting the rich dihydrogen-air mixture.
[0045] La lèvre 16 du canal interne 6 est ici en retrait par rapport au plan de sortie 24a du canal annulaire 8. The lip 16 of the internal channel 6 is here set back relative to the exit plane 24a of the annular channel 8.
[0046] Le fonctionnement du dispositif d’injection est décrit ci-après, en s’appuyant sur la Figure 3: [0047] L’injection du prémélange riche dihydrogène-air 12a dans le canal interne 6 permet, après allumage, de créer au niveau de la sortie du canal interne 6 un premier front de flamme 30 issu de la combustion riche dudit mélange. Ce front de flamme vient s’accrocher sur la lèvre 16 du canal interne 6. Cette combustion riche, par exemple d’une richesse supérieure à 2, s’effectue avec une température de front de flamme inférieure à 1800 K afin de ne pas générer d’oxydes d’azote. Ce front de flamme 30 est laminaire et n’est pas soumis aux instabilités thermo-diffusives du fait d’un nombre de Lewis supérieur à 1 . [0046] The operation of the injection device is described below, based on Figure 3: [0047] The injection of the rich dihydrogen-air premix 12a into the internal channel 6 makes it possible, after ignition, to create at the outlet of the internal channel 6 a first flame front 30 resulting from the rich combustion of said mixture. This flame front attaches to the lip 16 of the internal channel 6. This rich combustion, for example with a richness greater than 2, is carried out with a flame front temperature lower than 1800 K so as not to generate nitrogen oxides. This flame front 30 is laminar and is not subject to thermo-diffusive instabilities due to a Lewis number greater than 1.
[0048] L’injection d’air 26a au niveau du canal annulaire externe 8 permet de diluer rapidement et de confiner les gaz brûlés issus de la combustion du prémélange riche. La présence d’une forte couche de cisaillement turbulente permet de réduire la richesse locale. Ce mélange est ensuite brûlé et génère un second front de flamme 31 de combustion pauvre. Ce front de flamme reste stabilisé grâce au quench tourbillonnaire causé par l’apport d’air et grâce à la forte réactivité du dihydrogène malgré les forts étirements imposés à la flamme. Ce second front de flamme issu d’une combustion pauvre est également à une température inférieure à 1800K, limitant la formation des oxydes d’azote. Le front de flamme 31 est turbulent et n’est pas attaché à la lèvre 16 du canal interne 6. La longueur de la flamme sera dépendante des conditions d’entrée des combustibles et oxydants et notamment du rapport des quantités de mouvement, du renfoncement du canal interne par rapport au canal annulaire externe, de la présence de tourbillons dans la flamme. [0048] The injection of air 26a at the level of the external annular channel 8 makes it possible to quickly dilute and confine the burnt gases resulting from the combustion of the rich premix. The presence of a strong turbulent shear layer reduces local richness. This mixture is then burned and generates a second flame front 31 of lean combustion. This flame front remains stabilized thanks to the swirling quench caused by the supply of air and thanks to the strong reactivity of the dihydrogen despite the strong stretching imposed on the flame. This second flame front resulting from poor combustion is also at a temperature below 1800K, limiting the formation of nitrogen oxides. The flame front 31 is turbulent and is not attached to the lip 16 of the internal channel 6. The length of the flame will depend on the entry conditions of the fuels and oxidants and in particular on the ratio of the quantities of movement, the recess of the internal channel compared to the external annular channel, the presence of swirls in the flame.
