EP1935449B1 - Fil électrique tressé - Google Patents

Fil électrique tressé Download PDF

Info

Publication number
EP1935449B1
EP1935449B1 EP07024642A EP07024642A EP1935449B1 EP 1935449 B1 EP1935449 B1 EP 1935449B1 EP 07024642 A EP07024642 A EP 07024642A EP 07024642 A EP07024642 A EP 07024642A EP 1935449 B1 EP1935449 B1 EP 1935449B1
Authority
EP
European Patent Office
Prior art keywords
strands
polymeric
conductor
lead
strand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07024642A
Other languages
German (de)
English (en)
Other versions
EP1935449A1 (fr
Inventor
John M. Swoyer
Richard M. Farrell
Brian K. Farrell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Greatbatch Ltd
Original Assignee
Greatbatch Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Greatbatch Ltd filed Critical Greatbatch Ltd
Publication of EP1935449A1 publication Critical patent/EP1935449A1/fr
Application granted granted Critical
Publication of EP1935449B1 publication Critical patent/EP1935449B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0551Spinal or peripheral nerve electrodes

Definitions

  • the present invention is related generally to medical electrical leads. More specifically, the present invention is related to implantable electrical leads. The present invention may find use in implantable neurological devices, cardiac devices, as well as many other devices.
  • Implantable leads having externally exposed ring or band electrodes can be used to deliver electrical stimulation to surrounding tissue and/or to sense electrical energy produced by the surrounding tissue.
  • Such leads are often implanted, for example, within the epidural or intrathecal spaces of the spinal column, along peripheral nerves, within the brain, and about the heart. Electrical stimulation of the spinal cord has been shown to be effective in relieving intractable pain in some patients. Such electrical stimulation can reduce or eliminate the use of pain relieving drugs. Examples of some leads may be found in U.S. Patent Nos.: 6,721,604 ; 6,981,314 ; 6,216,045 ; and 5,483,022 .
  • One such lead is formed of polymeric material, for example, polyurethane or silicone.
  • the lead can be nominally 1 mm in outer diameter and about 20 cm in length.
  • a typical lead may have a series of electrodes formed as bands or rings disposed in a spaced apart relationship in a lead distal region.
  • the distal region of the lead can be introduced, for example, into the epidural region for use in stimulation of the spinal column.
  • the lead proximal region may have a corresponding set of band or ring connectors or terminals, one for each corresponding electrode in the distal region. Each proximal region terminal can thus be connected to one distal electrode in a typical configuration.
  • the terminals can be used to couple the proximal end of the lead to a lead extension, which can in turn be coupled to an implantable pulse generator (IPG).
  • IPG implantable pulse generator
  • the lead extension can provide added length to extend the reach of the lead to a more distantly placed IPG. In some embodiments, the lead extension is between about 20 and 50 cm in length.
  • the lead typically has a lumen extending from the proximal end through to the distal region, with the lumen being dimensioned to accept a stiffening member or stylet.
  • the lead commonly formed of a polymeric material and being very small in cross section, is typically very floppy and not pushable. With a stylet or stiffening member inserted, the lead gains the needed pushability, and can be advanced into and up the spinal column to the desired location.
  • Small size, in particular, small outer diameter, is desirable for nerve stimulation leads.
  • a small profile is less intrusive and may be easier to deliver. Some peripheral nerve stimulation therapies would benefit from small profile leads.
  • Flexibility is desirable for both ease in delivery and for a more comfortable patient experience, as the patient may be aware of a stiffer implanted lead. A long flex life, the ability to survive a large number of lead flexures over the expected lead lifetime, is also desirable. Some cardiac leads are subjected to flexure with every heart beat. Peripheral nerve stimulation leads may be flexed and twisted with the patient's movements.
  • Spinal cord stimulation leads include several, often eight, conductors.
  • the conductors are often not arranged haphazardly.
  • a straight or coiled cable of conductors is often used. Issues arise that relate to the orientation and spacing of the conductors as they tend to float inside the lead body tubing. As the conductors float and potentially cross each other, flex life can be negatively impacted.
  • the document US-A 6,213,995 discloses a flexible tubing which includes a wall provided with a plurality of braided elements forming a braid within the wall of the tube.
  • the structural elements preferably provide a degree of torsional stiffness, kink resistance, or luminal rigidity to the catheter which is different than would otherwise be provided solely with one or more signal transmitting elements.
  • the tubing wall is preferably a cross-linking polymer, such as polyimide matrix.
  • one or more layers of the polymer are coated on a mandrel and permitted to cure to form an inner layer of the tubing.
  • the braid is then woven about the inner layer.
  • one or more layers of the polymer are coated over the braid and inner layer and permitted to cure to form an outer layer of the tubing which preferably forms a cross-linked and adhesive bond to the inner layer and provides a relatively homogenous structure.
  • Document EP-A 0 732 117 relates to a a catheter structure having an inner tube, a metallic mesh knit provided to surround an outer surface of the inner tube and an outer tube provided to cover an outer surface of the metallic mesh knit, the metallic mesh knit is formed by spiral lines, one of which is greater than the other in mechanical strength.
  • the present invention provides a lead according to claim 1.
