EP1936156B1 - Verfahren zur Steuerung eines Verbrennungsmotors - Google Patents

Verfahren zur Steuerung eines Verbrennungsmotors Download PDF

Info

Publication number
EP1936156B1
EP1936156B1 EP06301279A EP06301279A EP1936156B1 EP 1936156 B1 EP1936156 B1 EP 1936156B1 EP 06301279 A EP06301279 A EP 06301279A EP 06301279 A EP06301279 A EP 06301279A EP 1936156 B1 EP1936156 B1 EP 1936156B1
Authority
EP
European Patent Office
Prior art keywords
curve
determining
depending
cycle
representative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06301279A
Other languages
English (en)
French (fr)
Other versions
EP1936156A1 (de
Inventor
Ludovic Peron
Vincent Lacour
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delphi Technologies Inc
Original Assignee
Delphi Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delphi Technologies Inc filed Critical Delphi Technologies Inc
Priority to DE602006005384T priority Critical patent/DE602006005384D1/de
Priority to AT06301279T priority patent/ATE423898T1/de
Priority to EP06301279A priority patent/EP1936156B1/de
Priority to PCT/FR2007/052558 priority patent/WO2008084170A2/fr
Publication of EP1936156A1 publication Critical patent/EP1936156A1/de
Application granted granted Critical
Publication of EP1936156B1 publication Critical patent/EP1936156B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections

