EP1937589A1 - Reformersystem mit elektrischen heizmitteln - Google Patents

Reformersystem mit elektrischen heizmitteln

Info

Publication number
EP1937589A1
EP1937589A1 EP06792419A EP06792419A EP1937589A1 EP 1937589 A1 EP1937589 A1 EP 1937589A1 EP 06792419 A EP06792419 A EP 06792419A EP 06792419 A EP06792419 A EP 06792419A EP 1937589 A1 EP1937589 A1 EP 1937589A1
Authority
EP
European Patent Office
Prior art keywords
reformer
reformer system
fuel
zone
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06792419A
Other languages
English (en)
French (fr)
Inventor
Jürgen Ringler
Christian Liebl
Michael Preis
Jochem Huber
John Kirwan
James Grieve
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Delphi Technologies Inc
Original Assignee
Bayerische Motoren Werke AG
Delphi Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG, Delphi Technologies Inc filed Critical Bayerische Motoren Werke AG
Publication of EP1937589A1 publication Critical patent/EP1937589A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0207Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal
    • B01J8/0221Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal in a cylindrical shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00026Controlling or regulating the heat exchange system
    • B01J2208/00035Controlling or regulating the heat exchange system involving measured parameters
    • B01J2208/00044Temperature measurement
    • B01J2208/00061Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00389Controlling the temperature using electric heating or cooling elements
    • B01J2208/00415Controlling the temperature using electric heating or cooling elements electric resistance heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00433Controlling the temperature using electromagnetic heating
    • B01J2208/00442Microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00056Controlling or regulating the heat exchange system involving measured parameters
    • B01J2219/00058Temperature measurement
    • B01J2219/00063Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00121Controlling the temperature by direct heating or cooling
    • B01J2219/0013Controlling the temperature by direct heating or cooling by condensation of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00132Controlling the temperature using electric heating or cooling elements
    • B01J2219/00135Electric resistance heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00139Controlling the temperature using electromagnetic heating
    • B01J2219/00141Microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/085Methods of heating the process for making hydrogen or synthesis gas by electric heating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0855Methods of heating the process for making hydrogen or synthesis gas by electromagnetic heating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0861Methods of heating the process for making hydrogen or synthesis gas by plasma
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • C01B2203/1294Evaporation by heat exchange with hot process stream
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the invention relates to a reformer system with a reformer for the chemical reaction of a hydrocarbon-containing fuel in a hydrogen-rich reformate gas, and electrical heating means by which the reformer system heat energy for producing a reaction temperature required for the reaction can be supplied.
  • the invention further relates to a vehicle with such a reformer system.
  • Reformers are generally used in motor vehicles to produce a hydrogen-rich synthesis or reformate gas consisting of hydrogen (H 2 ), carbon monoxide (CO) and inert gas (N 2 , CO 2 , H 2 O) from liquid or gaseous hydrocarbon-containing fuels.
  • Suitable fuels are liquid fuels such as gasoline, diesel or alcohols and gaseous fuels such as methane or natural gas in question.
  • various reforming processes including partial oxidation, steam reforming, CO 2 reforming, cracking or even combinations thereof, such as autothermal reforming, are known. While the partial oxidation is highly exothermic, all other processes are endothermic or nearly energy neutral.
  • a so-called shift reaction water gas equilibrium
  • the reformate gas produced by the reformer can be used in motor vehicles to operate a fuel cell. Furthermore, such reformate gas can be supplied to an internal combustion engine to minimize the cold start, warm-up and raw emissions. In addition, reformate gas is also used for the aftertreatment of the exhaust gases of an internal combustion engine.
  • the reforming processes in the reformer usually take place at very high temperatures, ie at temperatures of at least 800 ° C.
  • suitable areas of the reformer are brought by supplying heat energy to this temperature level.
  • a catalyst is heated in the reformer system by means of an electrical heating element.
  • the heating element is supplied from a vehicle battery with electric current.
  • the reformer is thermally preheated by means of an upstream combustion process.
  • undesirable emissions such as HC and NO x .
  • the invention has for its object to provide a vehicle with a reformer system of the type mentioned, by means of which the starting time of the reformer and the resulting undesirable emissions can be reduced with reasonable effort.
  • This object is achieved according to the invention with a generic reformer system, which further comprises a capacitor which supplies the electric heating means with electric current. Furthermore, the object is achieved with a vehicle having such a reformer system according to the invention.
  • the solution according to the invention is based on the finding that the electrical heating means for heating the reformer to a temperature required for the start of the reforming process only have to be supplied with power for a short time.
  • an autonomous process takes place in the reformer, for the maintenance of which only little or no heat energy at all has to be supplied from the outside. That is, all of the electrical energy needed to start the reforming process is limited, but it must be available quickly.
  • the capacitor used in this invention meets these requirements in contrast to conventional vehicle lead accumulators in a very cost-effective and space-saving manner. This can namely store a certain amount of electrical charge and deliver within a very short time to the electric heating means.
  • the charge storable in the capacitor is tuned to bring the reformer system to the reaction temperature necessary to start the reforming process. Thereafter, the capacitor is recharged immediately by means of the vehicle battery or a fuel cell for a future startup process. This process can be done with these high performance capacitors in a very short time.
  • the capacitor is designed as a high-power capacitor.
  • a high-performance capacitor or ultracap or supercap can be the electric heating means required to heat the reformer system electrical energy within a very short time, whereby the start time of the reformer system can be further improved.
  • the reformer system has a chemical reaction accelerator for reducing the reaction temperature required for the reaction.
  • This reaction accelerator is also advantageously heatable by means of the electrical heating means at least in a heating section.
  • the chemical reaction accelerator makes possible a considerable reduction in the reaction temperature. For the fuels gasoline or diesel, this decreases from about 1500 0 C to about 800 to 1000 0 C.
  • the heating energy can be used particularly efficiently if the front surface of the reaction accelerator, to which the hydrocarbon-containing fuel / air mixture flows, can be heated.
  • reaction accelerator which is arranged with its longitudinal direction parallel to the flow direction of the reformate gas
  • a specific section can be heated in the longitudinal direction of the reaction accelerator.
  • the electrically heatable region of the reaction accelerator does not necessarily have to be at the entrance of the reaction accelerator, but can also begin only within the reaction accelerator.
  • the heating effect can be achieved when the electric heating means are integrally connected to the reaction accelerator, in particular form a substrate of the reaction accelerator in the heating section.
  • the reaction accelerator may comprise a metallic substrate which has an electrical resistance suitable for heating the reaction accelerator.
  • an electrically insulating material in particular ceramic form a substrate of the reaction accelerator.
  • the heating section of the reaction accelerator can be sharply defined, thus optimizing the heating effect of the electric current in the limited heating section. In other words, the highest possible temperature can thus be achieved in a limited heating zone with a given electrical heating energy.
  • the portion of the reaction accelerator formed of electrically insulating substrate may either be in direct contact with or spaced from the heating section. In a spaced arrangement of the heating section is thermally largely isolated, whereby the heat energy introduced by the electric heating means optimally heated the heating section.
  • the reformer system has a treatment zone for processing the hydrocarbon-containing fuel before the chemical reaction, and the treatment zone can be heated by means of the electric heating means.
  • the treatment zone serves to evaporate the hydrocarbon-containing fuel before the actual reforming reaction and homogenize with the air so that the reforming reaction can proceed optimally.
  • the heating of the treatment zone which takes place according to the invention also comprises direct heating of the fuel / air mixture contained in the treatment zone. Due to the already occurring in the treatment zone heating is in addition to the faster start time of the reforming process, a more complete implementation of the fuel in Reformatgas effected. This in turn reduces the undesirable emissions associated with the reforming process.
  • the treatment zone is formed as a mixture formation zone in which the hydrocarbonaceous fuel is mixed with air, and / or as a fuel evaporation zone in which the hydrocarbonaceous fuel is vaporized.
  • the fuel is advantageously injected through an injector into the treatment zone, whereby it is finely distributed in the treatment zone.
  • This forms a homogeneous air / fuel mixture in the processing zone formed as a mixture formation zone.
  • the treatment zone can also be designed as a fuel evaporation zone. In this, the thermal energy supplied by the electric heating means is used to vaporize the fuel. An evaporation of the fuel allows the generation of a particularly homogeneous air / fuel mixture.
  • a further homogenization of the mixture can be achieved by heating the air supplied from the outside.
  • the presence of a highly homogeneous air / fuel mixture leads to a particularly complete conversion of the fuel in the subsequent reforming process, whereby residues and in particular undesirable emissions can be minimized.
  • the electrical heating means in particular for heating the treatment zone, comprise a wire, in particular in the form of a grid wire construction, means for generating electromagnetic radiation and / or means for generating an arc or plasma.
  • the grid wire construction may surround the entire processing zone or a subsection thereof.
