EP1936290A2 - Verfahren und Vorrichtung zur Detektion des hydraulischen Zustands einer Heizungsanlage - Google Patents

Verfahren und Vorrichtung zur Detektion des hydraulischen Zustands einer Heizungsanlage Download PDF

Info

Publication number
EP1936290A2
EP1936290A2 EP20070024614 EP07024614A EP1936290A2 EP 1936290 A2 EP1936290 A2 EP 1936290A2 EP 20070024614 EP20070024614 EP 20070024614 EP 07024614 A EP07024614 A EP 07024614A EP 1936290 A2 EP1936290 A2 EP 1936290A2
Authority
EP
European Patent Office
Prior art keywords
radiator
temperature
log
heating
blv
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP20070024614
Other languages
English (en)
French (fr)
Other versions
EP1936290A3 (de
EP1936290B1 (de
Inventor
Arne Kähler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Techem Energy Services GmbH
Original Assignee
Techem Energy Services GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Techem Energy Services GmbH filed Critical Techem Energy Services GmbH
Priority to PL07024614T priority Critical patent/PL1936290T3/pl
Publication of EP1936290A2 publication Critical patent/EP1936290A2/de
Publication of EP1936290A3 publication Critical patent/EP1936290A3/de
Application granted granted Critical
Publication of EP1936290B1 publication Critical patent/EP1936290B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1015Arrangement or mounting of control or safety devices for water heating systems for central heating using a valve or valves
    • F24D19/1018Radiator valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

Es werden ein Verfahren und eine Vorrichtung zur Detektion des hydraulischen Zustands einer Heizungsanlage (9) mit über ein Fluidströrnungssystem (6, 7) verbundenen Heizkörpern (2) beschrieben, die von einem Heizmedium mit einer Vorlauftemperatur (Ñ VL ) durchströmt werden. Zur Detektion des hydraulischen Abgleichs im laufenden Betrieb ist vorgesehen, dass die Vorlauftemperatur (Ñ VL ) und für jeden Heizkörper (2) eine aus einer Differenz einer heizkörperseiügen und raumluftseitigen Temperatur abgeleitete Übertemperatur (”) zu verschiedenen Zeitpunkten gemessen und daraus eine den Wärmebedarf des Heizkörpers (2) anzeigende Kenngröße (” log , BLV, VZ, GBLV, GVZ) ermittelt wird und dass die Veränderung der Kenngröße (” log , BLV, VZ, GBLV, GVZ) über der Zeit oder der Vorlauftemperatur (Ñ VL ) und die zeitliche Veränderung der Vorlauftemperatur (ÑvL) ausgewertet werden.