  • FIG. 1 illustrates a neurological stimulation lead 20, similar is some aspects, to the lead illustrated in U.S. Patent Application Pub. No. 2005/0021119 .
  • Lead 20 can incorporate a multi-conductor cable according to the present invention.
  • Lead 20 has a distal region 24, a proximal region 26, and an intermediate region 28 disposed between the distal and proximal regions. In a preferred embodiment, the intermediate region is between the innermost distal and proximal electrical contacts described below.
  • a stylet entrance or insertion port 42 is provided in the intermediate region 28. In other embodiments, the stylet entrance may be absent or lie in the proximal end.
  • Lead 20 can be formed of a body or shaft 34 extending between a distal end 30 and a proximal end 32. Lead body 34 has an exterior surface or tubular side wall 36 and is preferably formed of a polymeric material, for example, polyurethane or silicone.
  • Lead distal region 24 may include a number of electrodes 38, which, for example, may be disposed concentrically about lead body 34 in a spaced-apart configuration. Electrodes 38 may also be described as electrical contacts or contacts. Electrodes 38 are normally adapted to be inserted into the human body and since they are externally exposed, can be used for neurological stimulation. One exemplary use of electrodes 38 is the stimulation of nerves within the spinal cord.
  • the proximal region 26 can include a number of externally exposed connector bands or connector rings 40 disposed in a spaced-apart configuration to serve as electrical contacts or terminals. Electrodes 38 and connectors 40 may be formed of platinum and/or iridium. The connectors 40 are used for connecting the lead 20 to a lead extension to extend the effective length of the lead or they may directly couple lead 22 to an implantable pulse generator.
  • Electrodes 38 and connectors 40 can be coupled to each other in a one-to-one arrangement.
  • the distal-most electrode is coupled to the distal-most connector
  • the second-to-distal-most electrode is coupled to the second-to-distal-most connector
  • the electrodes and connectors can be coupled through conductors extending between them.
  • the conductors are embedded within the lead while in other leads, the conductors lie within lumens extending the length of the lead.
  • FIG. 1 also illustrates a stylet 50 that includes a shaft 56 extending between a distal tip 52 and a proximal end or handle 54.
  • the stylet 50 is typically dimensioned to be slidably received within the stylet entrance 42 and a lumen extending distally toward distal region 24.
  • the lead 20 can be varied in outer diameter and length to suit the application for which it is intended.
  • the lead 20 has a total length of from about 5 cm and about 150 cm.
  • the lead 20 has an outer diameter of less than about 1 mm and a total length of from about 10 cm and 150 cm.
  • the lead length between stylet entrance 42 and distal end 30 can vary as well.
  • the distance from stylet entrance 42 to the distal end 30 is less than 50 cm, preferably less than 30 cm, and most preferably less than about 20 cm.
  • the stylet 50 preferably has a length adapted to approximately match the length between stylet entrance 42 and the distal end 30.
  • the stylet 50 preferably has a shaft outer diameter of less than about 1.27 mm (0.050 inches), more preferably less than about 0.51 mm (0.020 inches), and most preferably less than about 0.25 mm (0.010 inches).
  • FIG. 2 illustrates one embodiment of the invention in a multi-strand cable 110 including an insulated conductor strand 100, a first polymer strand 101, and a second polymer strand 102.
  • the first polymer strand 101 is under (inside of) the second polymer strand 102 in front and over (outside of) the second strand 102 in back.
  • the two polymer strands 101, 102 cross in front and in back, with the in-front crossings indicated by reference numerals 104 and 106.
  • strand refers to the elongate members which are braided (can be used to form a braid), and which may be a cable, a bundle, a twisted cable or bundle, a filar or group of filars, etc.
  • Insulated conductor 100 is oriented substantially longitudinally with the longitudinal axis of the multi-strand cable 110, and passing alternatively under and over the polymer crossing regions 104 and 106. In this example, insulated conductor 100 passes over crossing regions 104 and under cross regions 106. In this way, a longitudinal or linear "wave” is imparted to the insulated conductor 100. This provides an increased flex life to the insulated conductor.
  • Conductor strand 100 may be referred to as a zero degree, warp or triaxial, fiber or strand.
  • the two polymer strands 101, 102 are braided differently.
  • multiple conductors are included by modifying the braid pattern.
  • another such zero degree conductor is woven in and out of the braided polymer strands.
  • the woven braid may be inserted in a lead body tubing.
  • FIG. 3 illustrates another multi-strand cable 120 having a central longitudinal axis 122, a first insulated conductor 123, a second insulated conductor 125, a first polymer strand 124, and a second polymer strand 126.
  • the first conductor strand 123 and the second conductor strand 125 do not directly cross each other and each has a substantially coiled shape. This forms an essentially coiled structure within the braid which imparts increased flex life to the conductors.
  • the braided polymer strands maintain the overall configuration.
  • the multi-strand cable 120 represents a 2x2 diamond braid, where the insulated conductors 123, 125 are wound in a first direction (e.g. clockwise) and the polymer strands 124, 126 are wound in a second, opposite direction (i.e. counter-clockwise).
  • This 2x2 diamond braid, as well as 1x1, 3x3, 4x4, 8x8, etc diamond braids are explicitly within the scope of the invention.
