EP1931729A1 - Composition de polyéthylène pour moulage par injection améliorée en termes de rapport de résistance à la fissure de contrainte/rigidité et de résistance aux chocs - Google Patents

Composition de polyéthylène pour moulage par injection améliorée en termes de rapport de résistance à la fissure de contrainte/rigidité et de résistance aux chocs

Info

Publication number
EP1931729A1
EP1931729A1 EP06806088A EP06806088A EP1931729A1 EP 1931729 A1 EP1931729 A1 EP 1931729A1 EP 06806088 A EP06806088 A EP 06806088A EP 06806088 A EP06806088 A EP 06806088A EP 1931729 A1 EP1931729 A1 EP 1931729A1
Authority
EP
European Patent Office
Prior art keywords
polyethylene composition
fraction
composition according
injection
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06806088A
Other languages
German (de)
English (en)
Other versions
EP1931729B1 (fr
Inventor
Svein Eggen
Katrin Nord-Varhaug
Siw Bodil Fredriksen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Borealis Technology Oy
Original Assignee
Borealis Technology Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Borealis Technology Oy filed Critical Borealis Technology Oy
Priority to EP06806088A priority Critical patent/EP1931729B1/fr
Publication of EP1931729A1 publication Critical patent/EP1931729A1/fr
Application granted granted Critical
Publication of EP1931729B1 publication Critical patent/EP1931729B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene

Definitions

  • the present invention relates to a polyethylene composition for shaped articles, especially injection and compression moulded articles, in particular for caps and closures, transport packaging, houseware and thin wall packaging applications. Furthermore, the present invention relates to an injection or compression moulded article comprising said composition and to the use of said composition for the production of an injection or compression moulded article.
  • Injection moulding may be used to make a wide variety of articles including articles having relatively complex shapes and a range of sizes. Injection moulding is, for instance, suited for the manufacture of caps and closures, and articles used in transportation packaging which often have a particular form suited to the objects which they carry. Examples of such articles include boxes, bins, pallets, pails, trays and crates. Furthermore, injection moulding is widely used to produce articles for houseware applications, such as sink bowls and drainers, mixing bowls, food containers and buckets, as well as to produce thin wall packaging articles such as open top plastic containers for frozen or fresh food or non-food applications like paint, adhesives, cosmetics and pharmaceuticals.
  • houseware applications such as sink bowls and drainers, mixing bowls, food containers and buckets
  • thin wall packaging articles such as open top plastic containers for frozen or fresh food or non-food applications like paint, adhesives, cosmetics and pharmaceuticals.
  • Injection moulding is a moulding process in which a polymer is melted and then filled into a mould by injection.
  • a high pressure is used and the polymer melt is compressed.
  • the polymer melt initially expands or "relaxes" to fill the mould.
  • the mould is at a lower temperature than the polymer melt therefore as the polymer melt cools, shrinkage tends to occur.
  • further polymer melt may be slowly injected into the mould. Thereafter the polymer melt is cooled further to enable the moulded article to be removed from the mould without causing deformation.
  • Important properties of the polymer to be injection moulded are its mechanical properties which, in turn, determine the properties of the final moulded article.
  • the polymer must have good impact resistance, and, simultaneously, a good balance between environmental stress crack resistance ESCR (which e.g. is measured in terms of the bell test) and stiffness (which e.g. is measured in terms of the E-modulus).
  • ESCR environmental stress crack resistance
  • stiffness which e.g. is measured in terms of the E-modulus
  • the polyethylene composition at the same time must have good processability, such as good flowability.
  • the present invention is based on the finding that such a composition must contain a fraction, usually from 1 to 20 wt%, of a copolymer of ethylene with one or more types of alpha-olefin comonomers which has a comparatively high molecular weight, usually above 300,000 g/mol.
  • the present invention thus provides a polyethylene composition wherein
  • the composition has an MFR 2 of 0.05 to 100 g/10min
  • the environmental stress crack resistance ESCR measured in hours according to ASTM 1693, condition B and E-modulus EM measured according to ISO 527- 2: 1993 in MPa satisfy the following relation:
  • the polyethylene composition according to the invention has improved mechanical properties including an improved ESCR/stiffness relation.
  • the E-modulus is a measure for the stiffness.
  • the composition has good impact strength and good processability.
  • the ESCR in hours and the EM of the composition satisfy the following relation:
  • CIS > -12 log(MFR 2 /g/10min) kJ/m 2 + 21.6 kJ/m 2 .
  • the CIS and the MFR 2 of the composition satisfy the following relation : CIS > -12 log(MFR 2 /g/10min) kJ/m 2 + 22.6 kJ/m 2 ,
  • CIS > -12 log(MFR 2 /g/10min) kJ/m 2 + 24.6 kJ/m 2 .
  • CIS > - 0.5 FA kJ/mVcm + 39 kJ/m 2 .
  • This preferred embodiment of the polyethylene composition of the invention provides a material with an improved balance of impact strength, which is an important property for the final product, and flowability, which is especially important when producing the product by injection moulding.
  • the CIS and FA of the composition satisfy the following relation:
  • CIS > - 0.5 FA kJ/m 2 /cm + 41 kJ/m 2 .
  • the polyethylene composition has a melt flow rate MFR 2 of at least 0.1 g/10min, preferably of at least 0.3 g/10 min, more preferably at least 0.5 g/10min, even more preferably of at least 0.8 g/10 min and most preferably above 1.0 g/10min.
  • the composition preferably has an MFR 2 of 25 g/10min or less, more preferably 15 g/10min or less, still more preferably 10 g/10 min or less, and most preferably 5 g/10min or less.
  • the polyethylene composition has an ESCR measured according to the bell test of 150 h or more, more preferably of 200 h or more, and most preferably of 250 h or more
  • the polyethylene composition comprises
  • (A) a fraction of a copolymer of ethylene with one or more alpha-olefms, with a weight average molecular weight M w of 300,000 g/mol or more.
  • ethylene copolymer a polymer the majority by weight of which, i.e. more than 50 wt%, derives from ethylene monomer units.
  • the molecular weight M w of fraction (A) is 320,000 g/mol or more, still more preferably is 350,000 g/mol or more.
  • the M w of fraction (A) is 1,000,000 g/mol or below, more preferably 800,000 g/mol or below, and most preferably 600,000 g/mol or below. Furthermore, it is preferred that fraction (A) has a molecular weight distribution M w /M n of 3 or higher, more preferably of 4 or higher, and most preferably of 5 or higher.
  • fraction (A) has a molecular weight distribution M w /M n of 15 or lower, more preferably of 10 or lower.
  • the comonomer content in fraction (A) preferably is up to 15 mol%, more preferably up to 10 mol%, and most preferably up to 6 mol%.
  • the comonomer content preferably is 0.1 mol% or more, more preferably is 1.0 mol% or more, and still more preferably is 2.0 mol% or more.
  • the alpha olefin comonomer is a C 3-2O , especially C 3- J 0 , comonomers, particularly singly or multiply ethylenically unsaturated comonomers, in particular C 3-I o alpha-olefins such as propene, but-1-ene, hex-1-ene, oct-1-ene, 4-methyl-pent-l-ene etc..
  • but-1-ene, hex- 1-ene and oct-1-ene are used.
  • But-1-ene is an especially preferred comonomer.
  • Fraction (A) preferably is present in the polyethylene composition in an amount of from 1 to 15 wt%, more preferred from 2 to 10 wt%.
  • the density of fraction (A) preferably is 940 kg/m 3 or less, more preferably is 935 kg/m 3 or less, and most preferably is 930 kg/m 3 or less.
