EP1940580A1 - Laser beam welding method with a metal vapour capillary formation control - Google Patents

Laser beam welding method with a metal vapour capillary formation control

Info

Publication number
EP1940580A1
EP1940580A1 EP06820314A EP06820314A EP1940580A1 EP 1940580 A1 EP1940580 A1 EP 1940580A1 EP 06820314 A EP06820314 A EP 06820314A EP 06820314 A EP06820314 A EP 06820314A EP 1940580 A1 EP1940580 A1 EP 1940580A1
Authority
EP
European Patent Office
Prior art keywords
gas
laser beam
welding
capillary
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06820314A
Other languages
German (de)
French (fr)
Inventor
Francis Briand
Eric Verna
Sonia Slimani
Rémy Fabbro
Frédéric COSTE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Centre National de la Recherche Scientifique CNRS
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP1940580A1 publication Critical patent/EP1940580A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1464Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
    • B23K26/1476Features inside the nozzle for feeding the fluid stream through the nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1435Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor involving specially adapted flow control means
    • B23K26/1436Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor involving specially adapted flow control means for pressure control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1435Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor involving specially adapted flow control means
    • B23K26/1437Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor involving specially adapted flow control means for flow rate control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof

Definitions

  • the invention relates to a laser welding process in which the hydrodynamics of the liquid bath are controlled by a gas flow focused on the capillary formed at the point of impact of the laser beam during welding.
  • a capillary or keyhole filled with metal vapors is formed in the material and allows a direct transfer of energy to the heart of the material.
  • the walls of the capillary are formed of molten metal and are maintained by a dynamic equilibrium established with the internal vapors. Depending on the movement, the molten metal bypasses the capillary to form a "liquid bath" at the back of the capillary.
  • 4684779 offer laser welding processes with assist gas.
  • One or more gas streams are sent to the parts to be welded to evacuate the gaseous impurities in the ambient atmosphere at the welding zone.
  • the gas flows are delivered under low pressure and serve only to establish a gaseous atmosphere protecting the welding zone.
  • the problem then is to improve the existing laser welding processes so as to increase the quality of the weld seams, avoiding the aforementioned harmful phenomena.
  • the solution of the invention must also be usable industrially, that is to say be simple architecture and have great flexibility of use, in particular not be limited to a welding direction.
  • the solution of the invention is a method of laser beam welding of at least one metal part, preferably two metal parts with each other, in which: a) a laser beam, a first gas flow and a welding nozzle provided with an outlet orifice, said orifice being traversed by the laser beam and by the first gas flow, and b) welding of the piece or parts by melting of the metal of the the part (s) to be welded, at the point of impact of the laser beam with the part (s) to be welded, with formation of a capillary or keyhole filled with metallic vapors.
  • the first flow of gas is directed only towards the opening of the metal vapor capillary and in a direction perpendicular to the workpiece or parts to be welded so as to exert a gaseous dynamic pressure and to maintain the keyhole opened by expanding it.
  • the term "opening of the capillary (or keyhole) of metal vapors" the capillary region on the surface of the sheet to be welded and through which escape the metal vapors.
  • the diagram of Figure 5 illustrates a longitudinal sectional view of the welding zone during laser beam welding process 10. It distinguishes, on the one hand, a representation of the capillary 11 from which escape metallic vapors 12 and, on the other hand, the liquid metal walls 14 which form a bath at the rear 13. The arrow designating the direction S of the welding.
  • the method of the invention may include one or more of the following features:
  • the first gas stream is used to exert a continuous and constant gaseous dynamic pressure on the opening of the vapor capillary.
  • the first gas stream is used to stabilize the flow of the molten metal liquid bath.
  • a second protective gas stream distributed peripherally to the first gas flow is used.
  • a second protective gas stream distributed coaxially with the first gas flow with respect to the axis of the laser beam is used.
  • the flow rate of the first gas is of the order of 10 to 20 l / min and the flow rate of the second gas is of the order of 20 to 30 l / min.
  • the nozzle is a coaxial nozzle.
  • the first and second gases are chosen from argon, helium, nitrogen and their mixtures, and possibly in a smaller proportion of CO 2 , oxygen or hydrogen.
  • the laser beam is generated by an Nd: YAG type laser generator, Ytterbium fiber or CO 2 fiber.
  • the welding nozzle is carried by a robotic arm.
  • the metal parts to be welded are carbon steel, coated or not, aluminum or stainless steel.
  • the welding nozzle delivering the first gas stream has a gas passage section of between 0.1 and 10 mm 2 .
  • the pressure of the first gas flow is between 1 and 10 kPa.
  • the present invention is therefore based on a stabilization of the flow of the liquid bath during welding, by acting on the opening of the keyhole via a first jet or "fast” gas flow directed towards or on said opening of the capillary so that exert a gaseous dynamic pressure at this location to stabilize the shape, or even enlarge, and thus solve the aforementioned problems.
  • the capillary remains open because the pressure of the first gas expands and the metal vapors generated in the capillary can escape without being disturbed by the nearby molten metal bath.
  • the number of projections is significantly reduced and the hydrodynamic flow of the liquid metal facilitated, leading to an improved weld seam appearance and reduced porosity in the weld since the metal vapors are no longer there or much less trapped.
  • a second, slower flow rate shielding gas jet as commonly used in laser welding, is peripherally distributed so as to protect the welding bath from oxidation by forming a gas shield or blanket around it. the welding area.
  • the solution of the invention therefore preferably implements a first jet of "fast" gas stabilization distributed symmetrically with respect to the axis of the laser beam directed or focused on the opening keyhole and a second gas jet "slow" coverage or protection of the welding area.
  • the focused gas is said to be “fast” if it possesses or acquires sufficient kinetic energy to exert sufficient dynamic pressure on the keyhole to keep it open.
  • the cover gas is said
  • the flow rates are of the order of 10 to 20 l / min for the first fast gas and
  • the passage section of the "fast" gas is typically between 0.1 and 10 mm 2 .
  • the gas passage diameter is just a few tenths of a millimeter higher than that of the laser beam at the outlet of the nozzle.
  • the gas flow rates involved depend directly on the density of the gas used to obtain an effective dynamic pressure. This pressure is typically of the order of a few kPa.
  • the jets or gas streams may be distributed by a single "double flow” type nozzle, that is to say distributing two coaxial gas streams relative to each other, also called “coaxial” nozzle, as shown in Figures 1 to 4.
  • This principle can be extended to several concentric gas streams, including three.
  • the fast focussing gas can thus be delivered by a plurality of appropriately arranged nozzles, for example four nozzles of small diameter, typically less than 3 mm, concurrent with an angle between 20 ° and 45 ° with respect to beam axis, positioned regularly distributed at the periphery of a conventional annular protection nozzle distributing the "slow" gas.
  • the identical gases are preferably used as first and second gas streams. However, these gases can also be different.
  • argon is generally used as shielding gas for the laser beam
  • CO 2 type laser welding helium is necessary to avoid the breakdown phenomenon.
  • gaseous mixtures of helium / nitrogen, helium / argon or any other helium-based mixture for beams derived from CO 2 type laser generators as well as any neutral gas for the beams. from laser generators YAG type or fiber laser type.
  • argon, nitrogen, helium or mixtures of these gases added in addition to one or more additional constituents in low content (a few%) such as oxygen, CO 2 , hydrogen.
  • Figures 1 to 4 show schematically several embodiments of "coaxial" nozzles according to the invention.
  • a coaxial nozzle is a nozzle formed of at least two concentric gas distribution circuits.
  • Figure 1 shows a first version of a coaxial nozzle.
  • the fast jet of gas is distributed in the center of the nozzle through a hole 1 of diameter between 0.2 and 3 mm towards the opening of the keyhole.
  • the cover gas is diffused in the crown 2 concentric with the opening 1.
  • the profile of the ring 2 can be chosen such that a wall effect is obtained, that is to say that the direction of flow slow gas follows the curvature of the wall as shown in vector 3.
  • FIG. 2 shows a nozzle version in which the wall effect is used to focus the flow of the fast gas along the axis of the laser beam.
  • three gas flow circuits are provided: an axial circuit 4 for a slow gas distribution and low flow, serving mainly to prevent the rise of pollution to the laser optics, a first peripheral circuit 5 channeling the fast gas to the opening of the keyhole and a second circuit 6 distributing the slow gas cover.
  • FIG. 3 illustrates an embodiment in which the gas blanket of the slow gas is widened by means of a "vortex" distribution, that is to say with a rotation component that tends to drive the gas horizontally out of the nozzle.
  • Figure 4 shows a nozzle in which the fast gas is accelerated through a nozzle, that is to say a convergent-divergent orifice.
  • a major advantage of the use of a coaxial nozzle lies in its ease of positioning and independence from the direction of movement of the welding head carrying the nozzle. This implies that it can, for example, go directly to the end of the arm of a robot in the case of an Nd: YAG laser welding where the laser beam is generated by a Nd: YAG type generator before to be routed via an optical fiber to the laser head carrying the nozzle.
  • a first jet of gas is accelerated and confined towards the opening of the capillary, which allows the flow to be changed. back of the capillary.
  • the capillary is then more open along the welding direction and the flow of the liquid bath is smooth, continuous and without any surface oscillation.
  • the weld bead is very smooth and the "chevron structure" characteristic of Nd: YAG laser welding can be completely eliminated.
  • the flow rate of the gas jet must be higher than a conventional flow but not too important either to avoid the ejection of molten metal.
  • An implementation of the invention also has the advantage of also leading to a significant increase in the penetration depth of welding.
  • the lengthening of the capillary also makes it possible to greatly reduce the porosities generated in the weld bead during laser welding.
  • the splashing of molten metal is attenuated and the phenomenon of metal droplet ejection can be completely eliminated.
  • This fast jet welding method is therefore suitable for laser welding applications of medium thickness, that is to say approximately 1 to 5 mm.

