EP1927724A2 - Turbomachine blade - Google Patents

Turbomachine blade Download PDF

Info

Publication number
EP1927724A2
EP1927724A2 EP07120051A EP07120051A EP1927724A2 EP 1927724 A2 EP1927724 A2 EP 1927724A2 EP 07120051 A EP07120051 A EP 07120051A EP 07120051 A EP07120051 A EP 07120051A EP 1927724 A2 EP1927724 A2 EP 1927724A2
Authority
EP
European Patent Office
Prior art keywords
blade
skeleton line
skeleton
chord length
lower limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07120051A
Other languages
German (de)
French (fr)
Other versions
EP1927724A3 (en
EP1927724B1 (en
Inventor
Carsten Clemen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Deutschland Ltd and Co KG
Original Assignee
Rolls Royce Deutschland Ltd and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce Deutschland Ltd and Co KG filed Critical Rolls Royce Deutschland Ltd and Co KG
Publication of EP1927724A2 publication Critical patent/EP1927724A2/en
Publication of EP1927724A3 publication Critical patent/EP1927724A3/en
Application granted granted Critical
Publication of EP1927724B1 publication Critical patent/EP1927724B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/324Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/74Shape given by a set or table of xyz-coordinates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S416/00Fluid reaction surfaces, i.e. impellers
    • Y10S416/02Formulas of curves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S416/00Fluid reaction surfaces, i.e. impellers
    • Y10S416/05Variable camber or chord length

Definitions

  • the invention relates to the airfoil design of the blades and vanes of a turbomachine, in particular a gas turbine engine, defined by the progression of the skeletal line defined by the skeletal line angle over the chord length and blade height, and the leading edge profile and the blade tip terminating at an air gap.
  • the blade of engine blades is composed under the aspect of a fluidically optimal shape design of a plurality of over the blade blade height threaded individual profiles into a three-dimensional blade shape, the individual profile sections are characterized by a particular skeleton line and a certain material thickness on both sides of the skeleton line.
  • the course of the skeleton line representing a center line in the respective profile section is designed for a minimum profile pressure loss and a maximum working range in the respective blade area.
  • the object of the invention is to design the airfoil profiles of rotor blades and guide vanes of a turbomachine in such a way that the flow disturbances which occur due to the flow disturbances occurring close to the gap, which lead to power losses, are minimized.
  • the gist of the invention is that in a gap-proximate region of up to 30% of the blade height starting from the blade tip, the blade profile cuts are characterized by a specific skeleton line profile defined by the skeleton line angle with respect to the chord length of the blade profile, at which in the vicinity of the gap a uniform pressure distribution along the blade section and thus a stable gap vortex is achieved.
  • the uniform load distribution in the near-gap blade area has lower gap losses, that is, an increase in the power and the stability limit or a reduction in the number of blades and thus the weight at a constant power and ultimately the cost.
  • the dimensionless skeleton line angles for the inventively optimal skeleton line profile for blade profile cuts that fall within the above-mentioned 30% range are in a certain skeletal line angle distribution range that is in one of the chord length (x-axis, in percent) and the dimensionless skeleton line angle ( y-axis) formed coordinate system is arranged, wherein the upper and the lower limit curve of the skeleton line angle distribution are determined by the equations given in claim 1.
  • the dimensionless skeleton line angle results from the relationship given in claim 2.
  • skeleton lines or the corresponding skeleton line angles in the blade profile sections close to the gap lie within the limits defined by the limit curves, the disturbances and losses caused by the gap are greatly reduced.
  • the formation of the skeleton lines according to the invention is not limited to certain leading edge profiles of the blades.
  • Fig. 1 shows a side view of an airfoil 1 with swept course of the leading edge 2 of a blade of the compressor of a gas turbine engine. A plurality of sectional planes distributed over the blade height "h" can be seen. According to the skeleton line 4 (FIG. Fig. 2 ) with in each reference point on both sides of the same material thickness "d" is defined by threading the corresponding blade profile sections 5 in the cutting planes 3, the shape of the airfoil 1.
  • Fig. 4 are - each with the corresponding schematic pressure load - two blade profile cuts 5 in the near-gap region facing each other, namely of a blade according to the prior art (zigzag line hatching) and of a blade according to the invention (slash-hatching).
  • the indicated pressure load is substantially uniform in the blade according to the invention and has the shape of a triangle in the blade according to the prior art, which leads to flow disturbances and losses.

Abstract

The method involves defining a skeleton curve by a skeleton line angle over a chord length, leading edge (2), blade height (h) and a blade spike (6). The curve is run in a blade profile section, which is present in an area running out of the blade spike up to 30 percentages of the blade height, in a sectional line angle distribution area lying between upper and lower limit curves. A pressure load is produced along a blade surface in the distribution area. Dimensionless skeleton line angles at a position of the chord length are provided for the limit curves from a specific formula.