[0049] La création de ces deux fronts de flamme, flamme riche 30 et flamme pauvre 31 permet de répartir la charge thermo-acoustique issue de la combustion sur une surface plus importante, et donc de réduire les nuisances sonores issues de la combustion. De même la stabilisation de deux fronts de flamme au niveau des lèvres du brûleur divise les charges thermo-acoustiques liés à la combustion et réduit le bruit généré. The creation of these two flame fronts, rich flame 30 and lean flame 31 makes it possible to distribute the thermo-acoustic load resulting from combustion over a larger surface area, and therefore to reduce the noise pollution resulting from combustion. Likewise, the stabilization of two flame fronts at the burner lips divides the thermo-acoustic loads linked to combustion and reduces the noise generated.
[0050] Le procédé de combustion du présent document réalise ainsi une combustion étagée de l’hydrogène afin de contourner la zone de formation des oxydes d’azote au moyen de la combustion du prémélange dihydrogène-air riche dans une première zone, la flamme 30 interne, et la combustion des gaz résiduels dans une seconde zone, la flamme 31 autour de la flamme 30. [0050] The combustion process of the present document thus carries out a staged combustion of the hydrogen in order to bypass the zone of formation of nitrogen oxides by means of the combustion of the dihydrogen-rich air premixture. in a first zone, the internal flame 30, and the combustion of the residual gases in a second zone, the flame 31 around the flame 30.
[0051] Le risque de retour de flamme dit flashback en anglais est limité avec une combustion riche car le premier front de flamme ne comporte pas d’instabilités thermo-diffusives. La vitesse de la première flamme n’est ainsi pas accélérée par les instabilités. [0051] The risk of flame flashback, known as flashback in English, is limited with rich combustion because the first flame front does not involve thermo-diffusive instabilities. The speed of the first flame is thus not accelerated by instabilities.
[0052] L’intégrité du foyer est également assurée car en réalisant les combustions à des fortes et faibles richesses, les températures de flamme sont moins importantes qu’en réalisant une combustion dans des conditions stoechiométriques. Les potentiels fronts de flamme issus de zones stoechiométriques qui pourraient être présentes ne sont pas attachés aux lèvres de l’injecteur, ce qui limite l’endommagement de l’injecteur. [0052] The integrity of the hearth is also ensured because by carrying out combustion at high and low levels, the flame temperatures are less important than by carrying out combustion under stoichiometric conditions. Potential flame fronts from stoichiometric zones that could be present are not attached to the lips of the injector, which limits damage to the injector.
[0053] Un exemple de réalisation prévoit, pour un fonctionnement dans des conditions types d’une turbine à gaz d’un turbopropulseur, une richesse de zone riche de l’ordre de 4 pour le mélange dihydrogène-air injecté par le canal interne 6, soit une richesse bien au-dessus du dosage stoechiométriques de richesse 1 , et un apport d’air au moyen du canal annulaire 8 en quantité telle que la richesse globale est fixée entre 0,15 et 0,50 en fonction des points de fonctionnement du turbopropulseur. [0053] An exemplary embodiment provides, for operation under typical conditions of a gas turbine of a turboprop, a rich zone richness of the order of 4 for the dihydrogen-air mixture injected through the internal channel 6 , i.e. a richness well above the stoichiometric dosage of richness 1, and a supply of air by means of the annular channel 8 in a quantity such that the overall richness is fixed between 0.15 and 0.50 depending on the operating points of the turboprop.
[0054] La figure 4 montre divers modes de réalisation possibles de la sortie du canal interne 6 d’injection du prémélange. La forme et l’épaisseur de la sortie 16 du canal interne, 16a, 16b, 16c peuvent être ajustées par rapport à la forme de base 16 du canal interne représentée en figure 4(A). En figure 4(B), l’extrémité 16a du canal interne est formée en biseau rentrant, en figure 4(C) l’extrémité 16b s’évase toujours en biseau. En figure 4(D) l’extrémité 16c du canal interne s’évase mais comporte une face terminale perpendiculaire à l’axe longitudinal du canal. Ces différentes configurations permettent de gérer l’accrochage du premier front de flamme 30 sur la lèvre 16 