Abstract

The invention relates to a method for welding at least one, preferably two metal parts to each other, by a laser beam consisting in using a laser beam (10), a first gas flow and a welding nozzle provided with an output orifice which is passed through by the laser beam and the first gas flow and in welding the part(s) by melting the metal thereof at a point of the laser beam impact with said weldable part(s) in such a way that a capillary (11) or a key hole (12) filled with metal vapour is formed. During welding, the first gas flow is directed only to the aperture of the metal vapour capillary in a direction perpendicular to the weldable part(s) in such a way that a dynamic gas pressure is produced.

Description

Procédé de soudage par faisceau laser avec contrôle de la formation du capillaire de vapeurs métalliques Laser beam welding process with control of capillary formation of metallic vapors
L'invention porte sur un procédé de soudage laser dans lequel on contrôle l'hydrodynamique du bain liquide grâce à un débit gazeux focalisé sur le capillaire se formant au point d'impact du faisceau laser, durant le soudage.The invention relates to a laser welding process in which the hydrodynamics of the liquid bath are controlled by a gas flow focused on the capillary formed at the point of impact of the laser beam during welding.
En soudage par faisceau laser, la réalisation d'une soudure entre deux pièces repose sur le phénomène de fusion et de vaporisation de la matière au point d'impact du faisceau laser.In laser welding, the realization of a weld between two parts is based on the phenomenon of melting and vaporization of the material at the point of impact of the laser beam.
Pour des densités de puissance spécifiques, suffisamment élevées, c'est à dire de quelques MW/cm2, un capillaire ou keyhole rempli de vapeurs métalliques se forme dans le matériau et permet un transfert direct de l'énergie au cœur de la matière. Les parois du capillaire sont formées de métal en fusion et sont maintenues grâce à un équilibre dynamique s'établissant avec les vapeurs internes. En fonction du mouvement, le métal fondu contourne le capillaire pour former à l'arrière de ce dernier un « bain liquide ».For specific power densities, sufficiently high, that is to say a few MW / cm 2 , a capillary or keyhole filled with metal vapors is formed in the material and allows a direct transfer of energy to the heart of the material. The walls of the capillary are formed of molten metal and are maintained by a dynamic equilibrium established with the internal vapors. Depending on the movement, the molten metal bypasses the capillary to form a "liquid bath" at the back of the capillary.
La présence de cette cavité au cœur du bain liquide constamment en mouvement est à l'origine d'instabilités qui donnent naissances à de nombreux défauts susceptibles de dégrader la qualité de la soudure ainsi obtenue.The presence of this cavity in the heart of the constantly moving liquid bath is at the origin of instabilities which give rise to numerous defects likely to degrade the quality of the weld thus obtained.
En effet, en observant la scène de soudage à l'aide d'une caméra, on constate que de fortes instabilités se développent à la surface du bain de soudage au contact des vapeurs éjectées, en formant des "vagues". Les vapeurs métalliques éjectées du capillaire entraînent de temps en temps aussi des gouttelettes de métal liquide. Le bain liquide peut parfois, sous l'action de son poids, s'effondrer et obstruer temporairement le capillaire provoquant de fortes instabilitésIndeed, by observing the welding scene using a camera, it is found that strong instabilities develop on the surface of the welding bath in contact with ejected vapors, forming "waves". The metal vapors ejected from the capillary sometimes cause droplets of liquid metal. The liquid bath can sometimes, under the action of its weight, collapse and temporarily obstruct the capillary causing strong instabilities
Alors, les aspects de surface des cordons sont souvent très rugueux et tourmentés, des porosités apparaissent et fragilisent le cordon de soudure obtenu. En d'autres termes, les cordons de soudage obtenus sont de mauvaise qualité. Le document Kamimuki et al, Prévention of welding defect by side gas flow and its monitoring method in continuous wave Nd:Yag laser welding, J. of Laser Appl., 14(3), p. 136-145, 2002, explique qu'un jet de gaz latéral émis au travers d'une buse cylindrique classique, de petit diamètre et positionnée uniquement à l'arrière du keyhole, peut parfois diminuer les projections ainsi que les porosités dans un cordon de soudure.So, the surface aspects of the cords are often very rough and tormented, porosities appear and weaken the weld bead obtained. In other words, the welding cords obtained are of poor quality. Kamimuki et al, Prevention of welding defect by side gas flow and its monitoring method in continuous wave Nd: Yag Laser Welding, J. of Laser Appl., 14 (3), p. 136-145, 2002, explains that a lateral gas jet emitted through a conventional cylindrical nozzle, small diameter and positioned only at the rear of the keyhole, can sometimes reduce projections and porosities in a bead of welding.
Toutefois, un problème majeur de cette solution réside dans la grande difficulté de positionnement de la buse. En effet, il suffit que la pression du jet de gaz soit un peu trop importante ou bien décalée de quelques millimètres à l'arrière du capillaire pour refermer ce dernier et augmenter les instabilités du bain liquide, ce qui conduit à l'effet inverse de celui recherché.However, a major problem of this solution lies in the great difficulty of positioning the nozzle. Indeed, it is sufficient that the pressure of the jet of gas is a little too large or shifted a few millimeters behind the capillary to close the latter and increase the instabilities of the liquid bath, which leads to the opposite effect of the wanted one.
De plus, avec une telle buse, on ne peut souder que dans un seul sens, ce qui n'est pas pratique au plan industriel où des soudures doivent pouvoir être faites selon plusieurs direction en fonction de la complexité des pièces à souder. Par ailleurs, les documents J P-A-61229491 , JP-A-04313485 et US-A-In addition, with such a nozzle, it can only be welded in one direction, which is not practical industrially where welds must be made in several directions depending on the complexity of the parts to be welded. Furthermore, documents JP-A-61229491, JP-A-04313485 and US Pat.
4684779 proposent des procédés de soudage laser avec gaz d'assistance. Un ou plusieurs flux gazeux sont envoyés vers les pièces à souder pour évacuer les impuretés gazeuses qui se trouvent dans l'atmosphère ambiant au niveau de la zone de soudage. Autrement dit, dans ces documents, les flux gazeux sont délivrés sous faible pression et servent uniquement à établir une atmosphère gazeuse protectrice de la zone de soudage.4684779 offer laser welding processes with assist gas. One or more gas streams are sent to the parts to be welded to evacuate the gaseous impurities in the ambient atmosphere at the welding zone. In other words, in these documents, the gas flows are delivered under low pressure and serve only to establish a gaseous atmosphere protecting the welding zone.
De tels procédés ne permettent pas d'améliorer la qualité des cordons de soudage produits car le ou les flux gazeux exercent une pression uniquement sur le bain de soudage, en forçant le métal fondu vers le capillaire, provoquant ainsi une déstabilisation du capillaire ou tout simplement son obstruction.Such methods do not make it possible to improve the quality of the welding cords produced because the gas flow (s) exerts a pressure only on the welding bath, by forcing the molten metal towards the capillary, thus causing a destabilization of the capillary or quite simply his obstruction.