Description

Die Erfindung bezieht sich auf das Schaufelblattdesign der Lauf- und Leitschaufeln einer Turbomaschine, insbesondere eines Gasturbinentriebwerks, das durch den Verlauf der durch den Skelettlinienwinkel definierten Skelettlinie über der Sehnenlänge und der Schaufelblatthöhe sowie den Vorderkantenverlauf und die an einem Luftspalt endende Schaufelspitze definiert ist.The invention relates to the airfoil design of the blades and vanes of a turbomachine, in particular a gas turbine engine, defined by the progression of the skeletal line defined by the skeletal line angle over the chord length and blade height, and the leading edge profile and the blade tip terminating at an air gap.

Das Schaufelblatt von Triebwerksschaufeln ist unter dem Aspekt einer strömungstechnisch optimalen Formgestaltung aus einer Vielzahl über die Schaufelblatthöhe aufgefädelter Einzelprofile zu einer dreidimensionalen Schaufelform zusammengesetzt, wobei die einzelnen Profilschnitte durch eine bestimmte Skelettlinie und eine bestimmte Materialstärke beiderseits der Skelettlinie gekennzeichnet sind. Der Verlauf der in dem jeweiligen Profilschnitt eine Mittellinie darstellenden Skelettlinie ist auf einen minimalen Profildruckverlust und einen maximalen Arbeitsbereich in dem jeweiligen Schaufelbereich ausgelegt. Diesen Anforderungen genügen die derzeit eingesetzten CDA-(Controlled Diffusion Airfoil)-Schaufelprofile und deren Derivative im Bereich der Schaufelspitze, das heißt, in dem spaltnahen Schaufelbereich, jedoch nicht,da der strömungstechnisch nachteilige Einfluss des Spaltes zwischen Schaufelspitze und Maschinengehäuse bzw. -nabe bei den heute verwendeten Schaufelformen nicht hinreichend berücksichtigt ist. Durch Umströmung und Überströmung der Schaufelspitze kommt es in diesem Schaufelbereich zur Ausbildung von Wirbeln, die den stabilen Betrieb der Maschine begrenzen und damit zu Strömungs- und Leistungsverlusten, die durch eine - gewichts- und kostenseitig nachteilige - Erhöhung der Anzahl der Schaufeln ausgeglichen werden müssen.The blade of engine blades is composed under the aspect of a fluidically optimal shape design of a plurality of over the blade blade height threaded individual profiles into a three-dimensional blade shape, the individual profile sections are characterized by a particular skeleton line and a certain material thickness on both sides of the skeleton line. The course of the skeleton line representing a center line in the respective profile section is designed for a minimum profile pressure loss and a maximum working range in the respective blade area. These requirements meet the currently used CDA (Controlled Diffusion Airfoil) blade profiles and their derivatives in the blade tip, that is, in the near-gap blade area, but not, since the aerodynamically adverse influence of the gap between the blade tip and the machine housing or hub at The blade shapes used today is not sufficiently considered. By flow around and overflow of the blade tip occurs in this blade area to form vortices that limit the stable operation of the machine and thus flow and power losses caused by a - in terms of weight and cost disadvantageous - increase the number of blades must be compensated.

Der Erfindung liegt die Aufgabe zugrunde, die Schaufelblattprofile von Lauf- und Leitschaufeln einer Turbomaschine so auszubilden, dass die durch die nahe dem Spalt auftretenden Strömungsstörungen, die zu Leistungsverlusten führen, minimiert werden.The object of the invention is to design the airfoil profiles of rotor blades and guide vanes of a turbomachine in such a way that the flow disturbances which occur due to the flow disturbances occurring close to the gap, which lead to power losses, are minimized.

Erfindungsgemäß wird die Aufgabe mit einem Schaufelblattdesign gemäß den Merkmalen des Patentanspruchs 1 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche.According to the invention, the object is achieved with an airfoil design according to the features of patent claim 1. Advantageous developments of the invention are the subject of the dependent claims.

Der Kern der Erfindung besteht darin, dass in einem von der Schaufelspitze ausgehenden spaltnahen Bereich von bis zu 30% der Schaufelhöhe die Schaufelprofilschnitte durch einen bestimmten, durch den Skelettlinienwinkel in Bezug auf die Sehnenlänge des Schaufelprofils definierten Skelettlinienverlauf gekennzeichnet sind, bei dem am Spalt bzw. in der Nähe des Spaltes eine gleichmäßige Druckverteilung entlang des Schaufelschnittes und mithin ein stabiler Spaltwirbel erzielt wird. Die gleichmäßige Belastungsverteilung im spaltnahen Schaufelbereich hat geringere Spaltverluste, das heißt, eine Erhöhung der Leistung und der Stabilitätsgrenze bzw. eine Verringerung der Schaufelzahl und damit des Gewichts bei konstanter Leistung und letztlich der Kosten zur Folge.The gist of the invention is that in a gap-proximate region of up to 30% of the blade height starting from the blade tip, the blade profile cuts are characterized by a specific skeleton line profile defined by the skeleton line angle with respect to the chord length of the blade profile, at which in the vicinity of the gap a uniform pressure distribution along the blade section and thus a stable gap vortex is achieved. The uniform load distribution in the near-gap blade area has lower gap losses, that is, an increase in the power and the stability limit or a reduction in the number of blades and thus the weight at a constant power and ultimately the cost.