  • fraction (A) which are different from fraction (A), and wherein fraction (B) has a lower average molecular weight than fraction (C).
  • a polyethylene composition comprising at least two polyethylene fractions, which have been produced under different polymerisation conditions resulting in different (weight average) molecular weights and molecular weight distributions for the fractions, is referred to as
  • compositions of the invention are multimodal polyethylenes.
  • the prefix "multi” relates to the number of different polymer fractions the composition is consisting of.
  • a composition consisting of two fractions only is called
  • the form of the molecular weight distribution curve i.e. the appearance of the graph of the polymer weight fraction as function of its molecular weight, of such a multimodal polyethylene will show two or more maxima or at least be distinctly broadened in comparison with the curves for the individual fractions.
  • the polymer fractions produced in the different reactors will each have their own molecular weight distribution and weight average molecular weight.
  • the individual curves from these fractions are superimposed into the molecular weight distribution curve for the total resulting polymer product, usually yielding a curve with two or more distinct maxima.
  • the weight fraction of fraction (B) with regard to the total weight of fractions (B) and (C) is more than 40%.
  • the weight fraction of fraction (B) with regard to the total weight of fractions (B) and (C) is less than 60 %, more preferably is less than 57% and still more preferably is 54% or less.
  • the weight average molecular weight M w of fraction (A) relative to the M w of fractions (B) and (C) is higher by a factor of at least 2, more preferably at least 2.5.
  • the M w of fraction (A) relative to the M w of fractions (B) and (C) is higher by a factor of at most 6, more preferably of at most 5.
  • Fraction (B) preferably has an MFR 2 of 20 g/10min or higher, more preferably of 50 g/10min or higher, still more preferably of 100 g/10min or higher, and most preferably of 200 g/10min or higher.
  • fraction (B) preferably has an MFR 2 of 2000 g/10min or lower, more preferably of 1500 g/10min or lower and most preferably of 1000 g/10min or lower.
  • Fractions (B) and (C) may both be ethylene copolymers or ethylene homopolymers, although preferably at least one of the fractions is an ethylene copolymer.
  • the composition comprises an ethylene homopolymer and an ethylene copolymer component.
  • fraction (B) is an ethylene homo- or copolymer with a density of at least 965 kg/m 3 .
  • one of the components is an ethylene homopolymer, this is preferably the component with the lower molecular weight, i.e. fraction (B).
  • fraction (C) is an ethylene homo- or copolymer with a density of less than 965 kg/m 3 .
  • fraction (C) is a copolymer.
  • ethylene copolymer is used herein to relate to a polyethylene deriving from ethylene and one or more copolymerisable comonomers.
  • the copolymer component(s) of the composition of the invention will contain at least 0.01 mol%, more preferably at least 0.05 mol%, and most preferably at least 0.1 mol % of non-ethylene comonomer units.
  • the copolymer contains at most 5 mol % of such comonomer units, more preferably at most 2 mol%.
  • Preferred ethylene copolymers employ alpha-olefins (e.g. C 3-12 alpha- olefins) as comonomers.
  • alpha-olefins e.g. C 3-12 alpha- olefins
  • suitable alpha-olefins include but-1- ene, hex-1-ene and oct-1-ene.
  • But-1-ene is an especially preferred comonomer.
  • the final polyethylene composition has a complex viscosity at 0.05 rad/s shear rate (etao .05 ) of 20,000 Pas or less, more preferably of 18,500 Pas or less, and most preferably of 15,000 Pas or less.
  • the composition has a complex viscosity at 300 rad/s shear rate (eta 3O o) of 1,000 Pas or less, more preferably of 700 Pas or less.
  • the composition preferably has a SHI(l/100) of 5 or more, more preferably of 7 or more.
  • the composition has a SHI(l/100) of 25 or less, more preferably of 20 or less.
  • the density of the composition preferably is 940 kg/m 3 or higher, more preferably is 945 kg/m 3 or higher, still more preferably is 950 kg/m 3 or higher, and most preferably is 960 kg/m 3 or higher.
  • the composition of the invention has a Charpy impact strength (23 0 C) of 5 kJ/m 2 or more, still more preferably 7 kJ/m 2 or more and most preferably 10 kJ/m 2 or more.
  • the compositions have a Charpy impact strength (23 0 C) of up to 40 kJ/m 2 , more preferably up to 50 kJ/m 2 .
  • compositions have a Charpy impact strength (- 20 0 C) of 3 kJ/m 2 or more, more preferably of 5 kJ/m 2 .
  • the compositions have a Charpy impact strength (-20 0 C) of up to 10 kJ/m 2 , more preferably of up to 15 kJ/m 2 .
  • the composition has an E-modulus (tensile modulus) of 550 MPa or more, more preferably of 600 MPa or more, even more preferably of 800 MPa or more, and most preferably above 900 MPa.
  • E-modulus tensile modulus
  • the composition has a molecular weight distribution MWD (M w /M n ) of higher than 5, more preferably higher than 10, and most preferably higher than 20.
  • the polyethylene composition may also contain minor quantities of additives such as pigments, nucleating agents, antistatic agents, fillers, antioxidants, processing aids, etc., generally in amounts of up to 10 % by weight, preferably up to 5 % by weight.
  • additives such as pigments, nucleating agents, antistatic agents, fillers, antioxidants, processing aids, etc.
  • Fraction (A) of the polyethylene composition may be produced in any conventional ethylene homo- or copolymerisation method, e.g. in gas phase, slurry phase, liquid (bulk) phase using conventional reactors, such as loop reactor, gas phase reactor, semi-batch or batch reactor.
  • component (A) is produced in a slurry reaction, preferably in a loop reactor, or in a gas phase reaction.
  • the polyethylene composition of the invention may be produced by blending fraction (A) with a polyethylene base resin, either mechanically, e.g. by in-line compounding, or in-situ.
  • a multistage process is defined to be a polymerisation process in which a polymer comprising two or more fractions is produced by producing each or at least two polymer fraction(s) in a separate reaction stage, usually with different reaction conditions in each stage, in the presence of the reaction product of the previous stage which comprises a polymerisation catalyst.
  • the polymerisation reactions used in each stage may involve conventional ethylene homopolymerisation or copolymerisation reactions, e.g.
