EP1948007A1 - Implantationsvorrichtung zur fixierung eines sensors in einem körperlumen - Google Patents
Implantationsvorrichtung zur fixierung eines sensors in einem körperlumenInfo
- Publication number
- EP1948007A1 EP1948007A1 EP06809209A EP06809209A EP1948007A1 EP 1948007 A1 EP1948007 A1 EP 1948007A1 EP 06809209 A EP06809209 A EP 06809209A EP 06809209 A EP06809209 A EP 06809209A EP 1948007 A1 EP1948007 A1 EP 1948007A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fixation
- vessel
- sensing device
- sensor
- implant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6846—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
- A61B5/6847—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
- A61B5/6862—Stents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
- A61B5/0031—Implanted circuitry
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/021—Measuring pressure in heart or blood vessels
- A61B5/0215—Measuring pressure in heart or blood vessels by means inserted into the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6846—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
- A61B5/6867—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive specially adapted to be attached or implanted in a specific body part
- A61B5/6876—Blood vessel
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6846—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
- A61B5/6879—Means for maintaining contact with the body
- A61B5/6882—Anchoring means
Definitions
- the invention relates to the field of implantable medical devices, and in particular, to implantable devices for positioning a sensor, within a body lumen, such as the lumen of a blood vessel,
- U.S. Patent No. 4,485,813 describes a cardiac pacemaker sensor that can be permanently implanted in a specific location within a patient's body.
- U.S. Patent Nos. 6,645,143, 6,053,873, and 6,442,413 and U.S. Patent Publication No. 2002/0188207 describe medical monitoring sensors designed to be permanently implanted in blood vessels and capable of sensing and transmitting via a telemetry link to an external monitor. The implanted sensing devices are utilized for monitoring physiological parameters within the patient's body.
- the force created by the blood flow and/or heart movement which may act on an implanted sensing device like a sail, tends to drag the sensing device longitudinally along the vessel, or rotate it in the case where the sensing device is implanted adjacent a bifurcation of a vessel branch, it is critical that the anchoring force created between the sensing device and the wall of the blood vessel be as great as possible.
- high local or radial force on the relative weak pulmonary artery vessel wall may cause perforation or aneurysm.
- Many of the vascular implantation techniques assume that the segment of the blood vessel in which the sensing device is intended to be implanted is straight (i.e., it has no branches). In some cases, however, the vessel segment may be branched.
- the sensing device may be implanted within the blood vessel without regard to the branch. If, however, the length of the vessel segment is limited, the sensing device may not be adequately implanted within the vessel segment without crossing the branch. In this case, the implanted sensing device may block future access to the vessel branch, e.g., during catheterization, may be unstable due to the transverse blood flow through the branch, and worse yet, may cause blood clots that may potentially result in an embolism. As a result, the length of the sensing device sufficient for affixation to the wall of the blood vessel may have to be reduced in order to accommodate the branched vessel. In addition, the diameters of many blood vessels are not uniform, aid may even be conical, thereby presenting further challenges to lengthening the sensing device.
- The- right pulmonary artery which is frequently the target of sensor implantation, such as for the purpose of monitoring hemodynamic parameters indicative of the efficiency of the heart or measure the glucose level of the blood, is both branched and non-uniform.
- an implantable sensing device 10 which generally includes a fixation element 12 (e.g., a stent) and a sensing element 14 coupled to the fixation element12, is shown implanted within the right pulmonary artery RPA of a patient.
- a fixation element 12 e.g., a stent
- sensing element 14 coupled to the fixation element12
- the right pulmonary artery RPA branches into various side branches SBR, none of which is crossed by the sensing device 10 to prevent the afore-mentioned problems from occurring.
- the length of the implantable segment of the right pulmonary artery RPA i.e., the segment between the point at which the right pulmonary artery RPA begins and the point at which the first side branch SBR, known anatomically as "Truncus anterior", begins
- the length of the fixation element 12 must be relative short in " '• order to accommodate the side branch SBR.
- the length of the fixation element 12 must be relatively short, • ⁇ the stability of the sensing device 10 may be compromised.
- the diameter of the right pulmonary artery RPA substantially decreases in the distal direction (i.e., from right to left), which causes the proximal end of the fixation element 12 to engage the vessel wall less firmly than the distal end of the fixation element 12 engages the vessel':, wall, thereby further compromising the stability of the sensing device 10 s :
- an implanOfor sensing parameters within an anatomical vessel network e.g., the blood vessel network
- the implant comprises a first ffxation element having an expanded geometry for firmly engaging a wall of the4/essel network at a first longitudinal location, and a Second fixation element having an expanded geometry for firmly engaging the wall of vessel network at a second longitudinal location.
- the fixation elements can take the form of any suitable element, such as, e.g., a stent or a coil.
- the first and second . longitudinal locations may be, e.g., in a single anatomical vessel, or respectively in a main anatomical vessel and an anatomical vessel branch of the main anatomical vessel.
- the vessel network has substantially differing diameters at the first and second longitudinal locations.
- the implant further comprises a connecting element mechanically • coupling the first and second fixation elements together in an articulating manner.