Die dimensionslosen Skelettlinienwinkel für den erfindungsgemäß optimalen Skelettlinienverlauf, und zwar für Schaufelprofilschnitte, die in den oben erwähnten 30%-Bereich fallen, liegen in einem bestimmten Skelettlinienwinkelverteilungsbereich, der in einem von der Sehnenlänge (x-Achse,in Prozent) und dem dimensionslosen Skelettlinienwinkel (y-Achse) gebildeten Koordinatensystem angeordnet ist, wobei die obere und die untere Grenzkurve der Skelettlinienwinkelverteilung durch die im Anspruch 1 angegebenen Gleichungen bestimmt sind.The dimensionless skeleton line angles for the inventively optimal skeleton line profile for blade profile cuts that fall within the above-mentioned 30% range are in a certain skeletal line angle distribution range that is in one of the chord length (x-axis, in percent) and the dimensionless skeleton line angle ( y-axis) formed coordinate system is arranged, wherein the upper and the lower limit curve of the skeleton line angle distribution are determined by the equations given in claim 1.

Der dimensionslose Skelettlinienwinkel ergibt sich aus der in Anspruch 2 wiedergegebenen Beziehung.The dimensionless skeleton line angle results from the relationship given in claim 2.

Sofern die Skelettlinien bzw. die entsprechenden Skelettlinienwinkel in den spaltnahen Schaufelprofilschnitten innerhalb der durch die Grenzkurven festgelegten Grenzen liegen, werden die durch den Spalt verursachten Störungen und Verluste stark vermindert. Die Ausbildung der erfindungsgemäßen Skelettlinien ist nicht auf bestimmte Vorderkantenverläufe der Schaufeln begrenzt.If the skeleton lines or the corresponding skeleton line angles in the blade profile sections close to the gap lie within the limits defined by the limit curves, the disturbances and losses caused by the gap are greatly reduced. The formation of the skeleton lines according to the invention is not limited to certain leading edge profiles of the blades.

Ein Ausführungsbeispiel der Erfindung wird anhand der Zeichnung näher erläutert. Es zeigen:

Fig. 1
eine Seitenansicht einer Laufschaufel mit gepfeilter Vorderkante und durch waagerechte Linien angedeuteten Profilschnittebenen;
Fig. 2
eine Darstellung eines Schaufelprofils mit Skelettlinie in einem durch die dimensionslose Sehnenlänge (x-Achse) und den dimensionslosen Skelettlinienwinkel (y-Achse) definierten Koordinatensystem;
Fig. 3
den von einer oberen und einer unteren Grenzkurve begrenzten Bereich der Skelettlinienwinkelverteilung für einen von der Schaufelspitze ausgehenden begrenzten Schaufelteil; und
Fig. 4
eine Gegenüberstellung eines erfindungsgemäß und eines nach dem Stand der Technik ausgebildeten
Schaufelprofils im spaltnahen Bereich mit der jeweiligen Belastungsverteilung.An embodiment of the invention will be explained in more detail with reference to the drawing. Show it:
Fig. 1
a side view of a blade with swept leading edge and indicated by horizontal lines profile section planes;
Fig. 2
a representation of a blade profile with skeleton line in a coordinate system defined by the dimensionless chord length (x-axis) and the dimensionless skeleton line angle (y-axis);
Fig. 3
the area of the skeleton line angle distribution bounded by upper and lower limit curves for a limited blade part emanating from the blade tip; and
Fig. 4
a comparison of an inventively and of the prior art trained
Blade profiles in the gap-near area with the respective load distribution.

Fig. 1 zeigt eine Seitenansicht eines Schaufelblattes 1 mit gepfeiltem Verlauf der Vorderkante 2 einer Laufschaufel des Kompressors eines Gasturbinentriebwerks. Erkennbar ist eine Mehrzahl über die Schaufelhöhe "h" verteilter Schnittebenen 3. Gemäß der zur jeweiligen Schnittebene 3 gehörenden Skelettlinie 4 (Fig. 2) mit in dem jeweiligen Bezugspunkt nach beiden Seiten gleicher Materialstärke "d" ist durch Übereinanderfädeln der entsprechenden Schaufelprofilschnitte 5 in den Schnittebenen 3 die Form des Schaufelblattes 1 definiert. Fig. 1 shows a side view of an airfoil 1 with swept course of the leading edge 2 of a blade of the compressor of a gas turbine engine. A plurality of sectional planes distributed over the blade height "h" can be seen. According to the skeleton line 4 (FIG. Fig. 2 ) with in each reference point on both sides of the same material thickness "d" is defined by threading the corresponding blade profile sections 5 in the cutting planes 3, the shape of the airfoil 1.