  • fractions (A), (B) and (C) are produced in a multistage reaction.
  • the composition is produced so that at least one of fractions (B) and (C), preferably (C), is produced in a gas- phase reaction.
  • one of the fractions (B) and (C) of the polyethylene composition is produced in a slurry reaction, preferably in a loop reactor, and one of the fractions (B) and (C), preferably fraction (C), is produced in a gas-phase reaction.
  • fractions (B) and (C) of the polyethylene resin are produced in different stages of a multistage process. Further, it is preferred that also fraction (A) is produced in a stage of said multistage process. However, it is also possible to add fraction (A) to (B) and (C) by in-line compounding.
  • the multistage process comprises at least one gas phase stage in which, preferably, fraction (C) is produced.
  • fraction (C) is produced in a subsequent stage in the presence of fraction (B) which has been produced in a previous stage. Still further, it is preferred that fraction (A) is produced in a stage preceding the stages in which fraction (B) and (C) are produced. This means that if the final composition consists of fractions (A), (B) and (C), (A) is preferably made in the first stage.
  • the polymerisation catalysts include coordination catalysts of a transition metal, such as Ziegler-Natta (ZN), metallocenes, non-metallocenes, Cr- catalysts etc.
  • the catalyst may be supported, e.g. with conventional supports including silica, Al-containing supports and magnesium dichloride based supports.
  • the catalyst is a ZN catalyst.
  • the Ziegler-Natta catalyst further preferably comprises a group 4 (group numbering according to new IUPAC system) metal compound, preferably titanium, magnesium dichloride and aluminium.
  • a compounding step is applied, wherein the composition of the base resin, i.e. the blend, which is typically obtained as a base resin powder from the reactor, is extruded in an extruder and then pelletised to polymer pellets in a manner known in the art.
  • the composition of the base resin i.e. the blend, which is typically obtained as a base resin powder from the reactor, is extruded in an extruder and then pelletised to polymer pellets in a manner known in the art.
  • additives or other polymer components can be added to the composition during the compounding step in the amount as described above.
  • the composition of the invention obtained from the reactor is compounded in the extruder together with additives in a manner known in the art.
  • the present invention further concerns an injection or compression moulded article comprising the polyethylene composition as described hereinbefore, a process for preparing the injection or compression moulded article which comprises injection or compression moulding of the composition into an article, and to the use of the polyethylene composition for injection or compression moulding.
  • a waters 150CV plus instrument was used with column 3 x HT&E styragel from Waters (divinylbenzene) and trichlorobenzene (TCB) as solvent at 140 0 C.
  • the column set was calibrated using universal calibration with narrow MWD PS standards (the Mark Howings constant K: 9.54* 10 "5 and a: 0.725 for PS, and K: 3.92* 10 "4 and a: 0.725 for PE).
  • the ratio of M w and M n is a measure of the broadness of the distribution, since each is influenced by the opposite end of the "population".
  • MFR Melt Flow Rate
  • ISO 1133 The melt flow rate is determined according to ISO 1133 and is indicated in g/10 min.
  • the MFR is an indication of the flowability, and hence the processability, of the polymer. The higher the melt flow rate, the lower the viscosity of the polymer.
  • the MFR is determined at 190 0 C and may be determined at different loadings such as 2.16 kg (MFR 2 ), 5 kg (MFR 5 ) or 21.6 kg (MFR 21 ).
  • Shear thinning index (SHI) which is correlating with MWD and is independent of M w , was calculated according to Heino ("Rheological characterization of polyethylene fractions" Heino, EX., Lehtinen, A., Tanner J., Seppala, J., Neste Oy, Porvoo, Finland, Theor. Appl. Rheol., Proc. Int. Congr.
  • SHI value is obtained by calculating the complex viscosities eta ( 1) and eta ( ⁇ )o ) at a constant shear stress of 1 kPa and 100 kPa, respectively.
  • the shear thinning index SHI(l/100) is defined as the ratio of the two viscosities eta (1) and eta ( i O o).
  • Charpy impact strength was determined according to ISO 179:2000 on V- notched samples at 23 0 C (Charpy impact strength (23 0 C)) and -20 0 C (Charpy impact strength (-20 0 C)). The samples were produced by injection moulding.
  • ESCR Environmental Stress Crack Resistance
  • the E-modulus (tensile modulus) of the compositions was measured on injection moulded samples according to ISO 527-2: 1993. The modulus was measured at a speed of 1 mm/min.
  • the spiral flow length can be determined immediately after the injection operation.
  • Ultra-high molecular weight (UHMW) ethylene polymers were prepared in the following manner: Reactor: stainless steel reactor, 2 1 and 17 1
  • Reactor medium iso-Butane (900 ml, 8500 ml)
  • Ethylene feed Batchwise and continuous
  • the polymerisations were carried out in a stainless steel reactor equipped with an anchor stirrer.
  • the polymerisations were done in i-butane slurry at 85°C at a total pressure of 22.2 bar (except for one test, as indicated in Table 1).
  • reactor size 2 900 ml i-butane was used and for reactor size 17 1, 8500 ml i-butane was used.
  • Lynx 200TM As a catalyst, Lynx 200TM, a MgCl 2 supported titanium containing catalyst available from Engelhard Corporation Pasadena, U.S.A.
  • TEAL TEAL was used as cocatalyst.
  • An Al/Ti (mol/mol) ratio of 25 was used.
  • the comonomer was 1-butene.
  • Hydrogen was added as one batch at the outset of reaction.
  • Ethylene was added continuously during the polymerisation to maintain a constant reactor pressure.
  • 1-Butene was added both as a batch at the outset of reaction, and cascaded with ethylene during polymerisation.
  • Example 2 5 wt% of UHMW polymers, Al to A4, respectively, were mechanically blended with a reference bimodal polyethylene base resin (Example 1).
  • the reference bimodal resin has been prepared in accordance with EP 1 187 876, in particular with the examples described therein.
  • the split between high and low molecular weight fraction (fractions (B) and (C)) was 50/50.
  • Blends were compounded on a small scale twin-screw Prism 24 mm extruder two times with a melt temperature of 190 to 230 0 C (logged process data). 1000 ppm of Irganox B561 was added to the blends.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

