EP1931923A1 - Dispositif de brumisation - Google Patents

Dispositif de brumisation

Info

Publication number
EP1931923A1
EP1931923A1 EP06793854A EP06793854A EP1931923A1 EP 1931923 A1 EP1931923 A1 EP 1931923A1 EP 06793854 A EP06793854 A EP 06793854A EP 06793854 A EP06793854 A EP 06793854A EP 1931923 A1 EP1931923 A1 EP 1931923A1
Authority
EP
European Patent Office
Prior art keywords
axis
centrifugal fan
fan
radial
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06793854A
Other languages
German (de)
English (en)
Inventor
Gilles Delattre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delattre Industrie Developpement en Abrege DID SARL
Original Assignee
Delattre Industrie Developpement en Abrege DID SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delattre Industrie Developpement en Abrege DID SARL filed Critical Delattre Industrie Developpement en Abrege DID SARL
Publication of EP1931923A1 publication Critical patent/EP1931923A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
    • F24F6/14Air-humidification, e.g. cooling by humidification by forming water dispersions in the air using nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
    • F04D29/705Adding liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0035Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
    • F24F6/14Air-humidification, e.g. cooling by humidification by forming water dispersions in the air using nozzles
    • F24F2006/146Air-humidification, e.g. cooling by humidification by forming water dispersions in the air using nozzles using pressurised water for spraying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/54Free-cooling systems