Die Skelettlinie 4 in Fig. 2 ist in Form des dimensionslosen Skelettlinienwinkels α(1) entlang der als Prozentangabe ebenfalls dimensionslosen Sehnenlänge "1" definiert und ergibt sich aus α l = α i l - BIA / BOA - BIA ,

Figure imgb0001

worin

αi (1)
der jeweilige lokale Winkel bei einem bestimmten Wert 1x der Sehnenlänge,
BIA
der Eintrittswinkel und
BOA
der Austrittswinkel
sind.The skeleton line 4 in Fig. 2 is defined in the form of the dimensionless skeleton line angle α (1) along the chord length "1", which is likewise dimensionless as a percentage, and results from α l = α i l - BIA / BOA - BIA .
Figure imgb0001

wherein
α i (1)
the respective local angle at a certain value 1 x the chord length,
BIA
the entrance angle and
BOA
the exit angle
are.

In einem von der Schaufelspitze 6 ausgehenden Bereich, der etwa 30% der Schaufelblatthöhe "h" umfasst (Fig. 1) und in dem die Schnittebenen 3 enger angeordnet sind, sind die Skelettlinien 4 des jeweiligen Schaufelprofilschnitts 5 so gestaltet, dass deren dimensionslos angegebene Skelettlinienwinkel α(1) = 0,0 bis 1,0 in allen Punkten über der dimensionslosen Sehnenlänge 1 = 0 bis 100% des jeweiligen Schaufelprofilschnitts 5 in einem vorgegebenen Grenzbereich zwischen einer oberen Grenzkurve 7 (oG) und einer unteren Grenzkurve 8 (uG) liegen. Wenn die Skelettlinien des Schaufelblattes 1 in dem oberen spaltnahen Bereich von bis zu 30% der Schaufelhöhe "h" in diesem eingegrenzten Skelettlinienwinkelverteilungsbereich verlaufen, wird trotz des Spaltes und bei dreidimensionaler Schaufelform sowie unabhängig von Vorderkantenverlauf der Schaufel ein strömungstechnisch optimales Schaufelprofil erreicht, bei dem die Druck belastung an der Schaufel vergleichmässigt ist und mithin die Spaltwirbel stabilisiert und die Spaltverluste minimiert werden.In an area extending from the blade tip 6, which comprises approximately 30% of the blade height "h" ( Fig. 1 ) and in which the cutting planes 3 are arranged closer, the skeleton lines 4 of the respective blade profile section 5 are designed such that their dimensionless specified skeleton line angles α (1) = 0.0 to 1.0 at all points above the dimensionless chord length 1 = 0 to 100% of the respective blade profile section 5 in one predetermined limit range between an upper limit curve 7 (oG) and a lower limit curve 8 (uG) are. If the skeleton lines of the airfoil 1 in the upper gap close range of up to 30% of the blade height "h" in this limited skeletal line angle distribution range, despite the gap and in three-dimensional blade shape and independent of leading edge profile of the blade, a flow-optimal blade profile is achieved in which Pressure load on the blade is uniform and thus the gap vortex stabilized and the gap losses are minimized.

Der Skelettlinienwinkel αoG für eine Vielzahl zwischen 0 und 100% liegender Werte lx, das heißt, lx1,lx2 usw., der Sehnenlänge "1" ergibt sich für die obere Grenzkurve 7 aus α oG = 1 , 2893686702647 × 10 - 9 × l x 5 - 3 , 17452341597451 × 10 - 7 × l x 4 + 0 , 0000293283473623007 × l x 3 - 0 , 00129356647808443 × l x 2 + 0 , 0345950133223312 × l x

Figure imgb0002

und für die untere Grenzkurve 8 aus α uG = 3 , 97581923552676 × 10 11 × l x 6 - 1 , 02257586096638 × 10 - 8 × l x 5 + 9 , 81093271630595 × 10 - 7 × l x 4 - 0 , 000042865320363461 × l x 3 × 0 , 00082697833059342 × l x 2 - 0 , 000113440630116202 × l x .
Figure imgb0003
The skeleton line angle α oG for a plurality of values lying between 0 and 100% l x , that is, l x1 , l x2 , etc., of the chord length "1" results for the upper limit curve 7 α oG = 1 . 2893686702647 × 10 - 9 × l x 5 - 3 . 17452341597451 × 10 - 7 × l x 4 + 0 . 0000293283473623007 × l x 3 - 0 . 00129356647808443 × l x 2 + 0 . 0345950133223312 × l x
Figure imgb0002

and for the lower limit curve 8 off α uG = 3 . 97581923552676 × 10 11 × l x 6 - 1 . 02257586096638 × 10 - 8th × l x 5 + 9 . 81093271630595 × 10 - 7 × l x 4 - 0 . 000042865320363461 × l x 3 × 0 . 00082697833059342 × l x 2 - 0 . 000113440630116202 × l x ,
Figure imgb0003

