EP0661413A1 - Axial blade cascade with blades of arrowed leading edge - Google Patents

Axial blade cascade with blades of arrowed leading edge Download PDF

Info

Publication number
EP0661413A1
EP0661413A1 EP94119705A EP94119705A EP0661413A1 EP 0661413 A1 EP0661413 A1 EP 0661413A1 EP 94119705 A EP94119705 A EP 94119705A EP 94119705 A EP94119705 A EP 94119705A EP 0661413 A1 EP0661413 A1 EP 0661413A1
Authority
EP
European Patent Office
Prior art keywords
blade
blades
grille
gravity
grid according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94119705A
Other languages
German (de)
French (fr)
Other versions
EP0661413B1 (en
Inventor
Reinhard Dr. Niehus
Norbert Hübner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines GmbH
Original Assignee
MTU Motoren und Turbinen Union Muenchen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Motoren und Turbinen Union Muenchen GmbH filed Critical MTU Motoren und Turbinen Union Muenchen GmbH
Publication of EP0661413A1 publication Critical patent/EP0661413A1/en
Application granted granted Critical
Publication of EP0661413B1 publication Critical patent/EP0661413B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/142Shape, i.e. outer, aerodynamic form of the blades of successive rotor or stator blade-rows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form

Definitions

  • the invention relates to an axial vane grille according to the preamble of patent claim 1.
  • the design according to the invention has the advantage that, in addition to the effect known from the prior art, the influence of the secondary flow in rotor blade grilles, the radial pressure gradient over the blades in the region close to the boundary can be influenced by the straight, arrow-shaped course, so that the undesirable formation of Horseshoe whirling on the side wall is at least reduced. Since the improvement in step efficiency that can be achieved in this way is not based solely on influencing the secondary flow in rotor blades, which is influenced by the centrifugal force, as is known from the prior art, the invention can be used in the case of rotor and guide vane grids of compressor and turbine blades.
  • the side wall is understood to mean both the hub-side, that is to say the radially inner, and the housing-side, that is to say the radially outer, boundary of the ring channel, which can be designed as a blade platform formed in the circumferential and axial direction or as a shroud or machine housing.
  • the inventive design of the blade grids on the blades is preferably carried out both on the hub side on the blade feet and on the housing side on the blade tip.
  • the straight line within the areas of the blade tips or blade feet depending on the boundary layer thickness a distance from the respective side wall to the blade center of approximately 10% of the associated blade height.
  • the blade height associated with a blade point results from the distance between the radially inner boundary and the radially outer side wall perpendicular to the longitudinal axis of the machine and through the blade point.
  • Flow-favorable positive arrow angles ⁇ G and ⁇ N between the front edge of the blade and a solder on the radially inner or radially outer boundary of the ring channel are between 5 ° and 45 °.
  • Negative sweep angles ⁇ G and ⁇ N between -10 ° and 0 ° allow the advantages associated with sweeping even under structurally difficult conditions.
  • the radial pressure gradient can in turn be manipulated in a streamlined manner.
  • the transition region can be designed with a constant curvature and with low stress.
  • the curved section extends after the straight section up to a relative distance of 25% of the associated blade height, starting from the respective boundary into the interior of the blade.
  • the rotor blades In the case of a design of the rotor blade as a hollow blade, in order to avoid a high bending moment load on the rotor blading of rotor blade grids under centrifugal force, the rotor blades have cavities which extend at least over part of the blade length, the expansion of the cavities being distributed over the blade profile depth such that the focal points of the profile cuts are on a common level. In turbine blades, the cavities can be used as cooling channels be trained.
  • axial displacement of the individual profile cuts can have a favorable influence on the bending moment stress on the airfoil, the offset being able to be chosen such that the center of gravity of the blade comes to rest in the center of gravity of the disc.
  • the center of gravity of the disc is also on the common plane. Strength-reducing tensions in the blade root area are thus avoided.
  • rotor blade grilles with a shroud which concentrically surrounds the blade grille and is connected to the tip of the blade, or is attached there.
  • the centers of gravity of the blades of such a vane grille and the center of gravity of the shroud are spaced axially from the center of gravity of the vane grille in such a way that the center of gravity of the disk receiving the rotor blades lies on the center of gravity of the vane grille. This in turn results in a design with low bending stress in the area of the blade feet.
  • a profile of the blade trailing edges which is similar to the shape of the blade leading edges results with a constant or with a constant increase or decrease in the blade depth over the blade length.
  • FIG. 1a An axial-circumferential-radial coordinate system z-. ⁇ .-r is used for directional and reference information.
  • Figures 1a to 4b show representations in the z-r plane.
  • the blades 6 of the guide and rotor blades 4, 5 extend radially in an annular channel 7 arranged concentrically to the machine longitudinal axis A of the axial turbine 1.
  • the axially concentric hub and housing side walls form the radially inner and radially outer channel boundary 8 and 9 of the annular channel 7 and give it a divergent course with respect to the flow direction S.
  • the rotor blade grids 3 are designed in a disk construction, i.e. the rotor blades 5 are each attached to a disk 10 in a grid manner.
  • FIG. 1b shows an axial turbine 1 'designed according to the prior art, the guide and rotor blade grids 2' and 3 'of which are uncurved Guide and rotor blades 4 'or 5' is equipped.
  • Fig. 2 shows the threading of individual profile cuts P1, P2, P3 and P4 of an airfoil 6 of the axial turbine 1.
  • threading axis F a reference line perpendicular to the machine longitudinal axis A
  • the profile cuts P n coincide with lines of the same relative blade height h in the zr plane.
  • the associated blade height h in turn results from the distance to be measured perpendicular to the longitudinal axis A of the machine between the inner and outer channel boundaries 8 and 9.
  • the blade leading edge 11 has a rectilinear section B G or B N in the rz plane.
  • the arrow angle . ⁇ .G and . ⁇ .N to be measured relative to a perpendicular L to the respective channel boundary 8.9 is 25 ° within the sections B G and B N on the housing side and 45 ° on the hub side.
  • the blade leading edge 11 each has a curved extending section Ü G or Ü N , which corresponds to a second or higher order polynomial.
  • the blade edge 11 is again straight in the rz plane.
  • the transitions from curved to rectilinear course in the blade leading edge 11 are formed continuously.
  • the shape of the trailing edge 12 of the blade results from the specification of the blade depth t (h), which decreases linearly here with increasing duct height h.
  • the rotor blade grille 3 shown in FIG. 3 in the r-z plane is of disk construction, the rotor blades 5 positively in a uniform manner in the circumferential direction via their molded-on blade feet 13. spaced apart disk grooves 14 of the disk 10 are attached.
  • the centers of gravity SP G and SP S of the rotor blade grille 3 and the disk 10 lying on the machine longitudinal axis A coincide.
  • the focal points SP L of the moving blades 5 lie on a common plane E by appropriate threading of the profile cuts P, which is perpendicular to the machine axis A and runs through the common focal point SPS and SPG of the disk 10 or of the moving blade grille 3.
  • the rotor blade grille 3 is provided with a cover band 15 which is segmented in the circumferential direction and comprises the rotor blades at the radially outer end.
  • Fig. 4 shows an alternative embodiment of a blade 5 to avoid bending stresses in the blade 5 due to unbalanced centers of gravity SP P of the profile cuts P n .
  • the interior of the airfoil 6 has a cavity 16 which extends over the channel height h and whose extension over the airfoil depth t (h) is designed such that the centers of gravity SP P of the profile cuts P n are in a common r-. ⁇ .. Level.
  • FIG. 5 shows a blade blade 6 which is additionally concave with respect to the blade suction side 18 and which is curved in the circumferential direction.
  • This additional curvature advantageously has an influence on the radial pressure gradient in the outflow plane of a guide blade or rotor blade 4, 5 to take. Due to the circumferential bend, the profile cuts close to the limit are aerodynamically relieved. With a simultaneous higher load on the center area of the blade 4.5, as a result of which a more favorable efficiency can be achieved overall for the blade 4.5.