La présente invention concerne une composition de polyéthylène, (i) la composition ayant un indice de fluidité à l’état fondu (IFF) allant de 0,05 à 100 g/10 min, (ii) la résistance à la fissure de contrainte environnementale (RFCE) mesurée en heure selon la condition B de la norme ASTM 1693 et le module E (ME) mesuré en MPa selon la norme ISO 527-2 : 1993 satisfaisant la relation : RFCE > - ME h/MPa + 1150 h.
EP06806088A 2005-10-07 2006-10-06 Composition de polyéthylène pour moulage par injection améliorée en termes de rapport de résistance à la fissure de contrainte/rigidité et de résistance aux chocs Not-in-force EP1931729B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06806088A EP1931729B1 (fr) 2005-10-07 2006-10-06 Composition de polyéthylène pour moulage par injection améliorée en termes de rapport de résistance à la fissure de contrainte/rigidité et de résistance aux chocs

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP05021885A EP1772486A1 (fr) 2005-10-07 2005-10-07 Composition à base de polyéthylène pour moulage par injection avec une relation résistance améliorée contre fracture / rigidite et de resistance aux impacts
EP06806088A EP1931729B1 (fr) 2005-10-07 2006-10-06 Composition de polyéthylène pour moulage par injection améliorée en termes de rapport de résistance à la fissure de contrainte/rigidité et de résistance aux chocs
PCT/EP2006/009683 WO2007042216A1 (fr) 2005-10-07 2006-10-06 Composition de polyéthylène pour moulage par injection améliorée en termes de rapport de résistance à la fissure de contrainte/rigidité et de résistance aux chocs