Description

  • Die Erfindung betrifft ein Verfahren und ein System zur Detektion des hydraulischen Zustands einer Heizungsanlage mit über ein Fluidströmungssystem verbundenen Heizkörpern, die von einem Heizmedium mit einer Vorlauftemperatur durchströmt werden.
  • In derartigen Pumpen-Warmwasserheizungsanlagen tritt häufig eine hydraulische Unterversorgung einzelner Heizkörper bei gleichzeitiger Überversorgung anderer Heizkörper auf. Hydraulische Unterversorgung eines Heizkörpers bedeutet, dass trotz ausreichender Vorlauftemperatur der für das Erreichen der Raumsolltemperatur erforderliche Heizkörpermassestrom auch bei vollständig geöffnetern Heizkörperventil nicht erreicht werden kann. Ursachen dafür sind typischerweise
    • zu geringer Differenzdruck über dem Heizkörperventil infolge hydraulisch ungünstiger Lage des Heizkörpers (beispielsweise Bezugszeichen 2f in Fig. 1),
    • zu geringer Differenzdruck über dem Heizungsstrang infolge fehlerhafter Einstellung des Strangregulierventiles (Bezugszeichen 8 in Fig. 1),
    • fehlerhafte Voreinstellung des Heizkörperventiles (beispielsweise Bezugszeichen 1f in Fig. 1) des unterversorgten Heizkörpers (KVS-Wert zu klein),
    • fehlerhafte Voreinstellung der Heizkörperventile (beispielsweise Bezugszeichen 1 a-1 e in Fig. 1) anderer Heizkörper (KVS-Wert dort zu groß),
    • Drosselung des Heizkörpermassestromes infolge nicht ausreichend dimensionierter oder nicht bedarfsgerecht eingestellter Drosselungsventile (Bezugszeichen 3a-3f in Fig. 1) beispielsweise im Heizkörperrücklauf und/oder
    • zu geringer Pumpendruck der Heizungsumwälzpumpe (Bezugszeichen 4 in Fig. 1).
  • Zur Lösung des beschriebenen Problems muss ein hydraulischer Abgleich durchgeführt werden, der die korrekte Einstellung der Strangregulier-, Heizkörper- und Drosselventile sowie der Umwälzpumpe beinhaltet. Ziel des hydraulischen Abgleichs ist es, die hydraulischen Widerstände der Heizungsanlage so einzustellen, dass die für das Erreichen der Auslegungsraumsolltemperaturen erforderlichen Differenzdrücke bzw. Masseströme für alle Heizkörper sichergestellt sind. So wird beispielsweise der Strangdifferenzdruck an dem Strangregulierventil auf Werte typisch im Bereich 150 - 250 mbar eingestellt. Außerdem wird für hydraulisch günstig gelegene Heizkörper der hydraulische Widerstand erhöht zugunsten ungünstiger gelegener Heizkörper. Dies geschieht mittels Verringerung des KVS-Wertes des voreinstellbaren Heizkörperventiles. Dadurch erhöht sich die Ventilautorität a, nach VDI 2073 definiert als a = Δ p TV , 100 % Δ p TV , Zu
    Figure imgb0001
    mit
  • Δp TV,100%
    ... Druckabfall über voll geöffnetem Heizkörperventil;
    Δp TV,Zu
    ... Druckabfall über geschlossenem Heizkörperventil.
  • Der Zusammenhang zwischen Ventilautorität, Hubstellung und Durchfluss bzw. Wärmeabgabe des Heizkörpers ist beispielhaft in den Fig. 2 und Fig. 3 dargestellt. Für eine optimale Raumtemperaturregelung sind Werte oberhalb 0,3 für die Ventilautorität anzustreben.
  • Die Durchführung des hydraulischen Abgleichs ist in der Praxis jedoch ein aufwändiges und langwieriges Verfahren. Es wird daher aus Zeit- und Kostengründen häufig nicht oder nur ungenau durchgeführt. Das Hauptproblem stellt dabei die Kenntnis des hydraulischen Zustands der gesamten Heizungsanlage bzw. der einzelnen Heizkörper der Heizungsanlage dar.
  • Infolge sind viele Heizkörper - nicht nur die vom Strangbeginn weit entfernten - oft hydraulisch unterversorgt. Den hieraus resultierenden Klagen von Bewohnern über mangelnde Wärmeversorgung wird in der überwiegenden Anzahl der Fälle aufgrund von Unkenntnis der tatsächlichen Ursache oft einfach durch eine drastische Erhöhung der Heizkurve (also der Vorlauftemperatur) oder durch die Erhöhung des Pumpendruckes (also des Massestromes) begegnet. Dies führt zu unnötig erhöhten Wärmeverlusten in der Verteilung und Übergabe, aber auch zu erhöhten Stromkosten der Heizungsumwälzpumpe.
  • In der DE 100 03 394 A1 ist ein Verfahren zur Durchführung des hydraulischen Abgleichs einer Heizungsanlage beschrieben. Dieses Verfahren beruht auf einer Messung und Einregulierung des Differenzdruckes am Heizkörper. Die Einregulierung erfolgt über ein Rücklaufventil und wird von Hand durchgeführt. Hinsichtlich der Ermittlung der unterversorgten Heizkörper hat dieses Verfahren den Nachteil, dass die Messung des Differenzdruckes an jedem Heizkörper erforderlich ist. Dies verursacht hohe Kosten.
  • Aus der DE 42 21 725 A1 ist ein Verfahren zum automatischen Erzielen eines hydraulischen Abgleichs bekannt, bei welchem die Heizkörper-Thermostatventile zunächst voll geöffnet und die dadurch in jedem Raum sich einstellende Temperatur gemessen wird. In den Räumen mit zu hoher resultierender Temperatur werden die Thermostatventile so weit geschlossen, bis sich die gewünschte Temperatur einstellt. Der so ermittelte Öffnungsgrad der Thermostatventile wird als maximale Öffnung für alle weiteren Regelaktivitäten verwendet. Das Verfahren dient der Ermittlung von hydraulisch unterversorgten Heizkörpern, hat jedoch den Nachteil, dass die Thermostatventile aller Heizkörper betätigt werden müssen und daher die Wohnung betreten werden muss, Ferner ist jeweils der stationäre Zustand der Anlage abzuwarten, bevor eine Auswertung erfolgen kann. Dies ist insbesondere aufgrund des manuellen Zutritts besonders nachteilig. Auch kann es bei der Durchführung des Verfahrens zu Fehleinschätzungen kommen, da eine zu hohe Raumtemperatur sich auch aufgrund falsch dimensionierter Heizkörper einstellen kann. Dies würde durch dieses Verfahren fälschlicherweise auf den hydraulischen Abgleich zurückgeführt werden.
  • Ein weiteres Verfahren ist aus der DE 102 43 076 A1 bekannt. Dieses Verfahren nutzt Stellantriebe mit integrierter Temperaturdifferenzregelung, welche zum Zwecke der Einregulierung auf einen voreinstellbaren Adapter für Heizkörperventile montiert werden. Der Volumenstrom durch den Heizkörper wird durch den voreinstellbaren Adapter variiert, bis eine vorgegebene Differenz zwischen Vor- und Rücklauftemperatur erreicht ist. Nach der Beendigung des Einstellprozesses werden die Stellantriebe wieder entfernt und durch Thermostatköpfe ersetzt. Der Nachteil des Verfahrens besteht darin, dass Stellantriebe mit integrierter Temperaturdifferenzregelung mit zusätzlich voreinstellbaren Adaptern benötigt werden, die zudem zu dem Stellantrieb mechanisch kompatibel sein müssen. Dies ist eine gerätetechnisch sehr teure Lösung.
  • Schließlich beschreibt die DE 195 06 628 A1 ein Verfahren zum hydraulischen Abgleich einer Heizungsanlage mit einem Regelgerät, das in einem Inbetriebnahmeprogramm alle Ventile am Vorlaufverteiler voll öffnet. Nach einer bestimmten Betriebsdauer stellen sich zunächst an denjenigen Raumtemperaturfühlern Temperaturänderungen ein, die hydraulisch am besten versorgt sind. Daraufhin werden die zugehörigen Ventile etwas geschlossen. Am Ende der ersten Betriebsprogrammphase werden den Ventilen entsprechend dem bisherigen Regelverhalten maximale Öffnungsgrade zugwiesen, die in erster Näherung das hydraulische System berücksichtigen. Dieses Verfahren wird dann mehrmals, auch während des laufenden Betriebs, wiederholt, um einen Systemabgleich zu erhalten. Hierbei besteht das Problem, dass ein Temperaturanstieg in einem Raum nicht nur kausal mit der Öffnung der Ventile zusammenhängen muss, sondern auch durch Fremdeinflüsse, beispielsweise Sonneneinstrahlung, hervorgerufen sein kann. Außerdem kann eine zufällig durchgeführte Fensterlüftung während des Abgleichprogramms die Ergebnisse des Abgleichs massiv verfälschen.
  • Um dies zu umgehen, ist Aufgabe der vorliegenden Erfindung, zunächst zuverlässig Kenntnis über den hydraulischen Zustand der Heizungsanlage und vorzugsweise der hydraulisch schlecht versorgten Heizkörper zu gewinnen, um gezielt die richtigen Maßnahmen einleiten zu können, ohne dass bei der automatischen Ermittlung des hydraulischen Zustands eine Begehung der Wohnungen oder des Gebäudes notwendig wäre.
  • Diese Aufgabe wird mit den Merkmalen der Ansprüche 1 und 10 durch ein Verfahren und eine zur Durchführung dieses Verfahrens eingerichtete Vorrichtung erreicht. Für die Durchführung des erfindungsgemäß vorgeschlagenen Verfahrens ist insbesondere vorgesehen, dass die Vorlauftemperatur und für jeden Heizkörper eine aus einer Differenz einer heizkörperseitigen und raumluftseitigen Temperatur abgeleitete Übertemperatur zu verschiedenen Zeitpunkten gemessen und daraus mindestens eine den Wärmebedarf des Heizkörpers anzeigende Kenngröße zu verschiedenen Zeiten ermittelt wird und dass die Veränderung der Kenngröße über der Zeit oder über der Vorlauftemperatur und die zeitliche Veränderung der Vorlauftemperatur ausgewertet werden.
  • Es konnte experimentell bestätigt werden, dass den Wärmebedarf eines Heizkörpers im laufenden Betrieb anzeigende Kenngrößen bei einer hydraulischen Unterversorgung ein charakteristisches Verhalten zeigen, das sich von einem hydraulisch gut versorgten Zustand sicher unterscheiden lässt. Damit können erfindungsgemäß Messungen zur Ermittlungen des hydraulischen Zustands der Heizungsanlage zyklisch, d.h. sich in vorgegebenen zeitlichen Abständen wiederholend, vorgenommen werden und der Trend der ermittelten Kenngrößen über der Zeit bzw. der Vorlauftemperatur laufend ermittelt werden. Hierdurch können auch durch bspw. temporäre Einflüsse (wie gleichzeitige Öffnung oder Schließung einer Vielzahl von Ventilen oder schwankende Raumlasten) hervorgerufene Änderungen des hydraulischen Zustands (anstelle des hydraulischen Zustands wird häufig auch der Begriff "Abgleich" synonym verwendet) schnell und zuverlässig erkannt werden, um auf Grundlage dieser Erkenntnis ggf. Gegenmaßnahmen, wie die automatische Durchführung eines neuen hydraulischen Abgleichs durch Änderung des Strömungsverhaltens in der Heizungsanlage, vorzunehmen.
  • In einer einfachen Ausführungsform des erfindungsgemäß vorgeschlagenen Verfahrens kann als Kenngröße die logarithmische Heizkörperübertemperatur, die durch einen Heizkostenverteiler oder Temperaturmessgeräte gemessene Differenz zwischen heizkörperseitigen und raumluftseitigen Heizkörpertemperaturen oder die Differenz zwischen der Heizkörperoberflächentemperatur und der Raumlufttemperatur verwendet werden. Diese Übertemperaturen, die sich alle durch eine Differenz von heizkörperseitigen und raumluftseitigen Temperaturen auszeichnen, sind ein Maß dafür, wie viel Wärme des Heizkörpers an die Umgebung abgegeben wird.
  • In einer weiteren Ausführungsform kann als Kenngröße das aus der aktuellen Heizkörperleistung und der Heizkörperleistung bei Nennmassestrom und aktueller Vorlauftemperatur bestimmte Heizkörper-Betriebsleistungsverhältnis verwendet werden, das besonders einfach aus der aktuellen logarithmischen Übertemperatur und der logarithmischen Übertemperatur im Normpunkt bestimmt werden kann. Wie später noch ausführlich erläutert werden wird, hat sich herausgestellt, dass das Betriebsleistungsverhältnis eine besonders signifikante Möglichkeit zur Beurteilung der hydraulischen Situation einer Heizungsanlage bietet.
  • Gleiches gilt für eine andere Ausgestaltung des Verfahrens, bei dem als Kenngröße ein den aktuellen Wärmebedarf eines Heizkörpers anzeigender Heizköperversorgungszustand verwendet wird, der beispielsweise wie in Fig. 4 dargestellt mittels einer Kennlinie aus dem Betriebsleistungsverhältnis abgeleitet werden kann. Die Kennlinie stellt eine Beziehung zwischen dem Betriebsleistungsverhältnis und einem Heizkörperversorgungszustand in einer Wärmeadaptionsregelung her, in der ein einer der eigentlichen Heizungsregelung vorgelagerten Regelung auf den einen Sollwert eines Heizkörperversorgungszustands bzw. eines Betriebsleistungsverhältnisses vorgeregelt wird. Dies ist beispielsweise in der WO 03/052536 A und der DE 10 2007 029 631 A im Grundsatz beschrieben. Alternativ können der Heizkörperversorgungszustand und das Heizkörper-Betriebsleistungsverhältnis auch den Kennlinien gemäß Fig. 5 in Abhängigkeit von der logarithmischen Übertemperatur entnommen werden.
  • Ferner ist es möglich, mittels vorzugsweise gewichteter Mittelwertbildung oder durch Anwendung einer Fuzzy-Logic aus den Heizkörper-Betriebsleistungsverhältnissen (BLV) oder den Heizkörperversorgungszuständen (VZ) ein Heizkreis- oder Gebäude-Betriebsleistungsverhältnis (GBLV) oder einen Heizkreis- oder Gebäudeversorgungszustand (GVZ) zu ermitteln und als Kenngröße zu verwenden.
  • Erfindungsgemäß kann es auch vorteilhaft sein, mehrere der vorbeschriebenen Kenngrößen parallel zu ermitteln und auszuwerten. So können beispielweise die logarithmische Übertemperatur und das Betriebsleistungsverhältnis oder der Heizkörperversorgungszustand beide in ihrer zeitlichen Tendenz ausgewertet werden, um eine noch zuverlässigere Aussage über den hydraulischen Zustand der Heizungsanlage zu ermöglichen.
  • In einer bevorzugten Ausgestaltung des Verfahrens kann die Veränderung der Kenngrößen über Gradientenbildung oder Verhältnisse der Differenzen erzeugt werden, wobei letzeres in der Praxis der einfachere Weg ist, weil die Messwerte jeweils vorliegen und in einer einfachen Rechenoperation auch in nicht aufwendigen Rechenwerken, beispielsweise einfachen Mikroprozessoren, voneinander abgezogen werden können. Häufig sind die analytischen Formeln zur Bildung der Ableitungen nicht bekannt bzw. ist eine numerische Gradientenbildung zu aufwendig.