Definitions

  • the present invention relates to a method of regulating an internal combustion engine.
  • a known injection strategy consists in regulating the injection in closed loop, as a function of the pressure internal to the cylinders.
  • the document FR-2 864 840-A1 describes a strategy of this type.
  • a first quantity characterizing the combustion evolution in the combustion chamber of at least one cylinder is determined as a function of a signal supplied by a combustion chamber pressure sensor. More precisely, the first magnitude is calculated by a conventional algorithm as a function of the first law of thermodynamics.
  • the object of the invention is to provide a control method whose accuracy is improved.
  • the fourth curve is effectively representative of the rate of heat emission during a cycle, and in particular has a good repeatability, that is to say gives the same result in many cases. same conditions, indicates a zero rate after combustion, and is insensitive to errors on the pressure sensor gain, the time shift, ...
  • the overall accuracy of the regulation is improved.
  • the fourth curve is transformed into a first set of restricted quantities, and therefore easily manipulated.
  • a device which implements the method for example a microcontroller.
  • said first set comprises a determined number greater than one of quantities of quantity and of quantities of time corresponding to respective portions of said cycle, said determined number being the maximum number of injection during a cycle.
  • said second set comprises at least one target quantity quantity and a target quantity of time, said target quantity quantity and said target quantity of time being determined as a function of an engine speed and a second pre-recorded data table.
  • the determination of said second set does not require a large computing power.
  • the data table can be optimized in a design phase and calibration of the engine.
  • said respective portions are predetermined according to said second data table.
  • the division of the portion cycle must not be performed in real time at each cycle. It is independent of the injections made in the particular cycle.
  • a cutting of this type makes it possible in particular to take into account superimposed combustions over time, for example a combustion corresponding to a pilot injection followed by a combustion corresponding to a main injection.
  • said motor comprises a plurality of rolls, said first set and said second set being determined independently for each roll, said at least one shift amount being determined for each cylinder according to all of said first sets and second sets.
  • the invention also provides a regulating device capable of being connected to at least one pressure sensor and to at least one injector, and comprising regulating means able to implement the method according to the invention above.
  • the device may for example be a microcontroller programmed appropriately. It may be a microcontroller of known type, in which a software has been loaded for the implementation of said method.
  • the Figures 1 and 2 schematically represent an internal combustion engine 1 provided with cylinders, and a regulation device 2 connected to the engine 1.
  • the engine 1 is equipped with sensors 3, including in particular pressure sensors measuring the internal pressure of each cylinder and a crank angle sensor, and actuators 4 able to actuate injectors for injecting fuel into the cylinders.
  • the regulating device 2 is able to receive signals coming from the sensors 3, and is able to transmit signals towards the actuators 4.
  • the regulating device 2 is for example made in the form of a microprocessor of a known type, in which a software has been loaded for the implementation of a regulation method according to one embodiment of the invention, described below.
  • a first strategy 10 is a closed-loop control of the injection, based on the signals coming from the sensors 3, and which determines shift magnitudes for the injection control 11 which controls the actuators 4.
  • a second strategy 20 is a diagnosis of the shift magnitudes of the first strategy 10.
  • a third strategy 30 is a correction of an injector deflection, which acts on the injection control 11.
  • the second strategy 20 may for example decide to activate the third strategy 30 or act on a control of the air intake system 40.
  • the regulating device 2 is also connected to an air intake system 40, which allows the control of the intake system of air 40 to act for example on the admission of gases, the rate of reuse of gases (EGR), ...
  • Each strategy 10, 20 and 30 as well as the injection control 11 and the control of the air intake system 40 is for example carried out by a module of the software.
  • the figure 2 shows that the first strategy 10 comprises four steps.
  • the heat emission rate is determined during a cycle.
  • the rate determined in step 12 is converted into a first set of parameters.
  • Step 14 consists in determining a second set of parameters corresponding to a target combustion.
  • Step 15 consists in determining shift magnitudes for the injection control 11, which determines a control signal of the actuators 4.
  • the Figures 3 to 7 illustrate the first step 12.
  • the explanations will relate to curves which represent continuous physical quantities in abscissa and ordinate.
  • these curves are processed by the regulation device 2 of numerically.
  • the horizontal axis represents the crankshaft angle but could equivalently represent the time.