Publications (2)

Publication Number Publication Date
EP1931729A1 true EP1931729A1 (fr) 2008-06-18
EP1931729B1 EP1931729B1 (fr) 2011-12-21

Family

ID=35809959

Family Applications (2)

Application Number Title Priority Date Filing Date
EP05021885A Ceased EP1772486A1 (fr) 2005-10-07 2005-10-07 Composition à base de polyéthylène pour moulage par injection avec une relation résistance améliorée contre fracture / rigidite et de resistance aux impacts
EP06806088A Not-in-force EP1931729B1 (fr) 2005-10-07 2006-10-06 Composition de polyéthylène pour moulage par injection améliorée en termes de rapport de résistance à la fissure de contrainte/rigidité et de résistance aux chocs

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP05021885A Ceased EP1772486A1 (fr) 2005-10-07 2005-10-07 Composition à base de polyéthylène pour moulage par injection avec une relation résistance améliorée contre fracture / rigidite et de resistance aux impacts

Country Status (7)

Country Link
US (1) US7947783B2 (fr)
EP (2) EP1772486A1 (fr)
CN (1) CN101283036B (fr)
AT (1) ATE538172T1 (fr)
EA (1) EA200800732A1 (fr)
ES (1) ES2375839T3 (fr)
WO (1) WO2007042216A1 (fr)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2328968B1 (fr) 2008-08-29 2017-05-03 Basell Polyolefine GmbH Polyéthylène pour moulages par injection
ES2394253T3 (es) 2010-01-29 2013-01-30 Borealis Ag Composición de moldeo de polietileno con una relación de craqueo por tensión/rigidez y resistencia al impacto mejoradas
EP2668231B1 (fr) * 2011-01-28 2014-10-29 Borealis AG Composition de polyéthylène
WO2013060736A1 (fr) * 2011-10-26 2013-05-02 Borealis Ag Procédé
GB2498936A (en) 2012-01-31 2013-08-07 Norner Innovation As Polyethylene with multi-modal molecular weight distribution
CN104854186B (zh) * 2012-12-17 2017-05-24 博里利斯股份公司 用于制备高密度聚乙烯共混物的方法
EP2743305B1 (fr) * 2012-12-17 2015-07-22 Borealis AG Procédé
EP2799487B1 (fr) * 2013-05-01 2015-11-04 Borealis AG Composition
EP2907843B1 (fr) 2014-02-13 2017-11-15 Borealis AG Mélange d'un polyéthylène bimodal avec un polyéthylène unimodal à poids moléculaire ultra élevé présentant des propriétés mécaniques améliorées
EP2966123B1 (fr) 2014-07-07 2016-12-21 Borealis AG Composition de polyéthylène multimodale ayant une résistance élevée à la pression
CN109415448B (zh) 2016-06-22 2021-04-13 北欧化工公司 聚合物组合物以及制备聚合物组合物的方法
HUE047431T2 (hu) 2016-09-12 2020-04-28 Thai Polyethylene Co Ltd Multimodális polietilén csõ
PT3293210T (pt) 2016-09-12 2019-06-12 Scg Chemicals Co Ltd Película de polietileno multimodal
EP3293206B1 (fr) 2016-09-12 2019-10-23 Thai Polyethylene Co., Ltd. Polyéthylène multimodal
JP7066682B2 (ja) 2016-09-12 2022-05-13 タイ ポリエチレン カンパニー リミテッド 二峰性ポリエチレン組成物及びそれを含むパイプ
PT3293211T (pt) 2016-09-12 2019-09-12 Scg Chemicals Co Ltd Tampa roscada em polietileno multimodal
EP3293214B1 (fr) 2016-09-12 2019-12-25 Thai Polyethylene Co., Ltd. Polyéthylène multimodal à poids moléculaire ultra élevé et performances élevées
HUE047424T2 (hu) 2016-09-12 2020-04-28 Thai Polyethylene Co Ltd Multimodális polietilén vékony film
EP3293213B1 (fr) 2016-09-12 2019-08-14 Thai Polyethylene Co., Ltd. Conteneur de polyéthylène multimodal
PT3530675T (pt) 2016-09-12 2021-07-23 Scg Chemicals Co Ltd Sistema de reator para polimerização de polietileno multimodal
CN109923168B (zh) 2016-11-25 2023-01-24 博里利斯股份公司 组合物和方法
EP3418330B2 (fr) 2017-06-21 2023-07-19 Borealis AG Composition polymère et procédé de production associé