Definitions

  • the present invention relates to a misting device.
  • the device ensures the cooling of the area covered by the absorption of heat during the vaporization of the misted water.
  • the device finds another application for the diffusion of products (such as phytosanitary liquids, disinfectants, odor treatment liquids, etc.) in liquid form, in droplets, over a determined diffusion space.
  • products such as phytosanitary liquids, disinfectants, odor treatment liquids, etc.
  • US-A-6,786,701 discloses a screened coiled fan with water droplet delivery nozzles on the front connected to a pressurized water supply circuit.
  • Such a fan deploys only a low air pressure which limits the range of fogging. There is also a return effect of misted air towards the rear of the device due to the depression created at this level.
  • the angular sector covered by the misting and the inclination of the projection are only slightly adjustable.
  • the grid arranged in front of the fan is a source of disturbance of the flow and increases the noise of the assembly.
  • the present invention falls within this framework and proposes a misting device employing a centrifugal fan as means for generating an outgoing gas stream.
  • the inlet is oriented along the axis of rotation of the centrifugal fan and the outlet is radial.
  • centrifugal fan installed in the misting device provides a much higher pressure than that obtained by helical fans at equivalent power and diameter. A difference of the order of 50 to 100% is found.
  • the invention takes advantage of the available pressure to increase the range of the fogger.
  • This pressure reserve also makes it possible to use deflectors so as to direct the flow in the desired directions and to increase the output speed to further increase the range of the misting.
  • a helical fan would not allow the use of deflectors in good conditions because, the air pressure generated is too low, the air flow would be too slow.
  • Another advantage of the invention is to allow misting, in a preferred embodiment, along an angular sector of 360 ° without the need for deflection.
  • the device benefits from the radial orientation of the flow generated by the fan.
  • the area treated by misting is therefore very much increased compared to existing devices.
  • the invention Due to the orientation of the outlet flow and the pressure of the centrifugal fan, the invention also avoids the loop phenomena observed with fans of US-6,786,701 type. While the state of the art systematically suggests the use of fans rotating about a substantially horizontal axis, the invention deviates from this principle with a substantially vertical axis device. In combination with nozzles fed by a pressurized water circuit, it has been found that the device of the invention provides a high smoothness of misting and an excellent volume distribution. This point is important especially for use in a cooler because it allows a high rate of evaporation.
  • the invention relates to a misting device comprising means for generating a gas flow cooperating with means for producing droplets of a liquid to form a mist, characterized in that the generating means the gas flow is constituted by a centrifugal fan having an inlet oriented along the axis of rotation of the fan and a radial outlet for generating a radial flow of transport of the droplets.
  • this device is such that:
  • the droplet production means comprise diffusion nozzles located downstream of the fan outlet and fed by a pressurized water circuit. the nozzles are located in the radial flow.
  • the nozzles are located above the radial flow.
  • the device has a plurality of deflection flaps of the gas flow pivotally mounted along an axis parallel to the axis of rotation of the centrifugal fan, possibly with means for actuating the deflection flaps.
  • the device has a plurality of deflection flaps of the gas flow pivotally mounted along an axis orthogonal to the axis of rotation of the centrifugal fan, possibly with means for actuating in rotation.
  • the device comprises a body in which the centrifugal fan is mounted, in communication with an air intake mouth and comprising at least one radial projection mouth of the gas flow.
  • the body has a polygonal periphery of which at least one side has a projection mouth.
  • the device comprises means for closing off at least one projection mouth.
  • the body has a cylindrical periphery of which at least one angular sector comprises a projection mouth. - The axis of rotation of the centrifugal fan is vertical.
  • the device comprises a support leg with a supply duct to the centrifugal fan.
  • the conduit constitutes the vertical amount of the foot.
  • Figure 1 is a longitudinal section of the device of the invention and Figure 2 is a cross section.
  • Figure 3 illustrates the outgoing airflow and the possibilities of adjusting its orientation.
  • Figure 4 is a section along the line C-C of Figure 2 showing an example of means for actuating the baffles.
  • Figure 5 is an example of positioning the device of the invention on a foot and Figure 6 shows another example of implantation with a remote air intake.
  • Figure 7 also shows a possibility of installation by suspension of the device at the ceiling of a building.
  • Figure 8 shows a suspension variant with a deflector adjustment so as to orient differently the flow.
  • Figure 9 shows schematically the possibilities of adjusting the level of projection of the flow relative to the walls so as to use or not an edge effect of the Coanda type.
  • Figure 10 shows an embodiment with an air intake from above the device.
  • Figures 1 1 and 12 show two cases of different adjustment of the angular sector of projection of the radial air flow.
  • the projection is carried out at 360 ° while the angular sector is smaller in Figure 12 so as to adapt to the configuration of the location.
  • Figure 13 is a top view of the device. The following is the case of a production of water droplets, non-limiting case of usable liquids.
  • the device 1 of the invention is provided with a centrifugal fan 2 forming means for generating an air flow with a radial air outlet with respect to the axis 3 rotation of the centrifugal fan 2.