- the implant can optionally comprise a third fixation element having an expanded geometry for firmly engaging the wall of vessel network at a third longitudinal location, and another connecting element mechanically coupling the second and third fixation elements together in an articulating manner. Articulation of the fixation elements allows them to expand and move relative to each other, so that, e.g., they can be implanted within misaligned vessel segments (e.g., a main anatomical vessel and a branch of the anatomical vessel) or vessel segments with non-uniform diameters.
- misaligned vessel segments e.g., a main anatomical vessel and a branch of the anatomical vessel
- the implant further comprises a sensing element mechanically coupled to the first fixation element opposite the connecting element.
- the sensing element can be, e.g., one or more of a pressure sensor, an accelerometer, a position sensor, a wall motion sensor, a flow sensor, a temperature sensor, an oxygen sensor, a calcium sensor, a potassium sensor, a glucose sensnr, a coagulation sensor, an electrical activity sensor, and a pH sensor.
- the implant further comprises a transmitter configured for wirelessly transmitting information sensed by the sensing element to a remote receiver.
- Fig. 1 is a side view of a prior art sensing device arrangement within a pulmonary arterial network of a patient
- Fig. 2 is a side view of a first sensing device arrangement within the pulmonary arterial network in accordance with the invention
- Fig. 3 is a side view of a second sensing device arrangement within the pulmonary arterial network in accordance with the invention.
- Fig. 4 is a side view of a third sensing device arrangement within the pulmonary arterial network in accordance with the invention.
- Fig. 5 is a side view of a fourth sensing device arrangement within the pulmonary arterial network in accordance with the invention.
- Fig. 6 is a side view of a fifth sensing device arrangement within the pulmonary arterial network in accordance with the invention.
- Fig. 7 is a side view of a sixth sensing device arrangement withir ⁇ the pulmonary arterial network in accordance with the invention.
- Fig. 8 is a side view of a seventh sensing device arrangement within the pulmonary arterial network in accordance with the invention
- Fig. 9 is a side view of an eighth sensing device arrangement within the pulmonary arterial network in accordance with the invention.
- Fig. 10 is a side view of a ninth sensing device arrangement within the pulmonary arterial network in accordance with the invention.
- Fig. 11 is a side view of a tenth sensing device arrangement within the pulmonary arterial network in accordance with the invention.
- Fig. 12 is a side view of an eleventh sensing device arrangement within the pulmonary arterial network in accordance with the invention.
- Fig. 13 is a side view of an alternative embodiment, of a fixation element used in the eleventh sensing device arrangement of Fig. 12;
- Fig. 14 is a side view of another alternative embodiment of fixation element used in the eleventh sensing device arrangement of Fig. 12;
- Fig. 15 is a side view of a still another alternative embodiment of a fixation element used in the eleventh sensing device arrangement of Fig. 12;
- Fig. 16 is a side view of yet another alternative embodiment of fixation " ' • element used in the eleventh sensing device arrangement of Fig. 12;
- Fig. 17 is a side view of yet another alternative embodiment of fixation element used in the eleventh sensing device arrangement of Fig. 12;
- Figs. 18A-18D are side views illustrating one method of implanting a sensing device using embodiments of the invention, for purposes of better understanding the invention.
- Figs. 19A-19H are side views illustrating other methods of implanting a sensing device using embodiments of the invention, for purposes of better understanding the invention.
- the sensing device 20 is shown implanted within an anatomical vessel network, and in particular, the pulmonary arterial network of a patient.
- blood flows from the right ventricle RV of the heart H, out through the main pulmonary artery MPA, which branches into the right pulmonary artery RPA and a left pulmonary artery LPA.
- the sensing device 20 generally comprises a proximal fixation element 22, a distal fixation element 24, a connecting element 26 mechanically coupling the proximal fixation element 22 to the distal fixation element 24, .and a sensing element 28 mechanically coupled to the proximal fixation element 22 via another connecting element 30 opposite the connecting element 26 (i.e., the proximal fixation element 22 is between the connecting elements 26, 30).
- the proximal fixation element 22 is firmly engaged with the wall of the right pulmonary artery RPA at a longitudinal location proximal to a side branch SBR, while the distal fixation element 24 istfirmly engaged with the wall of the side branch SBR.
- fixation elements 22/124 effectively increases the anchoring force between the sensing device.20 and the vessel wall of the pulmonary arterial network in the longitudinal direction, thereby minimizing the chance that the sensing device 20 will migrate within the right pulmonary artery RPA after implantation.
- distal fixation element 24 is disposed in the side branch SBR transverse to the lumen of the right pulmonary artery RPA, the anchoring force between the sensing device 20 and the vessel wall of the pulmonary arterial network is also increased in a rotational direction about the longitudinal axis of the right pulmonary artery RPA.
- the connecting element 26 allows the fixation elements 22, 24 to articulate relative to each other, so that the distal fixations element 24 can be more easily disposed within the pulmonary branch BR, while the proximal fixation element 22 is disposed within the right pulmonary artery RPA. Also, the only portion of the sensing device 20 that is within the bifurcation between the right pulmonary artery RPA and the side branch SBR is the relatively low profile connecting element 26.