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI86867C (fi) 1990-12-28 1992-10-26 Neste Oy Flerstegsprocess foer framstaellning av polyeten
FI96216C (fi) 1994-12-16 1996-05-27 Borealis Polymers Oy Prosessi polyeteenin valmistamiseksi
DE69710189T2 (de) 1996-05-17 2002-07-11 Bp Chem Int Ltd Polyolefinzusammensetzung, deren molekulargewichtsmaximum sich in dem teil der zusammensetzung mit dem höheren comonomergehalt befindet
JPH11106574A (ja) * 1997-10-07 1999-04-20 Asahi Chem Ind Co Ltd 剛性−escr−耐衝撃性のバランスに優れた高密度エチレン系重合体組成物
SE9803501D0 (sv) 1998-10-14 1998-10-14 Borealis Polymers Oy Polymer composition for pipes
ES2259952T3 (es) * 2000-04-13 2006-11-01 Borealis Technology Oy Compuesto de polimero de hdpe.
US7196138B2 (en) * 2001-12-14 2007-03-27 Corrugatedd Polyethylene Pipe Ltd. Melt blended high density polyethylene compositions with enhanced properties and method for producing the same
GB0227666D0 (en) * 2002-11-27 2003-01-08 Borealis Tech Oy Use
EP1460105B1 (fr) * 2003-03-20 2012-05-23 Borealis Technology Oy Composition de polymères
ES2274413T3 (es) * 2004-03-12 2007-05-16 Borealis Technology Oy Tuberia a presion de lldpe.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007042216A1 *

Also Published As

Publication number Publication date
EA200800732A1 (ru) 2008-08-29
US20080224354A1 (en) 2008-09-18
US7947783B2 (en) 2011-05-24
ATE538172T1 (de) 2012-01-15
EP1772486A1 (fr) 2007-04-11
CN101283036B (zh) 2011-03-30
ES2375839T3 (es) 2012-03-06
CN101283036A (zh) 2008-10-08
EP1931729B1 (fr) 2011-12-21
WO2007042216A1 (fr) 2007-04-19

Similar Documents

Publication Publication Date Title
US7947783B2 (en) Polyethylene composition for injection moulding with improved stress crack/stiffness relation and impact resistance
EP1655338B1 (fr) Composition de polyéthylène multimodal pour le moulage par injection d'articles d'emballage de transport
US8044160B2 (en) Polyethylene composition for injection molded caps and closure articles
US7875691B2 (en) Polyethylene composition with improved stress crack resistance/stiffness relation for blow moulding
US10414910B2 (en) Hdpe
RU2674695C2 (ru) Полиэтилен высокой плотности
EP3383755B1 (fr) Hdpe
AU2012210433B2 (en) Polyethylene composition
US8168274B2 (en) Polyethylene film with improved processability and mechanical properties
US20210147660A1 (en) Process for the preparation of multimodal high density polyethylene
AU2012325309A1 (en) Polyethylene composition with high rapid crack propagation resistance and pressure resistance
US9169378B2 (en) Polymer composition for blow moulding
WO2008080571A1 (fr) Composition de polyéthylène pour articles d'emballage de transport moulés par soufflage
CA3203104A1 (fr) Compositions polymeres pour bouchons et fermetures

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080325

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20100224

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 538172

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006026590

Country of ref document: DE

Effective date: 20120223

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2375839

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120306

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20111221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20111221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120322

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120421

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120423

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 538172

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111221

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

26N No opposition filed

Effective date: 20120924

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006026590

Country of ref document: DE

Effective date: 20120924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121006

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061006

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20181123

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191006

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191007

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20211020

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20211028

Year of fee payment: 16

Ref country code: FR

Payment date: 20211021

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006026590

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221006