  • the curves 16 and 17 respectively represent dP / P and Vk during a cycle, as a function of the crankshaft angle.
  • Vkmean is determined according to the engine speed, that is to say as a function of the speed of rotation and the load.
  • Vkmean is determined by using a data table pre-stored in the memory of the regulating device 2.
  • the pre-recorded data are determined in a calibration phase of the engine, making the average on the various cylinders of the ratio dP / P in the absence of combustion, for different regimes.
  • Vkmean is determined by interpolation of these data.
  • the curve 19 is determined by calculating the difference between the derivative of the curve 18 and the curve 16.
  • the curve 19 is filtered and integrated, and the result is added to the curve 18, which gives the curve 41 of the figure 6 .
  • the curve 41 is shifted to be aligned with the curve 16 on the cycle, which gives the curve 17 representing Vk.
  • Curve 42 represents the rate of heat emission during a cycle dQ.
  • Vk the rate of heat emission during a cycle dQ.
  • each curve is divided into a number N of windows (also called portions).
  • the number N corresponds to the maximum number of injections during a cycle. For example, in an engine in which there are one, two or three injections during a cycle, depending on the engine speed, N will be equal to 3.
  • the windows are predetermined, that is to say that they are not calculated cycle by cycle but only once when designing and tuning the engine.
  • the windows are for example determined during the optimization process described below with reference to step 14. Preferably, there is an overlap between the windows.
  • a THR parameter correlated with the quantity of heat emitted during the window is determined, for example by integrating the curve dQ on the window, and a CoG parameter correlated with the distribution of the heat emission at the window. during the window, for example by calculating the center of gravity of the curve dQ on the window.
  • a first set of 2N parameters is obtained which represents the combustion in the cylinder.
  • the total number of parameters is 2N * the number of cylinders.
  • step 14 determine target parameters that characterize a target combustion, as a function of the engine speed. These parameters are, for each window, the parameters THR * and CoG * defined above, which correspond to a target combustion verifying performance and emission criteria for flue gases. In operation, the parameters THR * and CoG * are determined according to pre-recorded tables which give the values of the parameters according to the engine speed.
  • These pre-recorded tables are determined in a design and calibration phase of the engine, by applying the calculations described with reference to steps 12 and 13 to the signals from the sensors 3 during a target combustion, for different engine speeds.
  • An optimization program is used to define the windows used to split the cycle so that the tables are as linear as possible.
  • the THR and CoG parameters are calculated in the same way as that used to calculate the target parameters THR * and CoG * recorded in the tables, a precise precision of these calculations is not necessary.
  • step 15 offset magnitudes are determined for the injection control 11.
  • the control signal issued by the injection control 11 corresponds to the control signal of the preceding cycle, corrected by the offset quantities determined by the control.
  • Step 15 Similar to the THR and CoG parameters, the offset magnitudes comprise quantities related to the quantity of fuel injected, and quantities related to the injection instants, or equivalent to the crankshaft injection angles.
  • step 15 the difference between the parameters THR, CoG, and THR *, CoG * is determined for each cylinder and for each window, and this difference serves as an input quantity for a PID regulator 43.
  • the output quantities calculated by the PID regulator 43 are then supplied to a harmonization module 44 and a clipping module 45.
  • the harmonization module 44 does not process the output quantities of the PID regulator 43 independently of one another, but in a global manner. Based on rules, it makes it possible to ensure coherence between the output quantities of the PID regulator 43 before these become the offset quantities supplied to the injection control 11. For example, in the case of a cycle normally presenting two equal pre-injections, it must be ensured that the offset magnitudes cause the same change in both pre-injections.
  • the clipping module 45 makes it possible to limit the amplitude of the offset magnitudes in order to guarantee the robustness of the regulation. In fact, in nominal operation, the offset quantities should be zero.
  • the first strategy 10 is a fast loop, that is to say that it acts cycle by cycle.
  • the other strategies 20 and 30 make it possible to maintain an operation close to nominal operation in the event of excessive deviation. Indeed, if one or some of the output variables of the PID regulator 43 are too large, they are clipped by the module 45, and the necessary correction can be made by the strategies 20 and 30 as described below.
  • the second strategy 20 is a diagnosis of the offset quantities determined by the first strategy 10.
  • the purpose of the diagnosis is to continuously monitor the outputs of the first strategy 10, to detect a drift or malfunction of the system, to identify the cause of drift and ask another strategy to take corrective action, if possible.