  • Um zufällige Schwankungen in den Mess- und Kenngrößen nicht zu stark zu gewichten und nicht vorschnell Rückschlüsse auf den hydraulischen Zustand der Anlage zu ziehen, können die Veränderungen der Kenngrößen zeitlich beispielsweise gleitend gemittelt werden.
  • Ein besonders einfaches Kriterium für die Tendenzauswertung der Kenngröße ist es, die Veränderung der Kenngrößen über der Zeit oder der Vorlauftemperatur mit festgelegten Kenn- bzw. Schrankenwerten vergleichen, um einen hydraulisch ausreichend versorgten Zustand von einem hydraulisch unterversorgten Zustand zu unterscheiden. Derartige Kenn- bzw. Schrankenwerte lassen sich, wie später noch gezeigt wird, gut bestimmen.
  • Um die Ergebnisse der Detektion des hydraulischen Zustands der Anlage in übersichtlicher Form zu erhalten, kann eine Zustandstabelle mit den Zuständen der hydraulischen Versorgung der einzelnen Heizkörper und/oder der hydraulischen Versorgung der gesamten Heizungsanlage angelegt werden. Diese kann in einer Informationseinheit, einer Servicezentrale des Heizkostenerfassungssystems und/oder einer Wärmeleistungsadaptionsregelung angezeigt werden. Dabei kann auch die Servicezentrale aus den Zuständen der hydraulischen Versorgung der einzelnen Heizkörper die Zustände der hydraulischen Versorgung der gesamten Heizungsanlage durch Rechenvorschriften ableiten.
  • Die Erfindung betrifft ferner eine Vorrichtung zur Detektion des hydraulischen Zustands einer Heizungsanlage mit über ein Fluidströmungssystem verbundenen Heizkörpern, die von einem Heizmedium mit einer Vorlauftemperatur durchströmt werden, gemäß den Merkmalen des Anspruchs 10. Die Vorrichtung ist mit mindestens einem Anschluss zur Eingabe der Vorlauftemperatur, mindestens einem Anschluss zur Eingabe einer heizkörperseitigen Temperatur und mindestens einen Anschluss zur Eingabe einer raumluftseitigen Temperatur und einer Recheneinheit ausgestattet, die dazu eingerichtet ist, aus den eingegebenen Temperaturwerten mindestens eine den Wärmebedarf des Heizkörpers anzeigende Kenngröße zu ermitteln und die Veränderung der Kenngröße über der Zeit oder über der Vorlauftemperatur und die zeitliche Veränderung der Vorlauftemperatur auszuwerten. Insbesondere ist die Recheneinheit zur Durchführung des beschriebenen erfindungsgemäßen Verfahrens eingerichtet.
  • Gemäß einer besonders bevorzugten Ausführungsform sind in der Vorrichtung mehrere Anschlüsse zur Eingabe von Temperaturen als ein gemeinsamer Anschluss an einen Heizkostenverteiler ausgebildet sind, mit dem die oder ein Teil der benötigten Temperaturwerte erfasst werden. In diesem Fall ist es auch möglich, dass der Heizkostenverteiler statt der einzelnen Temperaturwerte bereits eine Übertemperatur oder eine sonstige aufbereitete Kenn- oder Zwischengröße überträgt. Diese Ausführungsform der Erfindung ermöglicht eine reibungslose Einbindung der vorgeschlagenen Vorrichtung in bestehende Heizkostenverteilersysteme, ohne dass diese Systeme gesondert angepasst werden müssen.
  • Auch kann die Vorrichtung erfindungsgemäß Anschlüsse für mehrere Heizkostenverteiler aufweisen. Dann lässt sich mit der vorgeschlagenen Vorrichtung das erfindungsgemäße Verfahren zur Detektion des hydraulischen Abgleichs in einer zentralen Einrichtung ausführen, die beispielsweise lediglich einen Anschluss für eine zentral gemessene Vorlauftemperatur aufweist. Natürlich ist es auch möglich, in einer solchen zentralen Vorrichtung mehrere Anschlüsse für in dem Vorlauf eines Heizkörpers gemessene Vorlauftemperaturen vorzusehen.
  • In einer alternativen Ausgestaltung kann die erfindungsgemäße Vorrichtung in einen insbesondere an einem Heizkörper anbringbaren Heizkostenverteiler intergiert sein. So lässt sich der hydraulische Abgleich dezentral bestimmen und kann bspw. in einer Servicezentrale zusammengeführt werden. Natürlich ist es auch im Fall einer zentralen Vorrichtung möglich, die Zustandsdaten für den hydraulischen Abgleich in einer Servicezentrale zu sammeln, die separat zu der Vorrichtung oder in dieser integriert ausgebildet sein kann. Die Servicezentrale kann der Visualisierung der jeweiligen Zustandsdaten dienen.
  • Um die erkannten hydraulischen Zustände der einzelnen Heizkörper oder der gesamten Heizungsanlage ausgeben und ggf. visualisieren zu können, kann die Vorrichtung einen Anschluss zur Ausgabe von ermittelten hydraulischen Zuständen eines einzelnen Heizkörpers oder des Gesamtsystems aufweisen.
  • Auch wenn die erfindungsgemäß vorgeschlagene Vorrichtung nicht darauf beschränkt ist, ist es besonders vorteilhaft, einige oder alle Anschlüsse als Funkkommunikationsanschlüsse auszubilden. Dann lässt sich das vorgeschlagene System zur Detektion des hydraulischen Zustands besonders einfach in Funksysteme zur Heizkostenverteilung integrieren, weil die durch Funkheizkostenverteiler oder entsprechend geeignete Temperatursensoren ausgesendeten Funktelegramme einfach zusätzlich durch die erfindungsgemäße Vorrichtung erfasst werden können.
  • Weitere Merkmale, Vorteile und Anwendungsmöglichkeiten der vorliegenden Erfindung ergeben sich auch aus der nachfolgenden Beschreibung von Ausführungsbeispielen und der Zeichnung. Dabei bilden alle beschriebenen und/oder bildlich dargestellten Merkmale für sich oder in beliebiger Kombination den Gegenstand der vorliegenden Erfindung, auch unabhängig von ihrer Zusammenfassung in den Ansprüchen oder deren Rückbezügen.
  • Es zeigen:
  • Fig. 1
    schematisch den Aufbau einer als Warmwasserheizungsanlage ausgebildeten Heizungsanlage mit über ein Fluidströmungssystem verbundenen Heizkörpern;
    Fig. 2
    theoretische Kennlinien für die Abhängigkeit des relativen Volumenstroms von dem relativen Ventilhub bei verschiedenen Ventilautoritäten;
    Fig. 3
    theoretische Kennlinien für die Abhängigkeit der relativen Heizkörperleistung von dem relativen Ventilhub bei verschiedenen Ventilautoritäten;
    Fig. 4
    eine theoretische Kennlinie mit der Abhängigkeit zwischen Betriebsleistungsverhältnis und Heizflächenversorgungszustand;
    Fig. 5
    theoretische Kennlinien für die Abhängigkeit des Heizflächenversorgungszustands und des Heizkörper-Betriebsleistungsverhältnisses von der logarithmischen Übertemperatur;
    Fig. 6
    Kennlinien der zur Detektion des hydraulischen Zustands einer Heizungsanlage erfindungsgemäß verwendeten Kenngrößen Heizkörperversorgungszustand, Heizkörper-Betriebsleistungsverhältnis und Heizkörperübertemperatur in Abhängigkeit von der Vorlauftemperatur bei einer hydraulisch ausreichenden Versorgung für konstante Raumheizlast;
    Fig. 7
    Kennlinien der zur Detektion des hydraulischen Zustands einer Heizungsanlage erfindungsgemäß verwendeten Kenngrößen Heizkörperversorgungszustand, Heizkörper-Betriebsleistungsverhältnis und Heizkörperübertemperatur in Abhängigkeit von der Vorlauftemperatur bei einer hydraulischen Unterversorgung für konstante Raumheizlast;
    Fig. 8
    Kennlinien der zur Detektion des hydraulischen Abgleichs einer Heizungsanlage erfindungsgemäß verwendeten Kenngrößen Heizkörperversorgungszustand, Heizkörper-Betriebsleistungsverhältnis und Heizkörperübertemperatur in Abhängigkeit von der Vorlauftemperatur bei einer hydraulischen Unterversorgung unterhalb einer Vorlauftemperatur von 60°C und einer hydraulisch ausreichenden Versorgung bei höherer Vorlauftemperatur für konstante Raumheizlast;
    Fig. 9
    einen Signalflussplan für ein erfindungsgemäßes System zur zentralen Ermittlung hydraulisch unterversorgter Heizkörper und
    Fig. 10
    einen Signalflussplan für ein erfindungsgemäßes System zur dezentralen Ermittlung hydraulisch unterversorgter Heizkörper.
  • In Fig. 1 ist schematisch eine Heizungslage 9 mit einem Heizkessel 5 dargestellt, an den über eine Heizungsumwälzpumpe 4 ein Heizungsstrangvorlauf 6 zum Verteilen eines Heizmediums bzw. -fluids angeschlossen ist, der über einen Heizungsstrangrücklauf 7 nach Strömen des Heizfluids durch die Heizkörper 2a bis 2f wieder zurückgeführt wird. In einer insbesondere als Ventil ausgebildeten Strangreguliereinrichtung 8 kann der Differenzdruck zwischen dem Heizungsstrangvorlauf 6 und dem Heizungsstrangrücklauf 7 zentral eingestellt werden.
  • Die das Fluidströmungssystem bildenden Heizungsstrangvorlauf 6 und Heizungsstrangrücklauf 7 versorgen mehrere verschiedenen Wohneinheiten 10 mit dem Heizfluid, das jeweils durch zwei Heizkörper 2a, 2b; 2c, 2d; 2e, 2f strömt. Am Vorlauf jeden Heizkörpers 2 findet sich jeweils ein Heizkörperventil 1 (d.h. 1a, 1b; 1c, 1d; 1e, 1f), das den Zufluss von Heizfluid entsprechend der gewünschten Wärmeangabe des jeweiligen Heizkörpers 2 einstellt. Bei einer gewünschten hohen Wärmeabgabe kann ein Heizkörperventil 1 maximal geöffnet werden.
  • Je nach insbesondere Einbausituation eines Heizkörpers 2 sind die hydraulischen Strömungsverhältnisse verschieden, so dass auch bei einem maximal geöffneten Heizkörperventil 1 nicht derselbe Massestrom durch jeden Heizkörper 2 fließt. Dies ist jedoch nicht gewünscht, da dann die in dem hydraulischen System benachteiligten Heizkörper 2 nicht die erforderliche Heizleistung erreichen. Daher wird die maximale Durchflussmenge durch hydraulisch bevorzugte Heizkörper 2 mit an jedem Heizkörpervorlauf vorgesehenen Thermostatventilen 1 (d.h. 1a.1b; 1c,1d; 1e, 1f) mit Voreinstellung (KVS-Wert) und/oder an jedem Heizkörperrücklauf vorgesehenen Drosselventilen 3 (d.h. 3a, 3b; 3c, 3d; 3e, 3f) zugunsten der hydraulisch benachteiligten Heizkörper 2 begrenzt. Dies führt zu einem höheren Differenzdruck bei den hydraulisch benachteiligten Heizkörpern 2 und bei optimaler Einstellung dazu, dass an allen Heizkörpern 2 die gewünschte Wärmeleistung abgegeben werden kann.
  • Dieses Vorgehen gehört zu einem hydraulischen Abgleich. Hierfür ist es notwendig, vorher Kenntnis darüber zu erlangen, dass die Gesamtanlage sich in einem hydraulisch schlecht abgeglichenen Zustand befindet und welche Heizkörper 2 hydraulisch ausreichend bzw. hydraulisch unterversorgt sind.
  • Dazu wird das nachfolgend detailliert beschriebene Verfahren zur automatischen Ermittlung hydraulisch unterversorgter Heizkörper vorgeschlagen,
  • Durch Auswertung der zeitlichen Verläufe der Heizungsvorlauftemperatur ϑVL und der Kenngrößen ,Heizkörperbetriebsleistungsverhältnis (BLV)' oder ,Heizkörperversorgungszustand (VZ)' oder ,Gebäudeversorgungszustand (GVZ)' oder ,Heizkreis- oder Gebäudebetriebsleistungsverhältnis (GBLV)' kann im laufenden Betrieb der Anlage besonders gut der hydraulische Zustand der einzelnen Heizkörper 2 (BLV, VZ) bzw. der gesamten Heizungsanlage 10 (GVZ) ermittelt werden. Alternativ werden für jeden Heizkörper 2 zeitliche Verläufe der Heizungsvorlauftemperatur ϑVL und der logarithmischen Heizkörperübertemperatur Δlog oder der heizkörperseitigen und raumluftseitigen Temperatur der elektronischen Heizkostenverteiler ϑHKS, ϑRLS oder der Heizkörperoberflächentemperaturen ϑHK und der Raumlufttemperaturen ϑLuft ausgewertet.
  • Die Eingangsmessgrößen des Verfahrens und die erforderlichen Messgeräte sind daher die
    • die Heizungsvorlauftemperatur ϑVL, deren Messung beispielsweise mittels Anlege- oder Tauchfühler entweder zentral im Gebäudeanschluss/ am Heizkreisgebäudeeintritt oder in geeigneter Form dezentral am Heizkörpervorlaufanschluss erfolgen kann und
    • die heizkörperseitigen und raumluftseitigen Temperaturen ϑHKS, ϑRLS der elektronischen Heizkostenverteiler, deren Messung dezentral mittels elektronischer Heizkostenverteiler, insbesondere Funkheizkostenverteiler, erfolgen kann oder
    • die Heizkörperoberflächentemperaturen ϑHK und die Raumlufttemperaturen ϑLuft, deren Messung dezentral mittels Raumtemperaturregler oder mittels anderer geeigneter Messtechnik erfolgen kann.
  • Aus den heizkörperseitigen und raumluftseitigen Temperaturen ϑHKS, ϑRLS bzw. den Heizkörperoberflächentemperaturen ϑHK und Raumlufttemperaturen ϑLuft kann wie nachfolgend beschrieben jeweils eine Übertemperatur berechnet werden.
  • Entsprechend der verschiedenen Ausführungsformen der Heizkostenverteiler gibt es verschiedene Möglichkeiten zur Berechnung der Heizkörperübertemperatur Δ.
  • In einer ersten Variante lässt sich eine logarithmische Heizkörperübertemperatur Δlog für Heizkostenverteiler nach dem 2-Fühlerprinzip wie folgt berechnen: Δ Log = ϑ VL - ϑ RL ln ϑ VL - ϑ L ϑ RL - ϑ L = K CW K CL Δ HKV : Δ Log = K CW K CL Δ HKV
    Figure imgb0002
    mit
    Figure imgb0003
       ... wasserseitiger Korrekturfaktor
    KCW = 1 1-CRF   ... raumluftseitiger Korrekturfaktor
    Δ HKV = ϑHKSRLS   ...Temperaturdifferenz des Heizkostenverteilers
    ϑ HKS   ... heizkörperseitige Temperatur des Heizkostenverteilers
    ϑ RLS   ... raumluftseitige Temperatur des Heizkostenverteilers.
  • Die heizkörperspezifischen Korrekturfaktoren KCW und KCL werden aus den entsprechenden heizkörperspezifischen C-Werten berechnet, die für jeden Heizkörper in der gängigen Praxis der Heizkostenerfassung sowieso bekannt sind. In der heutigen Praxis der Heizkostenverteilung werden als C-Werte bzw. als Korrekturfaktoren feste Werte verwendet.
  • Alternativ kann die Berechnung der logarithmischen Heizkörperübertemperatur Δlog für Heizkostenverteiler nach dem 2-Fühlerprinzip in einer zweiten Variante auch wie folgt erfolgen: Δ Log = ϑ VL - ϑ RL n ϑ VL - ϑ L ϑ RL - ϑ L = Δ ϑ VL - Δ ϑ RL n ϑ VL ϑ RL = Δ ϑ VL - Δ ϑ RL n Δ ϑ VL - n Δ ϑ RL : Δ Log = Δ ϑ VL - Δ ϑ RL n Δ ϑ VL - n Δ ϑ RL ,
    Figure imgb0004