- the other connecting element 30 may be rigid, so as to mainta ⁇ rthe sensing element 28 at a constant position, or can be flexible, so as tofenable movement of the sensing element 28 within the vessel lumen.
- the other connecting element 30 maintains the sensing element 28 between the vessel wall and the center of the vessel lumen, e.g., between 0.05mm and 0.8r, where r is the radius of the vessel lumen.
- the sensing element 28 can be positioned at a distance between 0.05mm and 8mm from the vessel wall.
- the sensing element 28 can be located either in contact with the vessel wall, at the vicinity of the vessel wall, or in any other convenient location within the vessel lumen. In these cases, the sensing element 28 may be connected directly to the proximal fixation element 22.
- each of the fixation elements 22, 24 has an expandable stent-like configuration having one or more struts coupled together to provide an outwardly urging radial force against the vessel wall.
- the resilient struts are in an open radial zigzag configuration.
- the resilient struts may be in a closed radial zigzag configuration, as illustrated in Fig. 3.
- the .expanded sizes, and in particular the diameters, of the fixation elements 22, 24 aife individually selected to provide the necessary anchoring force within the respective vessel segments in which they are intended to be disposed? in this case, within the right pulmonary artery RPA and the side branch SBR, so that the expanded diameter of the proximal fixation element 22 will be greater than the expanded diameter of the distal fixation element 24.
- the struts of the fixation elements" 22, 24 are composed of a suitable material that allows the fixation elements 22, 24 to self-expand radially outward in the absence of a compressive force.
- the fixation elements 22, 24 may be manufactured from a wire, a laser cut tube, or a chemical etched tube or metal sheet composed of a suitable biocompatible material, such as nickel-titanium alloy, stainless steel, titanium, or cobalt-based alloy, or to enhance the radio-opacity of the sensing device, tantalum, gold, platinum, or platinum-iridium.
- the fixation elements 22, 24 may alternatively be composed of a polymer, including a shape memory polymer with or without the addition of radio-opaque material (e.g., barium sulfate).
- the cross-section of the struts may be, e.g., round, oval, rectangular, or any convenient shape.
- the thickness of the struts may be ing. the range of 0.05-0.5mm.
- the struts may optionally include ridges, barbs, o$ . hooks for preventing migration of the sensing device 20 within the vessel lumen.
- Each of the connecting elements 26, 30 may be composed of a suitable biocompatible material, such as nickel-titanium alloy, stainless steel, titanium, or cobalt-based alloy, or to enhance the radio-opacity of the sensjtiig.' device, tantalum, gold, platinum, or platinum-iridium.
- the connecting elements 26, 30 may alternatively be composed of a polymer, including 1 , a • • • shape memory polymer with or without the addition of radio-opaque material (e.g., barium sulfate).
- the sensing element 28 is a pressure sensor for monitoring blood pressure within the blood vessel.
- any known sensor can be used, including, but not limited to, an accelerorf eter, a wall motion sensor, a flow sensor, temperature sensor, oxygen sensdif, glucose sensor, coagulation sensor, an electrical activity sensor, and ⁇ pH sensor.
- another operative element can be located either in contact with the vessel wall, at the vicinity of the vessel wall, or in any other convenient location within the vessel lumen.
- the operative element may be another sensing element different from the sensing element 28, or an energy source, such as a battery.
- the sensing element 28 can be electrically connected to a battery for enabling energy transfer from the battery to the sensing element 28. Further details describing the structure and function, of implantable sensing elements are disclosed in U.S. Patent Nos. 6,764,446 and 7,024,248.
- the sensing device 20 is shown implanted within the vessel network in a different configuration, in particular, the proximal fixation element 22 is firmly engaged with the wall of the right pulmonary artery RPA at a longitudinal location proximal to the side branch SBR, while the distal fixation element 24 is firmly engaged with the wall of the right pulmonary artery RPA at a longitudinal location distal to the side branch SBR.
- the use of two fixation- elements 22, 24 effectively increases the anchoring force between the sensing device 20 and the vessel wall of the pulmonary arterial network in the longitudinal direction, thereby minimizing the chance that the sensing ' " device 20 will migrate within the right pulmonary artery RPA after implantation.
- the fixation elements 22, 24 articulate relative to ea"ch other, the non-uniformity of the diameter along the right pulmonary artery RPA does not significantly diminish the anchoring capability of the sensing device 20.
- the configuration shown in Fig. 4 does not use the side branch SBR as an anchoring mechanism, it does accommodate the side branch SBR by oniy locating the low-profile connecting element 26 at the bifurcation.
- the connecting element 26 may either cross the side branch SBR, or may even be offset from the side branch SBR to maintain the side branch SBR totally, patent without crossing it.
- the sensing device 40 is similar to the previously sensing device 40, with the exception that the sensing element 28 is coupled between the fixation elements 22, 24.
- the sensing element 28 is suspended in the lumen of the right pulmonary artery RPA at the bifurcation.
- the sensing element 2&" " . is located as remotely as possible from the bifurcation to minimize blockagisof the side branch SBR, which may otherwise increase the chances of migration and/or embolism.
- An optional connecting element 34 may be mechanically coupled between the fixation elements 22, 24 to provide additional support, and thus, anchoring force to the sensing device 40.