  • the grid wire construction preferably represents a casing of the treatment zone in a longitudinal direction parallel to the flow direction of the reformate gas. In this case, the casing can also extend only over part of the length of the treatment zone in the longitudinal direction.
  • While a grid wire construction enables a particularly cost-effective realization of the heating effect, can be determined by the means for generating electromagnetic Radiation and / or the means for generating an arc or plasma energy are transmitted directly to the individual molecules of the present in the treatment zone LufWKraftstoffgemisches. In this way, a particularly efficient energy transfer and thus a particularly rapid heating of LufWKraftstoffgemisches done.
  • a means for generating electromagnetic radiation for example, a microwave generator can be used.
  • the reformer system according to the invention advantageously has a heat exchanger zone, which is thermally conductively connected to an outflow zone of the reformate gas and / or a reaction zone having the reaction accelerator and preheated by means of which outside air and then flowed into the treatment zone or can be initiated.
  • This waste heat of the reformate gas can be used to preheat the air used to form the LufWKraftstoffgemisches.
  • the heating demand in the treatment zone is reduced or even completely eliminated as soon as the reformer system is in a stable reaction process after passing through the start-up phase.
  • the reformer system has an electrical ignition device arranged in the region of the treatment zone, by means of which fuel combustion or fuel oxidation can be generated for heating the treatment zone.
  • the reaction temperature required for a stable reforming process can thus be achieved more quickly.
  • the hydrocarbon-containing fuel convertible by the reformer system is liquid and comprises in particular gasoline, diesel and / or alcohols.
  • gasoline or diesel in reformer systems used in motor vehicles is particularly advantageous because these fuels are already used in today's engines and thus no conversion measures at the gas stations are required.
  • the reformer system is designed to carry out a partial oxidation process for converting the carbonaceous fuel into a hydrogen-rich reformate gas. Since the partial oxidation is highly exothermic, after reaching the reaction temperature in the reformer no further thermal energy must be supplied from the outside.
  • the reformer system advantageously comprises a temperature sensor for measuring a temperature in the treatment zone and / or the reaction accelerator, and a control device for controlling the power supply of the electrical heating means in dependence on the measured temperature.
  • the existing electrical energy in the capacitor can be used optimally and without unnecessary losses to start the reformer system.
  • the temperature gradient .DELTA.T / .DELTA.t can be used as a reference variable of the control device.
  • the determination of the temperature gradient can advantageously be carried out by measuring the change in the electrical resistance of a wire grid or substrate which can also be used as a heating medium.
  • the temperature gradient can also be determined by temperature measurements by means of temperature sensors.
  • the output from the capacitor electric power can thus be made as needed, because on the one hand the heating of the corresponding zones in terms of a very fast and at the same time possible emission-free reformer start should be done, but on the other hand overheating of these zones for safety or durability reasons must be avoided.
  • the reformer system has a control device for controlling the power supply of the electrical heating means in adaptation to boundary conditions of the reformer system, such as aging effects and component tolerances, and / or fuel influences.
  • the regulation of the electrical energy delivered by the capacitor can thus be carried out in such a way that the temperature profile which occurs in the corresponding zones corresponds to a desired specification.
  • the heating process is aborted.
  • An inventive vehicle with an aforementioned reformer system advantageously has a consumer, in particular an internal combustion engine, an exhaust aftertreatment system of an internal combustion engine and / or a fuel cell, which is connected to gas supply means for supplying the reformate gas from the reformer system to the customer.
  • a supply of the reformate gas to the internal combustion engine serves to minimize the cold start / warm-up and raw emissions of the internal combustion engine. It is particularly important that the reforming process can be started within the shortest possible time and with minimal pollutants, as the emissions of the combustion engine are greatest at its start. The same applies to the use of the reformate gas in an exhaust aftertreatment system.
  • FIG. 1 is a partial sectional view of a first embodiment of a reformer system according to the invention with a heated mixture forming zone
  • FIG. 2 is a partial sectional view of a second embodiment of a reformer system according to the invention with a heatable reaction accelerator
  • FIG. 3 shows a partial sectional view of a third exemplary embodiment of a reformer system with both a heatable mixture-forming zone and a heatable reaction accelerator
  • Fig. 4 is a partial sectional view of an embodiment of a reformer, which is used as an alternative to the reformers shown in Fig. 1 to 3 in a reformer system according to the invention, as well as
  • Fig. 5 is an illustration of the mixture forming zone and the reaction zone of a reformer system according to the invention.
  • FIG. 1 to 3 various embodiments of a reformer system according to the invention are shown. These each comprise a reformer 10, which is designed as an elongated container. In this longitudinal direction, an inflow zone 12, a mixture forming zone 14 indicated by a broken boundary line, a reaction zone 16 and an outflow zone 18 are arranged. Through the inflow zone 12, air 24 drawn in from the outside flows into the mixture-forming zone 14. The air is conveyed via a pump not shown in the figures or a blower in the reformer. An injector 20 injects fuel 22, such as gasoline or diesel, via the inflow zone 12 into the mixture forming zone 14.
  • the typical air to fuel ratio for a partial oxidation occurring in the reaction zone 16 is in the range of about 0.33.
  • electrical heating means 30, such as a heating wire structure, are shown in the mixture forming zone 14 in FIG. 5, by means of which heat energy can be supplied to the mixture forming zone 14.
  • electric heating means 30 may alternatively be used a microwave generator.
  • the heat supply on the one hand, the evaporation of the fuel 22 in the air 24 is supported to promote optimal mixing of the air / fuel mixture.
  • the air-fuel mixture is brought to a reaction temperature by the heat supply at which the reforming process assisted by a reaction accelerator 26 starts and proceeds by itself.
  • the heating of the air-fuel mixture can also be assisted via an upstream combustion process.
  • the reaction temperature required for the expiration of the reforming process is in use of gasoline or diesel as fuel 22 at about 800 to 1000 ° C.
  • the mixture forming zone 14 may optionally also include an electric igniter 42 to assist in the heating of the air-fuel mixture.
  • an electrical ignition device 42 can also be provided for the embodiments of the reformer system according to the invention shown in FIGS. 2 and 3.
  • the electric heating means 30 are connected via a power line 34 to a high power capacitor 36. This has sufficient capacity to store the charge needed to heat the air-fuel mixture to the reaction temperature. The charge can flow within a very short time to the electric heating means 30, which is why the time required to start the reformer system can be kept very short.
  • the high power capacitor 36 is connected via another power line 38 to the vehicle battery 40 or a vehicle-mounted fuel cell, such as an SOFC for recharging.
  • the thus heated air / fuel mixture then enters the reaction zone 16 containing the reaction accelerator 26, in which the air / fuel mixture is converted into a hydrogen-rich synthesis gas, which is referred to below as reformate gas 28.
  • the reaction accelerator 26 is provided with electrical heating means 32 instead of the mixture forming zone 14.
  • the electric heating means 32 are shown schematically in FIG.
  • the air / fuel flow facing end side of the reaction accelerator 26 can be heated.
  • the electric heating means 32 may include heating wires as in the embodiment shown in FIG. 1, but also form a substrate of the reaction accelerator 26.
  • the heating of the reaction accelerator 26 brings it to a light-off temperature at which the reaction accelerator 26 supports the reforming process.
  • the electric heating means 32 via a power line 34 a through a high-power capacitor 36, which is rechargeable via a vehicle battery 40, supplied with power.
  • both the mixture forming zone 14 and the reaction accelerator 26 have electrical heating means 30 and 32, respectively, as shown in FIG. These are each connected via a power line 34 or 34 a with a rechargeable via a vehicle battery 40 high-power capacitor 36.
  • Fig. 5 illustrates the respective extent of the electrical heating means 30 and 32 in the mixture forming zone 14 and / or in or on the reaction accelerator 26.
  • the section marked d 2 denotes the axial extent of the electric heating means 32 on the reaction accelerator 26. This can either over the entire length I 2 of the reaction accelerator 26 or, as shown in Fig. 5, extend over only a portion of the same.
  • the region of the reaction accelerator of length d 2 to be heated up electrically does not necessarily have to be at the reaction accelerator inlet, but can also begin only within the reaction accelerator 26 with a certain distance from the reaction accelerator inlet.
  • a non-electrically heated reaction accelerator region 26a may optionally also be made of an electrically non-conductive material, such as ceramic. The same applies to the heating of the mixture formation zone 14. Again, either the entire axial extent I 1 of this zone can be electrically heated or the heating occurs only in a range U 1 ⁇ I 1 within this zone with a certain distance from the beginning of the mixture formation zone 14th
  • a further embodiment of a reformer 10 is shown, which can be used optionally in one of the embodiments of a reformer system according to the invention shown in Figures 1 to 3.
  • the air 24 is not flowed through the inflow zone 12 at the front of the reformer 10 as shown in Figures 1, 2 and 3 in the mixture formation zone 14, but laterally introduced via a reformer 10 enveloping the heat exchanger zone 44 in the mixture forming zone 14 ,
  • the heat exchanger zone 44 is thermally conductively connected to the reaction zone 16 and the discharge zone 18.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

Ein Reformersystem mit einem Reformer (10) zum chemischen Umsetzen eines kohlenwasserstoffhaltigen Kraftstoffes (22) in ein wasserstoffgasreiches Reformatgas (28), sowie elektrischen Heizmitteln (30, 32), mittels welchen dem Reformer Wärmeenergie zum Herstellen einer für die Umsetzung erforderlichen Reaktionstemperatur zuführbar ist, ist erfindungsgemäß dadurch gekennzeichnet, dass das Reformersystem weiterhin einen Hochleistungskondensator (36) aufweist, der die elektrischen Heizmittel mit elektrischem Strom versorgen kann.