    wobei
  • Δϑ VL = ϑ VL - ϑ Luft
    ... die Vorlaufübertemperatur des Heizkörpers und
    Δϑ RL = ϑ RL - ϑ Luft
    ... die Rücklaufübertemperatur des Heizkörpers
    sind. Ferner gelten folgende Beziehungen:
    Δϑ VL ≈ Δϑ VL,Heizkreis
    ... Vorlaufübertemperatur des Heizkreises
    Δϑ VL,Heizkreis = ϑ VL,Heizkreis - ϑ VL,Heizkreis - ϑ Luft,Heizkreis
    ... Vorlaufübertemperatur des Heizkreises (wird zentral gemessen und übertragen).
  • Die Rücklaufübertemperatur Δϑ RL wird aus der theoretischen Heizkörpergleichung Δϑ h = Δϑk VL·ϑ(1-h) RL ermittelt: Δ ϑ RL = e y RL = exp y RL , y RL = ln Δ ϑ RL = 1 1 - h ln Δ FHKV K Korr - h ln Δ VL ,
    Figure imgb0005
    mit
  • Δ HKV = ϑHKS - ϑRLS
    ... Temperaturdifferenz des Heizkostenverteilers in Montagehöhe h (h=1 entspricht dem Vorlauf, h=0 entspricht dem Rücklauf)
    KKorr
    ... Korrekturfaktor
    ϑHKS
    ... heizkörperseitige Temperatur des Heizkostenverteilers
    ϑ RLS
    ... raumluftseitige Temperatur des Heizkostenverteilers
    ΔϑVL ≈ ΔϑVL,Heizkreis
    ... Vorlaufübertemperatur des Heizkreises
    ΔϑVL,Heizkreis = ϑVL,Heizkreis - ϑLuft,Heizkreis
    ... Vorlaufübertemperatur des Heizkreises (wird zentral gemessen und übertragen).
  • Ähnlich kann die Berechnung der logarithmischen Heizkörperübertemperatur Δlog für Heizkostenverteiler nach dem 3-Fühlerprinzip in einer ersten Variante erfolgen: Δ Log = ϑ VL - ϑ RL n ϑ VL - ϑ Luft ϑ RL - ϑ Luft ,
    Figure imgb0006

