EP1942224A1 - Câble à bas allongement structurel - Google Patents
Câble à bas allongement structurel Download PDFInfo
- Publication number
- EP1942224A1 EP1942224A1 EP07000237A EP07000237A EP1942224A1 EP 1942224 A1 EP1942224 A1 EP 1942224A1 EP 07000237 A EP07000237 A EP 07000237A EP 07000237 A EP07000237 A EP 07000237A EP 1942224 A1 EP1942224 A1 EP 1942224A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cable
- steel
- elongation
- steel cord
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/06—Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/16—Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/06—Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
- D07B1/0673—Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core having a rope configuration
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2075—Fillers
- D07B2201/2079—Fillers characterised by the kind or amount of filling
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2401/00—Aspects related to the problem to be solved or advantage
- D07B2401/20—Aspects related to the problem to be solved or advantage related to ropes or cables
- D07B2401/2005—Elongation or elasticity
- D07B2401/201—Elongation or elasticity regarding structural elongation
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2501/00—Application field
- D07B2501/20—Application field related to ropes or cables
- D07B2501/2084—Mechanical controls, e.g. door lashes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2933—Coated or with bond, impregnation or core
- Y10T428/294—Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
Definitions
- the present invention relates to a cable. More specifically present invention relates to a cable with limited elongation.
- Cables and more specifically control cables are widely used to transmit movement, such as cable for window elevator system, cables used to open and close braks of scooters, bicycles and other vehicles. In these and many other applications, a limited elongation of the cable is required.
- Cables are also widely used as tension member to reinforce polymer materials, such as steel cords to reinforce radial tires, cables to reinforce transmission belts, timing belts or flat hoisting belts. In these applications, a limited elongation of the cable is also required.
- the tensile curve of a cable of prior art takes the form of "hockey stick" curve as illustrated by FIGURE1 .
- the elongation of the cable is large while the tension is low, and the curve is relative flat.
- the elongation of cable is almost linear to the tension of the cable as illustrated by line 120 in FIGURE1 .
- the elongation of the cable increases steadily with the increase of the tension.
- the increase of the elongation of the cable is proportional to the increase of the tension of the cable, i.e.
- ⁇ ⁇ ⁇ /E
- ⁇ the increase of the elongation of the cable
- ⁇ the increase of the tension of the cable
- E the module of the cable.
- This is called the elastic elongation.
- structural elongation ⁇ 0 of a cable is unstable and unpredictable, because there are a lot of facts, such as the structure of the cable, the voids between the filaments of the cable, and the pretension of the filaments when cabling the cable, that determine the structural elongation of a cable. Therefore, the unstable and unpredictable behavior of structural elongation of a cable causes problems to predict the total elongation of the cable under tension and more scrap during the start-up of machine producing for instance the high-precision timing belts. Hence, further reducing or almost eliminating the structural elongation ⁇ 0 can improve the predictability of the tension-elongation curve of the cable and facilitate the manufacturing process.
- WO03044267A1 disclosed a cable with limited elongation, less than 0.05% at a permanent force of 50N, after being subjected to a force of 450N. This improvement is achieved by a cord comprising a steel cord and a polymer material.
- the low elongation is highly related to the penetration of polymer material into the steel cord, but there are limits on the penetration rate and the pressure for the extrusion process.
- WO2005043003A1 disclosed a fine steel cord with low structural elongation.
- the low structural elongation is achieved by using a special cabling process.
- This special cabling process not only decreases the productivity of the cabling process but also ask for a lengthy fine tune procedure to set the tension of the filaments or strands.
- a cable comprising a steel cord and a polymer material.
- the steel filaments of the steel cord are coated with an adhesive before the penetration of the polymer material.
- the cable has a structural elongation less than 0.025%.
- the E module of the cable increases by more than 4% compared with the E module of the bare steel cord.
- the cable as subject of the invention comprises a steel cord, which on its turn comprises several steel filaments.
- the tensile strength of the steel filaments for the steel cord are preferably more than 1700N/mm 2 , or more than 2200N/mm 2 or even more than 2600N/mm 2 , most preferably more than 3000N/mm 2 or even more than 4000N/mm 2 .
- the diameter of the filaments is less than 400 ⁇ m, preferably less than 210 ⁇ m, most preferably less than 110 ⁇ m.