In Fig. 4 sind - jeweils mit der entsprechenden schematischen Druckbelastung - zwei Schaufelprofilschnitte 5 im spaltnahen Bereich einander gegenübergestellt, und zwar von einer Schaufel nach dem Stand der Technik (Zickzacklinienschraffur) sowie von einer erfindungsgemäßen Schaufel (Schrägstrichschraffur). Die angedeutete Druckbelastung ist bei der erfindungsgemäßen Schaufel im Wesentlichen gleichmäßig und hat bei der Schaufel nach dem Stand der Technik die Form eines Dreiecks, die zu Strömungsstörungen und -verlusten führt.In Fig. 4 are - each with the corresponding schematic pressure load - two blade profile cuts 5 in the near-gap region facing each other, namely of a blade according to the prior art (zigzag line hatching) and of a blade according to the invention (slash-hatching). The indicated pressure load is substantially uniform in the blade according to the invention and has the shape of a triangle in the blade according to the prior art, which leads to flow disturbances and losses.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Schaufelblattairfoil
22
Vorderkanteleading edge
33
Schnittebenencutting planes
44
Skelettlinieskeleton line
55
SchaufelprofilschnittAerofoil section
66
Schaufelspitzeblade tip
77
Obere GrenzkurveUpper limit curve
88th
Untere GrenzkurveLower limit curve
hH
Schaufelhöheblade height
dd
Materialdickematerial thickness
α(l)α (l)
SkelettlinienwinkelSkeleton line angles
αi α i
lokaler Skelettlinienwinkellocal skeleton line angle
ll
Sehnenlängechord length
lx l x
bestimmter Wert der Sehnenlängecertain value of chord length

Claims (3)

Schaufelblattdesign für die Lauf- und Leitschaufeln einer Turbomaschine, insbesondere eines Gasturbinentriebwerks, das durch den Verlauf der durch den Skelettlinienwinkel (α) definierten Skelettlinie (4) über der Sehnenlänge (1) und den Vorderkantenverlauf sowie die Schaufelhöhe (h) und die an einem Luftspalt endende Schaufelspitze (6) bestimmt ist, dadurch gekennzeichnet, dass die Skelettlinie (4) in den Schaufelprofilschnitten (5), die sich in einem von der Schaufelspitze (6) ausgehenden Bereich von bis zu 30% der Schaufelhöhe (h) befinden, in einem zwischen einer oberen und einer unteren Grenzkurve (7, 8) liegenden Schnittlinienwinkelverteilungsbereich verläuft, in dem eine vergleichmässigte Druckbelastung entlang der Schaufelfläche erzeugt wird, wobei der dimensionslose Skelettlinienwinkel (α) an der jeweiligen Stelle (lx) der Sehnenlänge (1) für die obere Grenzkurve (7) α oG = 1 , 2893686702647 × 10 - 9 × l x 5 - 3 , 17452341597451 × 10 - 7 × l x 4 + 0 , 0000293283473623007 × l x 3 - 0 , 00129356647808443 × l x 2 + 0 , 0345950133223312 × l x
Figure imgb0004

ist und für die untere Grenzkurve (8) α uG = 3 , 97581923552676 × 10 11 × l x 6 - 1 , 02257586096638 × 10 - 8 × l x 5 + 9 , 81093271630595 × 10 - 7 × l x 4 - 0 , 000042865320363461 × l x 3 × 0 , 00082697833059342 × l x 2 - 0 , 000113440630116202 × l x .
Figure imgb0005

ist.
An airfoil design for the blades and vanes of a turbomachine, in particular a gas turbine engine, characterized by the progression of the skeleton line (4) defined by the skeletal line angle (α) over the chord length (1) and the leading edge profile and the blade height (h) and at an air gap characterized in that the skeleton line (4) in the blade profile cuts (5), which are in a range of the blade tip (6) outgoing range of up to 30% of the blade height (h) in one extending between upper and lower limit curves (7, 8), wherein the dimensionless skeleton line angle (α) at the respective location (lx) of the chord length (1) for the upper limit curve (7) α oG = 1 . 2893686702647 × 10 - 9 × l x 5 - 3 . 17452341597451 × 10 - 7 × l x 4 + 0 . 0000293283473623007 × l x 3 - 0 . 00129356647808443 × l x 2 + 0 . 0345950133223312 × l x
Figure imgb0004

is and for the lower limit curve (8) α uG = 3 . 97581923552676 × 10 11 × l x 6 - 1 . 02257586096638 × 10 - 8th × l x 5 + 9 . 81093271630595 × 10 - 7 × l x 4 - 0 . 000042865320363461 × l x 3 × 0 . 00082697833059342 × l x 2 - 0 . 000113440630116202 × l x ,
Figure imgb0005