- the sensing device 50 is similar to the previously described sensing device 20, with the exception that the sensing element 28 is mounted to the connecting element 26 : between the fixation elements 22, 24.
- the fixation element 22 is firmly engaged with the wall of the right pulmonary artery RPA at a longitudinal location distal to a side branch SBR, while the fixation e.t 24 is firmly engaged with the wall of the side branch SBR.
- the sensing element 28 is suspended in the lumen of the right pulmonary artery RPA at the bifurcation.
- the sensing element 28 is located as remotely as possible from the bifurcation to minimize blockage of the side branch SBR 1 which may otherwise increase the chances of migration and/or embolism.
- an implantable sensing device constructed in accordance with the invention pan have more than two fixation elements and more than one sensing element. For example, referring to Fig.
- an implantable sensing device 60 generally comprises a proximal fixation element 62, a medial fixation element 64, a distal fixation element 66, a first connecting element 68 mechanically coupling the proximal fixation element 62 to the medical fixation element 64 ⁇ a second connecting element 70 mechanically coupling the distal fixation element 66 to the medical fixation element 64, and three sensing elements 72, 74, 76 mechanically coupled to the respective fixation elements 62, 64, 66 via three connecting elements 78, 80, 82.
- the fixation elements 62, 64, 66 connecting elements 78, 80, 82, and sensing elements 72, 74 ⁇ 76 can be similarly constructed and function in the same manner as the same-nafmed components described above.
- the proximal fixation element 62 is firmly engaged with the wall of the right pulmonary artery RPA at a longitudinal location proximal to the side branch SBR
- the medial fixation element 64 is firrlly engaged with the wall of the side branch SBR
- the distal fixation element 66 is firmly engaged with the wall of the right pulmonary artery RPA at a longitudinal location distal to the side branch SBR.
- the use of three sensing elements increases the volume and/or types of information sensed within the right pulmonary artery RPA.
- an implantable sensing device 90 is similar to the sensing 1 device 20 illustrated in Fig. 2, with the exception that, instead of having a distal fixation element 24 in a stent-like configuration, it comprises two distal fixation elements 92, 94 in coil-like configurations, which are mechanically coupled to the proximal fixation element 22 via respective connecting elements 96, 98.
- Each of the coiled fixation elements 92, 94 comprise's a single wire, which can have the same cross-section and be composedfof the same material as the struts of the fixation elements 22, 24 described ⁇ foove with respect to Fig. 2.
- the fixation element 92 is firmly engaged with the wall of the right pulmonary artery RPA at a location distal to ttfe side branch SBR, and the fixation element 94 is firmly engaged with the w$ll of the side branch SBR, thereby providing the same anchoring advantages 4s the implantable sensing device 20 of Fig. 6.
- Implantable sensing devices constructed in accordance with the invention can have stabilization elements other than fixation elements. For example, referring to Fig.
- an implantable sensing device 100 is similar to the sensing device 20 illustrated in Fig. 2, with the exception that, instead of a distal fixation element 24, a stabilization element in the form of a flange 102 is mechanically coupled to the proximal fixation element 22.
- the flange 102 is formed by looping a strut of the fixation element 22 back onto itself.
- the flange 102 is pre-shaped (e.g., by an appropriate thermal treatment of a nickel-titanium alloy), such that it extends at an angle from the fixation element 22 (i.e., transversely or obliquely to the*' longitudinal axis of the fixation element 22) into contact with the wall of the f- side branch SBR, thereby increasing the anchoring force between the sensing device 20 and the pulmonary arterial network in both the longitudinal and rotational directions.
- the flange 102 is composed of a material rigid enough to provide the necessary stability to the sensing device 100.
- the sensing device 110 is similar to the previously described sensing device 100 of Fig. 9, with the exception that, instead of a proximal . fixation element 22, it includes the distal fixation element 24 configured to firmly engage the wall of the right pulmonary artery RPA at a location distal to the side branch SBR.
- the sensing device 110 comprises a flange 112 mechanically coupled to the distal fixation element 24 and shaped, such that it extends at an angle from the fixation elemenf 24 into contact with the wall of the side branch SBR, thereby increasing the anchoring force between the sensing device 100 and the pulmonary arterial network in both the longitudinal and rotational directions
- the flange 1 12 may be formed by looping a strut of the fixation element 24 back onto itself, and is preferably composed of a material rigid enough to provide the necessary stability to the sensing device 110.
- the sensing device 120 is similar to the previously described sensing device 110 of Fig, 10, with the exception that it includes a flange 122 that is not pre-shaped to extend within the side branch SBR. Rather, the flange 122 is relatively straight, so that it remains within the lumen of the right pulmonary artery RPA.
- the sensing element 28 is mechanically coupled between the distal fixation element 24 and the flange 122.
- the flange 122 is not designed to extend within the side braibrr SBR, and thus, does not significantly increase the anchoring force in a rotational direction about the longitudinal axis of the right pulmonary artery RPA, the flange 122 abuts the wall of the right pulmonary artery RPA, thereby preventing the sensing element 28 from hinging into the side branch SBR in-: response to the flow of blood from the right pulmonary artery RPA into ⁇ the 1" side branch SBR.