  • the centrifugal fan 2 is housed in a body 4 made of plastic or metal material preserving a peripheral outlet for the ejection of the radial flow 16.
  • the centrifugal fan 2 has an inlet 5 which is placed in communication with an inlet mouth 7 situated near the inlet 5 in the case of FIG. 1 but which can be offset as in the example of FIG. FIG. 6 or halfway in the case of FIG. 5.
  • the air inlet 5 can be located below the fan 2 or on its upper face, as in the case of FIG.
  • the axis of rotation 3 is arranged along the vertical axis.
  • the generated radial flux is projected in a horizontal plane.
  • the outlet 6 of the fan which is located on its circumference downstream of the blades 12 of the centrifugal fan, is placed opposite one or more projection mouths 9 formed in the body 4 of the device 1.
  • the body 4 has a portion of polygonal section defining a plurality of sectors 8 each having a projection mouth 9.
  • the air flow is ejected from the device 1 through each of the mouths 9, the flow then covering an angular sector of 360 °. It is also possible to seal one or more projection mouths totally or partially so as to limit the angular surface covered by the projection.
  • FIG. 11 shows a projection at 360 ° while FIG. 12 shows a restricted projection sector using a screen 29 for closing off certain projection mouths 9.
  • the screen 29 is composed of a plurality of blanks 30a, b, c, d, e shutter.
  • a body 4 having a portion of circular section rather than polygonal and having a screen that can cover all or part of the opening of the circular portion can be provided in particular.
  • the nozzles 10 corresponding to the closed portion will be plugged or replaced by plugs or their closed supply circuit.
  • the generation of water droplets takes place in the ejection zone of the radial air flow 16.
  • the droplets are directly carried away by the outflow.
  • the droplet generation takes place slightly above the outlet of the airflow as shown in FIGS. 1 and 13.
  • the means for producing water droplets comprise a plurality of nozzles 10 of current design fed with water under pressure via a feed circuit 1 1 from a water supply or water supply. a mains water supply and pumping and filtering means.
  • FIG. 13 shows the feed circuit 11 with a peripheral portion for distributing water under pressure to the nozzles 10.
  • a nozzle 10 is formed for each sector 8.
  • Shifting the nozzles 10 in height relative to the output of the radial air flow is advantageous for certain applications because it has been found that this provision allows to increase the height of the fog sheet by more than 50%.
  • the range is generally diminished.
  • the misting height By increasing the misting height, one generally obtains an impression of better homogeneity of the misting and not a very directional jet.
  • Ventilation 200m3 / h; a production mouth: 200 x 100 (mm)
  • the cloud of haze is therefore high and more generally larger surface by arranging the nozzles offset from the outgoing air flow.
  • the resulting speed is substantially equivalent to that of the centrifugal fan 2 and the total range is little changed.
  • the resulting air flow is greater than that of the fan alone, which increases the total volume treated.
  • the resulting air speed is greater than that of the centrifugal fan alone which increases the total range while the resulting flow is substantially equivalent to the flow of the centrifugal fan which explains that the volume treated is virtually unchanged.
  • the rate of induction which is the ratio of the total air flow rate to the primary flow rate which implies that the total volume of air displaced is greater than the volume of primary air.
  • the configuration of the device 1 of the invention having a radial output of the air flow makes it possible to adjust the positioning of the nozzles 10 relative to the desired application.
  • homogeneity may be preferred if it is important to similarly refresh all the points of the treated area.
  • Means for modifying the position of the nozzles relative to the projection mouths 9 may be provided so as to adjust to the requirements of the application.
  • deflection means are provided at the projection mouths 9.
  • the deflection means comprise a plurality of flaps 13 having an axis oriented parallel to that of rotation of the centrifugal fan 2 and a plurality of flaps 14 arranged to pivot along an axis orthogonal to the axis 3 fan 2.
  • Figure 3 shows that it is possible to avoid an obstacle 15 located at the periphery of the device 1 by properly orienting the flaps.
  • the flaps 13 and / or the flaps 14 are adjustable manually and individually.
  • FIG. 4 shows an exemplary embodiment of the drive in rotation of the shutters 14.
  • the flaps 14 are coupled in rotation by means of drive rods 18 connected by cardan 17 and driven by a system of bevel gears 20, 21 providing the angular return of a rotational movement of an axis 19 moved by means of a handle 22 which could be replaced by a motor.
  • Figures 7 and 8 are an illustration with a different orientation of the flow according to the configuration of the building equipped.
  • This effect is characterized by an extension of the range of a flow when it tangents a wall.
  • a similar effect is produced by playing on the flaps 14 so as to orient them upwards.
  • the Coanda effect makes it possible to substantially extend the range of the misted zone 26 with respect to a case without Coanda effect (zone 25).
  • Figure 7, 8, 9 and 10 show the case of a suspension at the ceiling of a building thus avoiding any congestion on the ground.
  • Figure 10 shows in this context the formation of a chimney to spare the intake port 7 of air outside the building.
  • Figures 5 and 6 show the formation of a foot serving as a vertical support for the fan to the device 1.
  • the foot is made in the form of a conduit 23 of hollow tubular shape (of square or polygonal section, cylindrical or other) ensuring the supply of air to the inlet 5 of the centrifugal fan 2. It can thus constituting the inlet mouth 7 with a plurality of openings on the surface of the duct as is the case for FIG. 5 or else deporting the air inlet quite widely using a duct 24 suitable for example to communicate with the outside.
  • a base 33 advantageously constitutes the base of support of the conduit 23 on the ground.