    wobei
  • ϑVL
    ... Vorlauftemperatur des Heizkörpers;
    ϑ RL
    ... Rücklauftemperatur des Heizkörpers;
    ϑLuft
    ... Umgebungslufttemperatur des Heizkörpers
    sind.
  • Anstelle von Heizkostenverteilern kann auch eine Messvorrichtung zum Einsatz kommen, die folgende Temperaturen erfasst:
  • ϑ VL
    ...Vorlauftemperatur des Heizkörpers;
    ϑRL
    ...Rücklauftemperatur des Heizkörpers;
    ϑ Luft
    ...Umgebungslufttemperatur des Heizkörpers.
  • In einer zweiten Variante des 3-Fühler-Prinzips kann die Heizkörperübertemperatur Δlog wie folgt berechnet werden; Δ Log = ϑ VL - ϑ RL n ϑ VL - ϑ L ϑ RL - ϑ L = Δ ϑ VL - Δ ϑ RL n ϑ VL ϑ RL = Δ ϑ VL - Δ ϑ RL n Δ ϑ VL - n Δ ϑ RL : Δ Log = Δ ϑ VL - Δ ϑ RL n Δ ϑ VL - n Δ ϑ RL ,
    Figure imgb0007

    wobei
  • Δϑ VL VL Luft
    ... Vorlaufübertemperatur des Heizkörpers
    ϑVL
    ... Vorlauftemperatur des Heizkörpers
    ϑLuft
    ... Raumlufttemperatur am Heizkörper (ersatzweise Messung im Raum)
    Δϑ RL = ϑ RL - ϑ Luft
    ... Rücklaufübertemperatur des Heizkörpers
    sind. Optional können anstelle Δϑ VL
    Δϑ VL ≈ Δϑ VL,Heizkreis
    ...Vorlaufübertemperatur des Heizkreises
    Δϑ VL,Heizkreis = ϑ VL,Heizkreis - ϑ Luft,Heizkreis
    ... Vorlaufübertemperatur des Heizkreises (wird zentral gemessen und übertragen)
    bestimmt werden. Die Rückfaufübertemperatur ΔϑRL ergibt sich aus der theoretischen Heizkörpergleichung Δϑ h = Δϑ h VL · ϑ(1-h) RL als Δ ϑ RL = e y RL = exp y RL
    Figure imgb0008
    y RL = ln Δ ϑ RL = 1 1 - h ln Δ HK h Korr - h ln Δ VL
    Figure imgb0009
    mit:
    Δ HK (h) = ϑ HK (h)-ϑ Luft
    ... Temperaturdifferenz am Heizkörper in Höhe h (h=1 entspricht dem Vorlauf, h=0 entspricht dem Rücklauf)
    K' Korr
    ...Korrekturfaktor
    ϑHK (h)
    ... Heizkörper-Oberflächentemperatur in Höhe h (h=1 entspricht dem Vorlauf, h=0 entspricht dem Rücklauf)
    ϑ Luft
    ... Raumlufttemperatur am Heizkörper (ersatzweise Messung im Raum).
  • Die Messung von ϑ VL oder/und ϑHK (h) oder/und ϑ Luβ kann mit beliebiger Messtechnik erfolgen.
  • Ferner wird eine logarithmischen Heizkörperübertemperatur Δlog.100bei Nennmassestrom (bei Normmassestrom oder Auslegungsmassestrom) wie folgt ermittelt: Δ Log = ϑ VL - ϑ RL , 100 n ϑ VL - ϑ Luft ϑ RL , 100 - ϑ Luft = Δ VL - Δ RL , 100 n ϑ VL ϑ RL , 100 Δ VL , Heizkreis - Δ RL , 100 n Δ VL , Heizkreis Δ RL , 100 : Δ Log , 100 Δ VL , Heiizkreiis - Δ RL , 100 n Δ VL , Heizkreis Δ RL , 100 ,
    Figure imgb0010