Le problème qui se pose alors est d'améliorer les procédés de soudage laser existants de manière à accroître la qualité des cordons de soudure, en évitant des phénomènes néfastes susmentionnés.The problem then is to improve the existing laser welding processes so as to increase the quality of the weld seams, avoiding the aforementioned harmful phenomena.
La solution de l'invention doit également être utilisable au plan industriel, c'est à dire être d'architecture simple et présenter une grande souplesse d'utilisation, en particulier ne pas être limitée à un sens de soudage. La solution de l'invention est un procédé de soudage par faisceau laser d'au moins une pièce métallique, de préférence de deux pièces métalliques l'une avec l'autre, dans lequel : a) on met en oeuvre un faisceau laser, un premier flux de gaz et une buse de soudage munie d'un orifice de sortie, ledit orifice étant traversé par le faisceau laser et par le premier flux de gaz, et b) on réalise un soudage de la ou des pièces par fusion du métal de la ou des pièces à souder, au point d'impact du faisceau laser avec la ou les pièces à souder, avec formation d'un capillaire ou keyhole rempli de vapeurs métalliques. Selon l'invention, durant le soudage, on dirige le premier flux de gaz uniquement vers l'ouverture du capillaire de vapeurs métalliques et selon une direction perpendiculaire à la ou aux pièces à souder de manière à y exercer une pression dynamique gazeuse et à maintenir le keyhole ouvert en l'élargissant.The solution of the invention must also be usable industrially, that is to say be simple architecture and have great flexibility of use, in particular not be limited to a welding direction. The solution of the invention is a method of laser beam welding of at least one metal part, preferably two metal parts with each other, in which: a) a laser beam, a first gas flow and a welding nozzle provided with an outlet orifice, said orifice being traversed by the laser beam and by the first gas flow, and b) welding of the piece or parts by melting of the metal of the the part (s) to be welded, at the point of impact of the laser beam with the part (s) to be welded, with formation of a capillary or keyhole filled with metallic vapors. According to the invention, during welding, the first flow of gas is directed only towards the opening of the metal vapor capillary and in a direction perpendicular to the workpiece or parts to be welded so as to exert a gaseous dynamic pressure and to maintain the keyhole opened by expanding it.
Dans le cadre de l'invention, on appelle "ouverture du capillaire (ou keyhole) de vapeurs métalliques", la zone du capillaire se trouvant à la surface de la tôle à souder et par laquelle s'échappent les vapeurs métalliques. A ce titre, le schéma de la Figure 5 illustre une vue en coupe longitudinale de la zone de soudage en cours de processus de soudage par faisceau laser 10. On y distingue, d'une part, une représentation du capillaire 11 duquel s'échappent des vapeurs métalliques 12 et, d'autre part, les parois de métal liquide 14 qui forment un bain à l'arrière 13. La flèche désignant le sens S du soudage.In the context of the invention, the term "opening of the capillary (or keyhole) of metal vapors", the capillary region on the surface of the sheet to be welded and through which escape the metal vapors. As such, the diagram of Figure 5 illustrates a longitudinal sectional view of the welding zone during laser beam welding process 10. It distinguishes, on the one hand, a representation of the capillary 11 from which escape metallic vapors 12 and, on the other hand, the liquid metal walls 14 which form a bath at the rear 13. The arrow designating the direction S of the welding.
Selon le cas, le procédé de l'invention peut comprendre l'une ou plusieurs des caractéristiques suivantes :Depending on the case, the method of the invention may include one or more of the following features:
- on utilise le premier flux de gaz pour exercer une pression dynamique gazeuse continue et constante sur l'ouverture du capillaire de vapeurs.the first gas stream is used to exert a continuous and constant gaseous dynamic pressure on the opening of the vapor capillary.
- on utilise le premier flux de gaz pour opérer une stabilisation de l'écoulement du bain liquide de métal en fusion.the first gas stream is used to stabilize the flow of the molten metal liquid bath.
- on met en oeuvre, en outre, un deuxième flux de gaz de protection distribué périphériquement au premier flux de gaz. - on met en oeuvre un deuxième flux de gaz de protection distribué coaxialement au premier flux de gaz par rapport à l'axe du faisceau laser.in addition, a second protective gas stream distributed peripherally to the first gas flow is used. a second protective gas stream distributed coaxially with the first gas flow with respect to the axis of the laser beam is used.
- le débit du premier gaz est de l'ordre de 10 à 20 l/min et le débit du deuxième gaz est de l'ordre de 20 à 30 l/min. - la buse est une buse coaxiale.the flow rate of the first gas is of the order of 10 to 20 l / min and the flow rate of the second gas is of the order of 20 to 30 l / min. the nozzle is a coaxial nozzle.
- le premier et le deuxième gaz sont choisis parmi l'argon, l'hélium, l'azote et leurs mélanges, et éventuellement en plus faible proportion du CO2, de l'oxygène ou de l'hydrogène . - le faisceau laser est généré par un générateur laser de type Nd:YAG , fibre d'Ytterbium ou CO2.the first and second gases are chosen from argon, helium, nitrogen and their mixtures, and possibly in a smaller proportion of CO 2 , oxygen or hydrogen. the laser beam is generated by an Nd: YAG type laser generator, Ytterbium fiber or CO 2 fiber.
- la buse de soudage est portée par un bras robotisé.- The welding nozzle is carried by a robotic arm.
- la ou les pièces métalliques à souder sont en acier au carbone, revêtu ou non, en aluminium ou en acier inoxydable. - la buse de soudage délivrant le premier flux de gaz a une section de passage du gaz comprise entre 0.1 et 10 mm2.- The metal parts to be welded are carbon steel, coated or not, aluminum or stainless steel. - The welding nozzle delivering the first gas stream has a gas passage section of between 0.1 and 10 mm 2 .
- la pression du premier flux de gaz est comprise entre 1 et 10 kPa.the pressure of the first gas flow is between 1 and 10 kPa.
La présente invention repose donc sur une stabilisation de l'écoulement du bain liquide durant le soudage, en agissant sur l'ouverture du keyhole via un premier jet ou flux de gaz "rapide" orienté vers ou sur ladite ouverture du capillaire de sorte d'exercer une pression dynamique gazeuse à cet endroit pour en stabiliser la forme, voire l'agrandir, et ainsi résoudre les problèmes susmentionnés.The present invention is therefore based on a stabilization of the flow of the liquid bath during welding, by acting on the opening of the keyhole via a first jet or "fast" gas flow directed towards or on said opening of the capillary so that exert a gaseous dynamic pressure at this location to stabilize the shape, or even enlarge, and thus solve the aforementioned problems.
En effet, grâce à cette pression dynamique, le capillaire reste ouvert car la pression du premier gaz l'élargit et les vapeurs métalliques générées dans le capillaire peuvent s'échapper sans être perturbées par le bain de métal en fusion avoisinant.Indeed, thanks to this dynamic pressure, the capillary remains open because the pressure of the first gas expands and the metal vapors generated in the capillary can escape without being disturbed by the nearby molten metal bath.
Le nombre de projections s'en trouve notablement réduit et l'écoulement hydrodynamique du métal liquide facilité, conduisant à un aspect des cordons de soudure amélioré et une réduction des porosités dans la soudure puisque les vapeurs métalliques ne s'y trouvent plus ou beaucoup moins piégées.The number of projections is significantly reduced and the hydrodynamic flow of the liquid metal facilitated, leading to an improved weld seam appearance and reduced porosity in the weld since the metal vapors are no longer there or much less trapped.