Abstract

La présente invention concerne un dispositif (1) de brumisation comportant des moyens de génération d'un flux gazeux coopérant avec des moyens de production de gouttelettes d'un liquide pour former une brume. Selon l'invention, les moyens de génération du flux gazeux sont constitués par un ventilateur centrifuge (2) ayant une entrée (5) orientée suivant l'axe de rotation du ventilateur (2) et une sortie (6) radiale pour générer un flux radial de transport des gouttelettes.

Description

"Dispositif de brumisation"
La présente invention concerne un dispositif de brumisation.
Elle trouvera son application pour la génération de brume dans les espaces clos, semi clos ou ouverts, tels des terrasses d'habitation ou de restaurant ou encore des locaux industriels.
Le dispositif assure le rafraîchissement de la zone couverte par l'absorption de chaleur lors de la vaporisation de l'eau brumisée.
Le dispositif trouve une autre application pour la diffusion de produits (tels liquides phytosanitaires, désinfectants, liquides de traitement des odeurs, etc.) sous forme liquide, en gouttelettes, sur un espace de diffusion déterminé.
Le document US-A-6.786.701 divulgue un ventilateur hélicoïde grillagé avec des buses de diffusion de gouttelettes d'eau sur le devant relié à un circuit d'alimentation en eau pressurisée.
Un tel ventilateur ne déploie qu'une faible pression d'air ce qui limite la portée de brumisation. On constate par ailleurs un effet de retour de l'air brumisé vers l'arrière de l'appareil du fait de la dépression créée à ce niveau.
Cela diminue grandement l'efficacité de l'ensemble et implique un fonctionnement des organes de l'appareil dans des conditions d'humidité élevée pénalisant la fiabilité et la durée de vie du ventilateur.
Les documents US-A-2003/192482 et US-A-2004/065268 présentent des appareils munis d'un ventilateur hélicoïde semblable au précédent mais caréné avec un corps cylindrique creux réduisant l'effet de retour évoqué précédemment. Cela étant, des inconvénients inhérents au type de conception de ces appareils subsistent et en particulier les inconvénients suivants :
- ces appareils ne génèrent qu'une faible pression d'air d'où une faible portée de la brumisation ;
- si l'on souhaite augmenter la puissance du ventilateur pour augmenter la portée, les nuisances sonores deviennent très importantes ;
- ces appareils sont extrêmement directionnels avec une brumisation toujours dans l'axe de la rotation du ventilateur.
Le secteur angulaire couvert par la brumisation et l'inclinaison de la projection ne sont que peu réglables. - la grille disposée par devant le ventilateur est source de perturbation du flux et augmente le bruit de l'ensemble.
On connaît en outre de US-A1 -2002/0170309 un appareil portable de projection d'eau. De par sa technologie les gouttelettes sont trop grosses pour former une brume. Par ailleurs ce dispositif est fortement directionnel. Les documents NL-A-71 1 6 405 et FR-A-2 329 198 présentent tous deux des systèmes complexes pour l'éjection de gouttelettes. Ils sont aussi fort directionnels et les gouttelettes sont de grosse taille.
Il existe donc un besoin de proposer un dispositif de brumisation surmontant en tout ou partie les inconvénients des techniques connues jusqu'à présent.
La présente invention s'inscrit dans ce cadre et propose un dispositif de brumisation employant un ventilateur centrifuge comme moyen de génération d'un flux gazeux sortant. Selon l'invention, l'entrée est orientée suivant l'axe de rotation du ventilateur centrifuge et la sortie est radiale.
Le demandeur a constaté que le ventilateur centrifuge installé dans le dispositif de brumisation procure une pression bien supérieure à celle obtenue par des ventilateurs hélicoïdes à puissance et diamètre équivalents. Un écart de l'ordre de 50 à 100 % est constaté.
Ainsi, l'invention profite de la pression disponible afin d'augmenter la portée du brumisateur.
Cette réserve de pression permet également d'utiliser des déflecteurs de sorte à orienter le flux dans les directions souhaitées et à augmenter la vitesse de sortie pour augmenter encore la portée de la brumisation.
Un ventilateur hélicoïde ne permettrait pas l'utilisation de déflecteurs dans de bonnes conditions car, la pression d'air générée étant trop faible, le flux d'air serait trop freiné. Un autre avantage de l'invention est de permettre une brumisation, dans un mode de réalisation préféré, suivant un secteur angulaire de 360° sans nécessité de déflection.
Le dispositif bénéficie de l'orientation radiale du flux généré par le ventilateur. On augmente donc très fortement la surface traitée par la brumisation comparativement aux dispositifs existants.
On constate également qu'une telle configuration gêne peu les utilisateurs sur le plan sonore dans la mesure où il est possible de placer le dispositif au-dessus des zones de circulation donc au-dessus de la tête des utilisateurs et dans la mesure où le bruit constaté selon l'invention se situe dans des fréquences moins élevées que dans le cas des dispositifs existants.
De par l'orientation du flux de sortie et la pression du ventilateur centrifuge, l'invention évite également les phénomènes de boucle constatés avec des ventilateurs du type US-6.786.701. Alors que l'état de la technique suggère systématiquement l'emploi de ventilateurs tournant autour d'un axe sensiblement horizontal, l'invention s'écarte de ce principe avec un dispositif à axe sensiblement vertical. En combinaison avec des buses alimentées par un circuit d'eau sous pression, on a constaté que le dispositif de l'invention assure une grande finesse de brumisation et une excellente répartition volumique. Ce point est important notamment pour une utilisation en rafraîchisseur car cela permet un taux d'évaporation élevé.
D'autres buts et avantages apparaîtront au cours de la description qui suit qui présente un mode de réalisation préféré de l'invention cependant non limitatif.
Auparavant, il est rappelé que l'invention concerne un dispositif de brumisation comportant des moyens de génération d'un flux gazeux coopérant avec des moyens de production de gouttelettes d'un liquide pour former une brume, caractérisé par le fait que les moyens de génération du flux gazeux sont constitués par un ventilateur centrifuge ayant une entrée orientée suivant l'axe de rotation du ventilateur et une sortie radiale pour générer un flux radial de transport des gouttelettes.
De façon avantageuse mais non limitative, ce dispositif est tel que :
- les moyens de production de gouttelettes comportent des buses de diffusion situées en aval de la sortie du ventilateur et alimentées par un circuit d'eau sous pression. - les buses sont situées dans le flux radial.