  • the conductors 123, 125 run side by side, so they do not cross other conductors, but only polymer strands 124, 126. In this way, the conductors 123, 125 do not rub up against each other, which could lead to a short. Since the braid maintains this configuration, not as much stress must be placed on the conductors 123, 125 in order to maintain them in the desired shape.
  • FIG. 4A is an illustration of another embodiment of a multi-strand cable 200 according to the invention.
  • FIG. 4B is a photograph of embodiment 200.
  • the cable 200 is formed around a mandrel 220 running along the central longitudinal axis thereof.
  • the cable 200 includes a first insulated conductor strand 211, a second insulated conductor strand 212, a third insulated conductor strand 213, and fourth insulated conductor strand 214.
  • the insulated conductor strands 211, 212, 213 and 214 are each formed of seven twisted wires, each wire being formed of seven twisted filaments of a metallic construction.
  • the filaments are made of stainless steel, but could be any metal or metal alloy, including platinum, platinum/iridium, MP35N, silver cored MP35N, etc.
  • the insulated conductors have a polymer outer layer, for example an ETFE or other fluoropolymer coating. Any insulative material suitable for long term implant, including, PTFE, ETFE, polyimide, PEEK, polyurethane, silicone, etc., may be used.
  • the cable 200 also includes a first polymer strand 201, a second polymer strand 202, a third polymer strand 203, and a fourth polymer strand 204.
  • FIG. 4A Inspection of FIG. 4A shows that going from right to left, the first and second polymer strands 201 and 202 are adjacent to each other.
  • the polymer strands 201 and 202 both cross over the first conductor encountered (third conductor strand 213), then the first polymer strand 201 crosses under the next conductor encountered (the second conductor 212) with the second polymer strand 202 also crossing under the same conductor in the same region, then both polymer strands 201 and 202 cross under the next conductor encountered, then (not visible in FIG. 4A ) the first polymer strand 201 and the second polymer strand 202 both cross over the next conductor.
  • FIG. 5 illustrates a braid pattern 300 called a herringbone, regular braid pattern, in which one conductor strand passes under two polymeric strands then over two polymeric strands.
  • Five conductor strands 302, 304, 306, 308 and 310 pass from the lower left to the upper right while four polymeric strands 303, 305, 307 and 309 pass from the lower right to the upper left.
  • a conductor strand thus can pass through four different phases which repeat every four strands traveling from side to side, and from conductor to conductor.
  • Conductor strand 302 and strand 310 are in the same phase with respect to the same polymeric strand, for example, strand 303. In this embodiment, there is the same number of conductor and polymeric strands wrapped helically about the center axis.
  • FIG. 6 illustrates another braid pattern 330, termed a "diamond pattern, full load.”
  • five pairs of conductor strands 332, 334, 336, 338 and 340 pass from the lower left to the upper right.
  • Four pairs of polymeric strands 333, 335, 337 and 339 pass from the lower right to the upper left.
  • Each strand in a pair travels side-by-side in the same phase with its paired strand.
  • each pair of strands is in one of two phases, which repeat with every other pair of strands.
  • Conductor strand pairs 332 and 334 are both in the same phase with respect to polymeric strand pair 333.
  • FIG. 7 illustrates another braid pattern 360, referred to as a diamond braid pattern.
  • This pattern can also be referred to as a "diamond pattern, half.”
  • a conductor strand passes under one polymeric strand then over one polymeric strand.
  • conductor strands 362, 364, 366, 368 and 370 pass from the lower left to the upper right while polymeric strands 363, 365, 367 and 369 pass from the lower right to the upper left.
  • the strands are in one of two phases with adjacent strands being out of phase with respect to each other.
  • FIG. 8 illustrates another braid pattern 370 having strands 372, 374, 376, 378 and 380 passing from the lower left to the upper right. Strands 373, 375, 377 and 379 pass from the lower right to the upper left, each strand passing over two then under two.
  • An additional strand 371 is shown, which can be a conductor strand termed a triaxial fiber, a warp fiber, or a zero degree fiber.
  • the strands in the braid are polymeric strands and the zero degree strand is a conductor strand.
  • there is more than one zero degree conductor strand disposed about the braid for example 2, 3, 4 or more zero degree conductor strands.
  • the braid maintains the spacing from one conductor to another.
  • the braiding is performed over a mandrel, for example, a TEFLON ® coated mandrel.
  • Tubing can be placed over the braid.
  • the tubing and polymer may be formed of the same or similar materials, for example, a thermoplastic polymeric material.
  • the tubing having the braided polymer and insulated conductor strands within can be placed in a heat shrink tubing or other structure and a reflow operation performed.
  • the polymer strands and the outer tubing can become one, which may reduce the profile of the lead body.
  • the conductors and polymer strands are braided over a mandrel and the mandrel later removed, sometimes after further joining the insulated conductors and polymer strands with a reflow step.
  • a lumen may remain in such embodiments.
  • the strands are braided over a solid shaft, for example, a polymer or metal shaft, which remains after the braiding and any reflow.
  • the strands are braided over a tube having a lumen, which may remain after any reflow step to provide a lumen.
  • the polymer strands may be formed of a biocompatible material, for example, polyester. Some polymer strands are round and have about a 0.127 mm (0.005 inch) O.D., while the insulated conductors have about a 0.152 mm (0.006 inch) O.D. and include seven filaments.