    wobei:
  • ΔϑVL = ϑVL - ϑLuft
    ... Vorlaufübertemperatur des Heizkörpers
    ϑVL ≈ ϑVL,Heizkreis
    ... Vorlauftemperatur des Heizkörpers
    ϑLuft ≈ ϑLuft,Heizkreis
    ... Umgebungslufttemperatur des Heizkörpers
    ΔϑVL ≈ ΔϑVL,Heizkreis
    ... Vorlaufübertemperatur des Heizkreises
    ΔϑVL, Heizkreis = 9VL, Heizkreis - ϑLuft, Heizkreis
    ... Vorlaufübertemperatur des Heizkreises (Die Vorlaufübertemperatur des Heizkreises Δϑ VL, Heizkreis kann somit zentral am Heizkessel oder am Gebäudeeintritt der Heizungsanlage erfasst werden.)
    Δϑ RL.100
    ... Rücklaufübertemperatur des Heizkörpers bei Nenn- oder Auslegungsmassestrom und aktueller Vorlaufübertemperatur
    sind.
  • Die Rücklaufübertemperatur bei Norm- oder Auslegungsmassenstrom wird berechnet als Δ RL , 100 = Δ RL m m 100 = 1 = ( M xP + Δ ϑ VL 1 - n ) 1 / 1 - n
    Figure imgb0011
    definiert mit:
  • n:
    Heizkörperexponent (aus Herstellerunterlagen)
    Δϑ VL ≈ Δϑ VL,Herzkreis ...
    Vorlaufübertemperatur des Heizkreises
    MzP = RL,xP 1-n - Δ VL,xP 1-n ):
    fester Parameter für Auslegungspunkt AP
    ΔRL,xP = (ϑ RL - ϑ Luft ) zP :
    Heizkörper-Rücklauf Auslegungsübertemperatur
    Δ VL,xP = (ϑ VL - ϑ Luft ) xP :
    Heizkörper-Vorlauf-Auslegungsübertemperatur.
  • Für den Auslegungspunkt gilt: xP = AP. Die Auslegungsparameter der Heizungsanlage Δ RL,AP , Δ VL,AP sind typischerweise aus den Planungsunterlagen bekannt. Ersatzweise können auch die Heizkörperparameter des Normpunktes (xP = AP)(Vorlauf/Rücklauf/Luft-Temperatur = 90/70/20 °C) nach DIN EN 442 verwendet werden:
  • MNP =(Δ RL,NP 1-n VL,NP 1-n )
    fester Parameter für Normpunkt NP;
    Δ RL,NP = (ϑRL Luft ) NP
    Heizkörper-Rücklaufübertemperatur für Normpunkt;
    ΔVL, NP =VLLuft)NP
    Heizkörper-Vorlaufübertemperatur für Normpunkt.
  • Mit diesen Informationen kann das Heizkörper-Betriebsleistungsverhältnis BLV_HK entsprechend folgender Beziehung ausgerechnet wird: BLV = Q akt Q 100 / ϑ VLT = Q N ( Δ Log , akt Δ Log , Nenn ) n Q N ( Δ Log , 100 Δ Log , Nenn ) n = ( Δ Log , akt Δ Log , 100 ) n : BLV = ( Δ Log Δ Log , 100 ) n ,
    Figure imgb0012
    mit
  • Δlog, Nenn
    .. logarithmische Übertemperatur im Heizkörper-Normpunkt, z.B. im Heizkörper-Normpunkt (90,70,20): Δlog, 60 =59,44K;
    n
    ... Heizkörperexponent (für jeden Heizkörper bekannt);
    Δ Log
    ... aktuelle logarithmische Übertemperatur.
  • Das Heizkörper-Betriebsleistungsverhältnis BLV ergibt sich also in einfacher Weise aus dem Verhältnis von Heizköperübertemperaturen Δ.
  • Die Kenngröße ,Heizkörperversorgungszustand (VZ)' kann aus dem zuvor berechneten Heizkörper-Betriebsleistungsverhältnis BLV gemäß Fig. 4 ermittelt werden. Ferner können die Kenngrößen Heizkörperversorgungszustand VZ und Heizkörper-Betriebsleistungsverhältnis BLV in Kenntnis der logarithmischen Heizkörperübertemperatur Δlog auch der Kennlinie gemäß Fig. 5 entnommen werden. Die Kenngrößen ,Gebäudeversorgungszustand (GVZ)' oder ,Gebäude-Betriebsleistungsverhältnis (GBLV)' werden mittels Fuzzy-Logic oder gewichteter Mittelwertbildung aus den einzelnen Heizkörperversorgungszuständen ermittelt. Ein konkretes Beispiel hierfür ist in der WO 03/052536 A beschrieben.
  • Für die verschiedenen, vorerwähnten Kenngrößen wird die zeitliche Veränderung wie folgt ermittelt:
    • der Gradient oder die erste Ableitung entweder nach der Zeit t oder nach der Vorlauftemperatur ϑVL des Heizkörper-Betriebsleistungsverhältnisses BLV: dt_BLV = t BLV Δ BLV Δ t , dVL_BLV = ϑ VL BLV Δ BLV Δ ϑ VL
      Figure imgb0013
    • der Gradient oder die erste Ableitung entweder nach der Zeit t oder nach der Vorlauftemperatur ϑVL des Weizkörpervensorgungszustandes VZ: dt_VZ = t VZ Δ VZ Δ t , dVL_VZ = ϑ VL VZ Δ VZ Δ ϑ VL
      Figure imgb0014
    • der Gradient oder die erste Ableitung entweder nach der Zeit t oder nach der Vorlauftemperatur ϑVL des Gebäudeversorgungszustandes GVZ: dt_GVZ = t GVZ Δ GVZ Δ t , dVL_GVZ = ϑ VL GVZ Δ GVZ Δ ϑ VL
      Figure imgb0015
    • der Gradient oder die erste Ableitung entweder nach der Zeit t oder nach der Vorlauftemperatur ϑVL der logarithmischen Heizkörperübertemperatur Δlog: dt_dt log = t Δ log Δ Δ log Δ t , dVL_dt log = ϑ VL Δ log Δ Δ log Δ ϑ VL
      Figure imgb0016
    • der Gradient oder die erste Ableitung entweder nach der Zeit t oder nach der Vorlauftemperatur ϑVL der Differenz zwischen heizkörperseitigen und raumluftseitigen Heizkörpertemperatur ϑHKS, ϑRLS: dt_dtfhkv = t Δ FHKV t ϑ HKS - ϑ RLS Δ ϑ HKS - ϑ RLS Δ t ,
      Figure imgb0017
      dVL_dtfhkv = ϑ VL ϑ HKS - ϑ RLS Δ ϑ HKS - ϑ RLS Δ t
      Figure imgb0018
    • der Gradient oder die erste Ableitung entweder nach der Zeit t oder nach der Vorlauftemperatur ϑVL der Differenz zwischen Heizkörperoberflächen- und Raumlufttemperatur ϑHK, ϑLuft: dt_dthk = t ϑ HK - ϑ Luft Δ ϑ HK - ϑ Luft Δ t ,
      Figure imgb0019
      dVL_dthk = ϑ VL ϑ HK - ϑ Luft Δ ϑ HK - ϑ Luft Δ ϑ VL
      Figure imgb0020
  • Wie den Fig. 6 und 8 zu entnehmen, kann der Zustand eines hydraulisch ausreichend versorgten Heizkörpers 2 dann angenommen werden, wenn für die einzelnen Kenngrößen in ihrer zeitlichen Tendenz mit fallender Vorlauftemperatur ϑVL dieses Heizkörpers 2 und nach Beendigung des regelungstechnisch bedingten Übergangsprozesses die folgenden Bedingungen eingehalten werden:
    • Der Heizkörperversorgungszustand VZ fällt,
      d.h. es gilt die Bedingung: d_VZ <-|d _VZ_UVZ,|
    wobei d_VZ der Gradient / die Ableitung und d_VZ_UVZ ein einen Schwellenwert angebender Parameter ist.
    • Das Heizkörper-Betriebsleistungsverhältnis BLV steigt,
      d.h. es gilt die Bedingung: d_BLV > +|d_BLY_NVZ|,
    wobei d_BLV der Gradient / die Ableitung und d_BLV_UVZ ein einen Schwellenwert angebender Parameter ist.
    • Die logarithmische Heizkörperübertemperatur Δlog oder deren Äquivalent, die Differenz zwischen heizkörperseitigen und raumluftseitigen Heizkörpertemperatur, ändert sich nur unwesentlich, d.h. es gelten die folgenden Bedingungen: d_dt log < = d_dt log _uvz bzw . d_dtfhkv < = d_dtfhkv_uvz ,
      Figure imgb0021
    wobei d_dtlog bzw. d_dtfhkv der Gradient / die Ableitung und d_dtlog_uvz bzw. d_dtfhk_uvz einen Schwellenwert angebende Parameter sind.
  • Die vorgenannten Bedingungen gelten für einen Heizkörpermassestrom m > 0 bei annähernd konstanter Raumheizlast. Ist der Heizkörpermassestrom m = 0, d.h. der Heizkörper 2 ist durch Schließen des Heizkörperventils 1 vollständig abgedrosselt, so ist die logarithmische Heizkörperübertemperatur Δlog oder deren Äquivalent, die Differenz zwischen heizkörperseitigen und raumluftseitigen Heizkörpertemperatur, annähernd 0 und eine hydraulische Bewertung nicht möglich. Dieser Fall kann durch eine entsprechende Abfrage während der Durchführung des Verfahrens ausgeschlossen werden.
  • Bei steigender Vorlauftemperatur ϑVL gelten die vorgenannten Bedingungen mit umgekehrten Relationen entsprechend.
  • Wenn ein Heizkörper 2 hydraulisch unterversorgt ist, gelten für die einzelnen Kenngrößen in ihrer zeitlichen Tendenz mit fallender Vorlauftemperatur ϑVL dieses Heizkörpers 2 und nach Beendigung des regelungstechnisch bedingten Übergangsprozesses die folgenden Bedingungen, wie den Fig. 7 und 8 zu entnehmen:
    • Es erfolgt keine signifikante Verringerung des Heizkörperversorgungszustandes VZ,
      d.h. es gilt die Bedingung: d_VZ >= -|d_VZ_UVZ|,
      wobei d_VZ der Gradient / die Ableitung und d_VZ_UVZ ein einen Schwellenwert angebender Parameter ist.
    • Es erfolgt kein signifikanter Anstieg des Heizkörper-Betriebsleistungsverhältnisses BLV,
      d.h. es gilt die Bedingung: d_BLV <=+|d_BLV_UVZ|,
      wobei d_BLV der Gradient / die Ableitung und d_BLV_UVZ ein einen Schwellenwert angebender Parameter ist.
    • Die logarithmische Heizkörperübertemperatur Δlog oder deren Äquivalent, die Differenz zwischen heizkörperseitigen und raumluftseitigen Heizkörpertemperatur, fällt, d.h. es gelten die folgenden Bedingungen: d_dt log < - d_dt log _uvz bzw . d_dtfhkv < - d_dtfhkv_uvz ,
      Figure imgb0022
    wobei d_dtlog bzw. d_dtfhkv der Gradient / die Ableitung und d_dtlog_uvz bzw. d_dtfhk_uvz einen Schwellenwert angebende Parameter sind.
  • Die vorgenannten Bedingungen gelten für einen Heizkörpermassestrom m > 0 bei annähernd konstanter Raumheizlast. Ist der Heizkörpermassestrom m = 0, d.h. der Heizkörper ist durch Schließen des Heizkörperventils vollständig abgedrosselt, so ist die logarithmische Heizkörperübertemperatur Δlog oder deren Äquivalent, die Differenz zwischen heizkörperseitigen und raumluftseitigen Heizkörpertemperatur, annähernd 0 und eine hydraulische Bewertung nicht möglich. Dieser Fall kann durch eine entsprechende Abfrage während der Durchführung des Verfahrens ausgeschlossen werden.
  • Bei Auswertung des Gebäudeversorgungszustands GVZ als Kenngröße, deren zeitliche Tendenz ausgewertet wird, lässt sich unabhängig von der Frage der hydraulischen Versorgung einzelner Heizkörper 2 eine Aussage über den hydraulischen Abgleich des gesamten Heizungssystems 9 treffen.
  • Ein Heizungssystem 9 ist genau dann hydraulisch ausreichend versorgt, wenn mit fallender Vorlauftemperatur ϑVL nach Beendigung des regelungstechnisch bedingten Übergangsprozesses Folgendes gilt:
    • Der Gebäudeversorgungszustand GVZ fällt analog zu der Kennlinie Heizkörperversorgungszustand VZ gemäß Fig. 6,
      d.h. es gilt die Bedingung: d_GVZ < -|d_GVZ_UVZ|,
      wobei d_GVZ der Gradient / die Ableitung und d_GVZ_UVZ ein einen Schwellenwert angebender Parameter ist.
    • Die über alle aktiven Heizkörper 2 mittlere logarithmische Heizkörperübertemperatur d_dtlog_av oder deren Äquivalent, die Differenz zwischen heizkörperseitigen und raumluftseitigen Heizkörpertemperatur d_dtfhkv_av, ändert
      sich nur unwesentlich, d.h. es gelten die Bedingungen: d_dt log_ av < = d_dt log _uvz bzw . d_dtfhkv_av < = d_dtfhkv_uvz ,
      Figure imgb0023
    wobei d_dtlog_av bzw. d_dtfhkv_av der Gradient / die Ableitung und d_dtlog_uvz bzw. d_dtfhk_uvz einen Schwellenwert angebende Parameter sind.
  • Ein Heizungssystem 9 ist genau dann hydraulisch unterversorgt, wenn mit fallender Vorlauftemperatur ϑVL nach Beendigung des regelungstechnisch bedingten Übergangsprozesses analog zu den Kennlinien gemäß Fig. 7 und 8 Folgendes gilt:
    • Es erfolgt keine signifikante Verringerung des Gebäudeversorgungszustandes GVZ,
      d.h. es gilt die Bedingung: d_GVZ >= -|d_GVZ_UVZ|,
    wobei d_GVZ der Gradient / die Ableitung und d_GVZ_UVZ ein einen Schwellenwert angebender Parameter ist.
    • Die über alle aktiven Heizkörper 2 mittlere logarithmische Heizkörperübertemperatur d_dtlog_av oder deren Äquivalent, die Differenz zwischen heizkörperseitigen und raumluftseitigen Heizkörpertemperatur d_dtfhkv_av, fällt signifikant, d.h. es gelten die Bedingungen: d_dt log_ av < - d_dt log _uvz bzw . d_dtfhkv_av < - d_dtfhkv_uvz ,
      Figure imgb0024
    wobei d_dtlog_av bzw. d_dtfhkv_av der Gradient / die Ableitung und d_dtlog_uvz bzw, d_dtfhk_uvz einen Schwellenwert angebende Parameter sind.
  • Die vorgenannten Bedingungen gelten für einen Heizkörpermassestrom m > 0 bei annähernd konstanter Raumheizlast. Bei steigender Vorlauftemperatur ϑVL gelten die vorgenannten Bedingungen mit umgekehrten Relationen entsprechend.
  • Die Ermittlung und Auswertung der zeitlichen Tendenzen der Kenngrößen Δ, BLV, VZ, GVZ zur Ermittlung des hydraulischen Zustands der Heizkörper 2 und/oder des Heizungssystems 9 erfolgt zyklisch, d.h. in bestimmten Zeitabschnitten. Um die Sicherheit bei der hydraulischen Versorgungsdetektion zu erhöhen, können die zeitlichen Kenngrößen dabei einer zeitlichen Mittelwertbildung unterworfen werden.
  • Somit wird für ein Gebäude oder eine Heizungsanlage 9 durch das erfindungsgemäß sich zyklisch, d.h. in sich in vorgegebenen Zeitabständen wiederholende Verfahren eine Art hydraulischer Fingerabdruck in Form einer Zustandstabelle für alle Heizkörper 2 erstellt. In der Zustandstabelle finden sich für jeden Heizkörper 2 Einträge, die den hydraulischen Zustand der Heizkörper 2 anzeigen: UVZ (= hydraulisch unterversorgt) oder NVZ (= hydraulisch ausreichend versorgt). Für die Heizungsanlage 9 können die einzelnen Zustandswerte zu einem Gesamtwert GUVZ (=Gesamtanlage hydraulisch unterversorgt) oder GNVZ (=Gesamtanlage hydraulisch ausreichend versorgt) verdichtet werden.
  • Eine Ausführungsform einer erfindungsgemäßen Vorrichtung 11 zur Detektion des hydraulischen Zustands, d.h. der Situation nach einem hydraulischen Abgleich, der Heizköper 2 in einer Heizungsanlage 9 kann dem Signalflussplan gemäß Fig. 9 entnommen werden. Die Heizungsanlage 9 weist einen außentemperaturgeführ ten (TA) Heizkessel 5 mit einem Regler (Regelung oder Steuerung) auf, der ggf. auch weitere Führungsgrößen wie den aktuellen Gebäudewärmebedarf als Eingangsgrößen verwendet, wie durch den nicht beschrifteten Pfeil angedeutet.
  • Der Heizkessel 5 stellt der Gebäude-Heizungsanlage 9 ein Heizfluid bzw. -medium mit der Vorlauftemperatur TVL (auch als ϑVL bezeichnet) und dem Massestrom m zur Verfügung. In der Heizungsanlage 9 wird jeder Heizkörper 2 (in der Figur als HK_1 bis HK_N nummeriert) durch einem seiner hydraulischen Situation entsprechenden Heizfluid-Massestrom m1 bis mN und der Vorlauftemperatur TVL durchströmt. Dabei bewältigt jeder Heizkörper eine bestimmte Heizlast QLast.
  • Wie in der Wohnungswirtschaft üblich, ist zur Heizkostenerfassung an jedem Heizkörper 2 ein Heizkostenverteiler 12 (in der Figur als HKV_1 bis HKV_N nummeriert) vorgesehen, der jeweils heizkörperseitige Temperaturen THKS und raumluftseitige Temperaturen TRLS (auch als ϑHKS und ϑRLS bezeichnet) misst und daraus eine den Wärmeverbrauch charakterisierende logarithmische Übertemperatur dTlog (auch als Δlog bezeichnet) oder Temperaturdifferenz des Heizkostenverteilers 12 dTHKV (auch als ΔHKV bezeichnet) bestimmt.
  • Bei den Heizkostenverteilern 12 kann es sich grundsätzlich um 2- oder 3-Fühler Messgeräte handeln, die auf die zuvor ausführlich erläuterten Arten die verschiedenen Übertemperaturen Δ, die als Differenztemperaturen zwischen heizkörperseitigen und raumluftseitigen Temperaturen definiert sind, bestimmen. Grundsätzlich können auch Einzeltemperatursensoren zum Einsatz kommen, die ihre Messwerte als Rohdaten an die erfindungsgemäße Vorrichtung 11 liefern. In diesem Fall übernimmt das entsprechend eingerichtete Rechenwerk die vorbeschriebenen Berechnungen.
  • Vorzugsweise handelt es sich bei den Heizkostenverteilern 12 um Funkheizkostenverteiler, die ihre Messdaten und ermittelten Ergebnisse, insbesondere die Übertemperaturen Δ, als Funktelegramme aussenden. Diese werden von der Vorrichtung 11 zur Detektion des hydraulischen Abgleichs empfangen, Natürlich ist es auch möglich, dass die Daten der Funkheizkostenverteiler in Datensammlem gesammelt und der Vorrichtung 11 durch die Datensammler übertragen werden. Einfacherweise kann die Vorrichtung 11 dann bspw. in den Datensammler integriert sein. Ferner werden, vorzugsweise auch mittels Funk, eine in der Heizungsanlage 9 zentral gemessene Vorlauftemperatur TVL der Vorrichtung 11 zugeleitet.
  • Die Funkkommunikation kann je nach den Erfordernissen uni- oder bidirektional erfolgen. Natürlich sind anstelle der Funkkommunikation auch eine drahtgebundene oder eine optische Kommunikation möglich.
  • In der Vorrichtung 11 ist ein nicht dargestelltes Rechenwerk vorgesehen, in dem dann für jeden Heizkörper 2 das zuvor beschriebene Verfahren implementiert ist, das nachfolgend noch einmal zusammenfassend beschrieben ist.
  • Das Verfahren beinhaltet 4 wichtige Schritte:
  • Zunächst erfolgt zyklisch, d.h. in bestimmten Zeitabständen, eine Berechnung der Kenngrößen logarithmische Übertemperatur Δlog, Heizkörperbetriebsleistungsver hältnis BLV, Heizkörperversorgungszustand VZ und/oder Gebäudeversorgungszustand GVZ.
  • Danach werden die zeitlichen Kenngrößen zur Ermittlung des hydraulischen Heizkörper-/Gebäudeversorgungszustandes bestimmt. Dies ist insbesondere eine der folgenden Größen:
    • der Gradient oder die erste Ableitung nach der Zeit oder nach der Vorlauftemperatur TVL der Heizkörperversorgungszustände VZ
    • der Gradient oder die erste Ableitung nach der Zeit oder nach der Vorlauftemperatur TVL des Gebäudeversorgungszustandes GVZ
    • der Gradient oder die erste Ableitung nach der Zeit oder nach der Vorlauftemperatur TVL der Heizkörper-Betriebsteistungsverhältnisse BLV;
    • der Gradient oder die erste Ableitung nach der Zeit oder nach der Vorlauftemperatur TVL der logarithmischen Heizkörperubertemperaturen Δlog;
    • der Gradient oder die erste Ableitung nach der Zeit oder nach der Vorlauftemperatur TVL der Differenz ΔHKV zwischen heizkörperseitigen und raumluftseitigen Heizkörpertemperaturen.
  • Anschließend werden die zeitlichen Kenngrößen zur Ermittlung des hydraulischen Abgleichs zeitlich gemittelt und die Mittelwerte entsprechend der vorerwähnten Kriterien, die sich aus den in den Fig. 6 bis 8 dargestellten Kennlinien ergeben, ausgewertet.
  • Als Ergebnis liegt ein hydraulischer Gebäudefingerabdruck in Form einer Zustandstabelle für alle Heizkörper 2 mit den hydraulischen Zuständen für jeden Heizkörper2: UVZ (= hydraulisch unterversorgt) oder NVZ (= hydraulisch ausreichend versorgt) und dem für die Heizungsanlage 9 verdichteten Gesamtwert (hydraulischer Gesamtzustand): GUVZ (=Gesamtanlage hydraulisch unterversorgt) oder GNVZ (=Gesamtanlage hydraulisch ausreichend versorgt) vor. Diese Tabelle wird in der erfindungsgemäßen Vorrichtung 11 erzeugt. Die Tabelleneinträge können zur Visualisierung an eine Servicezentrale 13 übertragen werden.
  • Bei der Servicezentrale 13 kann es sich um eine Haus- oder Wohnungszentrale eines Heizkostenerfassungs- und/oder Raumtemperaturregelsystems handeln, in welche die erfindungsgemäße Vorrichtung 11 einfacher Weise auch integriert sein kann.
  • Fig. 10 stellt eine zweite Ausführungsform einer erfindungsgemäßen Vorrichtung 14 zur Detektion des hydraulischen Abgleichs dar. Die Vorrichtung 14 ist in dieselbe Heizungsanlage 9 eingebunden, auf deren Beschreibung daher verzichtet werden kann.
  • Die Vorrichtung 14 ist mit in einen Heizkostenverteiler 12 integriert und führt in der bereits beschriebenen Weise die Detektion des hydraulischen Abgleichs eines Heizkörpers 2 durch, wobei die Vorrichtung 14 in dieser Ausführungsform dezentral arbeitet. Daher ist an jedem Heizkörper 2 eine entsprechende Vorrichtung 14 vorzusehen. Dies kann dadurch erreicht werden, dass die Vorrichtung 14 in einem Mikroprozessor des Heizkostenverteilers 12 implementiert ist und das vorgeschlagene Verfahren für den jeweiligen Heizkörper 2 durchführt. Es ist ebenso möglich, die Vorrichtung 14 in eine - meist ohnehin mit dem Heizkostenverteiler 12 verbundene - Raumtemperaturregelung zu integrieren.
  • Die Zustände UVZ, NVZ der hydraulischen Versorgung eines jeden Heizkörpers 2 meldet die Vorrichtung 14 an eine Servicezentrale 15, die neben der Visualisierung auch die Ermittlung des hydraulischen Gesamtzustands GUVZ, GNVZ der Heizungsanlage 9 übernimmt. Ansonsten können die Servicezentralen 13 und 15 gleich aufgebaut sein.
  • Das Anwendungsgebiet des vorgeschlagenen Verfahrens und die Einsatzmöglichkeiten für die zur Durchführung dieses Verfahrens eingerichteten Vorrichtungen 11, 14 sind also insbesondere Warmwasserheizungsanlagen, in denen die Leistungsanpassung der zentralen Heizungsversorgung durch Veränderung der Vorlauftemperatur ϑVL oder des Massestromes m des flüssigen Wärmeträgers (Heizmittel) Heizfluid) bzw. durch Kombination der Veränderung von Vorlauftemperatur ϑVL und Massenstrom m erfolgt und in denen die Regelung der Raumtemperatur mittels Variation des Heizkörpermassestromes m erfolgt und in denen die Erfassung und Verteilung der Wärmemenge für die Raumheizung mittels elektronischer Heizkostenverteiler nach dem 2- oder 3-Fühlerprinzip erfolgt.
  • Inbegriffen sind insbesondere Heizungsanlagen, in denen an den Heizkörperzuleitungen
    • die Variation des Massestromes m mittels Heizkörperventilen erfolgt und/oder
    • die Regelung der Raumtemperatur mit Thermostatventilen erfolgt und/oder
    • die Regelung der Raumtemperatur mit elektronisch gesteuerten Ventilen erfolgt und/oder
    • die Variation des Massestromes m mittels elektronisch gesteuerter Pumpen erfolgt und/oder
    • die Regelung der Raumtemperatur mit elektronisch gesteuerten Pumpen erfolgt. Ferner sind an den Heizkörpern
    • elektronische Heizkostenverteiler nach dem 2-Fühlerprinzip installiert, welche jeweils eine heizkörper- und eine raumluftseitige Temperatur erfassen oder
    • elektronische Heizkostenverteiler nach dem 3-Fühlerprinzip oder andere geeignete Geräte installiert sind, welche
      • + die Heizmittelvorlauf-, die Heizmittelrücklauftemperatur und die Raumlufttemperatur oder
      • + die Heizmittelvorlauftemperatur und eine heizkörper- und eine raumluftseitige Temperatur oder
      • + die Heizmittelrücklauftemperatur und eine heizkörper- und eine raumluftseitige Temperatur oder
      • + die Heizkörperoberflächentemperatur und die Raumlufttemperatur
      erfassen.
  • Die Vorteile der Erfindung liegen in der Nachrüstbarkeit bei bestehenden Heizungsanlagen, die mit elektronischen und kommunikationsfähigen Heizkostenverteilern ausgestattet wurden und die erforderlichen Temperaturen bereits übertragen. Elektronische Funkheizkostenverteiler sind das besonders geeignete Messgerät, Sie sind heute Stand der Technik und daher sehr kostengünstig.
  • Für die Durchführung des erfindungsgemäßen Verfahrens reichen die Standardfunktionen üblicher Heizkostenverteiler aus. Daher ist auch für Installation des vorgeschlagenen Systems keine Begehung der Wohnungen erforderlich, die bereits mit entsprechenden Heizkostenverteilern ausgestattet sind. Erforderlich ist lediglich ein Softwareupdate beispielsweise der Datensammler, in die die Vorrichtung zur Detektion des hydraulischen Zustands einfacher Weise integriert werden kann. Diese Datensammler sind häufig außerhalb der Wohnung, beispielsweise im Hausflur angebracht. Ferner sind uni- und bidirektionale Funkheizkostenverteiler verwendbar. Die Erfindung kann auch mit Systemen der elektronischen Einzelraumtemperaturregelung kombiniert werden.
  • Im Ergebnis liefert die Erfindung einen laufend aktualisierten ,hydraulischen Gebäude- bzw. Heizkreisfingerabdruck'. Dieser kann Gebäudeeigentümem regelmäßig übergeben werden, um ihn für Maßnahmen zur Verbesserung des hydraulischen Abgleichs zu motivieren. Außerdem bietet die Erfindung die Möglichkeit, den Erfolg von Maßnahmen zur Verbesserung des hydraulischen Abgleichs zu überprüfen, auch im Femmonitoring ohne Gebäudezutritt.
  • Bezugszeichenliste:
  • 1(a-f)
    Heizkörperventil
    2(a-f)
    Heizkörper
    3(a-f)
    Drosselventil
    4
    Heizungsumwälzpumpe
    5
    Heizkessel
    6
    Heizungsstrangvorlauf
    7
    Heizungsstrangrücklauf
    8
    Strangreguliereinrichtung, Strangregulierventil
    9
    Heizungsanlage
    10
    Wohneinheit
    11
    Vorrichtung zur Detektion des hydraulischen Abgleichs
    12
    Heizkostenverteiler
    13
    Servicezentrale
    14
    Vorrichtung zur Detektion des hydraulischen Abgleichs
    15
    Servicezentrale