Description

Reformersystem mit elektrischen Heizmitteln
Hintergrund der Erfindung
Die Erfindung betrifft ein Reformersystem mit einem Reformer zum chemischen Umsetzen eines kohlenwasserstoffhaltigen Kraftstoffes in ein wasserstoffgasreiches Reformatgas, sowie elektrischen Heizmitteln, mittels welchen dem Reformersystem Wärmeenergie zum Herstellen einer für die Umsetzung erforderlichen Reaktionstemperatur zuführbar ist. Die Erfindung betrifft ferner ein Fahrzeug mit einem derartigen Reformersystem.
Reformer werden in Kraftfahrzeugen generell eingesetzt um aus flüssigen oder gasförmigen kohlenwasserstoffhaltigen Kraftstoffen ein wasserstoffreiches Synthese- bzw. Reformatgas, bestehend aus Wasserstoff (H2), Kohlenmonoxid (CO) und Inertgas (N2, CO2, H2O) zu erzeugen. Als Kraftstoffe kommen flüssige Kraftstoffe, wie z.B. Benzin, Diesel oder Alkohole und gasförmige Kraftstoffe, wie z.B. Methan oder Erdgas in Frage. Zur Umsetzung des Kraftstoffes in das wasserstoffreiche Reformatgas sind unterschiedlichere Reformierungsverfahren, darunter partielle Oxidation, Dampfreformierung, CO2-Reformierung, Cracken oder auch Kombinationen hieraus, wie z.B. autotherme Reformierung, bekannt. Während die partielle Oxidation stark exotherm verläuft, sind alle anderen Verfahren endotherm bzw. annähernd energieneutral. Zur Erhöhung der Wasserstoffausbeute kann eine sogenannte Shift-Reaktion (Wassergasgleichgewicht) nachgeschaltet werden. Das vom Reformer erzeugte Reformatgas kann in Kraftfahrzeugen zum Betrieb einer Brennstoffzelle verwendet werden. Weiterhin kann einem Verbrennungsmotor zur Minimierung der Kaltstart-, Warmlauf- und Rohemissionen derartiges Reformatgas zugeführt werden. Zudem wird Reformatgas auch zur Nachbehandlung der Abgase eines Verbrennungsmotors eingesetzt.
Die Reformierungsprozesse im Reformer laufen in der Regel bei sehr hohen Temperaturen, d.h. bei Temperaturen von mindestens 800°C ab. Für die Einleitung der Reaktion und einen anschließenden stabilen Reaktionsverlauf müssen daher geeignete Bereiche des Reformers durch Zufuhr von Wärmeenergie auf dieses Temperaturniveau gebracht werden. Um das Reformierungsverfahren erfolgreich zu starten, wird gemäß der US 6,728,602 ein Katalysator im Reformersystem mittels eines elektrischen Heizelementes aufgeheizt. Das Heizelement wird dabei aus einer Fahrzeugbatterie mit elektrischem Strom versorgt.
Bei einem anderen aus dem Stand der Technik, wie der US 2002/010831 A1 bekannten Verfahren wird der Reformer mittels eines vorgeschalteten Verbrennungsprozesses thermisch vorgeheizt. Bei einer solchen thermischen Vorheizung des Reformers entstehen allerdings unerwünschte Emissionen, wie etwa HC sowie NOx.
Der Energiebedarf von Heizeinrichtungen zur Ermöglichung eines schnellen Reformerstarts ist allerdings erheblich. Da die von einer herkömmlichen Fahrzeugbatterie aufgebrachte Leistung allerdings begrenzt ist, ist zum entsprechenden Aufheizen des Reformers ein vergleichsweise langer Zeitraum nötig. Zur Verkürzung der Startzeit des Reformierungsverfahrens muss eine erheblich größere Fahrzeugbatterie bzw. eine entsprechende Zusatzbatterie mitgeführt werden, was zu erheblichen Kosten führt und weiterhin Gewichts- und Platzprobleme im Fahrzeug nach sich zieht. Eine langsame Startzeit führt jedoch zu höheren Emissionen, da während eines Verbrennungsstarts bei typischen Umgebungstemperaturen höhere HC und NOx-Emissionen auftreten wie bei betriebswarmen Bedingungen. Bei flüssigen Kraftstoffen verschlechtert sich das Emissionsverhalten während dem Verbrennungsstart noch zusätzlich, da bei einer entsprechend niedrigen Temperatur der Homogenisierungsprozess zwischen dem flüssigen Medium und Luft erschwert wird. Des Weiteren kann eine Temperatur außerhalb des Betriebsfensters des Katalysators zu einer Limitierung gewünschter Reaktionsabläufe und/oder einem verstärkten Auftreten ungewünschter Nebenreaktionen führen. Auch dies verursacht tendenziell höhere Schadstoffemissionen.
Zugrundeliegende Aufgabe Der Erfindung liegt die Aufgabe zugrunde, ein Fahrzeug mit einem Reformersystem der eingangs genannten Art bereitzustellen, mittels welchem die Startzeit des Reformers und die hierbei entstehenden unerwünschten Emissionen mit vertretbarem Aufwand verringert werden kann.
Erfindungsqemäße Lösung
Diese Aufgabe ist erfindungsgemäß mit einem gattungsgemäßen Reformersystem gelöst, welches weiterhin einen Kondensator aufweist, der die elektrischen Heizmittel mit elektrischem Strom versorgt. Ferner wird die Aufgabe mit einem Fahrzeug gelöst, das ein derartiges erfindungsgemäßes Reformersystem aufweist.
Der erfindungsgemäßen Lösung liegt die Erkenntnis zugrunde, dass die elektrischen Heizmittel zum Aufheizen des Reformers auf eine zum Start des Reformierungsprozesses erforderliche Temperatur lediglich über kurze Zeit mit Strom versorgt werden müssen. Sobald die Reaktionstemperatur erreicht ist, läuft im Reformer ein autarker Prozess ab, zu dessen Aufrechterhaltung nur noch geringe oder überhaupt keine Wärmeenergie mehr von außen zugeführt werden muss. Das heißt, die gesamte für das Anfahren des Reformierungsprozesses benötigte elektrische Energie ist begrenzt, sie muss aber schnell abrufbar sein. Der erfindungsgemäß verwendete Kondensator erfüllt diese Anforderungen im Gegensatz zu konventionellen Fahrzeugbleiakkumulatoren auf zugleich sehr kostengünstige und platzsparende Weise. Dieser kann nämlich eine bestimmte elektrische Ladungsmenge speichern und innerhalb kürzester Zeit an die elektrischen Heizmittel abgeben. Die im Kondensator speicherbare Ladung ist darauf abgestimmt, das Reformersystem auf die zum Start des Reformierungsverfahrens notwendige Reaktionstemperatur zu bringen. Danach wird der Kondensator etwa mittels der Fahrzeugbatterie bzw. einer Brennstoffzelle für einen zukünftigen Startvorgang sofort wieder aufgeladen. Dieser Vorgang kann bei diesen Hochleistungskondensatoren in sehr kurzer Zeit erfolgen.
Vorteilhafte Weiterbildungen der Erfindung In vorteilhafter Ausführungsform ist der Kondensator als Hochleistungskondensator ausgelegt. Mit einem derartigen Hochleistungskondensator bzw. Ultracap oder Supercap lässt sich den elektrischen Heizmitteln die zum Aufheizen des Reformersystems benötigte elektrische Energie innerhalb besonders kurzer Zeit zuführen, wodurch die Startzeit des Reformersystems weiter verbessert werden kann.