  • the second strategy is a slow loop, as opposed to the first so-called fast loop strategy, in that it does not necessarily produce an effect at each cycle.
  • the diagnosis made by the second strategy 20 can be divided into two steps: in a first step, the shift magnitudes determined by the first strategy 10 are checked, and in a second step, it is decided, according to the result of the first step, if corrective measures are necessary and if so, which ones.
  • the first step is for example carried out by defining a deflection threshold 46 and a malfunction threshold 47 for each offset quantity.
  • the thresholds 46 and 47 may depend on the engine speed.
  • the figure 9 represents the successive values of one of the shift magnitudes O (i) determined by the first strategy 10, and the thresholds 46 and 47. As long as O (i) is lower, in absolute value, than the deflection threshold 46, the value "1-no problem" is associated with O (i). If O (i) exceeds the threshold 46 while remaining below the threshold 47, the value "detected 2-deviation” is associated with O (i). Finally, if O (i) exceeds threshold 47, the value "detected 3-malfunction" is associated with O (i).
  • the state is "detected 2-deviation"
  • a deflection correction measure is necessary for the cylinder in question.
  • Such a correction measure is described below with reference to the third strategy 30.
  • the state is "2-deviation detected”
  • a measure of correction of the air intake is necessary for the cylinder in question.
  • Such a correction measure is made by modifying the parameters of the control of the air intake system 40, for example by modifying the rate of reuse of the gases.
  • the third strategy 30 is a correction of an injection deflection.
  • the figure 11 is a graph which represents the quantity of fuel delivered by an injector, as a function of the duration of a pulse present in the control signal of the injector.
  • Curve 48 represents the nominal behavior of the injector
  • curve 49 represents the behavior of the injector in case of deviation, for example due to mechanical wear. Note that for a pulse of given duration, the amount of fuel injected in case of deviation, given by the curve 49, will be lower than the nominal fuel quantity given by the curve 48.
  • the injection control 11 determines an injector control signal including a pulse in step 50.
  • a compensation time is added to the duration of the pulse in step 51, which amounts to staggering. curve 49 to the left as shown in the figure 12 , so that the quantity of fuel injected corresponds to the nominal quantity.
  • the compensation time is determined from a table 52, as a function of the pressure of the common ramp, as shown by the arrow 53.
  • the injector has not normally undergone any deviation, and the table 52 contains only null values.
  • the purpose of the third strategy 30 is to update the table 52, when the second strategy 20 decides that it becomes necessary.
  • the third strategy is based on the correlation between the heat emitted during a pre-injection (pilot injection) HR_PIL, and the quantity of fuel delivered by the pilot injection. This correlation is represented in figure 14 .
  • HR_PIL is calculated according to the internal pressure of the cylinder, in a manner equivalent to the calculation of THR in the first strategy 10, by defining a window which corresponds to the pilot injection.
  • the figure 15 is a step diagram that represents a closed-loop embodiment of the third strategy 30.
  • Step 54 is optional and consists of calculating HR_PIL in the absence of pilot injection. If the result is non-zero, it can be stored as the correction value HR_COR which is used to correct HR_PIL in step 56.
  • HR_PIL is calculated in the presence of a given pulse that produces pilot combustion, and in step 56 HR_PIL is compared with a reference value HR_REF.
  • HR_REF corresponds to the heat emitted during a reference pilot injection, which depends on the specifications of the particular application.
  • step 57 If HR_PIL ⁇ HR_REF - HR_ ⁇ , we go to step 57 where a variable TRIM is increased proportionally to the difference IHR_PIL - HR_REFI. Then we return to step 55.
  • step 58 If HR_PIL> HR_REF + HR_A, go to step 58 where the variable TRIM is decreased proportionally to the difference IHR_PIL - HR_REFI. Then we return to step 55.
  • HR_ ⁇ is a margin of error determined for each application as a function of the signal-to-noise ratio of the heat emission.
  • This embodiment is called a closed-loop mode because it uses a calculation loop to determine the TRIM variable used to update the table.
  • variable TRIM is determined without using a calculation loop. This embodiment is therefore called open-loop mode.
  • a reference curve is stored, for example in the memory of the control device 2.
  • This reference curve gives HR_PIL as a function of the duration of the injection pulse, in the absence of deviation of the injector.
  • This reference curve is for example measured during a calibration step during commissioning of the injector.
  • the TRIM variable is determined according to the calculated HR_PIL value and the HR_PIL value given by the reference curve.
  • the TRIM variable is used to update the table 52.
  • the third strategy 30 could be used independently of the first strategy 10, for example with another closed-loop control strategy to determine the offset quantities used by the injection control 11.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Claims (11)