Claims (16)

  1. Verfahren zur Detektion des hydraulischen Zustands einer Heizungsanlage (9) mit über ein Fluidströmungssystem (6, 7) verbundenen Heizkörpern (2), die von einem Heizmedium mit einer Vorlauftemperatur (ϑVL) durchströmt werden, dadurch gekennzeichnet, dass die Vorlauftemperatur (ϑVL) und für jeden Heizkörper (2) eine aus einer Differenz einer heizkörperseitigen und raumluftseitigen Temperatur abgeleitete Übertemperatur (Δ) zu verschiedenen Zeitpunkten gemessen und daraus eine den Wärmebedarf des Heizkörpers (2) anzeigende Kenngröße (Δlog, BLV, VZ, GBLV, GVZ) ermittelt wird und dass die Veränderung der Kenngröße (Δlog, BLV, VZ, GBLV, GVZ) über der Zeit oder der Vorlauftemperatur (ϑVL) und die zeitliche Veränderung der Vorlauftemperatur (ϑVL) ausgewertet werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Kenngröße die logarithmische Heizkörperübertemperatur (Δlog), die Differenz (ΔHKV) zwischen heizkörperseitigen und raumluftseitigen Heizkörpertemperaturen oder die Differenz (Δ(ϑHKLuft)) zwischen der Heizkörperoberflächentemperatur (ϑHK) und der Raumlufttemperatur (ϑLuft) verwendet wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass als Kenngröße das aus der aktuellen Heizkörperleistung und der Heizkörperleistung bei Nennmassenstrom und aktueller Vorlauftemperatur bestimmte Heizkörper-Betriebsleistungsverhältnis (BLV) verwendet wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Kenngröße ein den aktuellen Wärmebedarf eines Heizkörpers anzeigender Heizköperversorgungszustand (VZ) verwendet wird.
  5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass als Kenngröße ein Heizkreis- oder Gebäude-Betriebsleistungsverhältnis (GBLV) oder ein Heizkreis- oder Gebäudeversorgungszustand (GVZ) verwendet wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Veränderung der Kenngrößen (Δlog' BLV, VZ, GBLV, GVZ) über Gradientenbildung oder Verhältnisse der Differenzen erzeugt wird.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Veränderungen der Kenngrößen (Δlog, BLV, VZ, GBLV, GVZ) zeitlich gemittelt werden.
  8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Veränderung der Kenngrößen (Δlog, BLV, VZ, GBLV, GVZ) über der Zeit oder der Vorlauftemperatur (ϑVL) mit festgelegten Kennwerten verglichen werden, um einen hydraulisch ausreichend versorgten Zustand (NVZ, GNVZ) von einem hydraulisch unterversorgten Zustand (UVZ, GUVZ) zu unterscheiden.
  9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Zustandstabelle mit den Zuständen der hydraulischen Versorgung (NVZ, UVZ) der einzelnen Heizkörper (2) und/oder der hydraulischen Versorgung (GNVZ, GUVZ) der gesamten Heizungsanlage (9) angelegt wird.
  10. Vorrichtung zur Detektion des hydraulischen Zustands einer Heizungsanlage (9) mit über ein Fluidströmungssystem (6, 7) verbundenen Heizkörpern (2), die von einem Heizmedium mit einer Vorlauftemperatur (ϑVL) durchströmt werden, mit mindestens einem Anschluss zur Eingabe der Vorlauftemperatur (ϑVL), mindestens einem Anschluss zur Eingabe einer heizkörperseitigen Temperatur (ϑHKS) und mindestens einen Anschluss zur Eingabe einer raumluftseitigen Temperatur (ϑRLS) und einer Recheneinheit, dadurch gekennzeichnet, dass die Recheneinheit dazu eingerichtet ist, aus den eingegebenen Temperaturwerten eine den Wärmebedarf des Heizkörpers (2) anzeigende Kenngröße (Δlog, BLV, VZ, GBLV, GVZ) zu ermitteln und die Veränderung der Kenngröße (Δlog, BLV, VZ, GBLV, GVZ) über der Zeit oder über der Vorlauftemperatur (ϑVL) und die zeitliche Veränderung der Vorlauftemperatur (ϑVL) auszuwerten.
  11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass mehrere Anschlüsse zur Eingabe von Temperaturen als Anschluss an einen Heizkostenverteiler (12) ausgebildet sind.
  12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass die Vorrichtung (11, 14) Anschlüsse für mehrere Heizkostenverteiler (12) aufweist.
  13. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass die Vorrichtung (11, 14) in einen Heizkostenverteiler (12) intergiert ist.
  14. Vorrichtung nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, dass die Vorrichtung (11, 14) einen Anschluss zur Ausgabe von ermittelten hydraulischen Zuständen (NVZ, UVZ, GNVZ, GUVZ) aufweist.
  15. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, dass eine Servicezentrale (13, 15) zur Darstellung der hydraulischen Zustände (NVZ, UVZ, GNVZ, GUVZ) vorgesehen ist.
  16. Vorrichtung nach einem der Ansprüche 10 bis 15, dadurch gekennzeichnet, dass einige oder alle Anschlüsse als Funkkommunikationsanschlüsse ausgebildet sind.
EP07024614.5A 2006-12-20 2007-12-19 Verfahren und Vorrichtung zur Detektion des hydraulischen Zustands einer Heizungsanlage Active EP1936290B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL07024614T PL1936290T3 (pl) 2006-12-20 2007-12-19 Sposób oraz urządzenie do wykrywania hydraulicznego stanu instalacji grzewczej

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006060324A DE102006060324A1 (de) 2006-12-20 2006-12-20 Verfahren und System zur Detektion des hydraulischen Abgleichs einer Heizungsanlage

Publications (3)

Publication Number Publication Date
EP1936290A2 true EP1936290A2 (de) 2008-06-25
EP1936290A3 EP1936290A3 (de) 2013-01-23
EP1936290B1 EP1936290B1 (de) 2015-09-30

Family

ID=38777747

Family Applications (2)

Application Number Title Priority Date Filing Date
EP07017809.0A Active EP1936288B1 (de) 2006-12-20 2007-09-12 Verfahren und System zur Detektion des hydraulischen Abgleichs einer Heizungsanlage
EP07024614.5A Active EP1936290B1 (de) 2006-12-20 2007-12-19 Verfahren und Vorrichtung zur Detektion des hydraulischen Zustands einer Heizungsanlage