In zweckmäßiger Weise weist das Reformersystem einen chemischen Reaktionsbeschleuniger zum Verringern der für die Umsetzung erforderlichen Reaktionstemperatur auf. Dieser Reaktionsbeschleuniger ist ferner vorteilhaft mittels der elektrischen Heizmittel zumindest in einem Heizabschnitt aufheizbar. Durch den chemischen Reaktionsbeschleuniger wird eine erhebliche Verringerung der Reaktionstemperatur möglich. Für die Kraftstoffe Benzin oder Diesel verringert sich diese von etwa 15000C auf etwa 800 bis 10000C. Um den Reaktionsbeschleuniger möglichst schnell auf seine Anspringtemperatur zu bringen, oberhalb der dieser seine reaktionsbeschleunigende Wirkung erst entfalten kann, ist es vorteilhaft dem Reaktionsbeschleuniger mittels der elektrischen Heizmittel zumindest in einem Heizabschnitt aufzuheizen. Besonders effizient lässt sich die Heizenergie nutzen, wenn die Frontfläche des Reaktionsbeschleunigers, auf die das kohlenwasserstoffhaltige Kraftstoff-/Luftgemisch einströmt, aufheizbar ist. Weiterhin ist es sinnvoll, wenn bei einem Reaktionsbeschleuniger, der mit seiner Längsrichtung parallel zur Strömungsrichtung des Reformatgases angeordnet ist, ein bestimmter Teilabschnitt in Längsrichtung des Reaktionsbeschleunigers beheizbar ist. Der elektrisch aufheizbare Bereich des Reaktionsbeschleunigers muss dabei nicht zwangsläufig am Eintritt des Reaktionsbeschleunigers liegen, sondern kann auch erst innerhalb des Reaktionsbeschleunigers beginnen.
Besonders kosten- und platzsparend kann die Heizwirkung erzielt werden, wenn die elektrischen Heizmittel mit dem Reaktionsbeschleuniger integral verbunden sind, insbesondere im Heizabschnitt ein Substrat des Reaktionsbeschleunigers bilden. So kann der Reaktionsbeschleuniger etwa metallisches Substrat aufweisen, das einen zum Aufheizen des Reaktionsbeschleunigers geeigneten elektrischen Widerstand aufweist. Auch kann der Reaktionsbeschleuniger mit entsprechenden, einen elektrischen Widerstand aufweisenden Heizmitteln von außen her umgeben sein, insbesondere von diesen ummantelt sein.
Außerhalb des Heizabschnitts kann ein elektrisch isolierendes Material, insbesondere Keramik ein Substrat des Reaktionsbeschleunigers bilden. Bei einem solchen nichtleitenden Substrat lässt sich der Heizabschnitt des Reaktionsbeschleunigers scharf abgrenzen und damit die Heizwirkung des elektrischen Stromes in dem begrenzten Heizabschnitt optimieren. Mit anderen Worten kann damit in einer begrenzten Heizzone mit einer gegebenen elektrischen Heizenergie eine möglichst hohe Temperatur erzielt werden. Sobald in dieser Heizzone die Anspringtemperatur des Beschleunigers erreicht bzw. überschritten ist, kommt der Reformierungsprozess in Gang. Im weiteren Verlauf entsteht in der Regel durch die chemische Umsetzung ausreichend Wärme, um noch unterhalb der Anspringtemperatur befindliche Bereiche des Reaktionsbeschleunigers entsprechend aufzuwärmen. Der aus elektrisch isolierendem Substrat gebildete Abschnitt des Reaktionsbeschleunigers kann entweder in direktem Kontakt mit dem Heizabschnitt stehen oder von diesem beabstandet sein. Bei einer beabstandeten Anordnung ist der Heizabschnitt thermisch weitestgehend isoliert, wodurch die durch die elektrischen Heizmittel eingebrachte Wärmeenergie den Heizabschnitt optimal erwärmt.
Um eine optimale Startzeit des Reformierungsverfahrens zu ermöglichen, ist es weiterhin vorteilhaft, wenn das Reformersystem eine Aufbereitungszone zum Aufbereiten des kohlenwasserstoffhaltigen Kraftstoffes vor der chemischen Umsetzung aufweist, sowie die Aufbereitungszone mittels der elektrischen Heizmittel aufheizbar ist. Die Aufbereitungszone dient dazu, den kohlenwasserstoffhaltigen Kraftstoff vor der eigentlichen Reformierungsreaktion zu verdampfen und mit der Luft so zu homogenisieren, dass die Reformierungsreaktion optimal ablaufen kann. Die erfindungsgemäß erfolgende Aufheizung der Aufbereitungszone umfasst insbesondere auch eine direkte Aufheizung des in der Aufbereitungszone enthaltenen Kraftstoff-/Luftgemisches. Durch die bereits in der Aufbereitungszone erfolgende Aufheizung wird neben der schnelleren Startzeit des Reformierungsprozesses auch eine vollständigere Umsetzung des Kraftstoffes in Reformatgas bewirkt. Dies wiederum verringert die beim Reformierungsverfahren anfallenden unerwünschten Emissionen.
Vorteilhafterweise ist die Aufbereitungszone als Gemischbildungszone, in welcher der kohlenwasserstoffhaltige Kraftstoff mit Luft vermischt wird, und/oder als Kraftstoffverdampfungszone, in welcher der kohlenwasserstoffhaltige Kraftstoff verdampft wird, ausgebildet. Der Kraftstoff wird vorteilhafterweise durch einen Injektor in die Aufbereitungszone eingespritzt, wodurch dieser fein in der Aufbereitungszone verteilt wird. Damit bildet sich ein homogenes Luft- /Kraftstoffgemisch in der als Gemischbildungszone ausgebildeten Aufbereitungszone. Wie bereits vorstehend erwähnt, kann die Aufbereitungszone auch als Kraftstoffverdampfungszone ausgebildet sein. In dieser wird die durch die elektrischen Heizmittel zugeführte Wärmeenergie zur Verdampfung des Kraftstoffes verwendet. Eine Verdampfung des Kraftstoffes ermöglicht die Erzeugung einer besonders homogenen Luft-/Kraftstoffmischung. Weiterhin kann durch Aufheizung der von außen zugeführten Luft eine weitere Homogenisierung des Gemisches erzielt werden. Das Vorliegen eines in hohem Maße homogenen Luft- /Kraftstoffgemisches führt zu einer besonders vollständigen Umsetzung des Kraftstoffes im nachfolgenden Reformierungsprozess, wodurch Rückstände und insbesondere unerwünschte Emissionen auf ein Mindestmaß reduziert werden können.
Zweckmäßigerweise umfassen die elektrischen Heizmittel, insbesondere zum Aufheizen der Aufbereitungszone einen Draht, insbesondere in Gestalt einer Gitterdrahtkonstruktion, Mittel zum Erzeugen elektromagnetischer Strahlung und/oder Mittel zum Erzeugen eines Lichtbogens oder Plasmas. Die Gitterdrahtkonstruktion kann die gesamte Aufbereitungszone oder einen Teilabschnitt derselben umgeben. Dabei stellt die Gitterdrahtkonstruktion vorzugsweise eine Ummantelung der Aufbereitungszone in einer zur Strömungsrichtung des Reformatgases parallelen Längsrichtung dar. Dabei kann sich die Ummantelung auch lediglich über einen Teil der Länge der Aufbereitungszone in Längsrichtung erstrecken. Während eine Gitterdrahtkonstruktion eine besonders kostengünstige Realisierung der Heizwirkung ermöglicht, kann durch die Mittel zum Erzeugen elektromagnetischer Strahlung und/oder die Mittel zum Erzeugen eines Lichtbogens oder Plasmas Energie unmittelbar auf die einzelnen Moleküle des in der Aufbereitungszone befindlichen LufWKraftstoffgemisches übertragen werden. Auf diese Weise kann eine besonders effiziente Energieübertragung und damit eine besonders schnelle Aufheizung des LufWKraftstoffgemisches erfolgen. Als Mittel zum Erzeugen elektromagnetischer Strahlung kann beispielsweise ein Mikrowellenerzeuger verwendet werden.