- iihe sensing device 130 comprises a single fixation element 132 and the previously described sensing element 28 mechanically coupled to thefffxation element 132.
- the fixation element 132 is similar to either of the previously described fixation elements 22, 24 in Fig. 2, with the exception that thi length of the fixation element 132 is increased to allow it to cross the side brairich SBR.
- the length of the fixation element 132 may be equal to or greater than 35mm. The increased length of the fixation element 132 increases the anchoring force between the sensing device 130 and the vessel wall of the pulmonary arterial network.
- the proximal and distal edges of the fixation element 132 may be curved radially outward, as illustrated in Fig. 13, to provide a gripping force against the vessel wall that decreases longitudinal migration of the sensing device 130.
- the proximal and distal edges of the fixation element 132 may be curved radially inward, as illustrated in Fig. 14. In this manner, the resilient spring force of the fixation element 132 can be increased, thereby increasing its anchoring capability, without conceijn that the edges of the fixation element 132 will damage or otherwise irritate the wall of the right pulmonary artery RPA.
- the fixation element 132 may be pre-shaped to, have a conical geometry similar to the conical shape of the vessel (e.g., conical anglejjDf 0- 40° and length of 10-35 mm), as illustrated in Fig. 15.
- the ' fixation element 132 will be arranged in the vessel, such that the larger diameter of the fixation element 132 coincides with the large diameter of the vessel, and the small diameter of the fixation element 132 coincides with the sma
- the non-loaded fixation element 132 will have less of a tendency to move from its intended position.
- the fixation element 132 may be arranged as a mirror image of the vessels, as illustrated in Fig. 16. That is, the large diameter of the fixation element 132 coincides with the small diameter of the vessel, and the small diameter of the fixation element 132 coincides with the large diameter of the vessel. In this case, the shape and configuration of the fixation element 132 will straighten out the vessel, so that it is no longer conically shaped.
- the distal edges of the fixation element 132 may be curved radially outward to provide a gripping force against the vessel wall that decreases longitudinal migration of the sensing device 130.
- these conical fixation element concepts can be applied to any of the previous embodiments.
- the afore-described sensing devices can be delivered and implanted? within the pulmonary arterial network of the patient using any suitable meatte, such as, e.g., a deliver catheter.
- a suitable meatte such as, e.g., a deliver catheter.
- the delivery system 150 includes a flexible , catheter 152 configured for being delivered through the vasculature of a- patient, and a pusher element 154 slidably disposed within the lumen ⁇ f the catheter 152.
- the sensing device 20, and in particular, the sensing element 28, is detachably coupled to the distal end of the pusher element 154 ising suitable means, such as a mechanical interference or electrolytic arrangement.
- the pusher element 154 is capabfe of being rotated relative to the catheter 152, so that the sensing device 2 ⁇ can be implanted within the pulmonary arterial network in a specific circumferential
- the sensing element 28 may be located at the top of the vessel wall or at the bottom of the vessel wall. It may also be desirable to maintain the rotational orientation of the fixation elements 22, 24 relative to each other, so that the connecting element 26 runs along one side of the vessel wall— instead of traversing the lumen of the vessel in the case where the one of the fixation elements 22, 24 is rotationally misaligned by 180 degrees.
- a radio-opaque marker 156 is disposed on the sensing device 20 in a manner that allows the orientation of the sensing device 20 to be determined via fluoroscopic imaging.
- the radio-opaque marker 156 may! take the form of a material (e.g., platinum, gold, tantalum, or other commonlf? used radio-opaque material) coated on the sensing element 28 (as shown $i, the figures), or may take the form of a wire composed of the same material, which may, e.g., be crimped onto one or both of the fixation element 22, 24, or may even take the form of the connecting element 26 itself.
- the sensing device 20 will be delivered inter ⁇ the pulmonary arterial network in the configuration illustrated in Fig. 2; i.e., with the distal fixation element 24 disposed within the side branch SBR- and the proximal fixation element 24 disposed in the right pulmonary artery: RPA at a longitudinal location proximal to the side branch SBR.
- the catheter 152 is advanced from the right ventricle RV of the heart, through the main pulmonary artery MPA, and into the lumen of the rigfit pulmonary artery RPA.
- the sensing device 20 is loaded into the delivery catheter 152, such that the distal fixation element 24 will tje deployed prior to the proximal fixation element.
- the distal end of the catheter 152 is advanced into the side branch SBR (or alternatively, at the bifurcation within the right pulmonary artery RPA, but deflected towards the opening of the side branch SBR), and the pusher element 154 is distally advanced to push the distal fixation element 24 out from the catheter 152 and into the lumen of the side branch SBR.
- the distal fixation element 24 is composed of a resilient material that causes it to self-expand in the absence of a compressive force. As a result, the distal fixation element 24 will automatically expand radially outward into firm contact with the wall of the side branch SBR once it is deployed from the catheter 152.
- a balloon canl ⁇ be used to radially expand the distal fixation element 24 into firm contact with the vessel wall.
