Beschreibung
Vakuumisolationskörper und Verfahren zu dessen Herstellung
Die Erfindung betrifft einen Vakuumisolationskörper gemäß dem Oberbegriff des Anspruches 1 und ein entsprechendes Herstellungsverfahren.
Vakuumisolationskörper finden zunehmend Verwendung bei der Isolierung und Dämmung in den verschiedensten Anwendungsgebieten. Unter einem Vakuumisolationskörper wird ein Dämmelement verstanden, das einen Kern bzw. Stützkörper aus einem offenzelligen, offenporigen, mikroporösen und/oder faserartigen Werkstoff aufweist, der von einer Folie umhüllt und dann evakuiert wird. Die Dämmwerte derartiger Werkstoffe können signifikant verbessert werden, indem diese in einer evakuierten Umgebung gehalten wird. So können damit bis zu 10fach höhere Dämmwerte erzielt werden, so dass die Schichtdicke der Isolationsplatten dadurch um den entsprechenden Wert reduziert werden kann.
Als Umhüllungen für die Kerne bzw. Stützkörper werden deswegen sogenannte Barrierematerialien eingesetzt, insbesondere Mehrschichtfolien, bei denen sich Metallschichten, metallisierte Schichten und Kunststoffschichten abwechseln. Bei solchen Vakuumisolationskörpern ist weiterhin kritisch, dass in den Bereichen, in denen ein Vakuumisolationskörper an den nächsten stößt, sogenannte Brücken entstehen, beispielsweise Kältebrücken, die die Dämmwerte der Gesamtdämmung im Vergleich zu den Dämmwerten eines einzelnen Vakuumisolationskörpers erheblich herabsetzen. Ursache dieser Brücken ist in der Regel, dass bei den herkömmlichen Vakuumisolationskörpern ein fugenloses Aneinanderstoßen benachbarter Vakuumisolationskörper praktisch nicht möglich ist.
Bei den gängigen Vakuumisolationskörpem sind in der Regel zwei Folienzuschnitte als Umhüllung im schmalen Randbereich des Kerns miteinander verschweißt, da das Verschweißen der Folienzuschnitte an den schmalen Stirnseiten der Platte erfolgt. Somit entsteht umlaufend an diesen Schmalseiten eine Schweißnaht, die von den Rändern der Isolationsplatte absteht. Werden zwei derartige Vakuumisolationsplatten aneinander angelegt, so befinden sich die Schweißränder von beiden
Vakuumisolationsplatten (auch als VIP bezeichnet) zwischen den beiden Kernen, wodurch ein nahezu fugenloses Aneinanderstoßen unmöglich gemacht wird. Vielmehr befindet sich anstehendes Umhüllungsmaterial zwischen den aneinanderstoßenden Vakuumisolationsplatten, wodurch die Wärme/Kälte-Brücken entstehen, die den Gesamtdämmwert der Konstruktion stark herabsetzen.
Aus der DE 100 58 566 C2 ist bereits ein folienumhüllter, evakuierter Wärmedämmformkörper und ein Herstellungsverfahren aus einem einzigen Folienzuschnitt mit einer Siegelnaht in Längsrichtung bekannt. Hierbei wird der Kernrohling nach einer Umhüllung mit Vlies in eine Kunststofffolie eingeschlagen. Diese Folie entspricht in ihrer Breite der Summe aus der Kernbreite, Kernhöhe und der Siegelnahtbreite (jeweils zweifach). Damit ist ein Formatwechsel in den meisten Fällen mit einem Wechsel der Folienbahn für die Folienbeutel verbunden, was erhebliche Umrüstkosten verursachen kann.
Der hierbei von einer Transportverrichtung weiter bewegte Kern nimmt die Folienbahn mit einer Vorderkante mit. Sodann schwenkt eine Schweißbacke nach oben, wobei gleichzeitig die Folienrolle gebremst wird, um die Folienbahn straff gespannt zu halten. Hierdurch werden jedoch erhebliche Kräfte auf den fragilen Kernrohling ausgeübt, so dass dieser gerade im Kantenbereich ausbrechen kann. Hierdurch wird nicht nur die Passform beeinträchtigt. Vielmehr kann ausgebrochenes Kernmaterial auch die Versiegelung negativ beeinflussen, insbesondere wenn aus Kostengründen auf die zusätzliche Vliesumhüllung verzichtet werden soll.
Aufgabe der vorliegenden Erfindung ist es daher, einen Vakuumisolationskörper zur Verfügung zu stellen, der sich annähernd fugenlos an einen gleichartigen Vakuumisolationskörper anschließen lässt, sowie durch ein entsprechendes Herstellungsverfahren kostengünstig zu produzieren ist.