Claims (20)

  1. Fil électrique médical implantable (110, 120, 200, 300, 330, 360, 370) comprenant :
    une pluralité de brins conducteurs électriques isolés (100 ; 123, 125 ; 211, 212, 213, 214 ; 302, 304, 306, 308, 310 ; 332, 334, 336, 338, 340 ; 362, 364, 366, 368, 370 ; 371) tressés avec une pluralité de brins non conducteurs (101, 102 ; 124, 126 ; 201, 202 ; 303, 305, 307, 309 ; 333, 335, 337, 339 ; 363, 365, 367, 369 ; 372, 374, 376, 378, 380, 373, 375, 377, 379) de telle manière que les brins conducteurs isolés ne se croisent pas directement les uns les autres ;
    dans lequel les brins conducteurs isolés (100 ; 123, 125 ; 211, 212, 213, 214 ; 302, 304, 306, 308, 310 ; 332, 334, 336, 338, 340 ; 362, 364, 366, 368, 370 ; 371) ont un revêtement polymérique et les brins non conducteurs (101, 102 ; 124, 126 ; 201, 202 ; 303, 305, 307, 309 ; 333, 335, 337, 339 ; 363, 365, 367, 369 ; 372, 374, 376, 378, 380, 373, 375, 377, 379) sont des brins polymériques, et
    caractérisé en ce que le revêtement polymérique et les brins non conducteurs polymériques sont au moins partiellement fusionnés ensemble.
  2. Fil médical implantable (110, 120, 200, 300, 330, 360, 370) selon la revendication 1, comprenant N brins polymériques, dans lequel N est au moins deux, et dans lequel les brins conducteurs isolés et les brins polymériques sont tressés ensemble pour former une structure tressée allongée.
  3. Fil médical implantable (110, 120, 200, 300, 330, 360, 370) selon la revendication 2, dans lequel le nombre de brins polymériques est au moins égal au nombre de brins conducteurs isolés.
  4. Fil médical implantable (110, 120, 200, 300, 330, 360, 370) selon l'une quelconque des revendications 1 à 3, dans lequel il y a au moins quatre brins non conducteurs et au moins quatre brins conducteurs.
  5. Fil médical implantable (110, 120, 200, 300, 330, 360, 370) selon la revendication 2, dans lequel le nombre de brins conducteurs isolés est N et dans lequel les N brins conducteurs isolés (100 ; 123, 125 ; 211, 212, 213, 214 ; 302, 304, 306, 308, 310 ; 332, 334, 336, 338, 340 ; 362, 364, 366, 368, 370 ; 371) sont enroulés dans un premier sens horaire et les N brins polymériques sont enroulés dans un deuxième sens horaire opposé au premier sens.
  6. Fil médical implantable (110, 120, 200, 300, 330, 360, 370) selon la revendication 5, dans lequel une paire de brins conducteurs isolés adjacents inclut un premier brin conducteur et un deuxième brin conducteur, qui croisent les brins polymériques de telle manière que :
    a) le premier brin conducteur croise sous un premier brin polymérique et le deuxième brin conducteur croise sur le premier brin polymérique, puis
    b) le premier brin conducteur et le deuxième brin conducteur croisent sous un deuxième brin polymérique, puis
    c) le premier brin conducteur croise sur un troisième brin polymérique et le deuxième brin conducteur croise sous le troisième brin polymérique, puis
    d) le premier brin conducteur et le deuxième brin conducteur croisent sur un quatrième brin polymérique, où le premier, le deuxième, le troisième et le quatrième brins polymériques sont rencontrés dans cet ordre par le premier et le deuxième brins conducteurs.
  7. Fil médical implantable (110, 120, 200, 300, 330, 360, 370) selon la revendication 2, dans lequel les brins polymériques et les brins conducteurs sont tressés de telle manière que les brins conducteurs passent sur deux brins polymériques, puis sous deux brins polymériques d'une manière répétée, ou dans lequel les brins polymériques (101, 102 ; 124, 126 ; 201, 202 ; 303, 305, 307, 309 ; 333, 335, 337, 339 ; 363, 365, 367, 369 ; 372, 374, 376, 378, 380, 373, 375, 377, 379) et les brins conducteurs (100 ; 123, 125 ; 211, 212, 213, 214 ; 302, 304, 306, 308, 310 ; 332, 334, 336, 338, 340 ; 362, 364, 366, 368, 370 ; 371) sont tressés de telle manière que les brins conducteurs passent sur un brin polymérique, puis sous un brin polymérique d'une manière répétée.
  8. Fil médical implantable (110, 120, 200, 300, 330, 360, 370) selon la revendication 2, dans lequel les brins polymériques (101, 102 ; 124, 126 ; 201, 202 ; 303, 305, 307, 309 ; 333, 335, 337, 339 ; 363, 365, 367, 369 ; 372, 374, 376, 378, 380, 373, 375, 377, 379) et les brins conducteurs (100 ; 123, 125 ; 211, 212, 213, 214 ; 302, 304, 306, 308, 310 ; 332, 334, 336, 338, 340 ; 362, 364, 366, 368, 370 ; 371) sont tressés de telle manière qu'au moins deux des brins conducteurs sont adjacents l'un à l'autre et en phase l'un avec l'autre de telle manière que les au moins deux brins conducteurs adjacents passent sur et sous les brins polymériques de la même manière.