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP07017809.0A Active EP1936288B1 (de) 2006-12-20 2007-09-12 Verfahren und System zur Detektion des hydraulischen Abgleichs einer Heizungsanlage

Country Status (4)

Country Link
EP (2) EP1936288B1 (de)
DE (1) DE102006060324A1 (de)
DK (2) DK1936288T3 (de)
PL (2) PL1936288T3 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010034769A1 (de) * 2010-08-18 2012-02-23 Ista International Gmbh Verfahren und System zur Durchführung eines hydraulischen Abgleichs in einem Heizungssystem
DE102014102275A1 (de) * 2014-02-21 2015-08-27 Eq-3 Holding Gmbh Verfahren zur Regelung einer Heizungs- und/oder Klimaanlage und Heizungs- und/oder Klimaanlage hierzu
CN115076767A (zh) * 2022-07-21 2022-09-20 南通金立电气工程有限公司 基于人工智能的自适应暖气调节系统
DE102014202738B4 (de) 2014-02-14 2022-11-17 Robert Bosch Gmbh Verfahren zum automatisierten hydraulischen Abgleich einer Heizungsanlage

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2452043C2 (en) * 2007-08-21 2023-07-26 Chalmor Ltd Thermostatic control device
FR2931226B1 (fr) * 2008-05-19 2013-08-16 Acome Soc Coop Production Procede et systeme de controle d'un circuit hydraulique a plusieurs boucles d'echange de chaleur
DE102011018698A1 (de) * 2011-04-26 2012-10-31 Rwe Effizienz Gmbh Verfahren und System zum automatischen hydraulischen Abgleichen von Heizkörpern
ES2791888T3 (es) * 2015-07-03 2020-11-06 Siemens Schweiz Ag Control de calefacción, ventilación y aire acondicionado
DE102015121418B3 (de) 2015-12-09 2017-03-16 Oventrop Gmbh & Co. Kg Verfahren zum automatischen hydraulischen Abgleich von Verbrauchern in einer Heizungs- und/oder Kühlanlage
DE102016104204A1 (de) * 2016-03-08 2017-09-14 Techem Energy Services Gmbh Vorrichtung und Verfahren zur Ermittlung des Betriebszustands eines Heizkörpers mit einem Heizkörperregelventil
DE102017104286B4 (de) * 2017-03-01 2021-11-25 Robert Bosch Gmbh Verfahren zum Betreiben eines Gebäudeklimatisierungssystems mit einer Vielzahl von Wärmetauschern in einem dynamisch hydraulisch abgeglichenen Zustand
DE102017218139A1 (de) * 2017-10-11 2019-04-11 Viessmann Werke Gmbh & Co Kg Verfahren zum Betreiben einer Heizungsanlage
DE102019109540A1 (de) * 2019-04-11 2020-10-15 Rehau Ag + Co Verfahren zur Durchführung eines hydraulischen Abgleichs eines Heizsystems für ein Gebäude sowie dazu ausgebildetes Heizsystem
DE102019120117B4 (de) * 2019-07-25 2021-08-19 Straub Kg Einstellvorrichtung und Verfahren zur verbesserten Feinregulierung eines Ventilspalts
DE102020120043A1 (de) 2020-07-07 2022-01-13 Blossom-IC Intelligent Controls GmbH & Co. KG Heizungssystem mit automatischem adaptivem hydraulischem Abgleich
EP3936770A1 (de) * 2020-07-07 2022-01-12 blossom-Ic Intelligent Controls GmbH & Co. KG Heizungssystem mit automatischem adaptivem hydraulischem abgleich
DE102022120825A1 (de) * 2022-08-17 2024-02-22 Blossom-ic-intelligent controls AG Mess- und Analyse-System zur Bewertung des hydraulischen Abgleichs einer Raumheizungsanlage

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4221725A1 (de) 1992-07-02 1994-01-05 Buderus Heiztechnik Gmbh Verfahren zum automatischen Erzielen eines hydraulischen Abgleichs in einer Heizungsanlage
DE19506628A1 (de) 1995-02-25 1996-08-29 Tekmar Elektronik Gmbh & Co Verfahren und Anordnung zur Regelung eines Niedertemperatur-Heizsystems
DE10003394A1 (de) 1999-07-28 2001-02-22 Siegfried Leverberg Verfahren zum hydraulischen Abgleichen einer Heizungsanlage
DE10243076A1 (de) 2001-10-02 2003-04-17 Andreas Czech System zur automatischen Einstellung des Volumenstroms von Heizkörpern
WO2003052536A2 (de) 2001-12-19 2003-06-26 Techem Development Gmbh Verfahren und vorrichtung zur adaption der wärmeleistung in heizungsanlagen

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3568859D1 (en) * 1984-12-24 1989-04-20 Tno Apparatus and method for adjusting a central heating installation
DE20009158U1 (de) * 2000-05-20 2000-08-24 Techem Service Ag Vorrichtung zur Erfassung der Wärmeabgabe eines Heizkörpers und Regelung der Raumtemperatur
DE10312825B4 (de) * 2003-03-22 2006-01-12 Danfoss A/S Verfahren zum Einstellen mehrerer parallel geschalteter Wärmetauscher

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4221725A1 (de) 1992-07-02 1994-01-05 Buderus Heiztechnik Gmbh Verfahren zum automatischen Erzielen eines hydraulischen Abgleichs in einer Heizungsanlage
DE19506628A1 (de) 1995-02-25 1996-08-29 Tekmar Elektronik Gmbh & Co Verfahren und Anordnung zur Regelung eines Niedertemperatur-Heizsystems
DE10003394A1 (de) 1999-07-28 2001-02-22 Siegfried Leverberg Verfahren zum hydraulischen Abgleichen einer Heizungsanlage
DE10243076A1 (de) 2001-10-02 2003-04-17 Andreas Czech System zur automatischen Einstellung des Volumenstroms von Heizkörpern
WO2003052536A2 (de) 2001-12-19 2003-06-26 Techem Development Gmbh Verfahren und vorrichtung zur adaption der wärmeleistung in heizungsanlagen

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010034769A1 (de) * 2010-08-18 2012-02-23 Ista International Gmbh Verfahren und System zur Durchführung eines hydraulischen Abgleichs in einem Heizungssystem
DE102014202738B4 (de) 2014-02-14 2022-11-17 Robert Bosch Gmbh Verfahren zum automatisierten hydraulischen Abgleich einer Heizungsanlage
DE102014102275A1 (de) * 2014-02-21 2015-08-27 Eq-3 Holding Gmbh Verfahren zur Regelung einer Heizungs- und/oder Klimaanlage und Heizungs- und/oder Klimaanlage hierzu
DE102014102275B4 (de) * 2014-02-21 2021-05-27 Eq-3 Holding Gmbh Verfahren zur Regelung einer Heizungs- und/oder Klimaanlage und Heizungs- und/oder Klimaanlage hierzu
CN115076767A (zh) * 2022-07-21 2022-09-20 南通金立电气工程有限公司 基于人工智能的自适应暖气调节系统

Also Published As

Publication number Publication date
EP1936288A2 (de) 2008-06-25
EP1936290A3 (de) 2013-01-23
PL1936288T3 (pl) 2015-12-31
DE102006060324A1 (de) 2008-07-03
EP1936290B1 (de) 2015-09-30
EP1936288A3 (de) 2013-01-23
PL1936290T3 (pl) 2016-06-30
EP1936288B1 (de) 2015-07-22
DK1936290T3 (da) 2016-01-11
DK1936288T3 (da) 2015-10-12

Similar Documents

Publication Publication Date Title
EP1936290B1 (de) Verfahren und Vorrichtung zur Detektion des hydraulischen Zustands einer Heizungsanlage
EP1645928B1 (de) Verfahren zur Bestimmung eines Heizflächen-Versorgungszustands und Versorgungszustandsregler
EP3217157B1 (de) Heizkostenverteiler und verfahren zur erfassung der durch einen heizkörper abgegebenen wärmemenge
EP2009536B1 (de) Verfahren und Vorrichtung zur Einstellung der Heizleistungsreserve
EP2182297A2 (de) Verfahren und Vorrichtung zur wärmebedarfsgeführten Adaption der Vorlauftemperatur einer Heizungsanlage
DE102012023848A1 (de) Verfahren und Vorrichtung zur Vereinfachung des hydraulischen Abgleichs von fluiddurchströmten Leitungsnetzen
DE102014102275B4 (de) Verfahren zur Regelung einer Heizungs- und/oder Klimaanlage und Heizungs- und/oder Klimaanlage hierzu
EP1074795B1 (de) Verfahren zum hydraulischen Abgleichen einer Heizungsanlage
EP3220065B1 (de) Verfahren und steuereinrichtung zur erhöhung des nutzungsgrads eines wärmeerzeugers in einer heizungsanlage
EP2420748A2 (de) Verfahren und System zur Durchführung eines hydraulischen Abgleichs in einem Heizungssystem
EP3473939A1 (de) Verfahren zum betreiben einer heizungsanlage und heizungsanlage
EP1235131B1 (de) Raumtemperaturregelung
EP2327971B1 (de) Verfahren zur Analyse der Wärmemengenverteilung in einem Heizsystem und Vorrichtung zur Durchführung des Verfahrens
EP1662240B1 (de) Heizkostenverteiler
EP3217104B1 (de) Vorrichtung und verfahren zur ermittlung des betriebszustands eines heizkörpers mit einem heizkörperregelventil
EP3168540A1 (de) Verfahren zum durchführen eines automatisierten hydraulischen abgleichs, ventil und heizungsanlage hierzu
DE102015113340A1 (de) Heizungsanlage und Verfahren zum Betreiben einer Heizungsanlage
DE19756104C5 (de) Verfahren zur Regelung der Vorlauftemperatur einer Zentralheizungsanlage bzw. eines Heizkreises
DE102021203000B4 (de) Verfahren zum Betrieb einer Heizkostenverteilervorrichtung und Heizkostenverteilervorrichtung
DE102021203001B4 (de) Verfahren zum Betrieb einer Heizkostenverteilervorrichtung und Heizkostenverteilervorrichtung
EP3220066B1 (de) Verfahren und steuereinrichtung zur erhöhung des nutzungsgrads eines wärmeerzeugers in einer heizungsanlage
DE102023209111A1 (de) Verfahren zum Durchführen eines hydraulischen Abgleichs einer Heizungsanlage
WO2023217752A1 (de) Verfahren zur überwachung und/oder steuerung einer heizungsanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F24D 19/10 20060101AFI20121217BHEP

17P Request for examination filed

Effective date: 20130716

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20131106

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150515

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 752652

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007014263

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOHEST AG, CH

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20160107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151231

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150930

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160130

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160201

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007014263

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151219

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151230

26N No opposition filed

Effective date: 20160701

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151230

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20071219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20191217

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20191220

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20201215

Year of fee payment: 14

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20201231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20211220

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20211230

Year of fee payment: 15

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 752652

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221219

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231214

Year of fee payment: 17