- All filaments may have an identical diameter. Possible the diameter of the filaments may differ from each other. Preferably, the diameter of the filaments providing an inner strand of the cable is larger than the diameter of the filaments used to provide the outer strands or layer of filaments to the cable, which improves the penetration of the polymer material into the void spaces of the cable.
- Steel cords have an inner layer or core, which is preferably a strand of several steel filaments. Around such core, at least one layer of additional steel elements is provided.
- the steel elements of the additional layer can either be steel filaments or steel strands, on its turn comprising steel filaments.
- Various steel cord construction may be used.
- the steel composition of the steel cord is preferably a plain carbon steel composition, i.e. it generally comprises a minimum carbon content of 0.40% (e.g. at least 0.60% or at least 0.80%, with a maximum of 1.1 %), a manganese content ranging from 0.10 to 0.90% and a silicon content ranging from 0.10 to 0.90%; the sulfur and phosphorous contents are each preferably kept below 0.03%; additional micro-alloying elements such as chromium (up to 0.2 to 0.4%), boron, cobalt, nickel, vanadium...may be added to the composition; stainless steel compositions are, however, not excluded.
- the production of the steel filaments and the steel cords is performed according to known prior art techniques of wet drawing followed by cabling or bunching.
- the steel cord is then coated with an adhesive selected from organo functional silanes, organo functional titanates and organo functional zirconates which are known in the art for the improvement of adhesion between the steel cord and polymer material.
- organo functional silanes are selected from the compounds of the following formula: Y-(CH 2 ) N -SiX 3
- the polymer material used for the present invention can be any elastomeric material that can conveniently be applied to the steel cord with sufficient adhesion. More preferably a thermoplastic elastomer (TPE) can be used.
- TPE thermoplastic elastomer
- Non-delimiting examples are polystyrene/elastomer block copolymers, polyurethane (PU) or polyurethane copolymers, polyamide/elastomer block copolymers, thermoplastic vulcanizates.
- thermoplastic polyurethane is used. Homopolymers of ester, ether or carbonate polyurethane may be used, as well as copolymers or polymer blends.
- the polymer material has a shore hardness varying between 30A and 90D.
- the polymer penetration rate of a cable as subject matter of the present invention is more than 70%, and preferably more than 90%.
- the steel cord used to provide a cable as subject matter of the present invention comprises several steel filaments being transformed into a steel cord, using a steel cord construction. Due to the steel cord construction, void spaces are provided between the steel filaments of the steel elements of the cord. Also void spaces are provided between the steel elements. "Void space” as used hereafter is to be understood as all area of a radial cross-section of the cord, located inwards of the imaginary circle which encircles a radial cross section of the steel cord which area is not occupied by steel. Therefore, the polymer penetration rate of a cable of present invention is defined as the ratio in percentage of the void space filled by polymer to the void space which is not occupied by steel.
- the thickness of the polymer coating of the present invention is less than 100 ⁇ m, and preferably less than 10 ⁇ m.
- the optical diameter of the steel cord used to provide a cable as subject matter of the present invention is the diameter of the smallest imaginary circle, which encircles a radial cross section of the steel cord.
- the optical diameter of the cable of the present invention is the diameter of the smallest imaginary circle, which encircles a radial cross section of the cable. Therefore, the thickness of the polymer is defined as the half of the difference of the optical diameter between the cable and the steel cord.
- FIGURE 1 there is shown a tensile curve 110 of a cable of prior art, and line 120 represents the E module of the cable. Line 120 extends and intersects with the abscissa axis at the intersection point ⁇ 0, representing the structural elongation at low tensile stresses of the cable.
- FIGURE 2 there is a cross section view of a cable incorporating the present invention.
- the cable 211 comprises a steel cord 212, which on its turn comprises several steel filaments 213.
- the present embodiment shows a steel cord with "7x7xd" structure having seven strands 219, each strand having seven steel filaments 213 of diameter of d mm.
- the steel cord has an optical cord diameter 214.
- the steel cord is coated with a polymer material 215, so providing a cable 211 as subject matter of the present invention with an optical cable diameter 216.
- the thickness 217 of the polymer coating is half of the difference between optical cord diameter and optical cable diameter.