  9. Fil médical implantable (110, 120, 200, 300, 330, 360, 370) selon la revendication 2, dans lequel les brins polymériques (101, 102 ; 124, 126 ; 201, 202 ; 303, 305, 307, 309 ; 333, 335, 337, 339 ; 363, 365, 367, 369 ; 372, 374, 376, 378, 380, 373, 375, 377, 379) et les brins conducteurs (100 ; 123, 125 ; 211, 212, 213, 214 ; 302, 304, 306, 308, 310 ; 332, 334, 336, 338, 340 ; 362, 364, 366, 368, 370 ; 371) sont tressés de telle manière que les brins conducteurs passent sur deux brins polymériques, puis sous deux brins polymériques d'une manière répétée, et dans lequel des brins conducteurs adjacents sont déphasés l'un par rapport à l'autre de telle manière que la phase de conducteur est sensiblement répétée tous les quatre brins conducteurs.
  10. Conducteur médical implantable (110, 120, 200, 300, 330, 360, 370) selon l'une quelconque des revendications 1 à 9, dans lequel le fil a un diamètre extérieur de moins d'environ 4 mm ; et/ou dans lequel les brins conducteurs isolés ont un diamètre extérieur de moins d'environ ¼ mm ; et/ou dans lequel le fil a une longueur d'environ 5 cm à environ 150 cm.
  11. Fil médical implantable (110, 120, 200, 300, 330, 360, 370) selon l'une quelconque des revendications 1 à 10, dans lequel le fil (110, 120, 200, 300, 330, 360, 370) a une première région d'extrémité (24) et une deuxième région d'extrémité (26) opposée à la première région d'extrémité (24), et dans lequel le fil (110, 120, 200, 300, 330, 360, 370) comprend en outre un premier ensemble d'électrodes (38) disposé dans la première région d'extrémité pour un contact avec une partie de corps vivant électriquement couplée aux brins conducteurs isolés, préférablement dans lequel un deuxième ensemble de contacts électriques (40) est électriquement couplé aux brins conducteurs isolés pour un contact avec un dispositif électrique.
  12. Fil médical implantable (110, 120, 200, 300, 330, 360, 370) selon la revendication 11, dans lequel la deuxième région d'extrémité est adaptée à une connexion avec une allonge de fil.
  13. Fil médical implantable (110, 120, 200, 300, 330, 360, 370) selon l'une quelconque des revendications 1 à 12, dans lequel une enveloppe extérieure est disposée autour de la structure tressée allongée.
  14. Fil médical implantable (110, 120, 200, 300, 330, 360, 370) selon l'une quelconque des revendications 1 à 13, incluant une entrée de stylet (42), préférablement dans lequel l'entrée de stylet (42) est à environ 20 cm à 50 cm d'une extrémité distale (30) du fil.
  15. Fil médical implantable (110, 120, 200, 300, 330, 360, 370) selon la revendication 1, comprenant :
    - un premier ensemble de brins polymériques (372, 374, 376, 378, 380) enroulés hélicoïdalement courant en parallèle les uns aux autres autour d'un axe commun de corps de fil ;
    - un deuxième ensemble de brins polymériques (373, 375, 377, 379) enroulés hélicoïdalement courant en parallèle les uns aux autres autour de l'axe commun de corps de fil, le sens d'enroulement dudit deuxième ensemble de brins polymériques étant contraire à celui du premier ensemble de brins polymériques ;
    - chaque brin du premier ou du deuxième ensemble de brins polymériques passant sur deux brins polymériques du deuxième ou du premier ensemble de brins polymériques et ensuite sous deux brins polymériques du deuxième ou du premier ensemble de brins polymériques ; et
    - une pluralité de brins conducteurs (371) courant en parallèle à l'axe de corps de fil tout en passant entre les brins polymériques du premier et du deuxième ensembles.
  16. Fil électrique implantable (110, 120, 200, 300, 330, 360, 370) selon la revendication 1, dans lequel les brins tressés sont orientés autour d'une lumière persistante.
  17. Fil électrique implantable (110, 120, 200, 300, 330, 360, 370) selon la revendication 1, dans lequel les brins tressés sont orientés autour d'un arbre.
  18. Fil électrique implantable (110, 120, 200, 300, 330, 360, 370) selon la revendication 1, dans lequel une couche polymérique est disposée autour des brins tressés.
  19. Fil électrique implantable (110, 120, 200, 300, 330, 360, 370) selon la revendication 1, dans lequel les brins conducteurs isolés (100 ; 123, 125 ; 211, 212, 213, 214 ; 302, 304, 306, 308, 310 ; 332, 334, 336, 338, 340 ; 362, 364, 366, 368, 370 ; 371) incluent au moins un brin conducteur s'étendant sensiblement longitudinalement le long du fil, se liant avec et se déliant d'avec les brins non conducteurs.
  20. Fil électrique implantable (110, 120, 200, 300, 330, 360, 370) selon la revendication 1, dans lequel le fil (110, 120, 200, 300, 330, 360, 370) a un diamètre extérieur de moins d'environ 4 mm, une longueur d'environ 5 cm à environ 150 cm, et les brins conducteurs isolés ont un diamètre extérieur de moins d'environ ¼ mm.
EP07024642A 2006-12-19 2007-12-19 Fil électrique tressé Active EP1935449B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US87078206P 2006-12-19 2006-12-19