- les buses sont situées au dessus du flux radial.
- le dispositif présente une pluralité de volets de déflection du flux gazeux montés pivotant suivant un axe parallèle à l'axe de rotation du ventilateur centrifuge, éventuellement avec des moyens d'actionnement des volets de déflection.
- le dispositif présente une pluralité de volets de déflection du flux gazeux montés pivotant suivant un axe orthogonal à l'axe de rotation du ventilateur centrifuge, éventuellement avec des moyens d'actionnement en rotation.
- le dispositif comprend un corps dans lequel est monté le ventilateur centrifuge, en communication avec une bouche d'admission d'air et comportant au moins une bouche de projection radiale du flux gazeux.
- le corps a un pourtour polygonal dont au moins un côté comporte une bouche de projection. - le dispositif comporte des moyens d'obturation d'au moins une bouche de projection.
- le corps a un pourtour cylindrique dont au moins un secteur angulaire comporte une bouche de projection. - l'axe de rotation du ventilateur centrifuge est vertical.
- le dispositif comporte un pied de support avec un conduit d'amenée au ventilateur centrifuge.
- le conduit constitue le montant vertical du pied.
Les dessins ci-joints sont donnés à titre d'exemples et ne sont pas limitatifs de l'invention. Ils représentent seulement un mode de réalisation de l'invention et permettront de la comprendre aisément.
La figure 1 est une coupe longitudinale du dispositif de l'invention et la figure 2 en est une coupe transversale.
La figure 3 illustre le flux d'air sortant et les possibilités de réglage de son orientation.
La figure 4 est une coupe suivant la ligne C-C de la figure 2 montrant un exemple de moyens d'actionnement des déflecteurs.
La figure 5 est un exemple de positionnement du dispositif de l'invention sur un pied et la figure 6 montre un autre exemple d'implantation avec une admission d'air déportée.
La figure 7 montre encore une possibilité d'installation par suspension du dispositif au niveau du plafond d'un bâtiment.
La figure 8 montre une variante de suspension avec un réglage des déflecteurs de sorte à orienter différemment le flux. La figure 9 schématise les possibilités de réglage du niveau en hauteur de projection du flux relativement aux parois de sorte à utiliser ou non un effet de bord du type Coanda.
La figure 10 montre un mode d'implantation avec une admission d'air par le dessus du dispositif. Les figures 1 1 et 12 montrent deux cas d'ajustement différent du secteur angulaire de projection du flux d'air radial. Dans le cas de la figure 1 1 , la projection s'effectue à 360° alors que le secteur angulaire est plus réduit en figure 12 de sorte à s'adapter à la configuration du lieu d'implantation.
La figure 13 est une vue de dessus du dispositif. On présente ci-après le cas d'une production de goutellettes d'eau, cas non limitatif de liquides utilisables.
De même, on présente la génération d'un flux d'air mais d'autres fluides gazeux sont exploitables.
Tel que visible notamment en figures 1 et 2, le dispositif 1 de l'invention est muni d'un ventilateur centrifuge 2 formant des moyens de génération d'un flux d'air avec une sortie d'air radiale par rapport à l'axe 3 de rotation du ventilateur centrifuge 2.
Dans le cas illustré, le ventilateur centrifuge 2 est logé dans un corps 4 en matière plastique ou métallique préservant une sortie périphérique pour l'éjection du flux radial 16.
Le ventilateur centrifuge 2 dispose d'une entrée 5 que l'on met en communication avec une bouche d'admission 7 située à proximité de l'entrée 5 dans le cas de la figure 1 mais pouvant être déportée comme dans l'exemple de la figure 6 ou à mi-hauteur dans le cas de la figure 5. L'entrée d'air 5 peut être située en dessous du ventilateur 2 ou sur sa face supérieure comme dans le cas de la figure 10.
D'une façon générale mais non limitative, on dispose l'axe de rotation 3 suivant la verticale.
De cette façon, le flux radial généré est projeté selon un plan horizontal. Pour réaliser la projection, la sortie 6 du ventilateur qui est située sur sa circonférence en aval des pâles 12 du ventilateur centrifuge, est placée en regard d'une ou plusieurs bouches de projection 9 formées dans le corps 4 du dispositif 1.
Dans le cas présenté et particulièrement visible à la figure 2, le corps 4 dispose d'une partie de section polygonale délimitant une pluralité de secteurs 8 disposant chacun d'une bouche de projection 9.
Le flux d'air est donc éjecté du dispositif 1 au travers de chacune des bouches 9, le flux couvrant alors un secteur angulaire de 360°. II est par ailleurs possible d'obturer une ou plusieurs bouches de projection totalement ou partiellement de sorte à limiter la surface angulaire couverte par la projection.
La figure 1 1 montre une projection à 360° alors que la figure 12 montre un secteur de projection restreint utilisant un écran 29 d'obturation de certaines bouches de projection 9.
Dans le cas illustré, l'écran 29 est composé d'une pluralité de pans 30a,b,c,d,e d'obturation.
La configuration illustrée n'est bien entendu pas limitative. On peut prévoir notamment un corps 4 disposant d'une portion de section circulaire plutôt que polygonale et présentant un écran pouvant couvrir tout ou partie de l'ouverture de la portion circulaire.
A titre préféré, les buses 10 en correspondance de la portion obturée seront bouchées ou remplacées par des bouchons ou leur circuit d'alimentation fermé.
Suivant une première possibilité, la génération de gouttelettes d'eau s'effectue dans la zone d'éjection du flux d'air radial 16.
De cette façon, les gouttelettes sont directement emportées par le flux sortant. Suivant une autre possibilité, la génération de gouttelettes s'effectue légèrement au-dessus de la sortie du flux d'air comme illustré aux figures 1 et 13.
A ces figures, les moyens de production de gouttelettes d'eau comportent une pluralité de buses 10 de conception courante alimentées en eau sous pression par l'intermédiaire d'un circuit d'alimentation 1 1 issu d'une réserve d'eau ou d'une alimentation secteur en eau et de moyens de pompage et de filtrage.
La figure 13 montre le circuit d'alimentation 1 1 avec une partie périphérique de répartition de l'eau sous pression vers les buses 10. Dans le cas illustré, une buse 10 est formée pour chaque secteur 8.
Décaler en hauteur les buses 10 relativement à la sortie du flux d'air radial est avantageux pour certaines applications car on a constaté que cette disposition permet d'augmenter la hauteur de la nappe de brume de plus de 50%.