Um den Kraftstoffverdampfungs- und/oder Gemischbildungsprozess zu verbessern, weist das erfindungsgemäße Reformersystem vorteilhafterweise eine Wärmetauscherzone auf, die mit einer Abströmzone des Reformatgases und/oder einer den Reaktionsbeschleuniger aufweisenden Reaktionszone wärmeleitend verbunden ist und mittels welcher Außenluft vorgewärmt und daraufhin in die Aufbereitungszone eingeströmt bzw. eingeleitet werden kann. Damit kann Abwärme des Reformatgases zur Vorwärmung der zum Bilden des LufWKraftstoffgemisches verwendeten Luft genutzt werden. Somit wird der Heizbedarf in der Aufbereitungszone verringert oder entfällt sogar vollständig, sobald sich das Reformersystem nach Durchlaufen der Startphase in einem stabilen Reaktionsprozess befindet.
Um die Startphase des Reformersystems weiter zu verkürzen, ist es vorteilhaft, wenn das Reformersystem eine im Bereich der Aufbereitungszone angeordnete elektrische Zündeinrichtung aufweist, mittels der eine Kraftstoffverbrennung bzw. Kraftstoffoxidation zum Aufheizen der Aufbereitungszone erzeugbar ist. Die für ein stabiles Reformierungsverfahren nötige Reaktionstemperatur kann damit schneller erreicht werden.
In einer vorteilhaften Ausführungsform ist der vom Reformersystem umsetzbare kohlenwasserstoffhaltige Kraftstoff flüssig und umfasst insbesondere Benzin, Diesel und/oder Alkohole. Die Verwendung von Benzin oder Diesel bei in Kraftfahrzeugen eingesetzten Reformersystemen ist besonders vorteilhaft, da diese Kraftstoffe bereits bei heutigen Motoren verwendet werden und damit keine Umstellungsmaßnahmen an den Tankstellen erforderlich werden. Zur Minimierung der im Reformierungsbetrieb benötigten elektrischen Energie ist es vorteilhaft, wenn das Reformersystem darauf ausgelegt ist, zum Umsetzen des kohlenstoffhaltigen Kraftstoffes in ein wasserstoffreiches Reformatgas ein partielles Oxidationsverfahren durchzuführen. Da die partielle Oxidation stark exotherm verläuft, muss nach Erreichen der Reaktionstemperatur im Reformer keine weitere thermische Energie mehr von außen zugeführt werden.
Um die elektrischen Heizmittel optimal mit Strom zu versorgen, weist das Reformersystem vorteilhafterweise einen Temperatursensor zum Messen einer Temperatur in der Aufbereitungszone und/oder am Reaktionsbeschleuniger, sowie eine Steuerungseinrichtung zum Steuern der Stromversorgung der elektrischen Heizmittel in Abhängigkeit von der gemessenen Temperatur auf. Damit kann die im Kondensator vorhandene elektrische Energie optimal und ohne unnötige Verluste zum Start des Reformersystems eingesetzt werden. Als Führungsgröße der Steuerungseinrichtung kann dabei der Temperaturgradient ΔT/Δt verwendet werden. Die Bestimmung des Temperaturgradienten kann vorteilhafterweise durch Messung der Veränderung des elektrischen Widerstandes eines auch als Heizmittel verwendbaren Drahtgitters oder Substrats vorgenommen werden. Weiterhin kann der Temperaturgradient auch durch Temperaturmessungen mittels Temperaturfühlern bestimmt werden. Die von dem Kondensator abgegebene elektrische Leistung kann damit bedarfsgerecht erfolgen, da zwar einerseits das Hochheizen der entsprechenden Zonen im Sinne eines sehr schnellen und gleichzeitig möglichst emissionsfreien Reformerstarts erfolgen soll, aber andererseits eine Überhitzung dieser Zonen aus Sicherheits- oder Haltbarkeitsgründen vermieden werden muss.
Vorteilhafterweise weist das Reformersystem eine Steuerungseinrichtung zum Steuern der Stromversorgung der elektrischen Heizmittel in Anpassung an Randbedingungen des Reformersystems, wie etwa Alterungseffekte und Bauteiltoleranzen, und/oder Kraftstoffeinflüsse auf. Die Regelung der von dem Kondensator abgegebenen elektrischen Energie kann damit dergestalt erfolgen, dass der sich in den entsprechenden Zonen einstellende Temperaturverlauf einer Sollvorgabe entspricht. Bei Erreichen der jeweils maximal zulässigen Temperatur wird der Heizvorgang abgebrochen. Mit einer derart ausgestatteten Heizstrategie können Unterschiede im Aufheizverhalten der Zone in Folge variierender Kraftstoffqualitäten (z.B. Mengenvarianzen des Kraftstoffversorgungsventils) kompensiert werden, um hierdurch einen stets reproduzierbaren schnellen Reformerstart mit minimalen Emissionen zu gewährleisten.
Ein erfindungsgemäßes Fahrzeug mit einem vorgenannten Reformersystem weist vorteilhafterweise einen Abnehmer, insbesondere einen Verbrennungsmotor, ein Abgasnachbehandlungssystem eines Verbrennungsmotors und/oder eine Brennstoffzelle auf, welcher mit Gaszuführmitteln zum Zuführen des Reformatgases aus dem Reformersystem zum Abnehmer verbunden ist. Eine Zufuhr des Reformatgases zum Verbrennungsmotor dient der Minimierung der Kaltstart- /Warmlauf- und Rohemissionen des Verbrennungsmotors. Dabei ist es besonders wichtig, dass der Reformierungsprozess innerhalb kürzester Zeit und minimalsten Schadstoffen gestartet werden kann, da die Emissionen des Verbrennungsmotors bei seinem Start am größten sind. Dasselbe gilt für die Verwendung des Reformatgases in einem Abgasnachbehandlungssystem.
Kurzbeschreibunq der Zeichnungen
Nachfolgend werden Ausführungsbeispiele eines erfindungsgemäßen Reformersystems anhand der beigefügten schematischen Zeichnungen näher erläutert. Es zeigt:
Fig. 1 eine teilweise Schnittansicht eines ersten Ausführungsbeispiels eines erfindungsgemäßen Reformersystems mit einer beheizbaren Gemischbildungszone,
Fig. 2 eine teilweise Schnittansicht eines zweiten Ausführungsbeispiels eines erfindungsgemäßen Reformersystems mit einem beheizbaren Reaktionsbeschleuniger,
Fig. 3 eine teilweise Schnittansicht eines dritten Ausführungsbeispiels eines Reformersystems mit sowohl einer beheizbaren Gemischbildungszone als auch einem beheizbaren Reaktionsbeschleuniger, Fig. 4 eine teilweise Schnittansicht einer Ausführungsform eines Reformers, die alternativ zu den in Fig. 1 bis 3 gezeigten Reformern in einem erfindungsgemäßen Reformersystem verwendbar ist, sowie
Fig. 5 eine Veranschaulichung der Gemischbildungszone sowie der Reaktionszone eines erfindungsgemäßen Reformersystems.
Detaillierte Beschreibung von Ausführunqsbeispielen
In den Figuren 1 bis 3 sind verschiedene Ausführungsbeispiele eines erfindungsgemäßen Reformersystems dargestellt. Diese umfassen jeweils einen Reformer 10, der als länglicher Behälter ausgeführt ist. In diesem sind in Längsrichtung eine Einströmzone 12, eine mit einer unterbrochenen Begrenzungslinie angedeutete Gemischbildungszone 14, eine Reaktionszone 16 sowie eine Ausströmzone 18 angeordnet. Durch die Einströmzone 12 strömt von außen her angesaugte Luft 24 in die Gemischbildungszone 14 ein. Die Luft wird dabei über eine nicht in den Figuren dargestellte Pumpe bzw. ein Gebläse in den Reformer gefördert. Ein Injektor 20 sprüht Kraftstoff 22, wie etwa Benzin oder Diesel über die Einströmzone 12 in die Gemischbildungszone 14 ein. Das typische relative LufWKraftstoffverhältnis für eine in der Reaktionszone 16 ablaufende partielle Oxidation liegt im Bereich von zirka 0,33.