- the void space 218 between the different steel filaments 213 is substantially filled with polymer material 215.
- FIGURE 3 there is shown a tensile curve 310 of a cable incorporating the present invention, and line 320 represents the E module of the cable.
- Line 320 extends and intersects with the abscissa axis at the intersection point ⁇ 0, representing the structural elongation at low tensile stresses of the cable.
- the use of an adhesive on the surface of steel filaments before the application of polymer material further improves the anchorage of steel filaments inside polymer material.
- the steel filaments of the steel cord are constrained from slipping and turning even there are some void spaces unfilled by polymer material, which further limits the structural elongation of the cable.
- the improved anchorage of steel filaments inside polymer material also improves the E module of the cable because there is no slippage or peeling between steel filaments and polymer material.
- a further improvement to the present invention is characterized by the thickness of the polymer coating of the cable.
- a cable with polymer coating of 10 ⁇ m only marginally increases the diameter of the cable, which is especially valuable for the cable used as tension member to reinforce synchronous belt. Because the synchronous belt is molded in a semi-open mold where the polymer material is poured into the mold or extruded with a low pressure, the polymer material inside the mold has limited ability to flow between the tension members and to form the final requested shape (toothed, flat, even, ). Therefore, a fine cable with less than 10 ⁇ m polymer coating will leave more space for the polymer material to flow inside the mold and to form a flat and even belt.
- the metal nipple clamps directly to the steel cord because of the deformation of thin coating of polymer material.
- This application secures the connection between cable and nipple and eliminates the weak point for the system.
- the coating thickness is less than 10 ⁇ m or even 0 ⁇ m, from the outside the cable is virtually the same as a bare cable with the same friction and wear properties. This might be of a big advantage when one would like to substitute a bare cable by such a products in a cable system since there is no need to change the guiding part, cable tubes, etc.
- Another improvement with present invention is to use the cable as the subject matter of present invention to build a multi-strand rope for hoisting applications such as elevator ropes.
- the elevator industry is looking for ropes with limited elongation. Since the strands have limited elongation, the rope will have a limited elongation either. Hence, elevator ropes using present invention meet this requirement.
- the elevator industry is looking for ropes that are capable of running on small sheave diameters.
- the standard elevator uses ropes that respect the generally accepted sheave diameter "d" over rope diameter "D” ratio of 40. When traditional all steel ropes are used in conditions where the d/D ratio is lower than 40, the fatigue life of ropes drops significantly.
Landscapes
- Ropes Or Cables (AREA)
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07000237A EP1942224A1 (fr) | 2007-01-08 | 2007-01-08 | Câble à bas allongement structurel |
US12/522,332 US20100009184A1 (en) | 2007-01-08 | 2008-01-04 | Cable with low structural elongation |
PCT/EP2008/050053 WO2008084010A1 (fr) | 2007-01-08 | 2008-01-04 | Câble à faible allongement structural |
CN2008800018760A CN101578415B (zh) | 2007-01-08 | 2008-01-04 | 具有低结构延伸率的缆索 |
JP2009545160A JP5289329B2 (ja) | 2007-01-08 | 2008-01-04 | 低い構造伸びを有するケーブル |