selon les configurations du système d’injection. [0054] Figure 4 shows various possible embodiments of the output of the internal channel 6 for injecting the premix. The shape and thickness of the outlet 16 of the internal channel, 16a, 16b, 16c can be adjusted relative to the basic shape 16 of the internal channel shown in Figure 4(A). In Figure 4(B), the end 16a of the internal channel is formed as a recessed bevel, in Figure 4(C) the end 16b always flares out as a bevel. In Figure 4(D) the end 16c of the internal channel flares but has a terminal face perpendicular to the longitudinal axis of the channel. These different configurations make it possible to manage the attachment of the first flame front 30 to the lip 16 according to the configurations of the injection system.
[0055] En figure 4(E) une vrille 17 est ajoutée dans le canal interne 6 de façon à homogénéiser le prémélange dihydrogène-air. [0056] Pour ce qui concerne le canal externe 8, ce dernier peut déboucher d’une paroi 240 comme représenté en figure 5 et avoir différentes configurations de lèvre de sortie du canal : [0055] In Figure 4(E) a swirler 17 is added in the internal channel 6 so as to homogenize the dihydrogen-air premix. [0056] As regards the external channel 8, the latter can emerge from a wall 240 as shown in Figure 5 and have different channel outlet lip configurations:
[0057] Sortie droite 24 en figure 5(A), sortie inclinée conique évasée 24a en figure 5(B) ou sortie conique se refermant 24b comme en figure 5(C). Ces différentes configurations permettent de jouer sur la vitesse de sortie de l’air entourant la flamme riche sortant du canal interne 6. [0057] Straight outlet 24 in Figure 5(A), flared conical inclined outlet 24a in Figure 5(B) or closing conical outlet 24b as in Figure 5(C). These different configurations make it possible to adjust the exit speed of the air surrounding the rich flame leaving internal channel 6.
[0058] La présente divulgation concerne ainsi un procédé d’injection de dihydrogène pré-mélangé avec de l’air pour turbine à gaz aéronautique basé sur une combustion étagée pour lequel: a. Une combustion du prémélange dihydrogène-air à richesse élevée a lieu dans une première région et génère un premier front de flamme accroché aux lèvres de l’injecteur ; b. Un mélange rapide des produits de combustion via l’injection d’air pour être brûlés dans une seconde région en générant un second front de flamme stable. [0058] The present disclosure thus concerns a process for injecting dihydrogen pre-mixed with air for an aeronautical gas turbine based on staged combustion for which: a. Combustion of the dihydrogen-air premix at high richness takes place in a first region and generates a first flame front attached to the lips of the injector; b. Rapid mixing of combustion products via air injection to be burned in a second region generating a second stable flame front.
[0059] Ce procédé permet notamment : a. D’obtenir des flammes stabilisées aérodynamiquement sur une large plage de fonctionnement, b. De réaliser une combustion à très faible émission d’oxydes d’azote, c. D’éviter le risque de flashback du second front de flamme, d. De diminuer les nuisances sonores liées à la combustion de l’hydrogène, e. De garantir l’intégrité et durée de vie de l’injecteur. [0059] This process allows in particular: a. To obtain aerodynamically stabilized flames over a wide operating range, b. To achieve combustion with very low nitrogen oxide emissions, i.e. To avoid the risk of flashback of the second flame front, d. To reduce noise pollution linked to the combustion of hydrogen, e. To guarantee the integrity and lifespan of the injector.
[0060] Le procédé tel que défini dans les revendications n’est pas limité à la description ci-dessus et peut notamment s’appliquer à des systèmes d’injection disposés dans des parois arrière de chambres de combustion ou dépassant de telles parois. The method as defined in the claims is not limited to the description above and can in particular be applied to injection systems arranged in the rear walls of combustion chambers or extending beyond such walls.