is.
Schaufelblattdesign nach Anspruch 1, dadurch gekennzeichnet, dass der dimensionslose Skelettlinienwinkel (α) durch die Gleichung αi BIA/BOA - BIA definiert ist, worin (αi) der lokale Winkel an einer Stelle (lx) der Sehnenlänge (1) und BIA und BOA der Eintritt- bzw. der Austrittswinkel der Skelettlinie (4) am Anfang und Ende der Sehne sind.An airfoil design according to claim 1, characterized in that the dimensionless skeleton line angle (α) is defined by the equation α i BIA / BOA-BIA, where (α i ) is the local angle at a location (l x ) of the chord length (1) and BIA and BOA is the entry and exit angles, respectively, of the skeleton line (4) at the beginning and end of the tendon. Schaufeldesign nach Anspruch 1, dadurch gekennzeichnet, dass der Verlauf der Skelettlinien (4) innerhalb des durch die obere und die untere Grenzkurve (7, 8) definierten Bereichs unabhängig vom Verlauf der Vorderkante (2) des Schaufelblatts (1) ist.Blade design according to claim 1, characterized in that the course of the skeleton lines (4) within the area defined by the upper and lower limit curves (7, 8) is independent of the course of the leading edge (2) of the airfoil (1).
EP07120051.3A 2006-11-23 2007-11-06 Airfoil Expired - Fee Related EP1927724B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006055869A DE102006055869A1 (en) 2006-11-23 2006-11-23 Rotor and guide blades designing method for turbo-machine i.e. gas turbine engine, involves running skeleton curve in profile section in sectional line angle distribution area lying between upper and lower limit curves

Publications (3)

Publication Number Publication Date
EP1927724A2 true EP1927724A2 (en) 2008-06-04
EP1927724A3 EP1927724A3 (en) 2009-05-20
EP1927724B1 EP1927724B1 (en) 2015-09-09

Family

ID=38904754

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07120051.3A Expired - Fee Related EP1927724B1 (en) 2006-11-23 2007-11-06 Airfoil

Country Status (3)

Country Link
US (1) US8152473B2 (en)
EP (1) EP1927724B1 (en)
DE (1) DE102006055869A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013178914A1 (en) * 2012-05-31 2013-12-05 Snecma Fan blade for a turbojet of an aircraft having a cambered profile in the foot sections
EP2275643A3 (en) * 2009-07-17 2017-10-04 Rolls-Royce Deutschland Ltd & Co KG Engine blade with excess front edge loading
EP2921648B1 (en) 2014-03-20 2018-12-26 Ansaldo Energia Switzerland AG Gas turbine blade comprising bended leading and trailing edges
EP3730801A4 (en) * 2017-12-20 2021-05-05 Ihi Corporation Fan and compressor stator blade
EP3839212A1 (en) * 2019-12-20 2021-06-23 MTU Aero Engines AG Turbine blade for a flow engine