  1. Verfahren zur Steuerung eines Verbrennungsmotors (1), welches die Schritte umfaßt, bestehend aus:
    - Bestimmen (12, 13) einer ersten Gruppe von Größen, welche für die Verbrennung in einem Zylinder des Motors repräsentativ sind, in Abhängigkeit eines Drucksignals, welches für den Innendruck des Zylinders während eines Zyklus repräsentativ ist,
    - Bestimmen (11) wenigstens eines Steuersignals eines Einspritzers, in Abhängigkeit von der ersten Gruppe und einer zweiten Gruppe von Größen, welche für eine gewünschte Verbrennung repräsentativ sind,
    dadurch gekennzeichnet, dass es die Schritte umfasst, bestehend aus:
    - Bestimmen einer ersten Kurve (16), welche für das Verhältnis zwischen der Ableitung des Innendrucks und des Innendrucks während des Zyklus repräsentativ ist,
    - Bestimmen einer zweiten Kurve (18) in Abhängigkeit eines Motorregimes und einer ersten vorab gespeicherten Wertetabelle,
    - Bestimmen einer dritten Kurve (17), welche bei nicht vorhandener Verbrennung für das Verhältnis zwischen der Ableitung des Innendrucks und des Innendrucks während des Zyklus repräsentativ ist, in Abhängigkeit von der ersten Kurve und der zweiten Kurve,
    - Bestimmen einer vierten Kurve (42), welche für die Wärmeemissionsrate während eines Zyklus in Abhängigkeit von dem Unterschied zwischen der ersten Kurve und der dritten Kurve repräsentativ ist,
    - Bestimmen der ersten Gruppe in Abhängigkeit von der vierten Kurve.
  2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass es die Schritte umfasst, bestehend aus:
    - Bestimmen wenigstens einer Mengengröße (THR), welche für die Wärmemenge repräsentativ ist, die während eines Abschnitts des Zyklus emittiert wird, in Abhängigkeit von der vierten Kurve,
    - Bestimmen wenigstens einer Zeitgröße (CoG), welche für die Verteilung der Wärmeemission während des Abschnitts des Zyklus repräsentativ ist, in Abhängigkeit von der vierten Kurve,
    wobei die erste Gruppe wenigstens die Mengengröße und die Zeitgröße umfasst.
  3. Verfahren gemäß Anspruch 2, bei welchem die erste Gruppe eine vorgegebene Zahl umfasst, die größer als eine der Mengengrößen und der Zeitgrößen ist, welche den jeweiligen Abschnitten des Zyklus entsprechen, wobei die vorgegebene Zahl der maximalen Anzahl der Einspritzvorgänge während eines Zyklus entspricht.
  4. Verfahren gemäß einem der Ansprüche 1 bis 3, bei welchem die zweite Gruppe wenigstens eine Zielmengengröße (THR*) und eine Zielzeitgröße (GoG*) aufweist, wobei die Zielmengengröße und die Zielzeitgröße in Abhängigkeit eines Betriebszustandes des Motors und einer zweiten vorgegebenen Wertetabelle bestimmt werden (14).
  5. Verfahren gemäß Anspruch 3 in Kombination mit Anspruch 4, bei welchem die jeweiligen Abschnitte in Abhängigkeit von der zweiten Wertetabelle vorgegeben sind.
  6. Verfahren gemäß einem der Ansprüche 1 bis 5, welches die Schritte umfasst, bestehend aus:
    - Bestimmen (15) wenigstens einer Versatzgröße in Abhängigkeit von den ersten und zweiten Gruppen,
    - Bestimmen (11) des Steuersignals in Abhängigkeit von wenigstens einer Versatzgröße.
  7. Verfahren gemäß Anspruch 6, bei welchem der Motor mehrere Zylinder umfasst, wobei die erste Gruppe und die zweite Gruppe unabhängig für jeden Zylinder bestimmt werden, wobei die wenigstens eine Versatzgröße für jeden Zylinder in Abhängigkeit von den ersten Gruppen und den zweiten Gruppen bestimmt wird.
  8. Verfahren gemäß Anspruch 7, welches die Schritte umfasst, bestehend aus:
    - Überprüfen (44, 45), ob die Versatzgrößen eine Validierungsbedingung erfüllen,
    - im negativen Fall, Modifizieren (44, 45) der Versatzgrößen.
  9. Verfahren gemäß einem der Ansprüche 6 bis 8, welches die Schritte umfasst, bestehend aus:
    - Bestimmen eines Betriebszustandes des Motors in Abhängigkeit von der wenigstens einen Versatzgröße (O(i)) und wenigstens eines Grenzwertes (46, 47),
    - Bestimmen eines Korrektursignals in Abhängigkeit von dem Betriebszustand.
  10. Verfahren gemäß Anspruch 9, bei welchem das Korrektursignal ein Einspritzkorrektursignal ist, wobei das Verfahren die Schritte umfasst, bestehend aus:
    - Bestimmen (30) eines Einspritzversatzsignals (TRIM), wenn das Einspritzkorrektursignal anzeigt, dass eine Korrektur notwendig ist,
    - Modifizieren (51, 52) des Steuersignals in Abhängigkeit von dem Versatzsignal.
  11. Steuervorrichtung (2), die mit wenigstens einem Drucksensor (3) und wenigstens einem Einspritzer verbindbar ist, dadurch gekennzeichnet, dass sie Steuerungsmittel (10, 20, 30) umfasst, die so ausgelegt sind, dass sie das Verfahren gemäß einem der Ansprüche 1 bis 10 ausführen können.
EP06301279A 2006-12-21 2006-12-21 Verfahren zur Steuerung eines Verbrennungsmotors Active EP1936156B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE602006005384T DE602006005384D1 (de) 2006-12-21 2006-12-21 Verfahren zur Steuerung eines Verbrennungsmotors
AT06301279T ATE423898T1 (de) 2006-12-21 2006-12-21 Verfahren zur steuerung eines verbrennungsmotors
EP06301279A EP1936156B1 (de) 2006-12-21 2006-12-21 Verfahren zur Steuerung eines Verbrennungsmotors
PCT/FR2007/052558 WO2008084170A2 (fr) 2006-12-21 2007-12-19 Procede de regulation d'un moteur a combustion interne