Par contre, la portée est généralement diminuée. En augmentant la hauteur de brumisation, on obtient généralement une impression de meilleure homogénéité de la brumisation et non pas un jet très directionnel.
On reprend ci-après le résultat d'essai réalisé par le demandeur sous forme de tableau présentant la hauteur H et la largeur L du nuage de brume obtenu à une distance donnée du dispositif 1 ainsi que la surface brumisée à cette distance en fonction du décalage en hauteur (d) entre les buses 10 et l'axe médian des bouches de projection d'air 9.
Conditions de l'essai :
Ventilation : 200m3/h ; une bouche de production : 200 x 100 (mm)
1 buse DID CNm type B01 débit 0,08 l/min à 50 bars
Pression de service : 50 bars
Distance de mesure : 2 ,50m d(cm) L(cm) H(cm) Surface couverte (m2)
0 80 60 0,48
5 90 65 0,59
10 1 10 70 0,77
15 120 80 0,96
Distance de mesure : 3,5m
Le nuage de brume est donc de hauteur et plus généralement de surface plus importante en disposant les buses en décalage par rapport au flux d'air sortant.
Par cette disposition en parallèle des moyens de génération de flux d'air et des moyens de production de gouttelettes d'eau, la vitesse résultante est sensiblement équivalente à celle du ventilateur centrifuge 2 et la portée totale est peu changée. Par contre, le débit d'air résultant est supérieur à celui du ventilateur seul ce qui augmente le volume total traité.
Au contraire, en plaçant en série les moyens de génération de flux d'air et les moyens de production de gouttelettes, la vitesse d'air résultante est supérieure à celle du ventilateur centrifuge seul ce qui augmente la portée totale alors que le débit résultant est sensiblement équivalent au débit du ventilateur centrifuge ce qui explique que le volume traité est pratiquement inchangé.
Il faut également tenir compte du taux d'induction qui est le rapport du débit d'air total sur le débit primaire qui implique que le volume total d'air déplacé est supérieur au volume d'air primaire.
Par conséquent, la configuration du dispositif 1 de l'invention présentant une sortie radiale du flux d'air permet d'ajuster le positionnement des buses 10 relativement à l'application souhaitée.
Selon les applications, on pourra privilégier l'homogénéité s'il est important de rafraîchir de façon semblable tous les points de la zone traitée.
Dans d'autres cas, on pourra privilégier la portée pour augmenter le rayon d'action. On pourra prévoir des moyens de modification de la position des buses par rapport aux bouches de projection 9 de sorte à s'ajuster aux nécessités de l'application.
On peut aussi positionner les buses 10 en dessous des bouches 9 si l'application s'y prête.
De façon à orienter le flux radial 16, des moyens de déflection sont prévus au niveau des bouches de projection 9.
Dans le cas illustré, les moyens de déflection comportent une pluralité de volets 13 disposant d'un axe orienté parallèlement à celui de rotation du ventilateur centrifuge 2 et une pluralité de volets 14 disposés de sorte à pivoter suivant un axe orthogonal à l'axe 3 du ventilateur 2.
On comprend aisément que l'association de ces deux types de volet 13, 14 permet un réglage affiné de l'orientation du flux 16.
L'exemple de la figure 3 montre qu'il est possible d'éviter un obstacle 15 situé en périphérie du dispositif 1 en orientant de façon adéquate les volets.
Suivant un premier mode de réalisation, les volets 13 ou/et les volets 14 sont réglables manuellement et individuellement.
Il est également possible de coupler leur mobilité pour former des ensembles de volets 13 et/ou 14 pivotant simultanément. Suivant un autre mode de réalisation, le mouvement des volets 13 et/ou
14 est motorisé par tout moyen courant.
On a représenté en figure 4 un exemple de réalisation de l'entraînement en rotation des volets 14.
Dans ce cadre, les volets 14 sont couplés en rotation par l'intermédiaire de tiges d'entraînement 18 reliées par cardan 17 et entraînées par un système de pignons coniques 20, 21 assurant le renvoi d'angle d'un mouvement de rotation d'un axe 19 mû par l'intermédiaire d'une poignée 22 qui pourrait être remplacée par un moteur.
La configuration ainsi illustrée n'est cependant pas limitative de l'invention et tout moyen de modification de la position des volets 13 ou des volets 14 entre dans le cadre de la présente invention. On comprend aisément que l'association de volets de déflection 13, 14 avec le ventilateur centrifuge 2 assurant une sortie radiale du flux d'air 16 permet de grandes possibilités de réglage du flux sortant.
Les figures 7 et 8 en sont une illustration avec une orientation différente du flux selon la configuration du bâtiment équipé.
En figure 9, on a représenté la possibilité d'exploiter l'effet Coanda en plaçant le dispositif 1 à faible hauteur du plafond (paroi 31 ) du bâtiment.
Cet effet se caractérise par un allongement de la portée d'un flux lorsque celui-ci tangente une paroi. Un effet semblable est produit en jouant sur les volets 14 de sorte à les orienter vers le haut.
L'effet Coanda permet d'allonger sensiblement la portée de la zone brumisée 26 par rapport à un cas sans effet Coanda (zone 25).
Plusieurs possibilités d'implantation existent pour le dispositif de brumisation 1 de l'invention.
La figure 7, 8, 9 et 10 montrent le cas d'une suspension au niveau du plafond d'un bâtiment évitant ainsi tout encombrement au sol.
La figure 10 montre dans ce cadre la formation d'une cheminée pour ménager la bouche d'admission 7 de l'air à l'extérieur du bâtiment. Les figures 5 et 6 montrent la formation d'un pied servant de montant vertical de support au ventilateur au dispositif 1.
Avantageusement, le pied est réalisé sous forme d'un conduit 23 de forme tubulaire creuse (de section carrée ou polygonale, cylindrique ou autre) assurant l'amenée de l'air jusqu'à l'entrée 5 du ventilateur centrifuge 2. On peut ainsi constituer la bouche d'admission 7 avec une pluralité d'ouvertures sur la surface du conduit comme c'est le cas pour la figure 5 ou encore déporter assez largement l'admission d'air en utilisant un conduit 24 apte par exemple à communiquer avec l'extérieur.
Ce dernier cas comme celui de la figure 10 permet le renouvellement de l'air intérieur au bâtiment.
Un socle 33 constitue avantageusement la base d'appui du conduit 23 sur le sol. REFERENCES
1. Dispositif
2. Ventilateur centrifuge
3. Axe de rotation 4. Corps
5. Entrée
6. Sortie
7. Bouche d'admission
8. Secteurs 9. Bouches de projection
10. Buses
1 1. Circuit d'alimentation
12. Pâles
13. Volets axiaux 14. Volets orthogonaux
15. Obstacle 16. Flux
17. Cardan
18. Tige 19. Axe
20, 21. Pignons coniques
22. Poignée
23. Conduit
24. Conduit externe 25. Zone brumisée
26. Zone brumisée
27. Zone brumisée
28. Zone brumisée
29. Ecran 30 a,b,c,d,e. Pan
31. Paroi
32. Paroi 33. Socle