Claims

Revendications Claims
[Revendication 1] Procédé d’injection, pour un dispositif d’injection dans une chambre de combustion (4, 4’) d’une turbomachine d’aéronef (1 ), ledit dispositif d’injection comportant un canal interne (6) entouré par un canal annulaire externe (8), lesdits canaux débouchant dans ladite chambre de combustion (4, 4’) de ladite turbine à gaz, caractérisé en ce qu’il comporte une injection d’un mélange dihydrogène-air (12a) de richesse en hydrogène supérieure au dosage stoechiométrique dans ledit canal interne (6) et une injection d’air dans ledit canal annulaire externe (8), produisant, après allumage dudit mélange en sortie du canal interne, au niveau de la sortie dudit canal interne (6), un premier front de flamme (30) issu d’une combustion riche, externe audit canal interne s’accrochant à une lèvre au niveau de la sortie du canal interne, ledit premier front de flamme étant entouré par un second front de flamme (31 ) issu d’une combustion pauvre avec l’air sortant dudit canal externe. [Claim 1] Injection method, for an injection device in a combustion chamber (4, 4') of an aircraft turbomachine (1), said injection device comprising an internal channel (6) surrounded by an external annular channel (8), said channels opening into said combustion chamber (4, 4') of said gas turbine, characterized in that it comprises an injection of a dihydrogen-air mixture (12a) of richness in hydrogen greater than the stoichiometric dosage in said internal channel (6) and an injection of air in said external annular channel (8), producing, after ignition of said mixture at the outlet of the internal channel, at the outlet of said internal channel (6 ), a first flame front (30) resulting from a rich combustion, external to said internal channel clinging to a lip at the exit of the internal channel, said first flame front being surrounded by a second flame front ( 31) resulting from lean combustion with the air leaving said external channel.
[Revendication 2] Procédé d’injection selon la revendication 1 pour lequel ledit mélange dihydrogène-air (12a) est d’une richesse en hydrogène supérieure à 2. [Claim 2] Injection method according to claim 1 for which said dihydrogen-air mixture (12a) has a hydrogen content greater than 2.
[Revendication 3] Procédé d’injection selon la revendication 1 pour lequel ledit mélange dihydrogène-air (12a) est d’une richesse en hydrogène supérieure ou égale à 4. [Claim 3] Injection method according to claim 1 for which said dihydrogen-air mixture (12a) has a hydrogen content greater than or equal to 4.
[Revendication 4] Procédé d’injection selon la revendication 1 , 2 ou 3 pour lequel un débit d’air dans le canal annulaire externe est choisi tel que la richesse globale en sortie de l’ensemble canal interne (6) et canal annulaire externe (8) est fixée entre 0,15 et 0,5 en fonction des points de fonctionnement de la turbomachine. [Claim 4] Injection method according to claim 1, 2 or 3 for which an air flow in the external annular channel is chosen such that the overall richness at the outlet of the internal channel (6) and external annular channel assembly (8) is set between 0.15 and 0.5 depending on the operating points of the turbomachine.
[Revendication 5] Procédé d’injection selon l’une quelconque des revendications précédentes pour lequel l’injection du mélange dihydrogène/air (12a) et le dispositif sont configurés pour créer au niveau de la sortie du canal interne (6) ledit premier front de flamme (30) issu d’une combustion riche dudit mélange et l’accrocher sur une lèvre (16) du canal interne (6), après allumage dudit mélange. [Claim 5] Injection method according to any one of the preceding claims for which the injection of the dihydrogen/air mixture (12a) and the device are configured to create said first front at the outlet of the internal channel (6). flame (30) resulting from a rich combustion of said mixture and hang it on a lip (16) of the internal channel (6), after ignition of said mixture.
[Revendication 6] Procédé d’injection selon la revendication 5 pour lequel la richesse en dihydrogène du mélange est choisie pour que ladite combustion riche s’effectue avec une température de front de flamme inférieure à 1800 K. [Claim 6] Injection process according to claim 5 for which the richness in dihydrogen of the mixture is chosen so that said rich combustion takes place with a flame front temperature lower than 1800 K.
[Revendication 7] Procédé d’injection selon la revendication 5 ou 6 pour lequel la richesse en dihydrogène du mélange est choisie pour que le premier front de flamme (30) soit laminaire et comporte un nombre de Lewis supérieur à 1 limitant des instabilités thermo-diffusives. [Claim 7] Injection method according to claim 5 or 6 for which the richness of dihydrogen in the mixture is chosen so that the first flame front (30) is laminar and has a Lewis number greater than 1 limiting thermal instabilities. diffusive.
[Revendication 8] Procédé d’injection selon la revendication 5, 6 ou 7 pour lequel le mélange brûlé dans le premier front de flamme génère des gaz résiduels brûlés dans le second front de flamme (31 ) stabilisé par l’apport d’air du canal annulaire externe. [Claim 8] Injection method according to claim 5, 6 or 7 for which the mixture burned in the first flame front generates residual gases burned in the second flame front (31) stabilized by the supply of air from the external annular canal.
[Revendication 9] Procédé d’injection selon la revendication 8 pour lequel le second front de flamme est maintenu à une température inférieure à 1800K. [Claim 9] Injection process according to claim 8 for which the second flame front is maintained at a temperature below 1800K.
[Revendication 10] Procédé d’injection selon la revendication 8 ou 9 pour lequel l’air injecté par le canal annulaire est mis en rotation par une vrille annulaire (28). [Claim 10] Injection method according to claim 8 or 9 for which the air injected through the annular channel is rotated by an annular spinner (28).
PCT/FR2023/000071 2022-05-02 2023-05-02 Method for injecting a hydrogen-air mixture for a turbine engine burner WO2023214129A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2204146A FR3135114A1 (en) 2022-05-02 2022-05-02 METHOD FOR INJECTING HYDROGEN-AIR MIXTURE FOR TURBOMACHINE BURNER
FRFR2204146 2022-05-02

Publications (1)

Publication Number Publication Date
WO2023214129A1 true WO2023214129A1 (en) 2023-11-09

Family

ID=83900291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2023/000071 WO2023214129A1 (en) 2022-05-02 2023-05-02 Method for injecting a hydrogen-air mixture for a turbine engine burner

Country Status (2)