Publications (2)

Publication Number Publication Date
EP1935449A1 EP1935449A1 (fr) 2008-06-25
EP1935449B1 true EP1935449B1 (fr) 2011-10-19

Family

ID=39032367

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07024642A Active EP1935449B1 (fr) 2006-12-19 2007-12-19 Fil électrique tressé

Country Status (2)

Country Link
US (1) US8160719B2 (fr)
EP (1) EP1935449B1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9186499B2 (en) 2009-04-30 2015-11-17 Medtronic, Inc. Grounding of a shield within an implantable medical lead
US9259572B2 (en) 2007-04-25 2016-02-16 Medtronic, Inc. Lead or lead extension having a conductive body and conductive body contact
US9302101B2 (en) 2004-03-30 2016-04-05 Medtronic, Inc. MRI-safe implantable lead
US9463317B2 (en) 2012-04-19 2016-10-11 Medtronic, Inc. Paired medical lead bodies with braided conductive shields having different physical parameter values

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8280526B2 (en) 2005-02-01 2012-10-02 Medtronic, Inc. Extensible implantable medical lead
US9044593B2 (en) 2007-02-14 2015-06-02 Medtronic, Inc. Discontinuous conductive filler polymer-matrix composites for electromagnetic shielding
US8055353B2 (en) * 2008-02-12 2011-11-08 Proteus Biomedical, Inc. Medical carriers comprising a low-impedance conductor, and methods of making and using the same
US9037263B2 (en) 2008-03-12 2015-05-19 Medtronic, Inc. System and method for implantable medical device lead shielding
WO2010033370A2 (fr) * 2008-09-17 2010-03-25 National Ict Australia Limited (Nicta) Cathéter tricoté
US8788061B2 (en) 2009-04-30 2014-07-22 Medtronic, Inc. Termination of a shield within an implantable medical lead
EP2429651B1 (fr) 2009-04-30 2018-10-24 Medtronic, Inc. Détection de l'insertion correcte de dérivations médicales dans un dispositif médical
US8406896B2 (en) * 2009-06-29 2013-03-26 Boston Scientific Neuromodulation Corporation Multi-element contact assemblies for electrical stimulation systems and systems and methods of making and using
US8321033B2 (en) 2009-07-13 2012-11-27 Pacesetter, Inc. Implantable medical lead having passive lock mechanical body terminations
US8825181B2 (en) * 2010-08-30 2014-09-02 Cardiac Pacemakers, Inc. Lead conductor with pitch and torque control for MRI conditionally safe use
JP6076918B2 (ja) 2011-03-04 2017-02-08 ブロックウェル,マイケル,イアン 外側で張力を受けてエネルギー吸収効果を有する構造部材
US8543223B2 (en) 2011-03-11 2013-09-24 Greatbach Ltd. Implantable lead with braided conductors
US9872990B2 (en) 2011-05-13 2018-01-23 Saluda Medical Pty Limited Method and apparatus for application of a neural stimulus
EP2707096B1 (fr) 2011-05-13 2018-08-22 Saluda Medical Pty Limited Appareil de mesure de la réponse neuronale
WO2012155190A1 (fr) 2011-05-13 2012-11-22 National Ict Australia Ltd Procédé et appareil pour mesure de réponse neuronale
US9974455B2 (en) 2011-05-13 2018-05-22 Saluda Medical Pty Ltd. Method and apparatus for estimating neural recruitment
US10568559B2 (en) 2011-05-13 2020-02-25 Saluda Medical Pty Ltd Method and apparatus for measurement of neural response
US8560084B2 (en) 2011-08-30 2013-10-15 Greatbatch Ltd. Lead body with inner and outer co-axial coils
US9526887B2 (en) 2012-06-29 2016-12-27 Nuvectra Corporation Method of making a braided lead with imbedded fixation structures
US8644953B1 (en) * 2012-08-10 2014-02-04 Greatbatch Ltd. Lead with braided reinforcement
US9808613B2 (en) 2012-08-24 2017-11-07 Boston Scientific Neuromodulation Corporation Systems and methods for improving RF compatibility of electrical stimulation leads
ES2834958T3 (es) 2012-11-06 2021-06-21 Saluda Medical Pty Ltd Sistema para controlar las condiciones eléctricas de un tejido
AU2014351064B2 (en) 2013-11-15 2019-07-04 Closed Loop Medical Pty Ltd Monitoring brain neural potentials
CA2929874C (fr) 2013-11-22 2023-06-13 Saluda Medical Pty Ltd Procede et dispositif de detection d'une reponse neurale dans une mesure neurale
US9993638B2 (en) 2013-12-14 2018-06-12 Medtronic, Inc. Devices, systems and methods to reduce coupling of a shield and a conductor within an implantable medical lead
US9530594B2 (en) * 2014-04-24 2016-12-27 Abb Schweiz Ag Integrated particle trap in a tank of a dead tank circuit breaker
ES2801348T3 (es) 2014-05-05 2021-01-11 Saluda Medical Pty Ltd Medición neurológica mejorada
US10279171B2 (en) 2014-07-23 2019-05-07 Medtronic, Inc. Methods of shielding implantable medical leads and implantable medical lead extensions
WO2016014816A1 (fr) 2014-07-24 2016-01-28 Medtronic, Inc. Procédés de blindage de sondes médicales implantables et d'extensions de sondes médicales implantables
CA2955966C (fr) 2014-07-25 2022-12-06 Saluda Medical Pty Ltd Dosage de stimulation neurale
EP3185951A2 (fr) 2014-08-26 2017-07-05 Avent, Inc. Procédé et système de blocage sélectif de fibres nerveuses
WO2016099686A1 (fr) * 2014-11-05 2016-06-23 Clph, Llc Dispositifs de cathéter et leurs procédés de fabrication
EP3215216A4 (fr) 2014-11-17 2018-08-22 Saluda Medical Pty Ltd Procédé et dispositif pour détecter une réponse neuronale dans des mesures neuronales
AU2015362075B2 (en) 2014-12-11 2021-03-11 Saluda Medical Pty Ltd Implantable electrode positioning
EP4285985A3 (fr) 2014-12-11 2024-01-17 Saluda Medical Pty Ltd Procédé et dispositif de commande de rétroaction de stimulation neuronale
WO2016115596A1 (fr) 2015-01-19 2016-07-28 Saluda Medical Pty Ltd Procédé et dispositif de communication d'implant neural
US10894158B2 (en) 2015-04-09 2021-01-19 Saluda Medical Pty Ltd Electrode to nerve distance estimation
WO2016191808A1 (fr) 2015-05-31 2016-12-08 Saluda Medical Pty Ltd Surveillance de l'activité neurale du cerveau
CN107614055B (zh) 2015-05-31 2022-02-25 闭环医疗私人有限公司 脑神经刺激器电极装配
CA2980482C (fr) 2015-06-01 2023-09-26 Saluda Medical Pty Ltd Neuromodulation des fibres motrices
CN109219467B (zh) 2016-04-05 2022-08-16 萨鲁达医疗有限公司 神经调节的经改进反馈控制
EP3845268A1 (fr) * 2016-05-11 2021-07-07 Senso Medical Labs Ltd. Emboîtement bidirectionnel de conducteur d'électrode à fil
JP7278076B2 (ja) 2016-06-24 2023-05-19 サルーダ・メディカル・ピーティーワイ・リミテッド アーチファクトを低減するための神経刺激
EP3765146A2 (fr) 2018-03-15 2021-01-20 Avent, Inc. Système et procédé pour bloquer par voie percutanée des sensations douloureuses
CA3098468A1 (fr) 2018-04-27 2019-10-31 Saluda Medical Pty Ltd Neurostimulation de nerfs mixtes
USD934438S1 (en) * 2018-06-29 2021-10-26 Spr Therapeutics, Inc. Lead placement tool
US20220031214A1 (en) * 2018-09-27 2022-02-03 Verily Life Sciences Llc Implantable medical devices with microfabricated leads
EP3949844B1 (fr) * 2019-03-25 2023-09-13 Japan Lifeline Co., Ltd. Cathéter
EP3756725A1 (fr) 2019-06-28 2020-12-30 BIOTRONIK SE & Co. KG Conduite d'électrode pouvant être implantée pourvue de conducteur raccordé à un treillis
DE202021104261U1 (de) * 2021-08-10 2021-08-13 Biotronik Se & Co. Kg Geflechtgestützte wendelförmige Zuleitungen für implantierbare Elektroden