PL08701235T PL2104764T3 (pl) | 2007-01-08 | 2008-01-04 | Lina o małym wydłużeniu strukturalnym |
KR1020097014218A KR101444488B1 (ko) | 2007-01-08 | 2008-01-04 | 구조적 신도가 낮은 케이블 |
PT08701235T PT2104764E (pt) | 2007-01-08 | 2008-01-04 | Cabo com baixo alongamento estrutural |
EP08701235A EP2104764B1 (fr) | 2007-01-08 | 2008-01-04 | Câble à faible allongement structural |
ES08701235T ES2387220T3 (es) | 2007-01-08 | 2008-01-04 | Cable con baja elongación estructural |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07000237A EP1942224A1 (fr) | 2007-01-08 | 2007-01-08 | Câble à bas allongement structurel |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1942224A1 true EP1942224A1 (fr) | 2008-07-09 |
Family
ID=38024110
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07000237A Withdrawn EP1942224A1 (fr) | 2007-01-08 | 2007-01-08 | Câble à bas allongement structurel |
EP08701235A Active EP2104764B1 (fr) | 2007-01-08 | 2008-01-04 | Câble à faible allongement structural |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08701235A Active EP2104764B1 (fr) | 2007-01-08 | 2008-01-04 | Câble à faible allongement structural |
Country Status (9)
Country | Link |
---|---|
US (1) | US20100009184A1 (fr) |
EP (2) | EP1942224A1 (fr) |
JP (1) | JP5289329B2 (fr) |
KR (1) | KR101444488B1 (fr) |
CN (1) | CN101578415B (fr) |
ES (1) | ES2387220T3 (fr) |
PL (1) | PL2104764T3 (fr) |
PT (1) | PT2104764E (fr) |
WO (1) | WO2008084010A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010052075A1 (fr) * | 2008-11-10 | 2010-05-14 | Contitech Antriebssysteme Gmbh | Moyen de traction, transmission par lien souple pourvue dudit moyen de traction et ascenseur associé |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2585632A4 (fr) * | 2010-07-23 | 2015-04-15 | Schlumberger Technology Bv | Câble ayant un élément de renfort avec revêtements polymères liés pour créer un système d'élément de renfort chemisé lié de façon continue |
EP2802707B1 (fr) * | 2012-01-12 | 2017-08-23 | Otis Elevator Company | Courroie renforcée et procédé pour fabriquer celle-ci |
KR20140117619A (ko) | 2012-02-27 | 2014-10-07 | 미쓰비시덴키 가부시키가이샤 | 수지막의 열화 검출 방법 및 수지막의 열화 검출 장치 |
WO2015100528A1 (fr) * | 2013-12-30 | 2015-07-09 | Nv Bekaert Sa | Corde à structure ouverte pour levage |
RU174518U1 (ru) * | 2015-02-12 | 2017-10-18 | Общество с ограниченной ответственностью "Научно-производственный центр "Гальва" | Стальной прядевый канат с полимерным материалом |
DE102015222272A1 (de) * | 2015-11-12 | 2017-05-18 | Contitech Transportbandsysteme Gmbh | Verfahren zur Herstellung eines Zugträgers sowie Zugträger |
KR101680284B1 (ko) | 2016-02-05 | 2016-11-29 | 조명현 | 폴리머 복합소재 |
KR101913075B1 (ko) | 2018-05-30 | 2018-10-29 | 조대용 | 향상된 특성을 갖는 와이어 로프 |
KR101913074B1 (ko) | 2018-05-30 | 2018-12-28 | (주)씨에스 | 내구성이 향상된 와이어 로프의 제조방법 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003044267A1 (fr) * | 2001-11-23 | 2003-05-30 | N.V. Bekaert S.A. | Cable, et systeme d'elevation de fenetre utilisant ledit cable |
WO2004076327A1 (fr) * | 2003-02-27 | 2004-09-10 | N.V. Bekaert S.A. | Câble d'ascenseur |
WO2005043003A1 (fr) * | 2003-11-03 | 2005-05-12 | Nv Bekaert Sa | Cable d'acier fin a faible allongement structural |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3133584A (en) * | 1962-07-12 | 1964-05-19 | Nat Standard Co | Rope construction |
BE639191A (fr) * | 1963-10-14 | |||
US3778994A (en) * | 1971-03-30 | 1973-12-18 | Bethlehem Steel Corp | Corrosion resistant wire rope and strand |
JPS59125988A (ja) * | 1982-12-27 | 1984-07-20 | 朝日ミニロ−プ販売株式会社 | 電子機器のための駆動用ロ−プ |
DE3317712C2 (de) * | 1983-05-16 | 1986-10-30 | Akzo Gmbh, 5600 Wuppertal | Verstärkungscord zur Verstärkung von elastomeren Erzeugnissen |