- the catheter 152 is then pulled in the proximal direction, so that the distal end of the catheter 152 is located within the right ⁇ pulmonary artery RPA, and the pusher element 154 is distaily advanced to push the proximal fixation element 24 out from the catheter 152 into the lumen of the right pulmonary artery RPA, where it automatically expands radially outward (or alternatively radially expands with the aid of a balloon) inteifirm contact with the wall of the right pulmonary artery RPA.
- Rig the pusher element 154 is distaily advanced to push the proximal fixation element 24 out from the catheter 152 into the lumen of the right pulmonary artery RPA, where it automatically expands radially outward (or alternatively radially expands with the aid of a balloon) inteifirm contact with the wall of the right pulmonary artery RPA.
- the pusher element 154 is distally advanced further to push the sensing element 28 out from the catheter 152 into the lumen of the right pulmonary artery RPA, and the pusher element 154 is detached from the sensor%lement 28.
- Similar delivery techniques can be used to form the configurations within the pulmonary arterial network illustrated in Figs. 3-8.
- the sensing devices can be implanted in the pulmonary arterial network by dragging the flange of the sensing device proximally or distally within the right pulmonary artery RPA until the flange locates itself into the side branch SBR, as illustrated in Figs. 19A-19H.
- the sensing device 100 is loaded into the delivery catheter 152, such that the flange 102 will be deployed prior to the fixation element 22.
- the distal end of the cathetfer 152 is advanced to a location in the right pulmonary artery RPA distal to the ⁇ side branch SBR, and the pusher element 154 is distally advanced to push/" the flange 102 out from the catheter 152 and into contact with the wall of the right pulmonary artery RPA.
- the catheter 152 is pulled in the proximal direction until the flange 102 catches within the side branch SBR.
- the ⁇ distal end of the catheter 152 can be advanced to a location in the right; pulmonary artery RPA proximal to the side branch SBR 1 and the push ⁇ r element 154 is distally advanced to push the flange 102 out from the catheter 152 and into contact with the wall of the right pulmonary artery RPA, as illustrated in Fig. 19D, after which the catheter 152 is pushed in the distal direction until the flange 102 catches within the side branch SBR.
- the pusher element 154 is distally advanced to push the fixation element 22 out from the catheter 152 into the lumen of the right pulmonary artery RPA, where it automatically expands radially outward into firm contact with the wall of the right pulmonary artery RPA, as shown in Fig. 19E.
- the pusher element 154 is distally advanced further to push the sensing element 28 out from the catheter 152 into the lumen of the right pulmonary artery RPA, and the pusher element 154 is detached from the sensor element 28, as illustrated in Fig. 19F.
- a similar method can be utilized to implant the sensing device 110 of Fig. 10, with the exception that the fixation element 24 will need to be deployed out from the catheter 152 before the flange 112, as illustrated in Fig-/ 19G, for purposes of better understanding the invention.
- the catheter 152 is pulled in the proximal direction, thereby displacing the entire sensing device 110, including the expanded fixation element 24, within the ' right pulmonary artery RPA until the flange 112 is located within the side branch SBR, as illustrated in Fig. 19H.
- the pusher element 154 is detached from the sensor element 28.
- the sensing device 120 illustrated in Fig. 11 can be implanted within the pulmonary arterial network simply by deploying the fixation element 24 in the right pulmonary artery RPA at a location distal to the side branch SBR, pulling the catheter 152 in the proximai direction to deploy the senso ⁇ and flange 122 within the right pulmonary artery RPA, and detaching the ⁇ fcisher element 154 from the sensor element 28.
- the sensing device 130 illdfetrated in Fig.
- the fixation element 24 in the right pulmonary artery RPA at a location at the side branch SBR pulling the catheter 152 in the proximal direction to deploy the sensor 28 within the right pulmonary artery RPA, and detaching the pusher element 154 from the sensor element 28.
- the distal fixation element 24 is composed of a resilient material that causes it to self-expand in the absence of a compressive force. As a result, the distal fixation element 24 will automatically expand radially outward into firm contact with the wall of the side branch SBR once it is deployed from the catheter 152.
- a balloon canjfc- be used to radially expand the distal fixation element 24 into firm contact witf ⁇ . ⁇ the vessel wall.