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB471122A (en) 1936-02-27 1937-08-27 Arthur William Williams Improvements in or relating to electric and other cables, hose pipes and the like
US3760812A (en) * 1971-03-19 1973-09-25 Univ Minnesota Implantable spiral wound stimulation electrodes
EP0369044A1 (fr) * 1988-11-14 1990-05-23 Siemens-Elema AB Ensemble d'électrodes
US5057092A (en) * 1990-04-04 1991-10-15 Webster Wilton W Jr Braided catheter with low modulus warp
US5483022A (en) * 1994-04-12 1996-01-09 Ventritex, Inc. Implantable conductor coil formed from cabled composite wire
DE69603635T2 (de) 1995-03-17 1999-12-02 Asahi Intecc Co Katheterstruktur für medizinische Behandlung
US5683444A (en) * 1995-12-11 1997-11-04 Huntley; Steve Composite electrode
US6216045B1 (en) * 1999-04-26 2001-04-10 Advanced Neuromodulation Systems, Inc. Implantable lead and method of manufacture
US6213995B1 (en) 1999-08-31 2001-04-10 Phelps Dodge High Performance Conductors Of Sc And Ga, Inc. Flexible tubing with braided signal transmission elements
US6721604B1 (en) * 2000-07-27 2004-04-13 Micronet Medical, Inc. Reduced diameter, low resistance medical electrical lead
US6701191B2 (en) * 2001-05-30 2004-03-02 Cardiac Pacemakers, Inc. Lead having composite tubing
US6606522B2 (en) * 2001-05-30 2003-08-12 Cardiac Pacemakers, Inc. Torque mechanism and method for endocardial leads
DE60315427T2 (de) * 2002-03-15 2008-04-30 C.R. Bard, Inc. Apparat zur steuerung von ablationsenergie und elektrogrammaufnahme mittels einer vielzahl gemeinsamer elektroden in einem elektrophysiologie-katheter
US20040215305A1 (en) * 2003-04-25 2004-10-28 Sage Shahn S. Implantable lead with intermediate insertion port for receiving a stiffening member
US7343206B2 (en) * 2003-04-25 2008-03-11 Medtronic, Inc. Implantable medical lead and system, and method of use thereof
US7286882B2 (en) * 2003-10-03 2007-10-23 Medtronic, Inc. Implantable electrical connector system
WO2005081681A2 (fr) * 2004-02-11 2005-09-09 Fort Wayne Metals Research Products Corporation Cable tubulaire a boyau rempli etire
US7481808B2 (en) * 2004-06-30 2009-01-27 Ethicon, Inc. Flexible electrode device and surgical apparatus equipped with same
US7761170B2 (en) * 2004-10-21 2010-07-20 Medtronic, Inc. Implantable medical lead with axially oriented coiled wire conductors