EP1000194B1 (fr) * | 1997-07-29 | 2002-09-04 | Bekaert Naamloze Vennootschap | Cable d'acier pour plis de protection de pneumatiques |
US7426821B2 (en) * | 2002-07-17 | 2008-09-23 | Nv Bekaert Sa | Metal strand comprising interrupted filament |
US6811877B2 (en) * | 2003-02-21 | 2004-11-02 | The Goodyear Tire & Rubber Company | Reinforcing structure |
-
2007
- 2007-01-08 EP EP07000237A patent/EP1942224A1/fr not_active Withdrawn
-
2008
- 2008-01-04 CN CN2008800018760A patent/CN101578415B/zh active Active
- 2008-01-04 PT PT08701235T patent/PT2104764E/pt unknown
- 2008-01-04 KR KR1020097014218A patent/KR101444488B1/ko active IP Right Grant
- 2008-01-04 PL PL08701235T patent/PL2104764T3/pl unknown
- 2008-01-04 ES ES08701235T patent/ES2387220T3/es active Active
- 2008-01-04 EP EP08701235A patent/EP2104764B1/fr active Active
- 2008-01-04 US US12/522,332 patent/US20100009184A1/en not_active Abandoned
- 2008-01-04 WO PCT/EP2008/050053 patent/WO2008084010A1/fr active Application Filing
- 2008-01-04 JP JP2009545160A patent/JP5289329B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003044267A1 (fr) * | 2001-11-23 | 2003-05-30 | N.V. Bekaert S.A. | Cable, et systeme d'elevation de fenetre utilisant ledit cable |
WO2004076327A1 (fr) * | 2003-02-27 | 2004-09-10 | N.V. Bekaert S.A. | Câble d'ascenseur |
WO2005043003A1 (fr) * | 2003-11-03 | 2005-05-12 | Nv Bekaert Sa | Cable d'acier fin a faible allongement structural |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010052075A1 (fr) * | 2008-11-10 | 2010-05-14 | Contitech Antriebssysteme Gmbh | Moyen de traction, transmission par lien souple pourvue dudit moyen de traction et ascenseur associé |
CN102209678A (zh) * | 2008-11-10 | 2011-10-05 | 康蒂泰克驱动系统有限公司 | 牵拉装置、包括所述牵拉装置的牵拉装置驱动器、以及升降装备 |
Also Published As
Publication number | Publication date |
---|---|
CN101578415A (zh) | 2009-11-11 |
EP2104764A1 (fr) | 2009-09-30 |
PL2104764T3 (pl) | 2012-10-31 |
KR20090097186A (ko) | 2009-09-15 |
PT2104764E (pt) | 2012-08-23 |
JP2010515833A (ja) | 2010-05-13 |
WO2008084010A1 (fr) | 2008-07-17 |
JP5289329B2 (ja) | 2013-09-11 |
US20100009184A1 (en) | 2010-01-14 |
EP2104764B1 (fr) | 2012-06-27 |
KR101444488B1 (ko) | 2014-09-24 |
CN101578415B (zh) | 2012-08-22 |
ES2387220T3 (es) | 2012-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2104764B1 (fr) | Câble à faible allongement structural | |
CN100365195C (zh) | 升降机用绳索 | |
JP3598125B2 (ja) | スチールコード | |
US20150024891A1 (en) | Suspension element for an elevator system | |
EP1454007B1 (fr) | Cable et systeme d'elevation de fenetre utilisant ledit cable | |
EP2414581B1 (fr) | Câble en acier d'élongation élevée doté de brins préformés | |
AU2003259626B9 (en) | Rope of synthetic fibre with reinforcement element for frictionally engaged power transmission and rope of synthetic fibre with reinforcement element for positively engaged power transmission | |
EP2097581B1 (fr) | Câble d'acier à commettage parallèle pour le renforcement des élastomères | |
CA2604769A1 (fr) | Cable en fibre synthetique et installation d'ascenseur avec ce cable en fibre synthetique | |
CN1252469A (zh) | 合成纤维绳索 | |
EP2222479B1 (fr) | Câble d'acier comprenant un matériau thermodurcissable à composant unique durcissable par la chaleur | |
JP3660259B2 (ja) | ワイヤロープ | |
CN103261077B (zh) | 电梯系统带 | |
CA2549051A1 (fr) | Support avec raccord positif pour le raccordement de plusieurs cables | |
EP0811786B1 (fr) | Câble d'acier à plusieurs torons | |
JPH04308287A (ja) | ゴム製品補強用スチールコード | |
WO2017102478A1 (fr) | Crémaillère flexible avec câble d'acier incorporé dans un polymère |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
AKX | Designation fees paid | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20090110 |