- sensing devices have been illustrated and described as being implanted within the pulmonary artery PA, it should be appreciated that the sensing devices can be implanted in other blood vessels of the patient's body, e.g., the vena cava, pulmonary vein, coronary sinus, aorta, sub-clavian. artery, iliac artery, and carotid artery.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Veterinary Medicine (AREA)
- Surgery (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Vascular Medicine (AREA)
- Cardiology (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physiology (AREA)
- Prostheses (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US73713105P | 2005-11-15 | 2005-11-15 | |
PCT/IB2006/003183 WO2007057739A1 (en) | 2005-11-15 | 2006-11-14 | Implant device for fixing a sensor in a body lumen |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1948007A1 true EP1948007A1 (de) | 2008-07-30 |
Family
ID=37744656
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06809209A Withdrawn EP1948007A1 (de) | 2005-11-15 | 2006-11-14 | Implantationsvorrichtung zur fixierung eines sensors in einem körperlumen |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1948007A1 (de) |
JP (1) | JP5067891B2 (de) |
WO (1) | WO2007057739A1 (de) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10806352B2 (en) | 2016-11-29 | 2020-10-20 | Foundry Innovation & Research 1, Ltd. | Wireless vascular monitoring implants |
US10806428B2 (en) | 2015-02-12 | 2020-10-20 | Foundry Innovation & Research 1, Ltd. | Implantable devices and related methods for heart failure monitoring |
US11039813B2 (en) | 2015-08-03 | 2021-06-22 | Foundry Innovation & Research 1, Ltd. | Devices and methods for measurement of Vena Cava dimensions, pressure and oxygen saturation |
US11206992B2 (en) | 2016-08-11 | 2021-12-28 | Foundry Innovation & Research 1, Ltd. | Wireless resonant circuit and variable inductance vascular monitoring implants and anchoring structures therefore |
US11564596B2 (en) | 2016-08-11 | 2023-01-31 | Foundry Innovation & Research 1, Ltd. | Systems and methods for patient fluid management |
US11701018B2 (en) | 2016-08-11 | 2023-07-18 | Foundry Innovation & Research 1, Ltd. | Wireless resonant circuit and variable inductance vascular monitoring implants and anchoring structures therefore |
US11779238B2 (en) | 2017-05-31 | 2023-10-10 | Foundry Innovation & Research 1, Ltd. | Implantable sensors for vascular monitoring |
US11944495B2 (en) | 2017-05-31 | 2024-04-02 | Foundry Innovation & Research 1, Ltd. | Implantable ultrasonic vascular sensor |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005067817A1 (en) | 2004-01-13 | 2005-07-28 | Remon Medical Technologies Ltd | Devices for fixing a sensor in a body lumen |
US8060214B2 (en) | 2006-01-05 | 2011-11-15 | Cardiac Pacemakers, Inc. | Implantable medical device with inductive coil configurable for mechanical fixation |
US8676349B2 (en) | 2006-09-15 | 2014-03-18 | Cardiac Pacemakers, Inc. | Mechanism for releasably engaging an implantable medical device for implantation |
US8057399B2 (en) | 2006-09-15 | 2011-11-15 | Cardiac Pacemakers, Inc. | Anchor for an implantable sensor |
AU2008266678B2 (en) | 2007-06-14 | 2013-06-20 | Cardiac Pacemakers, Inc. | Multi-element acoustic recharging system |
WO2010008936A1 (en) | 2008-07-15 | 2010-01-21 | Cardiac Pacemakers, Inc. | Implant assist apparatus for acoustically enabled implantable medical device |
US8694129B2 (en) | 2009-02-13 | 2014-04-08 | Cardiac Pacemakers, Inc. | Deployable sensor platform on the lead system of an implantable device |
US8864676B2 (en) | 2010-10-29 | 2014-10-21 | Medtronic Vascular, Inc. | Implantable medical sensor and fixation system |
US8475372B2 (en) | 2010-10-29 | 2013-07-02 | Medtronic Vascular, Inc. | Implantable medical sensor and fixation system |
US9775982B2 (en) | 2010-12-29 | 2017-10-03 | Medtronic, Inc. | Implantable medical device fixation |
US8727996B2 (en) | 2011-04-20 | 2014-05-20 | Medtronic Vascular, Inc. | Delivery system for implantable medical device |
US8401643B2 (en) | 2011-05-17 | 2013-03-19 | Medtronic Vascular, Inc. | Implantable medical sensor and anchoring system |
US10485435B2 (en) | 2012-03-26 | 2019-11-26 | Medtronic, Inc. | Pass-through implantable medical device delivery catheter with removeable distal tip |
US9717421B2 (en) | 2012-03-26 | 2017-08-01 | Medtronic, Inc. | Implantable medical device delivery catheter with tether |
CN107495949A (zh) * | 2012-07-05 | 2017-12-22 | 微创医学科技有限公司 | 直接部署系统和方法 |
US9351648B2 (en) | 2012-08-24 | 2016-05-31 | Medtronic, Inc. | Implantable medical device electrode assembly |
US9949692B2 (en) | 2012-12-21 | 2018-04-24 | Canary Medical Inc. | Stent graft monitoring assembly and method of use thereof |
EP2967352B1 (de) | 2013-03-15 | 2020-06-24 | Microtech Medical Technologies Ltd. | Implantierbare vorrichtung mit einer brücke und verfahren zur herstellung derselben |
WO2015200718A1 (en) | 2014-06-25 | 2015-12-30 | Hunter William L | Devices, systems and methods for using and monitoring tubes in body passageways |