Diese Aufgabe wird gelöst durch einen Vakuumisolationskörper nach Anspruch 1 bzw. ein Verfahren nach Anspruch 8. Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche.
Der erfindungsgemäße Vakuumisolationskörper weist einen Kern aus einem mikroporösen Werkstoff auf, der an seiner flachen Ober- und Unterseite von einer Umhüllung mit zwei Siegelnähten in Längsrichtung umgeben ist. Der Kern ist somit von zwei Zuschnittbögen aus einer gasdichten Mehrschichtfolie vollständig umhüllt. Unter einer gasdichten Mehrschichtfolie wird eine Folie verstanden, bei der sich mindestens zwei Kunststoffschichten mit mindestens einer Barriereschicht abwechseln. Durch diese Anordnung wird eine besonders hohe Dichtigkeit des Materials erzielt, da sich mehrere Kunststoff- und Metallschichten einander abwechseln. Ein Beispiel einer solchen Mehrschichtfolie ist: Polyamid/Nylon - Metallschicht - Polypropylen - Polyester - Metallschicht - Polyethylen. Die einzelnen Schichten sind miteinander verbunden, beispielsweise durch Laminierung. Die Endkanten der Folie sind somit nach dem Verschweißen miteinander gasdicht versiegelt.
Durch die Verwendung zweier Zuschnittbögen der Folie und damit zwei Längsnähten wird ein Vakuumisolationskörper erzielt, bei dem die Versiegelungsnähte bzw. die Schweißnähte eng am Kern eng anliegen und praktisch nicht auftragen. Beim Aneinanderstoßen benachbarter Vakuumisolationskörper der gleichen Art ist somit ein fugenloses Aneinanderreihen möglich. Das Evakuieren der Umhüllung des Vakuumisolationskörpers erfolgt in der Regel vor der Versiegelung, wobei auch Verfahren bekannt sind, bei denen zunächst eine "teilweise" Versiegelung erfolgt, die nach dem Evakuieren dann abgeschlossen wird. Wie ersichtlich, weist der erfindungsgemäße Vakuumisolationskörper im Wesentlichen die Abmessungen des Kerns auf plus der Dicke der eingesetzten Mehrschichtfolie. Die Versiegelungsnähte sind äußerst flach und liegen an dem mikroporösen Kern eng an.
Vorzugsweise verlaufen die Versiegelungsnähte zur Mitte jeweils um einige Zentimeter gegeneinander versetzt auf der Ober- und Unterseite des Vakuumisolationskörpers. Beispielsweise ist bei einem derartigen plattenförmigen Vakuumisolationskörper die jeweilige Versiegelungsnaht etwa um ein Drittel der Gesamtbreite des Vakuumisolationskörpers zur Mittelachse gegeneinander versetzt. Da die versetzten Versiegelungsnähte durch die vorstehende Ausgestaltung relativ flach sind, können die querverlaufenden Versiegelungen an der Schmalseite besonders gut abgedichtet werden. Dadurch werden auch die querverlaufenden
Versiegelungsnähte relativ flach gehalten, was die Brückenbildung zwischen benachbarten Vakuumisolationskörpern weiter verhindert. Ferner wird durch ein möglichst enges Anbringen der Versiegelungsnähte benachbart zum Kern erzielt, dass das überschüssige Folienmaterial im Eckbereich um die Ränder des Kerns gelegt werden kann, wodurch sich wiederum eine kompakte Bauweise ergibt.
Nachstehend soll die Erfindung anhand der Zeichnungen näher erläutert und beschrieben werden. Es zeigen:
Fig. 1 einen Schnitt durch einen erfindungsgemäßen Vakuumisolationskörper;
Fig. 2 eine Perspektivansicht gemäß Fig. 1 ;
Fig. 3 eine Schemaansicht des erfindungsgemäßen Herstellungsverfahrens; und
Fig. 4 eine perspektivische Ansicht eines fertiggestellten Vakuumisolationskörpers.
Der erfindungsgemäße Vakuumisolationskörper 1 weist einen Kern 2 aus einem mikroporösen Werkstoff auf, der von einer Mehrschichtfolie 3 vollständig umhüllt ist. Der Vakuumisolationskörper 1 des Ausführungsbeispieles der Fig. 1 und 2 ist ein plattenförmiger Vakuumisolationskörper 1 bzw. Flachquader. Wie insbesondere aus Fig. 1 ersichtlich, verläuft an der Oberseite 18 etwa im mittleren Bereich des Vakuumisolationskörpers 1 eine erste Versiegelungsnaht 4 und versetzt dazu an der Unterseite eine zweite Versiegelungsnaht 4'. Diese beiden Versiegelungsnähte 4 und 4' an den beiden Hauptflächen (hier die obere und untere Flachseiten 18 und 18' im Vergleich zu den schmäleren Stirnseiten 12, 13 bzw. 14, 17, vgl. Fig. 4) können auch in entgegengesetzter Richtung von der Mitte versetzt sein, wie dies in Fig. 2 dargestellt ist.