En complément, un second jet de gaz de protection à débit plus lent, tel qu'habituellement utilisé en soudage par laser, est distribué en périphérie de sorte de protéger le bain de soudage de l'oxydation en formant une protection ou couverture gazeuse autour de la zone de soudage. En d'autres termes, la solution de l'invention met donc préférentiel lement en œuvre un premier jet de gaz "rapide" de stabilisation distribué de manière symétrique par rapport à l'axe du faisceau laser dirigé ou focalisé sur l'ouverture du keyhole et un second jet de gaz "lent" de couverture ou protection de la zone de soudage.In addition, a second, slower flow rate shielding gas jet, as commonly used in laser welding, is peripherally distributed so as to protect the welding bath from oxidation by forming a gas shield or blanket around it. the welding area. In other words, the solution of the invention therefore preferably implements a first jet of "fast" gas stabilization distributed symmetrically with respect to the axis of the laser beam directed or focused on the opening keyhole and a second gas jet "slow" coverage or protection of the welding area.
Le gaz focalisé est dit « rapide » s'il possède ou acquiert une énergie cinétique suffisante pour exercer une pression dynamique suffisante sur le keyhole afin de le maintenir ouvert. Par opposition, le gaz de couverture est ditThe focused gas is said to be "fast" if it possesses or acquires sufficient kinetic energy to exert sufficient dynamic pressure on the keyhole to keep it open. In contrast, the cover gas is said
« lent » car il ne doit pas perturber l'écoulement du bain liquide mais juste prévenir le contact de ce dernier avec l'oxygène de l'air ambiant."Slow" because it must not disturb the flow of the liquid bath but just prevent the contact of the latter with oxygen from the ambient air.
Les débits sont de l'ordre de 10 à 20 l/min pour le premier gaz rapide et deThe flow rates are of the order of 10 to 20 l / min for the first fast gas and
20 à 30 l/min pour le deuxième gaz lent de couverture. La section de passage du gaz « rapide » est typiquement comprise entre 0.1 et 10 mm2. En fait, le diamètre de passage du gaz est juste supérieur de quelques 10e de millimètre à celui du faisceau laser à la sortie de la buse.20 to 30 l / min for the second slow cover gas. The passage section of the "fast" gas is typically between 0.1 and 10 mm 2 . In fact, the gas passage diameter is just a few tenths of a millimeter higher than that of the laser beam at the outlet of the nozzle.
Les débits de gaz mis en jeu dépendent directement de la densité du gaz mis en oeuvre pour obtenir une pression dynamique efficace. Cette pression est typiquement de l'ordre de quelques kPa.The gas flow rates involved depend directly on the density of the gas used to obtain an effective dynamic pressure. This pressure is typically of the order of a few kPa.
Le choix particulier des débits gazeux les plus appropriés pour une opération de soudage donnée peut donc être fait empiriquement par l'homme du métier en fonction des conditions de soudage qu'il souhaite mettre en oeuvre, notamment du type de matériau qu'il doit souder, de la nature du gaz dont il dispose, de la puissance du générateur laser qu'il va utiliser.The particular choice of the most appropriate gas flow rates for a given welding operation can therefore be made empirically by the skilled person depending on the welding conditions that he wishes to implement, in particular the type of material that he must weld. , the nature of the gas he has, the power of the laser generator he will use.
Les jets ou flux de gaz peuvent être distribués par une buse unique de type à "double flux", c'est à dire distribuant deux flux de gaz coaxiaux l'un par rapport à l'autre, encore appelée buse "coaxiale", comme montré en Figures 1 à 4. Ce principe peut être étendu à plusieurs flux gazeux concentriques, notamment trois. De manière alternative, le gaz rapide de focalisation peut être délivré ainsi par plusieurs buses agencées de manière appropriées, par exemple quatre buses de faible diamètre, typiquement inférieur à 3 mm, concourantes avec un angle entre 20° et 45° par rapport à l'axe du faisceau, positionnées en étant régulièrement réparties à la périphérie d'une buse annulaire de protection classique distribuant le gaz « lent ».The jets or gas streams may be distributed by a single "double flow" type nozzle, that is to say distributing two coaxial gas streams relative to each other, also called "coaxial" nozzle, as shown in Figures 1 to 4. This principle can be extended to several concentric gas streams, including three. Alternatively, the fast focussing gas can thus be delivered by a plurality of appropriately arranged nozzles, for example four nozzles of small diameter, typically less than 3 mm, concurrent with an angle between 20 ° and 45 ° with respect to beam axis, positioned regularly distributed at the periphery of a conventional annular protection nozzle distributing the "slow" gas.
Il est à noter qu'on utilise préférentiellement des gaz identiques en tant que premier et deuxième flux de gaz. Toutefois, ces gaz peuvent aussi être différents. Ainsi, en soudage laser de type Nd: YAG, on utilise en général de l'argon comme gaz de protection du faisceau laser, alors qu'en soudage laser de type CO2, l'hélium est nécessaire pour éviter le phénomène de claquage.It should be noted that the identical gases are preferably used as first and second gas streams. However, these gases can also be different. Thus, in Nd: YAG type laser welding, argon is generally used as shielding gas for the laser beam, whereas in CO 2 type laser welding, helium is necessary to avoid the breakdown phenomenon.
Toutefois, pour certaines applications, on peut aussi utiliser des mélanges gazeux de type hélium/azote, hélium/argon ou tout autre mélange à base d'hélium pour les faisceaux issus de générateurs lasers de type CO2 ainsi que tout gaz neutre pour les faisceaux issus de générateurs lasers de type YAG ou de type laser à fibre .However, for certain applications, it is also possible to use gaseous mixtures of helium / nitrogen, helium / argon or any other helium-based mixture for beams derived from CO 2 type laser generators as well as any neutral gas for the beams. from laser generators YAG type or fiber laser type.
De même, on peut utiliser de l'argon, de l'azote, de l'hélium ou des mélanges de ces gaz, additionnés en plus d'un ou plusieurs constituants additionnels en teneur faible (quelques %) tels que l'oxygène, le CO2, l'hydrogène .Similarly, it is possible to use argon, nitrogen, helium or mixtures of these gases, added in addition to one or more additional constituents in low content (a few%) such as oxygen, CO 2 , hydrogen.
Les Figures 1 à 4 schématisent plusieurs modes de réalisation de buses "coaxiales" selon l'invention.Figures 1 to 4 show schematically several embodiments of "coaxial" nozzles according to the invention.
Comme on le voit sur ces Figures 1 à 4, une buse coaxiale est une buse formée d'au moins deux circuits de distribution de gaz concentriques.As seen in Figures 1 to 4, a coaxial nozzle is a nozzle formed of at least two concentric gas distribution circuits.
La figure 1 présente une première version de buse coaxiale. Le jet de gaz rapide est distribué au centre de la buse à travers un orifice 1 de diamètre compris entre 0.2 et 3 mm vers l'ouverture du keyhole.Figure 1 shows a first version of a coaxial nozzle. The fast jet of gas is distributed in the center of the nozzle through a hole 1 of diameter between 0.2 and 3 mm towards the opening of the keyhole.