Beim in Fig. 1 gezeigten Ausführungsbeispiel sind in der Gemischbildungszone 14 in Fig. 5 dargestellte elektrische Heizmittel 30, wie etwa eine Heizdrahtstruktur angeordnet, mittels welchen der Gemischbildungszone 14 Wärmeenergie zuführbar ist. Als elektrische Heizmittel 30 kann alternativ auch ein Mikrowellenerzeuger eingesetzt werden. Durch die Wärmezuführung wird einerseits die Verdampfung des Kraftstoffes 22 in der Luft 24 zur Förderung einer optimalen Mischung des Luft- /Kraftstoffgemisches unterstützt. Andererseits wird das LufWKraftstoffgemisch durch die Wärmezuführung auf eine Reaktionstemperatur gebracht, bei welcher der durch einen Reaktionsbeschleuniger 26 unterstützte Reformierungsprozess startet und von selbst abläuft. Die Aufheizung des LufWKraftstoffgemisches kann auch über einen vorgeschalteten Verbrennungsprozess unterstützt werden. Die zum Ablauf des Reformierungsprozesses benötigte Reaktionstemperatur liegt bei Verwendung von Benzin oder Diesel als Kraftstoff 22 bei etwa 800 bis 10000C. Wie in Fig. 1 gezeigt, kann die Gemischbildungszone 14 optional auch eine elektrische Zündeinrichtung 42 zur Unterstützung der Aufheizung des LufWKraftstoffgemisches aufweisen. Eine derartige elektrische Zündeinrichtung 42 kann auch für die in Fig. 2 und 3 gezeigten Ausführungsbeispiele des erfindungsgemäßen Reformersystems vorgesehen werden.
Die elektrischen Heizmittel 30 sind über eine Stromleitung 34 mit einem Hochleistungskondensator 36 verbunden. Dieser weist eine zur Speicherung der zum Aufheizen des LufWBrennstoffgemisches auf die Reaktionstemperatur benötigten Ladung ausreichende Kapazität auf. Die Ladung kann innerhalb kürzester Zeit an die elektrischen Heizmittel 30 abfließen, weshalb der zum Start des Reformersystems benötigte Zeitraum sehr kurz gehalten werden kann. Der Hochleistungskondensator 36 ist über eine weitere Stromleitung 38 mit der Fahrzeugbatterie 40 oder einer im Fahrzeug mitgeführten Brennstoffzelle, wie etwa einem SOFC zur Wiederaufladung verbunden. Das derart aufgeheizte Luft- /Brennstoffgemisch tritt dann in die den Reaktionsbeschleuniger 26 enthaltende Reaktionszone 16 ein, in der das LufWKraftstoffgemisch in ein wasserstoffreiches Synthesegas, welches nachfolgend als Reformatgas 28 bezeichnet wird, umgesetzt wird.
Beim in Fig. 2 gezeigten Ausführungsbeispiel eines erfindungsgemäßen Reformersystems ist statt der Gemischbildungszone 14 der Reaktionsbeschleuniger 26 mit elektrischen Heizmitteln 32 versehen. Die elektrischen Heizmittel 32 sind in Fig. 5 schematisch dargestellt. Dabei ist insbesondere die dem Luft-/Kraftstoffstrom zugewandete Stirnseite des Reaktionsbeschleunigers 26 beheizbar. Die elektrischen Heizmittel 32 können wie beim in Fig. 1 dargestellten Ausführungsbeispiel Heizdrähte umfassen, aber auch ein Substrat des Reaktionsbeschleunigers 26 bilden. Durch die Aufheizung des Reaktions- beschleunigers 26 wird dieser auf eine Anspringtemperatur gebracht, bei welcher der Reaktionsbeschleuniger 26 den Reformierungsprozess unterstützt. Auch in dem vorliegenden Ausführungsbeispiel werden die elektrischen Heizmittel 32 über eine Stromleitung 34a durch einen Hochleistungskondensator 36, welcher über eine Fahrzeugbatterie 40 wiederaufladbar ist, mit Strom versorgt. Bei dem in Fig. 3 gezeigten Ausführungsbeispiel eines Reformersystems weisen sowohl die Gemischbildungszone 14 als auch der Reaktionsbeschleuniger 26 elektrische Heizmittel 30 bzw. 32, wie in Fig. 5 gezeigt, auf. Diese sind jeweils über eine Stromleitung 34 bzw. 34a mit einem über eine Fahrzeugbatterie 40 wiederaufladbaren Hochleistungskondensator 36 verbunden.
Fig. 5 veranschaulicht die jeweilige Erstreckung der elektrischen Heizmittel 30 bzw. 32 in der Gemischbildungszone 14 und/oder im bzw. am Reaktionsbeschleuniger 26. Der mit d2 gekennzeichnete Abschnitt bezeichnet die axiale Ausdehnung der elektrischen Heizmittel 32 am Reaktionsbeschleuniger 26. Dieser kann sich entweder über die gesamte Länge I2 des Reaktionsbeschleunigers 26 oder aber, wie in Fig. 5 dargestellt, lediglich über einen Teilbereich desselben erstrecken. Der elektrisch aufzuheizende Bereich des Reaktionsbeschleunigers der Länge d2 muss dabei nicht zwangsläufig am Reaktionsbeschleunigereintritt liegen, sondern kann auch erst innerhalb des Reaktionsbeschleunigers 26 mit einem gewissen Abstand vom Reaktionsbeschleunigereintritt beginnen. Ein dabei nicht elektrisch beheizter Reaktionsbeschleunigerbereich 26a kann gegebenenfalls auch aus einem elektrisch nicht leitenden Material, wie etwa Keramik hergestellt sein. Entsprechendes gilt auch für die Aufheizung der Gemischbildungszone 14. Auch hier kann entweder die gesamte axiale Ausdehnung I1 dieser Zone elektrisch beheizt werden oder aber die Erwärmung erfolgt nur in einem Bereich U1 < I1 innerhalb dieser Zone mit einem gewissen Abstand vom Beginn der Gemischbildungszone 14.
In Fig. 4 ist eine weitere Ausführungsform eines Reformers 10 gezeigt, die wahlweise in einem der in Figuren 1 bis 3 gezeigten Ausführungsbeispiele eines erfindungsgemäßen Reformersystems eingesetzt werden kann. Bei diesem Reformer 10 wird die Luft 24 nicht über die Einströmzone 12 an der Vorderseite des Reformers 10 wie in den Figuren 1 , 2 und 3 dargestellt in die Gemischbildungszone 14 eingeströmt, sondern über eine den Reformer 10 umhüllende Wärmetauscherzone 44 seitlich in die Gemischbildungszone 14 eingeführt. Die Wärmetauscherzone 44 ist wärmeleitend mit der Reaktionszone 16 sowie der Ausströmzone 18 verbunden. Damit wird im Normalbetrieb des Reformersystems nach der Anlaufphase die einströmende Luft 24 bereits vor Eintritt in die Gemischbildungszone 14 vorgewärmt.
Bezugszeichenliste:
10 Reformer 12 Einströmzone
14 Gemischbildungszone
16 Reaktionszone
18 Ausströmzone
20 Injektor 22 Kraftstoff
24 Luft
26 Reaktionsbeschleuniger
26a nicht beheizter Bereich des Reaktionsbeschleuntgers
27 Stirnseite des Reaktionsbeschleunigers 28 Reformatgas
30 elektrische Heizmittel der Gemischbildungszone
32 elektrische Heizmittel des Reaktionsbeschleunigers
34 Stromleitung
34a Stromleitung 36 Hochleistungskondensator
38 Stromleitung
40 Fahrzeugbatterie
42 elektrische Zündeinrichtung
44 Wärmetauscherzone di Heizabschnitt der Gemischbildungszone d2 Heizabschnitt des Reaktionsbeschleunigers
11 Gesamtlänge der Gemischbildungszone
12 Gesamtlänge des Reaktionsbeschleunigers