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8523531B2 (en) * 2009-12-23 2013-09-03 Alstom Technology Ltd Airfoil for a compressor blade
US9291059B2 (en) * 2009-12-23 2016-03-22 Alstom Technology Ltd. Airfoil for a compressor blade
DE102010009615B4 (en) 2010-02-27 2016-11-17 MTU Aero Engines AG Airfoil with threaded profile cuts
DE102010027588A1 (en) * 2010-07-19 2012-01-19 Rolls-Royce Deutschland Ltd & Co Kg Fan-Nachleitradschaufel a turbofan engine
CN102373971B (en) * 2010-08-11 2014-06-04 中国科学院工程热物理研究所 Integrated pneumatic design method of axial-flow turbine and single-side radial steam/gas discharging system
DE102014200644B4 (en) * 2014-01-16 2017-03-02 MTU Aero Engines AG Extruded profile and method for producing a blade of a Nachleitrads, blade of a Nachleitrads, Nachleitrad and turbomachinery with such a Nachleitrad
EP3985226A1 (en) 2014-02-19 2022-04-20 Raytheon Technologies Corporation Gas turbine engine airfoil
EP3114321B1 (en) 2014-02-19 2019-04-17 United Technologies Corporation Gas turbine engine airfoil
EP3108107B1 (en) 2014-02-19 2023-10-11 Raytheon Technologies Corporation Turbofan engine with geared architecture and lpc airfoils
EP3108100B1 (en) 2014-02-19 2021-04-14 Raytheon Technologies Corporation Gas turbine engine fan blade
EP3108123B1 (en) 2014-02-19 2023-10-04 Raytheon Technologies Corporation Turbofan engine with geared architecture and lpc airfoils
US9567858B2 (en) 2014-02-19 2017-02-14 United Technologies Corporation Gas turbine engine airfoil
US10352331B2 (en) 2014-02-19 2019-07-16 United Technologies Corporation Gas turbine engine airfoil
EP3108121B1 (en) 2014-02-19 2023-09-06 Raytheon Technologies Corporation Turbofan engine with geared architecture and lpc airfoils
EP3108110B1 (en) 2014-02-19 2020-04-22 United Technologies Corporation Gas turbine engine airfoil
WO2015126454A1 (en) 2014-02-19 2015-08-27 United Technologies Corporation Gas turbine engine airfoil
US10557477B2 (en) 2014-02-19 2020-02-11 United Technologies Corporation Gas turbine engine airfoil
US9599064B2 (en) 2014-02-19 2017-03-21 United Technologies Corporation Gas turbine engine airfoil
US10465702B2 (en) 2014-02-19 2019-11-05 United Technologies Corporation Gas turbine engine airfoil
US10422226B2 (en) 2014-02-19 2019-09-24 United Technologies Corporation Gas turbine engine airfoil
US10502229B2 (en) 2014-02-19 2019-12-10 United Technologies Corporation Gas turbine engine airfoil
US10519971B2 (en) 2014-02-19 2019-12-31 United Technologies Corporation Gas turbine engine airfoil
US9163517B2 (en) 2014-02-19 2015-10-20 United Technologies Corporation Gas turbine engine airfoil
EP3108106B1 (en) 2014-02-19 2022-05-04 Raytheon Technologies Corporation Gas turbine engine airfoil
US10570916B2 (en) 2014-02-19 2020-02-25 United Technologies Corporation Gas turbine engine airfoil
EP3108113A4 (en) 2014-02-19 2017-03-15 United Technologies Corporation Gas turbine engine airfoil
US10605259B2 (en) 2014-02-19 2020-03-31 United Technologies Corporation Gas turbine engine airfoil
WO2015126452A1 (en) 2014-02-19 2015-08-27 United Technologies Corporation Gas turbine engine airfoil
CN105221193B (en) * 2014-06-12 2017-01-25 中国科学院工程热物理研究所 Method for designing axial-flow turbine and single-side radial exhaust steam/gas system
JP6468414B2 (en) 2014-08-12 2019-02-13 株式会社Ihi Compressor vane, axial compressor, and gas turbine
JP6421091B2 (en) * 2015-07-30 2018-11-07 三菱日立パワーシステムズ株式会社 Axial flow compressor, gas turbine including the same, and stationary blade of axial flow compressor
DE102016115868A1 (en) * 2016-08-26 2018-03-01 Rolls-Royce Deutschland Ltd & Co Kg High-efficiency fluid flow machine
EP3633207A4 (en) * 2017-05-24 2021-06-23 IHI Corporation Blade for fan and compressor
US10760587B2 (en) 2017-06-06 2020-09-01 Elliott Company Extended sculpted twisted return channel vane arrangement
US20230051322A1 (en) * 2019-12-09 2023-02-16 Lg Electronics Inc. Blower
US11286779B2 (en) * 2020-06-03 2022-03-29 Honeywell International Inc. Characteristic distribution for rotor blade of booster rotor
CN112855284B (en) * 2021-01-18 2022-11-08 西北工业大学 Construction method of low-pressure turbine stator blade wave front edge
CN114973902B (en) * 2022-04-14 2023-06-23 西北工业大学 Aeroengine low-pressure turbine model for teaching and assembly method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0661413A1 (en) * 1993-12-23 1995-07-05 Mtu Motoren- Und Turbinen-Union MàœNchen Gmbh Axial blade cascade with blades of arrowed leading edge
EP1186747A2 (en) * 2000-09-05 2002-03-13 Honda Giken Kogyo Kabushiki Kaisha An automized blade shape designing method
US20040091353A1 (en) * 2002-09-03 2004-05-13 Shahrokhy Shahpar Guide vane for a gas turbine engine
EP1657401A2 (en) * 2004-11-12 2006-05-17 Rolls-Royce Deutschland Ltd & Co KG Turbo machine blade with an extended profile chord length in its tip and root regions
US20060210395A1 (en) * 2004-09-28 2006-09-21 Honeywell International, Inc. Nonlinearly stacked low noise turbofan stator