Le gaz de couverture est quant à lui diffusé dans la couronne 2 concentrique à l'ouverture 1. Le profil de la couronne 2 peut être choisi tel qu'un effet de paroi soit obtenu, c'est à dire que la direction d'écoulement du gaz lent suive la courbure de la paroi comme le montre le vecteur 3.The cover gas is diffused in the crown 2 concentric with the opening 1. The profile of the ring 2 can be chosen such that a wall effect is obtained, that is to say that the direction of flow slow gas follows the curvature of the wall as shown in vector 3.
La figure 2 présente une version de buse dans laquelle l'effet de paroi est utilisé pour focaliser l'écoulement du gaz rapide le long de l'axe du faisceau laser. Dans ce mode de réalisation, trois circuits de passage du gaz sont prévus : un circuit axial 4 pour une distribution de gaz lente et de faible débit, servant principalement à éviter les remontées de pollutions vers les optiques du laser, un premier circuit 5 périphérique canalisant le gaz rapide vers l'ouverture du keyhole et un deuxième circuit 6 distribuant le gaz lent de couverture. La figure 3 illustre une réalisation dans laquelle la couverture gazeuse du gaz lent est élargie grâce à une distribution en « tourbillon », c'est à dire avec une composante de rotation qui tend à chasser le gaz horizontalement en sortie de la buse. La figure 4 présente une buse dans laquelle le gaz rapide est accéléré au travers d'une tuyère, c'est à dire d'un orifice convergent-divergent.Figure 2 shows a nozzle version in which the wall effect is used to focus the flow of the fast gas along the axis of the laser beam. In this embodiment, three gas flow circuits are provided: an axial circuit 4 for a slow gas distribution and low flow, serving mainly to prevent the rise of pollution to the laser optics, a first peripheral circuit 5 channeling the fast gas to the opening of the keyhole and a second circuit 6 distributing the slow gas cover. FIG. 3 illustrates an embodiment in which the gas blanket of the slow gas is widened by means of a "vortex" distribution, that is to say with a rotation component that tends to drive the gas horizontally out of the nozzle. Figure 4 shows a nozzle in which the fast gas is accelerated through a nozzle, that is to say a convergent-divergent orifice.
Un intérêt majeur de l'utilisation d'une buse coaxiale réside dans sa facilité de positionnement et son indépendance par rapport au sens de déplacement de la tête de soudage portant la buse. Ceci implique qu'elle peut, par exemple, se mettre directement au bout du bras d'un robot dans le cas d'un soudage avec laser de type Nd :YAG où le faisceau laser est généré par un générateur de type Nd:YAG avant d'être acheminé via une fibre optique jusqu'à la tête laser portant la buse. Dans tous les cas, en mettant en oeuvre le procédé de l'invention avec une telle buse coaxiale, un premier jet de gaz est accéléré et confiné en direction de l'ouverture du capillaire, ce qui permet de modifier l'écoulement à l'arrière du capillaire.A major advantage of the use of a coaxial nozzle lies in its ease of positioning and independence from the direction of movement of the welding head carrying the nozzle. This implies that it can, for example, go directly to the end of the arm of a robot in the case of an Nd: YAG laser welding where the laser beam is generated by a Nd: YAG type generator before to be routed via an optical fiber to the laser head carrying the nozzle. In any case, by implementing the method of the invention with such a coaxial nozzle, a first jet of gas is accelerated and confined towards the opening of the capillary, which allows the flow to be changed. back of the capillary.
Le capillaire est alors plus ouvert le long de la direction de soudage et l'écoulement du bain liquide est régulier, continu et sans aucune oscillation en surface.The capillary is then more open along the welding direction and the flow of the liquid bath is smooth, continuous and without any surface oscillation.
Dans le cas d'un soudage avec oscillateur laser de type Nd: YAG, le cordon de soudure est très lisse et la "structure en chevron" caractéristique du soudage par laser Nd :YAG, peut être complètement supprimée. Naturellement, le débit du jet de gaz doit être plus élevé qu'un écoulement classique mais pas trop important non plus afin d'éviter l'éjection de métal fondu.In the case of welding with an Nd: YAG laser oscillator, the weld bead is very smooth and the "chevron structure" characteristic of Nd: YAG laser welding can be completely eliminated. Naturally, the flow rate of the gas jet must be higher than a conventional flow but not too important either to avoid the ejection of molten metal.
Une mise en oeuvre de l'invention présente aussi l'avantage de conduire aussi à une augmentation notable la profondeur de pénétration de soudage.An implementation of the invention also has the advantage of also leading to a significant increase in the penetration depth of welding.
Ainsi, des essais réalisés avec un jet de gaz dirigé et confiné sur l'ouverture du capillaire ont montré un gain en pénétration de 25%.Thus, tests carried out with a jet of gas directed and confined to the opening of the capillary showed a gain in penetration of 25%.
Ceci peut s'expliquer par le fait que, si on considère que le capillaire est allongé par le jet de gaz selon l'invention, le faisceau laser est beaucoup moins interrompu par les fluctuations du front arrière du capillaire.This can be explained by the fact that, if we consider that the capillary is elongated by the jet of gas according to the invention, the laser beam is much less interrupted by the fluctuations of the rear edge of the capillary.
De plus, du fait de l'ouverture plus importante du capillaire du fait du jet de gaz, on obtient un plasma moins dense et par conséquent absorbant moins le faisceau laser lors d'un soudage avec oscillateur laser de type CO2 par exemple.In addition, because of the larger aperture of the capillary due to the gas jet, a plasma less dense absorbent and therefore there is obtained less the laser beam when welding with laser oscillator of CO 2 type, for example.
L'allongement du capillaire permet également de fortement diminuer les porosités générées dans le cordon de soudure, pendant le soudage laser. Lorsque l'écoulement du bain liquide est stabilisé via le jet de gaz convergent de l'invention, on atténue les éclaboussements de métal en fusion et le phénomène d'éjection de gouttelettes métalliques peut être complètement éliminé.The lengthening of the capillary also makes it possible to greatly reduce the porosities generated in the weld bead during laser welding. When the flow of the liquid bath is stabilized via the convergent gas jet of the invention, the splashing of molten metal is attenuated and the phenomenon of metal droplet ejection can be completely eliminated.
L'utilisation d'une buse coaxiale qui confine le jet de gaz rapide sur l'ouverture du capillaire peut efficacement contrôler l'hydrodynamique du bain liquide.The use of a coaxial nozzle that confines the fast gas jet over the capillary opening can effectively control the hydrodynamics of the liquid bath.
L'écoulement de ce dernier peut être alors très bien stabilisé et les projections de gouttelettes métalliques complètement supprimées, ce qui permet d'arriver à une très bonne qualité de cordon de soudure avec une profondeur de pénétration améliorées, à basse vitesse de soudage, c'est à dire à moins de 3 m/minThe flow of the latter can then be very well stabilized and the projections of metal droplets completely removed, which allows to achieve a very good quality weld bead with an improved depth of penetration, low welding speed, c is less than 3 m / min
Cette méthode de soudage avec jet rapide est donc adaptée aux applications de soudage laser des moyennes épaisseurs, c'est-à-dire de 1 à 5 mm environ. This fast jet welding method is therefore suitable for laser welding applications of medium thickness, that is to say approximately 1 to 5 mm.