US20170196509A1 (en) | 2014-06-25 | 2017-07-13 | Canary Medical Inc. | Devices, systems and methods for using and monitoring heart valves |
US9757574B2 (en) | 2015-05-11 | 2017-09-12 | Rainbow Medical Ltd. | Dual chamber transvenous pacemaker |
JP2023513974A (ja) * | 2020-02-17 | 2023-04-04 | カナリー メディカル スウィッツァーランド アクチェンゲゼルシャフト | 血管センシングシステム |
WO2022246169A1 (en) * | 2021-05-21 | 2022-11-24 | Edwards Lifesciences Corporation | Sensor implant device anchoring |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005058202A1 (en) * | 2003-12-17 | 2005-06-30 | Cook Incorporated | Interconnected leg extensions for an endoluminal prostehsis |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG71881A1 (en) * | 1998-01-08 | 2000-04-18 | Microsense Cardiovascular Sys | Method and device for fixation of a sensor in a bodily lumen |
US7181261B2 (en) * | 2000-05-15 | 2007-02-20 | Silver James H | Implantable, retrievable, thrombus minimizing sensors |
WO2002056940A2 (en) * | 2001-01-22 | 2002-07-25 | Integrated Sensing Systems, Inc. | Sensing catheter system and method of fabrication |
WO2005067817A1 (en) * | 2004-01-13 | 2005-07-28 | Remon Medical Technologies Ltd | Devices for fixing a sensor in a body lumen |
-
2006
- 2006-11-14 EP EP06809209A patent/EP1948007A1/de not_active Withdrawn
- 2006-11-14 JP JP2008539532A patent/JP5067891B2/ja not_active Expired - Fee Related
- 2006-11-14 WO PCT/IB2006/003183 patent/WO2007057739A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005058202A1 (en) * | 2003-12-17 | 2005-06-30 | Cook Incorporated | Interconnected leg extensions for an endoluminal prostehsis |
Non-Patent Citations (1)
Title |
---|
See also references of WO2007057739A1 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10806428B2 (en) | 2015-02-12 | 2020-10-20 | Foundry Innovation & Research 1, Ltd. | Implantable devices and related methods for heart failure monitoring |
US10905393B2 (en) | 2015-02-12 | 2021-02-02 | Foundry Innovation & Research 1, Ltd. | Implantable devices and related methods for heart failure monitoring |
US11039813B2 (en) | 2015-08-03 | 2021-06-22 | Foundry Innovation & Research 1, Ltd. | Devices and methods for measurement of Vena Cava dimensions, pressure and oxygen saturation |
US11206992B2 (en) | 2016-08-11 | 2021-12-28 | Foundry Innovation & Research 1, Ltd. | Wireless resonant circuit and variable inductance vascular monitoring implants and anchoring structures therefore |
US11564596B2 (en) | 2016-08-11 | 2023-01-31 | Foundry Innovation & Research 1, Ltd. | Systems and methods for patient fluid management |
US11701018B2 (en) | 2016-08-11 | 2023-07-18 | Foundry Innovation & Research 1, Ltd. | Wireless resonant circuit and variable inductance vascular monitoring implants and anchoring structures therefore |
US10806352B2 (en) | 2016-11-29 | 2020-10-20 | Foundry Innovation & Research 1, Ltd. | Wireless vascular monitoring implants |
US11779238B2 (en) | 2017-05-31 | 2023-10-10 | Foundry Innovation & Research 1, Ltd. | Implantable sensors for vascular monitoring |
US11944495B2 (en) | 2017-05-31 | 2024-04-02 | Foundry Innovation & Research 1, Ltd. | Implantable ultrasonic vascular sensor |
Also Published As
Publication number | Publication date |
---|---|
JP2009515582A (ja) | 2009-04-16 |
WO2007057739A1 (en) | 2007-05-24 |
JP5067891B2 (ja) | 2012-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10390714B2 (en) | Devices for fixing a sensor in a lumen | |
EP1948007A1 (de) | Implantationsvorrichtung zur fixierung eines sensors in einem körperlumen | |
CN101516259B (zh) | 用于植入式传感器的固定装置 | |
EP1868496B1 (de) | Vorrichtung zum einsatz und zur fixierung eines sensors | |
US8465436B2 (en) | Endoluminal implant with locking and centering fixation system | |
US8562509B2 (en) | Ventricular assist device | |
US8241345B2 (en) | Stent delivery system | |
US9149193B2 (en) | Devices for fixing a sensor in a lumen | |
JP5491491B2 (ja) | 選択フレア型クラウンを有するステント補綴具 | |
US6416474B1 (en) | Systems and methods for deploying a biosensor in conjunction with a prosthesis | |
JP5574123B2 (ja) | アクセス領域を有する胸部大動脈ステント移植片 | |
JP7144616B2 (ja) | インプラントを血管内に供給、設置する装置 | |
JP4926980B2 (ja) | 組織整形装置 | |
EP1877131B1 (de) | Fixiervorrichtung für eine koronare venöse leitung | |
JP5651183B2 (ja) | パラプレジア予防ステントグラフト | |
US20070270934A1 (en) | Sensor, delivery system, and method of fixation | |
US8403977B2 (en) | Self-orienting delivery system | |
US20040122504A1 (en) | Vascular prosthesis and methods of use | |
US20110230947A1 (en) | Thoracic introducer | |
JP2009514628A (ja) | 患者の心臓の欠陥を治療するための自己拡張可能な医療器具 | |
US8401643B2 (en) | Implantable medical sensor and anchoring system | |
CN118370626A (zh) | 管腔支架、支架系统及输送系统 | |
US20210121130A1 (en) | Anchoring system for a catheter delivered device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080428 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20101209 |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20120919 |