Claims

REVENDICATIONS
1. Dispositif (1 ) de brumisation comportant des moyens de génération d'un flux gazeux coopérant avec des moyens de production de gouttelettes d'un liquide pour former une brume, caractérisé par le fait que les moyens de génération du flux gazeux sont constitués par un ventilateur centrifuge (2) ayant une entrée (5) orientée suivant l'axe de rotation (3) du ventilateur (2) ledit axe étant vertical et une sortie (6) radiale pour générer un flux radial de transport des gouttelettes, et les moyens de production de gouttelettes comportent des buses (10) de diffusion situées en aval de la sortie (6) du ventilateur (2) et alimentées par un circuit d'eau sous pression.
2. Dispositif (1 ) selon la revendication 1 dans lequel les buses (10) sont situées dans le flux radial.
3. Dispositif (1 ) selon la revendication 1 dans lequel les buses (10) sont situées au dessus du flux radial.
4. Dispositif (1 ) selon l'une quelconque des revendications 1 à 3, présentant une pluralité de volets (13) de déflection du flux gazeux montés pivotant suivant un axe parallèle à l'axe de rotation (3) du ventilateur centrifuge
(2).
5. Dispositif (1 ) selon l'une quelconque des revendications 1 à 4, présentant une pluralité de volets (14) de déflection du flux gazeux montés pivotant suivant un axe orthogonal à l'axe de rotation (3) du ventilateur centrifuge (2).
6. Dispositif (1 ) selon la revendication 4 ou 5 comportant des moyens d'actionnement des volets (13, 14) de déflection.
7. Dispositif (1 ) selon l'une quelconque des revendications 1 à 6, comprenant un corps (4) dans lequel est monté le ventilateur centrifuge (2), en communication avec une bouche d'admission (7) et comportant au moins une bouche de projection (9) radiale du flux gazeux.
8. Dispositif (1 ) selon la revendication 7 dans lequel le corps (4) a un pourtour polygonal dont au moins un côté comporte une bouche de projection (9).
9. Dispositif (1 ) selon la revendication 7 dans lequel le corps (4) a un pourtour cylindrique dont au moins un secteur angulaire comporte une bouche de projection (9).
10. Dispositif (1 ) selon l'une quelconque des revendications 7 à 9, comportant des moyens d'obturation d'au moins une bouche de projection (9).
1 1. Dispositif (1 ) selon l'une des quelconques revendications 1 à 10 comportant un pied de support avec un conduit (23) d'amenée au ventilateur centrifuge (2).
12. Dispositif (1 ) selon la revendication 1 1 dans lequel le conduit (23) constitue le montant vertical du pied.
EP06793854A 2005-10-05 2006-09-27 Dispositif de brumisation Withdrawn EP1931923A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0553016A FR2891474B1 (fr) 2005-10-05 2005-10-05 Dispositif de brumisation
PCT/EP2006/066787 WO2007039530A1 (fr) 2005-10-05 2006-09-27 Dispositif de brumisation

Publications (1)

Publication Number Publication Date
EP1931923A1 true EP1931923A1 (fr) 2008-06-18

Family

ID=36570619

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06793854A Withdrawn EP1931923A1 (fr) 2005-10-05 2006-09-27 Dispositif de brumisation

Country Status (4)