Claims

Revendications claims
1. Procédé de soudage par faisceau laser d'au moins une pièce métallique, de préférence de deux pièces métalliques l'une avec l'autre, dans lequel : a) on met en oeuvre un faisceau laser, un premier flux de gaz et une buse de soudage munie d'un orifice de sortie, ledit orifice étant traversé par le faisceau laser et par le premier flux de gaz, et b) on réalise un soudage de la ou des pièces par fusion du métal de la ou des pièces à souder, au point d'impact du faisceau laser avec la ou les pièces à souder, avec formation d'un capillaire ou keyhole rempli de vapeurs métalliques, caractérisé en ce que, durant le soudage, on dirige le premier flux de gaz uniquement vers l'ouverture du capillaire de vapeurs métalliques et selon une direction perpendiculaire à la ou aux pièces à souder de manière à y exercer une pression dynamique gazeuse et à maintenir le keyhole ouvert.A method of laser beam welding of at least one metal part, preferably of two metal parts with each other, wherein: a) a laser beam, a first gas stream and a soldering nozzle provided with an outlet orifice, said orifice being traversed by the laser beam and by the first gas flow, and b) welding of the piece or pieces by melting the metal of the part or pieces to be welded at the point of impact of the laser beam with the workpiece or parts to be welded, with the formation of a capillary or keyhole filled with metallic vapors, characterized in that, during welding, the first flow of gas is directed only towards the opening the capillary of metal vapor and in a direction perpendicular to the workpiece or parts to be welded so as to exert a gaseous dynamic pressure and keep the keyhole open.
2. Procédé selon la revendication 1 , caractérisé en ce qu'on utilise le premier flux de gaz pour exercer une pression dynamique gazeuse continue et constante sur l'ouverture du capillaire de vapeurs.2. Method according to claim 1, characterized in that the first gas stream is used to exert a continuous and constant gaseous dynamic pressure on the opening of the vapor capillary.
3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce qu'on utilise le premier flux de gaz pour opérer une stabilisation de l'écoulement du bain liquide de métal en fusion.3. Method according to one of claims 1 or 2, characterized in that the first gas stream is used to operate a stabilization of the flow of molten metal liquid bath.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce qu'on met en oeuvre, en outre, un deuxième flux de gaz de protection distribué périphériquement au premier flux de gaz.4. Method according to one of claims 1 to 3, characterized in that it implements, in addition, a second protective gas stream distributed peripherally to the first gas flow.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce qu'on met en oeuvre un deuxième flux de gaz de protection distribué coaxialement au premier flux de gaz par rapport à l'axe du faisceau laser. 5. Method according to one of claims 1 to 4, characterized in that implements a second protective gas stream distributed coaxially with the first gas flow relative to the axis of the laser beam.
6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que le débit du premier gaz est de l'ordre de 10 à 20 l/min et le débit du deuxième gaz est de l'ordre de 20 à 30 l/min.6. Method according to one of claims 1 to 5, characterized in that the flow rate of the first gas is of the order of 10 to 20 l / min and the flow rate of the second gas is of the order of 20 to 30 l. / min.
7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que la buse est une buse coaxiale.7. Method according to one of claims 1 to 6, characterized in that the nozzle is a coaxial nozzle.
8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que le premier et le deuxième gaz sont choisis parmi l'argon, l'hélium, l'azote et leurs mélanges, et éventuellement en plus faible proportion du CO2, de l'oxygène ou de l'hydrogène .8. Method according to one of claims 1 to 7, characterized in that the first and second gases are selected from argon, helium, nitrogen and mixtures thereof, and possibly in a lower proportion of CO 2 , oxygen or hydrogen.
9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que le faisceau laser est généré par un générateur laser de type Nd:YAG, à fibre d'Ytterbium ou CO2.9. Method according to one of claims 1 to 8, characterized in that the laser beam is generated by an Nd: YAG type laser generator, Ytterbium fiber or CO 2 .
10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce que la buse de soudage est portée par un bras robotisé.10. Method according to one of claims 1 to 9, characterized in that the welding nozzle is carried by a robotic arm.
11. Procédé selon l'une des revendications 1 à 10, caractérisé en ce que la ou les pièces métalliques à souder sont en acier au carbone, revêtu ou non, en aluminium ou en acier inoxydable.11. Method according to one of claims 1 to 10, characterized in that the or the metal parts to be welded are carbon steel, coated or not, aluminum or stainless steel.