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4431376A (en) * 1980-10-27 1984-02-14 United Technologies Corporation Airfoil shape for arrays of airfoils
DE3201436C1 (en) 1982-01-19 1983-04-21 Kraftwerk Union AG, 4330 Mülheim Turbomachine blade
DE3441115C1 (en) 1984-11-10 1986-01-30 Daimler-Benz Ag, 7000 Stuttgart Impeller for a gas turbine
GB9119846D0 (en) * 1991-09-17 1991-10-30 Rolls Royce Plc Aerofoil members for gas turbine engines and method of making the same
JP3082378B2 (en) 1991-12-20 2000-08-28 株式会社デンソー Blower fan
ES2212251T3 (en) * 1998-03-23 2004-07-16 Spal S.R.L. AXIAL FLOW FAN.
GB0003676D0 (en) 2000-02-17 2000-04-05 Abb Alstom Power Nv Aerofoils
DE102005042115A1 (en) * 2005-09-05 2007-03-08 Rolls-Royce Deutschland Ltd & Co Kg Blade of a fluid flow machine with block-defined profile skeleton line
CN101326342B (en) * 2005-10-11 2012-06-13 阿尔斯通技术有限公司 Turbo-machine blade
DE102005060699A1 (en) * 2005-12-19 2007-06-21 Rolls-Royce Deutschland Ltd & Co Kg Turbomachine with adjustable stator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0661413A1 (en) * 1993-12-23 1995-07-05 Mtu Motoren- Und Turbinen-Union MàœNchen Gmbh Axial blade cascade with blades of arrowed leading edge
EP1186747A2 (en) * 2000-09-05 2002-03-13 Honda Giken Kogyo Kabushiki Kaisha An automized blade shape designing method
US20040091353A1 (en) * 2002-09-03 2004-05-13 Shahrokhy Shahpar Guide vane for a gas turbine engine
US20060210395A1 (en) * 2004-09-28 2006-09-21 Honeywell International, Inc. Nonlinearly stacked low noise turbofan stator
EP1657401A2 (en) * 2004-11-12 2006-05-17 Rolls-Royce Deutschland Ltd & Co KG Turbo machine blade with an extended profile chord length in its tip and root regions

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2275643A3 (en) * 2009-07-17 2017-10-04 Rolls-Royce Deutschland Ltd & Co KG Engine blade with excess front edge loading
WO2013178914A1 (en) * 2012-05-31 2013-12-05 Snecma Fan blade for a turbojet of an aircraft having a cambered profile in the foot sections
FR2991373A1 (en) * 2012-05-31 2013-12-06 Snecma BLOWER DAWN FOR AIRBORNE AIRCRAFT WITH CAMBRE PROFILE IN FOOT SECTIONS
US11333164B2 (en) 2012-05-31 2022-05-17 Safran Aircraft Engines Airplane turbojet fan blade of cambered profile in its root sections
EP2921648B1 (en) 2014-03-20 2018-12-26 Ansaldo Energia Switzerland AG Gas turbine blade comprising bended leading and trailing edges
EP3730801A4 (en) * 2017-12-20 2021-05-05 Ihi Corporation Fan and compressor stator blade
US11203945B2 (en) 2017-12-20 2021-12-21 Ihi Corporation Stator vane of fan or compressor
EP3839212A1 (en) * 2019-12-20 2021-06-23 MTU Aero Engines AG Turbine blade for a flow engine
WO2021121458A1 (en) * 2019-12-20 2021-06-24 MTU Aero Engines AG Guide vane for a turbomachine

Also Published As

Publication number Publication date
EP1927724A3 (en) 2009-05-20
US8152473B2 (en) 2012-04-10
US20090226322A1 (en) 2009-09-10
DE102006055869A1 (en) 2008-05-29
EP1927724B1 (en) 2015-09-09

Similar Documents

Publication Publication Date Title
EP1927724B1 (en) Airfoil
EP2473743B1 (en) Compressor blade for an axial compressor
EP1671030B1 (en) Rotor blade for a wind power converter
DE3045224C2 (en)
DE3530769C2 (en) Blade for a gas turbine engine
EP2626515B1 (en) Tandem blade group assembly
EP1766192B1 (en) Vane wheel of a turbine comprising a vane and at least one cooling channel
EP2275643B1 (en) Engine blade with excess front edge loading
DE112017006296B4 (en) FLUID DEVICE
DE102006053712A1 (en) Rotor blade and wind turbine
EP2409002A2 (en) Tandem blade design
EP0132638A2 (en) Blade cascade for an axial gas or steam driven turbine
CH659851A5 (en) TURBINE.
DE1628237A1 (en) Supersound grille
WO2010149139A2 (en) Shroud segment to be arranged on a blade
EP0528138A1 (en) Blade shroud for axial turbine
EP1163425A1 (en) Turbine blade
DE102006048685A1 (en) Turbine blade of a gas turbine
EP2226511A2 (en) Flow working machine with fluid supply
DE102012104240B4 (en) Hybrid Flow Blade Designs
EP3762587B1 (en) Airfoil for a turbine blade
EP1288435B1 (en) Turbine blade with at least one cooling orifice
EP3039246B1 (en) Turbine blade
EP1865148A2 (en) Flow machine with rotors with a high specific energy transfer
EP3287640A1 (en) Fluid flow machine with high performance

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20090721

17Q First examination report despatched

Effective date: 20090820

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150123

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007014198

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007014198

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160610

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191127

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20191125

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20191127

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007014198

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201106

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210601