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9302101B2 (en) 2004-03-30 2016-04-05 Medtronic, Inc. MRI-safe implantable lead
US9259572B2 (en) 2007-04-25 2016-02-16 Medtronic, Inc. Lead or lead extension having a conductive body and conductive body contact
US9186499B2 (en) 2009-04-30 2015-11-17 Medtronic, Inc. Grounding of a shield within an implantable medical lead
US9205253B2 (en) 2009-04-30 2015-12-08 Medtronic, Inc. Shielding an implantable medical lead
US9216286B2 (en) 2009-04-30 2015-12-22 Medtronic, Inc. Shielded implantable medical lead with guarded termination
US9220893B2 (en) 2009-04-30 2015-12-29 Medtronic, Inc. Shielded implantable medical lead with reduced torsional stiffness
US9272136B2 (en) 2009-04-30 2016-03-01 Medtronic, Inc. Grounding of a shield within an implantable medical lead
US9452284B2 (en) 2009-04-30 2016-09-27 Medtronic, Inc. Termination of a shield within an implantable medical lead
US9463317B2 (en) 2012-04-19 2016-10-11 Medtronic, Inc. Paired medical lead bodies with braided conductive shields having different physical parameter values

Also Published As

Publication number Publication date
US20080147155A1 (en) 2008-06-19
US8160719B2 (en) 2012-04-17
EP1935449A1 (fr) 2008-06-25

Similar Documents

Publication Publication Date Title
EP1935449B1 (fr) Fil électrique tressé
EP1827574B1 (fr) Conducteur medical implantable muni d'une enveloppe exterieure renforcee
US7519432B2 (en) Implantable medical lead with helical reinforcement
US7831311B2 (en) Reduced axial stiffness implantable medical lead
US7761170B2 (en) Implantable medical lead with axially oriented coiled wire conductors
US10661077B2 (en) Manufacturing method of a dynamic coil for implantable stimulation leads
US10183161B2 (en) Microlead for multipoint neuromodulation of the central nervous system
US9560979B2 (en) Microlead for detection/stimulation, implantable in venous, arterial or lymphatic networks
US7184838B2 (en) Implantable medical lead and method of manufacture
US6925334B1 (en) Implantable medical lead having multiple, jointly insulated electrical conductors
JP5525624B2 (ja) 2以上の区域を有するコイル導体を備えた医療用リード線および該コイル導体の構築方法
US20120136419A1 (en) Implantable medical leads with spiral lumens
US20060089692A1 (en) Implantable medical lead with stylet guide tube
US10039918B2 (en) Implantable lead having a lumen with a wear-resistant liner
US20120053662A1 (en) Lead conductor with pitch and torque control for mri conditionally safe use
US20090082655A1 (en) Medical electrical leads and conductor assemblies thereof
US20170080213A1 (en) Coiled lead assembly for neurostimulation
CN114502234A (zh) 具有编织管状主体的医疗装置
JP2010273912A (ja) 医療用リード及びリードシステム
US8825177B2 (en) Temporary stimulation lead with polymer electrodes and method of manufacture

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20081204

17Q First examination report despatched

Effective date: 20090121

AKX Designation fees paid

Designated state(s): DE FR IT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GREATBATCH LTD.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT SE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007017947

Country of ref document: DE

Effective date: 20120126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

26N No opposition filed

Effective date: 20120720

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007017947

Country of ref document: DE

Effective date: 20120720

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007017947

Country of ref document: DE

Representative=s name: SCHWABE SANDMAIR MARX, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602007017947

Country of ref document: DE

Owner name: QIG GROUP, LLC, CLARENCE, US

Free format text: FORMER OWNER: GREATBATCH, LTD., CLARENCE, N.Y., US

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007017947

Country of ref document: DE

Representative=s name: SCHWABE SANDMAIR MARX PATENTANWAELTE RECHTSANW, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602007017947

Country of ref document: DE

Owner name: NUVECTRA CORPORATION (N.D.GES.D.STAATES DELAWA, US

Free format text: FORMER OWNER: GREATBATCH, LTD., CLARENCE, N.Y., US

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007017947

Country of ref document: DE

Representative=s name: SSM SANDMAIR PATENTANWAELTE RECHTSANWALT PARTN, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: QIG GROUP, LLC, US

Effective date: 20160502

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007017947

Country of ref document: DE

Representative=s name: SCHWABE SANDMAIR MARX PATENTANWAELTE RECHTSANW, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602007017947

Country of ref document: DE

Owner name: NUVECTRA CORPORATION (N.D.GES.D.STAATES DELAWA, US

Free format text: FORMER OWNER: QIG GROUP, LLC, CLARENCE, N.Y., US

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007017947

Country of ref document: DE

Representative=s name: SSM SANDMAIR PATENTANWAELTE RECHTSANWALT PARTN, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20180220

Ref country code: FR

Ref legal event code: CD

Owner name: NUVECTRA CORPORATION, US

Effective date: 20180220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231227

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231229

Year of fee payment: 17