Claims

Patentansprüche
1. Reformersystem mit einem Reformer (10) zum chemischen Umsetzen eines kohlenwasserstoffhaltigen Kraftstoffes (22) in ein wasserstoffgasreiches Reformat- gas (28), sowie elektrischen Heizmitteln (30, 32), mittels welchen dem Reformer (10) Wärmeenergie zum Herstellen einer für die Umsetzung erforderlichen Reaktionstemperatur zuführbar ist, dadurch gekennzeichnet, dass das Reformersystem weiterhin einen Kondensator (36) aufweist, der die elektrischen Heizmittel (30, 32) mit elektrischem Strom versorgen kann.
2. Reformersystem nach Anspruch 1 , dadurch gekennzeichnet, dass der Kondensator als Hochleistungskondensator (36) ausgelegt ist.
3. Reformersystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Reformer (10) einen chemischen Reaktionsbeschleuniger (26) zum Verringern der für die Umsetzung erforderlichen Reaktionstemperatur aufweist, sowie der Reaktionsbeschleuniger (26) mittels der elektrischen Heizmittel (32) zumindest in einem Heizabschnitt (d2) aufheizbar ist.
4. Reformersystem nach Anspruch 3, dadurch gekennzeichnet, dass die elektrischen Heizmittel (32) mit dem Reaktionsbeschleuniger (26) integral verbunden sind, insbesondere im Heizabschnitt (d2) ein Substrat des Reaktionsbeschleunigers (26) bilden.
5. Reformersystem nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass ein elektrisch isolierendes Material, insbesondere Keramik ein Substrat des Reaktionsbeschleunigers (26) außerhalb des Heizabschnitts (d2) bildet.
6. Reformersystem nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass der Reformer eine Aufbereitungszone (14) zum Aufbereiten des kohlenwasserstoffhaltigen Kraftstoffes (22) vor der chemischen Umsetzung aufweist, sowie die Aufbereitungszone (14) mittels der elektrischen Heizmittel (30) aufheizbar ist.
7. Reformersystem nach Anspruch 6, dadurch gekennzeichnet, dass die Aufbereitungszone (14) als Gemischbildungszone, in welcher der kohlenwasserstoffhaltige Kraftstoff (22) mit Luft vermischt wird, und/oder als Kraftstoffverdampfungszone, in welcher der kohlenwasserstoffhaltige Kraftstoff (22) verdampft wird, ausgebildet ist.
8. Reformersystem nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass die elektrischen Heizmittel (30, 32), insbesondere zum Aufheizen der Aufbereitungszone (14) einen Draht, insbesondere eine Gitterdrahtkonstruktion, Mittel zum Erzeugen elektromagnetischer Strahlung und/oder Mittel zum Erzeugen eines Lichtbogens oder Plasmas umfassen.
9. Reformersystem nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass der Reformer (10) eine Wärmetauscherzone (44) aufweist, die mit einer Abströmzone (18) des Reformatgases und/oder einer den Reaktionsbeschleuniger (26) aufweisenden Reaktionszone (16) wärmeleitend verbunden ist und mittels welcher Außenluft vorgewärmt und daraufhin in die Aufbereitungszone (14) eingeströmt werden kann.
10. Reformersystem nach einem der Ansprüche 6 bis 9, gekennzeichnet durch eine im Bereich der Aufbereitungszone (14) angeordnete elektrische Zündeinrichtung (42), mittels der eine Kraftstoffverbrennung bzw. Kraftstoffoxidation zum Aufheizen der Aufbereitungszone (14) erzeugbar ist.
11. Reformersystem nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass der vom Reformersystem umsetzbare kohlenwasserstoffhaltige Kraftstoff (22) flüssig ist, und insbesondere Benzin, Diesel und/oder Alkohole umfasst.
12. Reformersystem nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass der Reformer (10) darauf ausgelegt ist, zum Umsetzen des kohlenwasserstoffhaltigen Kraftstoffes (22) in ein wasserstoffreiches Reformatgas (28) ein partielles Oxidationsverfahren durchzuführen.
13. Reformersystem nach einem der vorausgehenden Ansprüche, gekennzeichnet durch einen Temperatursensor zum Messen einer Temperatur in der Aufbereitungszone (14) und/oder am Reaktionsbeschleuniger (26), sowie einer Steuerungseinrichtung zum Steuern der Stromversorgung der elektrischen Heizmittel (30, 32) in Abhängigkeit von der gemessenen Temperatur.
14. Reformersystem nach einem der vorausgehenden Ansprüche, gekennzeichnet durch eine Steuerungseinrichtung zum Steuern der Stromversorgung der elektrischen Heizmittel (30, 32) in Anpassung an Randbedingungen des Reformersystems, wie etwa Alterungseffekte und Bauteiltoleranzen, und/oder Kraftstoffeinflüsse.
15. Fahrzeug mit einem Reformersystem nach einem der vorausgehenden Ansprüche.
16. Fahrzeug nach Anspruch 15, gekennzeichnet durch einen Abnehmer, insbesondere einen Verbrennungsmotor, ein Abgasnachbehandlungssystem eines Verbrennungsmotors und/oder eine Brennstoffzelle, welcher mit Gaszuführmitteln zum Zuführen des Reformatgases (28) aus dem Reformersystem zum Abnehmer verbunden ist.
EP06792419A 2005-10-13 2006-10-11 Reformersystem mit elektrischen heizmitteln Withdrawn EP1937589A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/248,165 US20070084116A1 (en) 2005-10-13 2005-10-13 Reformer system having electrical heating devices
PCT/EP2006/009827 WO2007042279A1 (de) 2005-10-13 2006-10-11 Reformersystem mit elektrischen heizmitteln

Publications (1)

Publication Number Publication Date
EP1937589A1 true EP1937589A1 (de) 2008-07-02

Family

ID=37546903

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06792419A Withdrawn EP1937589A1 (de) 2005-10-13 2006-10-11 Reformersystem mit elektrischen heizmitteln

Country Status (3)

Country Link
US (1) US20070084116A1 (de)
EP (1) EP1937589A1 (de)
WO (1) WO2007042279A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7610993B2 (en) * 2005-08-26 2009-11-03 John Timothy Sullivan Flow-through mufflers with optional thermo-electric, sound cancellation, and tuning capabilities
US7736399B2 (en) * 2006-11-07 2010-06-15 Delphi Technologies, Inc. Electrically-heated metal vaporizer for fuel/air preparation in a hydrocarbon reformer assembly
WO2013135660A1 (de) * 2012-03-13 2013-09-19 Bayer Intellectual Property Gmbh Axialer strömungsreaktor mit heiz- und zwischenebenen
EP2825502A1 (de) * 2012-03-13 2015-01-21 Bayer Intellectual Property GmbH Verfahren zur herstellung von co und/oder h2 in einem wechselbetrieb zwischen zwei betriebsarten
WO2013135668A1 (de) 2012-03-13 2013-09-19 Bayer Intellectual Property Gmbh Chemisches reaktorsystem, umfassend einen axialen strömungsreaktor mit heiz- und zwischenebenen
WO2013135667A1 (de) 2012-03-13 2013-09-19 Bayer Intellectual Property Gmbh Verfahren für die synthesegasherstellung
WO2013135657A1 (de) 2012-03-13 2013-09-19 Bayer Intellectual Property Gmbh Verfahren für die synthesegasherstellung im wechselbetrieb zwischen zwei betriebsarten
EP3814274B1 (de) 2018-06-29 2022-05-04 Shell Internationale Research Maatschappij B.V. Elektrisch beheizter reaktor und verfahren zur gasumwandlung mit diesem reaktor
EP3670676A1 (de) * 2018-12-17 2020-06-24 Primetals Technologies Austria GmbH Verfahren und vorrichtung zur direktreduktion mit elektrisch aufgeheiztem reduktionsgas