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06301279A EP1936156B1 (de) 2006-12-21 2006-12-21 Verfahren zur Steuerung eines Verbrennungsmotors

Publications (2)

Publication Number Publication Date
EP1936156A1 EP1936156A1 (de) 2008-06-25
EP1936156B1 true EP1936156B1 (de) 2009-02-25

Family

ID=38068684

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06301279A Active EP1936156B1 (de) 2006-12-21 2006-12-21 Verfahren zur Steuerung eines Verbrennungsmotors

Country Status (4)

Country Link
EP (1) EP1936156B1 (de)
AT (1) ATE423898T1 (de)
DE (1) DE602006005384D1 (de)
WO (1) WO2008084170A2 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2184472B1 (de) 2008-11-10 2012-06-20 Delphi Technologies Holding S.à.r.l. Motorsteuerungssystem und Verfahren
DE102009057662A1 (de) * 2009-12-09 2011-06-16 Daimler Ag Verfahren zum Betreiben einer Verbrennungskraftmaschine
EP2860380B1 (de) * 2012-06-08 2017-10-11 Toyota Jidosha Kabushiki Kaisha Vorrichtung zur diagnose von verbrennungszuständen bei verbrennungsmotoren
EP2754876A1 (de) * 2013-01-15 2014-07-16 Robert Bosch Gmbh Verfahren für den Betrieb eines Verbrennungsmotors
EP2772631A1 (de) * 2013-03-01 2014-09-03 Robert Bosch Gmbh Verfahren für den Betrieb eines Verbrennungsmotors
DE102015203940A1 (de) * 2015-03-05 2016-09-08 Volkswagen Ag Verfahren und Steuervorrichtung zum Ermitteln eines Wirkgrößen-Verlaufs

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10159017A1 (de) * 2001-12-01 2003-06-18 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
WO2004022959A1 (ja) * 2002-09-09 2004-03-18 Toyota Jidosha Kabushiki Kaisha 内燃機関の制御装置
US6843231B1 (en) * 2003-12-19 2005-01-18 Caterpillar Inc Cylinder to cylinder balancing using intake valve actuation
FR2886679B1 (fr) * 2005-06-07 2007-10-05 Peugeot Citroen Automobiles Sa Systeme et procede de controle de l'injection de carburant d'un moteur diesel de vehicule automobile

Also Published As

Publication number Publication date
DE602006005384D1 (de) 2009-04-09
EP1936156A1 (de) 2008-06-25
WO2008084170A3 (fr) 2008-11-27
WO2008084170A2 (fr) 2008-07-17
ATE423898T1 (de) 2009-03-15