Country Link
FR (1) FR3135114A1 (en)
WO (1) WO2023214129A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0335978A1 (en) * 1987-09-04 1989-10-11 Hitachi, Ltd. Gas turbine combustor
EP1512913A1 (en) * 2003-09-02 2005-03-09 Snecma Moteurs Injection system for air and fuel with means to produce cold plasma
US20100330510A1 (en) * 2005-05-23 2010-12-30 Pfefferle William C METHOD FOR LOW NOx COMBUSTION OF SYNGAS / HUGH HYDROGEN FUELS
US20120234013A1 (en) * 2011-03-18 2012-09-20 Delavan Inc Recirculating product injection nozzle
FR3007801A1 (en) * 2013-07-01 2015-01-02 Snecma INJECTION ELEMENT
WO2021215461A1 (en) * 2020-04-22 2021-10-28 三菱パワー株式会社 Burner assembly, gas turbine combustor, and gas turbine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6314717B1 (en) * 1996-12-03 2001-11-13 Elliott Energy Systems, Inc. Electricity generating system having an annular combustor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0335978A1 (en) * 1987-09-04 1989-10-11 Hitachi, Ltd. Gas turbine combustor
EP1512913A1 (en) * 2003-09-02 2005-03-09 Snecma Moteurs Injection system for air and fuel with means to produce cold plasma
US20100330510A1 (en) * 2005-05-23 2010-12-30 Pfefferle William C METHOD FOR LOW NOx COMBUSTION OF SYNGAS / HUGH HYDROGEN FUELS
US20120234013A1 (en) * 2011-03-18 2012-09-20 Delavan Inc Recirculating product injection nozzle
FR3007801A1 (en) * 2013-07-01 2015-01-02 Snecma INJECTION ELEMENT
WO2021215461A1 (en) * 2020-04-22 2021-10-28 三菱パワー株式会社 Burner assembly, gas turbine combustor, and gas turbine

Also Published As

Publication number Publication date
FR3135114A1 (en) 2023-11-03

Similar Documents

Publication Publication Date Title
CA2478876C (en) Air/fuel injection system with cold-plasma generation capability
EP1953455B1 (en) Injection system with double injector
EP2026007B1 (en) Fuel injector in a turbomachine combustion chamber
CA2605952C (en) Fuel injector for a gas turbine engine combustion chamber
CA2588952C (en) Turbojet engine combustion chamber
CA2194911C (en) Low-emission combustion chamber for gas turbine engines
EP1923636B1 (en) Device for injecting a mix of air and fuel, combustion chamber and turbomachine equipped with such a device
CA2198420C (en) Fuel injection device for aircraft ramjet
EP1288579B1 (en) Stepped double head annular combustor
FR2488942A1 (en) COMBUSTION PROCESS AND APPARATUS FOR GAS TURBINE
CA2641989A1 (en) Combustion chamber with optimal dilution and turbine engine so equipped
FR2706020A1 (en) Combustion chamber assembly, in particular for a gas turbine; comprising separate combustion and vaporization zones.
FR3116592A1 (en) Spindle for turbomachine staged injection device
WO2023214129A1 (en) Method for injecting a hydrogen-air mixture for a turbine engine burner
WO2024052611A1 (en) Device and method for injecting a hydrogen-air mixture for a turbine engine burner
FR3080672A1 (en) PRECHAMBER FOR ANNULAR FLOW-RATE COMBUSTION CHAMBER FOR GAS TURBINE ENGINE
FR3022986B1 (en) METHOD FOR IGNITING A TURBOMACHINE COMBUSTION CHAMBER
FR3071550A1 (en) ANNULAR CHAMBER OF COMBUSTION
WO2023057722A1 (en) Device for injecting dihydrogen and air
FR3033030A1 (en) AIR-FUEL MIX INJECTION SYSTEM IN AN AIRCRAFT TURBOMACHINE COMBUSTION CHAMBER, COMPRISING A PERFORATED AIR INJECTION HOLES VENTURI
FR3105985A1 (en) IMPROVED INJECTOR MULTIPOINT CIRCUIT
FR3099546A1 (en) COMBUSTION CHAMBER CONTAINING SECONDARY INJECTION SYSTEMS INJECTING AIR AND FUEL DIRECTLY INTO CORNER RECIRCULATION ZONES, TURBOMACHINE INCLUDING IT, AND PROCESS FOR SUPPLYING FUEL THEREOF
FR3057648A1 (en) LOW TURBOMACHINE COMBUSTION CHAMBER INJECTION SYSTEM
FR3127988A1 (en) Dihydrogen and air injection device
WO2024134072A1 (en) Hydrogen combustion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23726147

Country of ref document: EP

Kind code of ref document: A1