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2898202A (en) * 1955-10-24 1959-08-04 Oxy Catalyst Inc Gas treating apparatus
US3370914A (en) * 1963-11-20 1968-02-27 Esso Res And Eingineering Comp Method of treating exhaust gases of internal combustion engines
FR2548264B1 (fr) * 1983-06-16 1985-12-13 Renault Regeneration des filtres a particules, notamment pour moteurs diesel
US5266175A (en) * 1990-07-31 1993-11-30 Exxon Research & Engineering Company Conversion of methane, carbon dioxide and water using microwave radiation
US5272871A (en) * 1991-05-24 1993-12-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Method and apparatus for reducing nitrogen oxides from internal combustion engine
JPH05106430A (ja) * 1991-10-16 1993-04-27 Toyota Central Res & Dev Lab Inc 内燃機関の窒素酸化物低減装置
US5322671A (en) * 1992-02-25 1994-06-21 Blue Planet Technologies Co., L.P. Catalytic vessel
EP0598917B2 (de) * 1992-06-12 2009-04-15 Toyota Jidosha Kabushiki Kaisha Abgasemissionssteuerungssystem für verbrennungsmotoren
JP2605553B2 (ja) * 1992-08-04 1997-04-30 トヨタ自動車株式会社 内燃機関の排気浄化装置
EP0625633B1 (de) * 1992-12-03 2000-03-15 Toyota Jidosha Kabushiki Kaisha Abgasreinigungsgeraet fuer brennkraftmaschinen
US5406790A (en) * 1992-12-11 1995-04-18 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for an engine
JP3344040B2 (ja) * 1993-11-25 2002-11-11 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE4404617C2 (de) * 1994-02-14 1998-11-05 Daimler Benz Ag Vorrichtung zur selektiven katalysierten NO¶x¶-Reduktion in sauerstoffhaltigen Abgasen von Brennkraftmaschinen
US5657625A (en) * 1994-06-17 1997-08-19 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Apparatus and method for internal combustion engine control
JPH0810575A (ja) * 1994-06-30 1996-01-16 Toyota Central Res & Dev Lab Inc 窒素酸化物還元方法
DE4441261A1 (de) * 1994-11-19 1996-05-23 Bosch Gmbh Robert Einrichtung zum Nachbehandeln von Abgasen einer Brennkraftmaschine
GB2305186B (en) * 1995-01-09 1997-09-24 Hitachi Ltd Fuel reforming apparatus and electric power generating system having the same
US20010041153A1 (en) * 1995-01-13 2001-11-15 Dornier Gmbh Method and device for catalytic nitrogen oxide reduction of motor vehicle exhaust
JP3089989B2 (ja) * 1995-05-18 2000-09-18 トヨタ自動車株式会社 ディーゼル機関の排気浄化装置
JP3899534B2 (ja) * 1995-08-14 2007-03-28 トヨタ自動車株式会社 ディーゼル機関の排気浄化方法
EP0761286B1 (de) * 1995-09-11 2005-12-28 Toyota Jidosha Kabushiki Kaisha Verfahren zum Reinigen von Verbrennungsmotorabgas
US5853684A (en) * 1995-11-14 1998-12-29 The Hong Kong University Of Science & Technology Catalytic removal of sulfur dioxide from flue gas
US5727385A (en) * 1995-12-08 1998-03-17 Ford Global Technologies, Inc. Lean-burn nox catalyst/nox trap system
US5921076A (en) * 1996-01-09 1999-07-13 Daimler-Benz Ag Process and apparatus for reducing nitrogen oxides in engine emissions
US6354078B1 (en) * 1996-02-22 2002-03-12 Volvo Personvagnar Ab Device and method for reducing emissions in catalytic converter exhaust systems
US5768888A (en) * 1996-11-08 1998-06-23 Matros Technologies, Inc. Emission control system
US5894725A (en) * 1997-03-27 1999-04-20 Ford Global Technologies, Inc. Method and apparatus for maintaining catalyst efficiency of a NOx trap
ATE220943T1 (de) * 1997-05-16 2002-08-15 Siemens Ag Verfahren und vorrichtung zur vernichtung von oxidischen schadstoffen in einem sauerstoffhaltigen abgas sowie damit betriebener motor
EP0892159A3 (de) * 1997-07-17 2000-04-26 Hitachi, Ltd. Abgasreiningungsvorrichtung und -Verfahren einer Brennkraftmaschine
US6199374B1 (en) * 1997-10-22 2001-03-13 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying device for engine
DE19747670C1 (de) * 1997-10-29 1998-12-10 Daimler Benz Ag Abgasreinigungsanlage für eine Brennkraftmaschine
DE19755600C2 (de) * 1997-12-15 2002-01-17 Bosch Gmbh Robert Betrieb eines Verbrennungsmotors in Verbindungmit einem NOx-Speicherkatalysator
JP3805098B2 (ja) * 1998-03-26 2006-08-02 株式会社日立製作所 エンジンの排気ガス浄化制御装置
DE19827195A1 (de) * 1998-06-18 1999-12-23 Volkswagen Ag Verfahren zur De-Sulfatierung eines NOx-Speicherkatalysators
JP2000007301A (ja) * 1998-06-29 2000-01-11 Ngk Insulators Ltd 改質反応装置
JP3565035B2 (ja) * 1998-07-10 2004-09-15 三菱ふそうトラック・バス株式会社 燃焼排ガス用NOx還元システム
DE19842625C2 (de) * 1998-09-17 2003-03-27 Daimler Chrysler Ag Verfahren zum Betrieb einer Verbrennungsmotoranlage mit schwefelanreichernder Abgasreinigungskomponente und damit betreibbare Verbrennungsmotoranlage
US6122909A (en) * 1998-09-29 2000-09-26 Lynntech, Inc. Catalytic reduction of emissions from internal combustion engines
US6560958B1 (en) * 1998-10-29 2003-05-13 Massachusetts Institute Of Technology Emission abatement system
US6176078B1 (en) * 1998-11-13 2001-01-23 Engelhard Corporation Plasma fuel processing for NOx control of lean burn engines
US6125629A (en) * 1998-11-13 2000-10-03 Engelhard Corporation Staged reductant injection for improved NOx reduction
US6266750B1 (en) 1999-01-15 2001-07-24 Advanced Memory International, Inc. Variable length pipeline with parallel functional units
JP3680650B2 (ja) * 1999-01-25 2005-08-10 トヨタ自動車株式会社 内燃機関の排気浄化装置
US6497092B1 (en) * 1999-03-18 2002-12-24 Delphi Technologies, Inc. NOx absorber diagnostics and automotive exhaust control system utilizing the same
US6293096B1 (en) * 1999-06-23 2001-09-25 Southwest Research Institute Multiple stage aftertreatment system
US6237326B1 (en) * 1999-08-24 2001-05-29 Ford Global Technolgies, Inc. Engine control system and method with lean catalyst and particulate filter
US6253543B1 (en) * 1999-08-24 2001-07-03 Ford Global Technologies, Inc. Lean catalyst and particulate filter control
US6199375B1 (en) * 1999-08-24 2001-03-13 Ford Global Technologies, Inc. Lean catalyst and particulate filter control system and method
JP4045564B2 (ja) * 1999-10-20 2008-02-13 株式会社日本ケミカル・プラント・コンサルタント 自己酸化内部加熱型改質装置及び方法
JP2001170454A (ja) * 1999-12-15 2001-06-26 Nissan Motor Co Ltd 排気ガス浄化システム及び排気ガス浄化用触媒
US6391822B1 (en) * 2000-02-09 2002-05-21 Delphi Technologies, Inc. Dual NOx adsorber catalyst system
US6269633B1 (en) * 2000-03-08 2001-08-07 Ford Global Technologies, Inc. Emission control system
US6458478B1 (en) * 2000-09-08 2002-10-01 Chi S. Wang Thermoelectric reformer fuel cell process and system
US20020108308A1 (en) * 2001-02-13 2002-08-15 Grieve Malcolm James Temperature/reaction management system for fuel reformer systems
JP4427782B2 (ja) * 2001-12-03 2010-03-10 イートン コーポレーション 内燃エンジンの改善された排気制御のためのシステム
US6728602B2 (en) * 2002-03-15 2004-04-27 Delphi Technologies, Inc. Control system for an electric heater
EP1516663A3 (de) * 2002-04-14 2006-03-22 IdaTech, LLC. Wasserdampf Reformer mit Brenner
US6832473B2 (en) * 2002-11-21 2004-12-21 Delphi Technologies, Inc. Method and system for regenerating NOx adsorbers and/or particulate filters

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007042279A1 *

Also Published As

Publication number Publication date
US20070084116A1 (en) 2007-04-19
WO2007042279A1 (de) 2007-04-19

Similar Documents

Publication Publication Date Title
EP1937589A1 (de) Reformersystem mit elektrischen heizmitteln
US7736399B2 (en) Electrically-heated metal vaporizer for fuel/air preparation in a hydrocarbon reformer assembly
EP1060942B1 (de) Fahrzeug mit einem Antriebs-Verbrennungsmotor und mit einem Brennstoffzellensystem zur Stromversorgung elektrischer Verbraucher des Fahrzeugs und Verfahren zum Betrieb eines derartigen Fahrzeugs
DE2542997C2 (de) Verfahren und Vorrichtung zum Starten eines Gasgenerators zur Umsetzung von Kohlenwasserstoffen in ein Brenngas und einer mit dem Brenngas zu speisenden Brennkraftmaschine
DE60215086T2 (de) Brennstoffreformer und Methode zum Starten dieses Reformers
DE102008018152B4 (de) Brennstoffzellensystem und zugehöriges Betriebsverfahren
DE10107332A1 (de) Brennstoffzellensystem
EP1947723B1 (de) Energiebereitstellungssystem
DE102006050560A1 (de) Betriebsverfahren für ein System aus einem Reformer und einer katalytischen Abgas-Nachbehandlungsvorrichtung
DE102006028699A1 (de) Reformersystem
DE102007019359A1 (de) Brennstoffzellensystem und zugehöriges Startverfahren
EP1739777B1 (de) Brennstoffzellensystem für ein Fahrzeug
DE102005030474A1 (de) Brennstoffzellensystem für ein Fahrzeug
EP1524239B1 (de) Verdampferanordnung zur Erzeugung eines in einem Reformer zur Wasserstoffgewinnung zersetzbaren Kohlenwasserstoff/Luft- oder/und Wasserdampf-Gemisches und Verfahren zum Betreiben einer derartigen Verdampferanordnung
DE10104607A1 (de) Gaserzeugungssystem für ein Brennstoffzellensystem und Verfahren zum Betrieb eines Gaserzeugungssystems
DE102018105633A1 (de) Abgasreinigungssystem eines Verbrennungsmotors
DE102008027292A1 (de) Brennstoffzellensystem und damit ausgestattetes Kraftfahrzeug
DE102006017617A1 (de) Brennstoffzellensystem und zugehöriges Betriebsverfahren
DE10223999B4 (de) Brennstoffprozessor für eine Brennstoffzelle und Verfahren zur Steuerung der thermischen Startphasentemperatur in einem Brennstoffprozessor einer Brennstoffzelle
EP1845577B1 (de) Brennstoffzellensystem
EP1925790B1 (de) Brennkraftmaschinensystem
DE102006043101A1 (de) Vorrichtung und Verfahren zur Erzeugung von Ammoniak
EP2075225B1 (de) Reformer, Brennstoffzellensystem und zugehöriges Betriebsverfahren
AT524859B1 (de) Brennkraftsystem mit einem Verbrennungsmotor
DE10210367B4 (de) Abgasreinigungsanlage und Abgasreinigungsverfahren zur Reinigung eines Abgases einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HUBER, JOCHEM

Inventor name: RINGLER, JUERGEN

Inventor name: LIEBL, CHRISTIAN

Inventor name: KIRWAN, JOHN

Inventor name: PREIS, MICHAEL

Inventor name: GRIEVE, JAMES

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100501