12. Procédé selon l'une des revendications 1 à 11 , caractérisé en ce que la buse de soudage délivrant le premier flux de gaz a une section de passage du gaz comprise entre 0.1 et 10 mm2.12. Method according to one of claims 1 to 11, characterized in that the welding nozzle delivering the first gas stream has a gas passage section of between 0.1 and 10 mm 2 .
13. Procédé selon l'une des revendications 1 à 12, caractérisé en ce que la pression du premier flux de gaz est comprise entre 1 et 10 kPa. 13. Method according to one of claims 1 to 12, characterized in that the pressure of the first gas flow is between 1 and 10 kPa.
EP06820314A 2005-10-21 2006-10-19 Laser beam welding method with a metal vapour capillary formation control Withdrawn EP1940580A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0553197A FR2892328B1 (en) 2005-10-21 2005-10-21 LASER BEAM WELDING METHOD WITH CONTROL OF METAL VAPOR CAPILLARY FORMATION
PCT/FR2006/051058 WO2007045798A1 (en) 2005-10-21 2006-10-19 Laser beam welding method with a metal vapour capillary formation control

Publications (1)

Publication Number Publication Date
EP1940580A1 true EP1940580A1 (en) 2008-07-09

Family

ID=36678516

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06820314A Withdrawn EP1940580A1 (en) 2005-10-21 2006-10-19 Laser beam welding method with a metal vapour capillary formation control

Country Status (7)

Country Link
US (1) US20090134132A1 (en)
EP (1) EP1940580A1 (en)
JP (1) JP2009512556A (en)
CN (1) CN101291773B (en)
BR (1) BRPI0617708A2 (en)
FR (1) FR2892328B1 (en)
WO (1) WO2007045798A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2227620B1 (en) 2007-12-12 2011-08-31 Honeywell International Inc. Variable nozzle for a turbocharger, having nozzle ring located by radial members
FR2926032B1 (en) * 2008-01-08 2010-08-27 Air Liquide LASER WELDING NOZZLE TO STABILIZE THE KEYHOLE.
JP2009166080A (en) * 2008-01-16 2009-07-30 Hitachi Ltd Laser beam welding method
EP2496379B1 (en) * 2009-11-03 2017-01-04 The Secretary, Department Of Atomic Energy, Govt. of India Method of manufacturing niobium based superconducting radio frequency (scrf) cavities comprising niobium components by laser welding
JP2011167709A (en) * 2010-02-17 2011-09-01 Mitsubishi Heavy Ind Ltd Welding method and superconduction accelerator
CN102072794B (en) * 2010-11-18 2012-06-13 湖南大学 Detection method for internal pressure and characteristics of small simulated laser penetration fusion welded hole
JP5902400B2 (en) * 2011-04-26 2016-04-13 トヨタ自動車株式会社 LASER WELDING DEVICE, LASER WELDING METHOD, MANUFACTURING METHOD FOR STEEL SHEET LAMINATE, AND WELDING STRUCTURE BY LASER WELDING LAMINATE
CN102773591B (en) * 2012-06-13 2016-01-13 上海妍杰机械工程有限公司 A kind of stainless steel welded protective gas
DE102012025627B4 (en) 2012-09-21 2016-04-14 Trumpf Laser Gmbh Ring nozzle for a laser processing head and laser processing head with it
DE102012217082B4 (en) 2012-09-21 2016-06-16 Trumpf Laser Gmbh Laser processing head with a ring nozzle
CN103831531B (en) * 2012-11-23 2016-09-14 通用汽车环球科技运作有限责任公司 Welding point
CN103071951A (en) * 2012-12-21 2013-05-01 武汉市润之达石化设备有限公司 Ultra-low-temperature stainless steel welding protection gas
CN103056524A (en) * 2012-12-24 2013-04-24 长春轨道客车股份有限公司 Laser overlapping half penetration welding method with non-oxidation non-penetration face
WO2014206432A1 (en) * 2013-06-28 2014-12-31 Trumpf Laser- Und Systemtechnik Gmbh Process for machining, in particular for mechanical welding, and control apparatus for a setting device of a process gas feed
DE102013015656B4 (en) * 2013-09-23 2016-02-18 Precitec Optronik Gmbh Method for measuring the penetration depth of a laser beam into a workpiece, method for machining a workpiece and laser processing device
DE102014203576A1 (en) 2014-02-27 2015-08-27 Trumpf Laser- Und Systemtechnik Gmbh Laser processing head with a crossjet nozzle close to the workpiece
CN106413925A (en) * 2014-06-19 2017-02-15 麦格纳国际公司 Method and apparatus for laser assisted power washing
US20160023303A1 (en) * 2014-07-22 2016-01-28 Siemens Energy, Inc. Method for forming three-dimensional anchoring structures
CN107206553B (en) * 2014-10-15 2019-11-05 自动工程公司 The welding of steel billet
CN105855706B (en) * 2015-02-09 2018-02-13 司浦爱激光技术英国有限公司 Laser welded seam
JP6151436B2 (en) * 2015-02-25 2017-06-21 技術研究組合次世代3D積層造形技術総合開発機構 Three-dimensional additive manufacturing nozzle, optical processing head, and three-dimensional additive manufacturing device
DE102017117413B4 (en) * 2017-08-01 2019-11-28 Precitec Gmbh & Co. Kg Method for optical measurement of the welding depth
JP6943703B2 (en) * 2017-09-19 2021-10-06 技術研究組合次世代3D積層造形技術総合開発機構 Nozzles, processing equipment, and laminated modeling equipment
DE102018108824A1 (en) * 2018-04-13 2019-10-17 Rofin-Sinar Laser Gmbh Method and apparatus for laser welding
JP2022148017A (en) * 2021-03-24 2022-10-06 株式会社東芝 Welding method
CN116423050B (en) * 2023-06-13 2023-09-19 成都永峰科技有限公司 Welding device and method for aerospace thin-wall curved surface part