Similar Documents

Publication Publication Date Title
EP1936156B1 (de) Verfahren zur Steuerung eines Verbrennungsmotors
EP1496237B1 (de) Vorrichtung zur Verminderung des Geräusches einer selbstgezündeten Brennkraftmaschine
FR2901847A1 (fr) Dispositif et procede de commande d'injection de carburant
US7392789B2 (en) Method for synchronizing cylinders in terms of quantities of fuel injected in an internal combustion engine
FR2900684A1 (fr) Procede de regulation de la valeur lambda et du couple d'un moteur a combustion interne, et algorithme de programmation associe
FR2861806A1 (fr) Systeme de commande d'injection d'un moteur a combustion interne
FR2813100A1 (fr) Procede et dispositif pour la mise en oeuvre d'un moteur a combustion interne
FR2811714A1 (fr) Procede et appareil ameliore de transition de forme d'onde pour systeme a injections multiples
EP0686762A1 (de) Verfahren und Vorrichtung zur Bestimmung von spezifischen Parametern von Einspritzventilen eines Verbrennungsmotors insbesondere für Dieselmotoren mit Voreinspritzung
EP1499803B1 (de) Dieselmotor mit einer vorrichtung zur steuerung des stroms von eingespritztem kraftstoff
FR2897110A1 (fr) Unite de commande d'injection de carburant
FR2859763A1 (fr) Procede et dispositif de gestion d'un moteur a combustion interne
FR2707348A1 (fr) Procédé et dispositif de commande d'un moteur à combustion interne.
EP1862659A1 (de) Verfahren und Vorrichtung zur Korrektur des Durchsatzes der Voreinspritzung von Treibstoff in einen Dieseldirekteinspritzmotor des Common-Rail-Typs und Motor, der eine solche Vorrichtung umfasst
EP1760295B1 (de) Regelvorrichtung für eine Diesel-Brennkraftmaschine mit Abgasrückführung
FR2819017A1 (fr) Procede et dispositif de commande d'un moteur a combustion interne
EP1787020B1 (de) System zur dieselmotorlaufsteuerung für ein kraftfahrzeug
EP1400679B1 (de) Steuereinrichtung um einen Kraftfahrzeug-Dieselmotor zu betrieben
EP3620639A1 (de) Verfahren zur verbrennungsregulierung in einem dieselmotor mit homogener oder quasi-homogener verbrennung
FR2808051A1 (fr) Procede de mise en oeuvre d'un moteur thermique, moteur thermique appliquant le procede et moyen de mise en oeuvre du procede
FR2875546A1 (fr) Procede et dispositif de commande d'un moteur a combustion interne
EP1916404A1 (de) Verfahren zur Schätzung der charakteristischen Parameter einer Wärmekraftmaschine und zur Kontrolle der Wärmeströme, die Teile dieses Motors erreichen
WO2018130767A1 (fr) Procédé de correction d'une durée d'injection de carburant dans un cylindre de moteur thermique de véhicule automobile
FR3059723A1 (fr) Procede de gestion de l'injection dans un moteur de type diesel
FR2886678A1 (fr) Procede de reduction du bruit d'un moteur diesel a injection

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070823

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602006005384

Country of ref document: DE

Date of ref document: 20090409

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090625

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090525

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090605

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090812

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090525

26N No opposition filed

Effective date: 20091126

BERE Be: lapsed

Owner name: DELPHI TECHNOLOGIES, INC.

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101221

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006005384

Country of ref document: DE

Representative=s name: MANITZ, FINSTERWALD & PARTNER GBR, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602006005384

Country of ref document: DE

Owner name: DELPHI INTERNATIONAL OPERATIONS LUXEMBOURG S.A, LU

Free format text: FORMER OWNER: DELPHI TECHNOLOGIES HOLDING S.A.R.L., BASCHARAGE, LU

Effective date: 20140702

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006005384

Country of ref document: DE

Representative=s name: MANITZ, FINSTERWALD & PARTNER GBR, DE

Effective date: 20140702

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006005384

Country of ref document: DE

Representative=s name: MANITZ FINSTERWALD PATENTANWAELTE PARTMBB, DE

Effective date: 20140702

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006005384

Country of ref document: DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602006005384

Country of ref document: DE

Owner name: DELPHI TECHNOLOGIES IP LIMITED, BB

Free format text: FORMER OWNER: DELPHI INTERNATIONAL OPERATIONS LUXEMBOURG S.A R.L., BASCHARAGE, LU

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230327

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231108

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602006005384

Country of ref document: DE

Owner name: PHINIA DELPHI LUXEMBOURG SARL, LU

Free format text: FORMER OWNER: DELPHI TECHNOLOGIES IP LIMITED, ST. MICHAEL, BB