Country Link
US (1) US20080251611A1 (fr)
EP (1) EP1931923A1 (fr)
FR (1) FR2891474B1 (fr)
WO (1) WO2007039530A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2922290B1 (fr) * 2007-10-15 2012-09-21 Delattre Ind Dev Did Dispositif destine a monter un conduit sur un support
FR3013239B1 (fr) * 2013-11-19 2017-03-10 Areco Finances Et Tech Arfitec Tete de diffusion de brouillard munie d'un deflecteur
US10598394B2 (en) * 2016-11-28 2020-03-24 Hale Industries, Inc. Cooling device
US10207231B1 (en) * 2017-02-03 2019-02-19 Mistamerica, Corp. Overhead fan misting system and method therefor
US11079125B2 (en) * 2019-10-03 2021-08-03 Mistamerica Corporation Overhead fan misting system and method therefor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7116405A (fr) * 1971-11-29 1973-06-01
FR2329198A1 (fr) * 1975-11-03 1977-05-27 Calvet Pierre Machine agricole pour la pulverisation et la projection de liquides
US4090370A (en) * 1976-03-11 1978-05-23 Vaughan Kenneth F Environmental control system
US4871105A (en) * 1988-04-06 1989-10-03 American Telephone And Telegraph Company, At&T Bell Laboratories Method and apparatus for applying flux to a substrate
US5168722A (en) * 1991-08-16 1992-12-08 Walton Enterprises Ii, L.P. Off-road evaporative air cooler
US6543247B2 (en) * 2000-04-03 2003-04-08 Ted Strauss Waist-mounted evaporative personal cooler
US6883251B2 (en) 2001-09-28 2005-04-26 Michael E. Terrell Livestock cooling system
US6578828B2 (en) 2001-09-28 2003-06-17 Michael E. Terrell Livestock cooling system
FR2835750A1 (fr) * 2002-02-11 2003-08-15 Herve Duplessy Procede de rafraichissement de l'air ambiant par atomisation permanente horizontal d'eau, assistee d'une ventilation d'air pulse centrifuge pour couvrir une zone sectorielle programmable assure par l'entrainement d'un moteur pas a pas
US6786701B1 (en) 2002-05-31 2004-09-07 Emerson Electric Co. High-pressure misting fan
US20050086967A1 (en) * 2003-10-24 2005-04-28 Seann Pavlik Misting apparatus with moisture eliminator and related method
ITPR20040072A1 (it) * 2004-10-13 2005-01-13 Kemper Srl Apparato e procedimento per rinfrescare ambienti.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007039530A1 *

Also Published As

Publication number Publication date
FR2891474B1 (fr) 2007-12-14
FR2891474A1 (fr) 2007-04-06
WO2007039530A1 (fr) 2007-04-12
US20080251611A1 (en) 2008-10-16

Similar Documents

Publication Publication Date Title
WO2000073662A1 (fr) Ventilateur equipe d'une manche a air
EP3126057B1 (fr) Dispositif et procédé pour la diffusion d'un brouillard sec
WO2007039530A1 (fr) Dispositif de brumisation
CA2881040C (fr) Installation pour rafraichir des articles exposes a la vente par un brouillard de gouttelettes d'eau
EP2941597B1 (fr) Dispositif de rafraichissement
EP0608176A1 (fr) Micro-diffuseur pour brouillard de particules liquides
EP2441523B1 (fr) Dispositif de projection d'un fluide de traitement, et système de pulvérisation d'un fluide de traitement comprenant au moins un tel dispositif
WO2015075352A1 (fr) Tête de diffusion de brouillard munie d'un déflecteur
EP1884164A1 (fr) Appareil de thermonébulisation d'une composition liquide pour le traitement de fruits ou de légumes et utilisation correspondante
FR2961583A1 (fr) Dispositif de distribution d'air a partie deformable pour un conduit d'une installation de chauffage et/ou climatisation
FR2924322A1 (fr) Aspirateur a filtration a eau
EP0653157B1 (fr) Dispositif pour produire un courant d'air ayant une forme aplatie en section transversale
EP2771129B1 (fr) Mat de diffusion d'un brouillard de gouttelettes comprenant un deflecteur
WO2019043327A1 (fr) Dispositif de filtration d'air
EP0364381A1 (fr) Dispositif de conditionnement d'air interieur
FR2833339A1 (fr) Dispositif de traitement d'air
EP0567588B1 (fr) Diffuseur d'air a jet tourbillonnaire
FR2900718A1 (fr) Diffuseur d'air filtre
FR2526330A1 (fr) Appareil de pulverisation centrique notamment a usage agricole d'application d'herbicides
WO2017093968A1 (fr) Seche-mains soufflant
WO2002087780A1 (fr) Procede et installation de traitement d'objets par projection manuelle de brouillard a rideau d'air de protection
FR2976455A1 (fr) Four de cuisson a generation de vapeur d'eau
EP1106936A1 (fr) Système de diffusion d'air
FR2864806A1 (fr) Dispositif de rafraichissement d'air compact, notamment pour climatisation de vehicule de transport en commun
CH524119A (fr) Echangeur de chaleur par évaporation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080322

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20081219

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140401