Diese Versiegelungsnähte 4 und 4' entstehen, indem die Endkanten 5 und 6 der Mehrschichtfolie 3, in dem Bereich, in dem sie aneinanderstoßen und überlappen, jeweils miteinander versiegelt sind. Dabei kann die außenliegende Fläche der Endkante 5 mit der innenliegenden Fläche der Endkante 6 zusammenstoßen (sog. A-B-Versiegelung). Dadurch ergibt sich eine besonders flache Versiegelungsnaht 4.
Jedoch kann auch eine A-A-Versiegelung angewendet werden, wie die für die Versiegelungsnaht 4' an der Unterseite 18' dargestellt ist, ebenso in Fig. 2, da mit dieser Versiegelungsart zwei Schichten der Folie 3 in der Regel problemlos miteinander versiegelbar sind.
Die schematische Ansicht der Fig. 3 zeigt neben der Herstellung der beiden Versiegelungsnähte 4 und 4' nach Einschieben eines Kerns 2 in eine Längsschweißvorrichtung auch eine querverlaufende Versiegelungsnaht 15. Wie ersichtlich erfolgt die Versiegelung der Quemaht 15 zwischen Schweißbacken, indem die beiden Innenseiten der Folie miteinander versiegelt werden. Diese Versiegelungsnaht 15 wird eng am Kern 2 durchgeführt, um eine möglichst eng anliegende Umhüllung zu erzielen. Wie aus Fig. 4 weiter ersichtlich, ist das aus der Umhüllung verbleibende Folienmaterial in den Eckbereichen 10 und 11 des Vakuumisolationskörpers 1 , zu einem Dreieck gefaltet, das sich eng an den Kern 2 bzw. die Stirnseiten des Vakuumisolationskörpers 1 anlegt. Hierdurch können Kältebzw. Wärmebrücken vermieden werden.
Fig. 4 zeigt schließlich eine Perspektivansicht auf den fertiggestellten Vakuumisolationskörper 1. Hieraus ist ersichtlich, dass der Vakuumisolationskörper 1 versetzt zum mittleren Bereich der Oberseite 18 die Versiegelungsnaht 4 aufweist, die gegenüber der entsprechenden Versiegelungsnaht 4' an der Unterseite 18' um etwa ein Drittel der Gesamtbreite versetzt ist. Weiterhin weist der Vakuumisolationskörper 1 Quernähte 15 auf, die an den jeweiligen Stirnseiten 12 und 13 des Vakuumisolationskörpers 1 ausgebildet sind. Durch den Versatz der Längsnähte 4 und 4' wird somit eine Folienhäufung an der jeweiligen Quernaht 15 in vorteilhafter weise vermieden. Die Überschussfolie bzw. die Eckbereiche 10 und 11 sind jeweils zu den Stirnseiten 12 und 13 umgefaltet, können aber auch zu den Schmalseiten 14 und 17 hin umgeklappt werden.
Dieses vorgeschlagene Verfahren ermöglicht durch Formatumstellung ohne weiteres eine Anpassung der Folienumhüllung an stark schwankende Abmessungen der Formkörper (Breite, Länge und Höhe) bei dem automatisierten Fertigungsverfahren, das schematisch in Fig. 3 dargestellt ist. Insbesondere kann dadurch bei kleineren Formatänderungen meist auf einen Wechsel der Folienrollen (in Fig. 3 unterhalb der
Schweißvorrichtung dargestellt) verzichtet werden, da der Überlappungsbereich der Versiegelungsnähte 4 und 4' breiter gewählt werden, was in erheblich kürzerer Zeit durchgeführt werden kann, also eine Zeiteinsparung bedeutet.
Zusammenfassend ergeben sich folgende Vorteile der erfindungsgemäßen Lösung:
Flexibilität bei der VIP-Herstellung (viele unterschiedliche Formate); es können flächengrößere VIPs hergestellt werden als mit einem Folienbogen; die eng anliegende Folie ermöglicht nahezu wärmebrückenfreies Stoßen verschiedener VIPs aneinander; passgenauere VIPs können hergestellt werden, da der Folienauftrag minimal bleibt; automatisierte Fertigung ermöglicht wirtschaftliche Vorteile für den Hersteller und letztendlich für den Kunden; eine automatische Kaschierungs- oder Einschäumungsanlage kann direkt an die
Vorrichtung gemäß Fig. 3 angeschlossen werden; dadurch kann das VlP sofort nach der Produktion entsprechend gegen mechanische Beschädigungen geschützt werden.