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1591793A (en) * 1976-10-25 1981-06-24 Welding Inst Laser welding
JPS6053260A (en) * 1983-09-01 1985-03-26 Toyota Motor Corp Velocity ratio controller for continuously variable transmission of vehicle
JPS61229491A (en) * 1985-04-03 1986-10-13 Mitsubishi Electric Corp Processing head for laser welding
US4684779A (en) * 1986-01-22 1987-08-04 General Motors Corporation Laser welding metal sheets with associated trapped gases
WO1990011450A1 (en) * 1989-03-17 1990-10-04 Kazansky Khimiko-Tekhnologichesky Institut Imeni S.M.Kirova Gas-jet ejector
JP2623993B2 (en) * 1991-02-28 1997-06-25 三菱電機株式会社 Laser processing head
US5183989A (en) * 1991-06-17 1993-02-02 The Babcock & Wilcox Company Reduced heat input keyhole welding through improved joint design
US5183992A (en) * 1991-08-29 1993-02-02 General Motors Corporation Laser welding method
US5187346A (en) * 1991-08-29 1993-02-16 General Motors Corporation Laser welding method
CA2091512A1 (en) * 1992-03-13 1993-09-14 Kohichi Haruta Laser irradiation nozzle and laser apparatus using the same
IT1261304B (en) * 1993-06-21 1996-05-14 Lara Consultants Srl CUTTING PROCESS USING A LASER BEAM
JPH0819886A (en) * 1994-07-01 1996-01-23 Sumitomo Metal Ind Ltd Laser beam welding nozzle
US6770840B2 (en) * 1997-03-28 2004-08-03 Nippon Steel Corporation Method of butt-welding hot-rolled steel materials by laser beam and apparatus therefor
FR2765129B1 (en) * 1997-06-30 1999-10-01 Peugeot METHOD OF WELDING SHEETS COATED WITH AN ENERGY BEAM, SUCH AS A LASER BEAM
JP3385361B2 (en) * 2000-05-09 2003-03-10 北海道大学長 Laser welding method and laser welding apparatus
JP3385363B2 (en) * 2000-05-11 2003-03-10 北海道大学長 Laser welding method, laser welding apparatus, and gas shield apparatus for laser welding
JP4394808B2 (en) * 2000-06-28 2010-01-06 吉輝 細田 Melt processing equipment using laser beam and arc
FR2822399B1 (en) * 2001-03-26 2003-06-27 Commissariat Energie Atomique HIGH POWER LASER WELDING INSTALLATION
FR2846581B1 (en) * 2002-10-31 2006-01-13 Usinor METHOD AND DEVICE FOR PUNCHING A FLUID-ENDING JET, IN PARTICULAR WELDING, MACHINING, OR LASER RECHARGING
JP2004148374A (en) * 2002-10-31 2004-05-27 Honda Motor Co Ltd Method for penetration-welding of welded members comprising aluminum or aluminum alloy with each other by high density energy beam

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007045798A1 *

Also Published As

Publication number Publication date
JP2009512556A (en) 2009-03-26
BRPI0617708A2 (en) 2011-08-02
FR2892328B1 (en) 2009-05-08
WO2007045798A1 (en) 2007-04-26
US20090134132A1 (en) 2009-05-28
CN101291773B (en) 2011-09-14
FR2892328A1 (en) 2007-04-27
CN101291773A (en) 2008-10-22

Similar Documents

Publication Publication Date Title
EP1940580A1 (en) Laser beam welding method with a metal vapour capillary formation control
EP1600245B1 (en) Laser or hybrid arc-laser welding with formation of a plasma on the back side.
FR2908677A1 (en) LASER BEAM WELDING METHOD WITH ENHANCED PENETRATION
CA2735142C (en) Method for co<sb>2 </sb>laser welding with a dynamic jet nozzle
EP1427564A1 (en) Hybrid laser-arc welding method with gas flow rate adjustment
FR2600568A1 (en) IMPROVEMENTS IN METHODS OF CUTTING LASER METAL PARTS
EP1215008A1 (en) Process and installation for laser cutting with a double stream and double-focus cutting head
EP2802435B1 (en) Mig/tig or mag/tig hybrid welding device
FR2832337A1 (en) Equipment and method for producing hybrid welds, comprises use of laser welder with an electric arc welder which has a solid or hollow fusible electrode with a rectangular cross section
WO2015059384A1 (en) Laser nozzle with dual gaseous flow
WO2003022511A1 (en) Method for striking electric arc in hybrid laser-arc welding
Chae et al. The effect of shielding gas composition in CO2 laser—gas metal arc hybrid welding
WO2009068789A2 (en) Laser welding of zinc-coated parts
JP2004009096A (en) Laser welding device
Kah et al. The influence of parameters on penetration, speed and bridging in laser hybrid welding
FR3010339A1 (en) LASER BEAM WELDING METHOD ON SANDWICH WITH CONTROL OF CAPILLARY OPENING
Hamadou et al. Experimental study of CO 2 laser welding inside a groove—application to high thickness laser welding
FR2825305A1 (en) Laser beam welding comprises use of lateral nozzle for improved distribution of protective gas
FR2870765A1 (en) Carbon dioxide type laser welding process for welding together one or more metal items
JPH0866784A (en) High energy beam welding method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080326

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BRIAND, FRANCIS

Inventor name: SLIMANI, SONIA

Inventor name: VERNA, ERIC

Inventor name: COSTE, FREDERIC

Inventor name: FABBRO, REMY

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110630

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180501