Abstract

A blade cascade (turbine cascade) 2, 3 for axial fluid-flow engines (turbo engines) has blades 4, 5 which are positively arrowed (swept-back) in the axial direction in the region of the blade tips 17, 13 and of the blade root. The blade leading edges 11 have a rectilinearly extending section in the region of the blade tip 17 and of the blade root 13, and, adjacent thereto, towards the middle of the blade, a section which extends in a curved fashion. A curvature of the blades 4, 5 in the circumferential direction . PHI .. can be superimposed on the sweeping in the axial direction Z. By virtue of the rectilinear, arrowed profile of the blade leading edges 11 in the region of the blade tip 17 and of the blade root 13, an influence is exerted on the secondary flow which permits an improvement in the stage efficiency both during running and in the case of guide-vane devices (vaned guiding devices) 2 and 3, respectively. <IMAGE>

Description

Die Erfindung betrifft ein Axial-Schaufelgitter nach dem Oberbegriff des Patentanspruches 1.The invention relates to an axial vane grille according to the preamble of patent claim 1.

Zur Verbesserung der Strömungsverhältnisse in Schaufelgittern von Axial-Strömungsmaschinen ist es aus der EP 0425 889 A1 bekannt, die Schaufelvorderkante der Laufschaufeln im Bereich der Blattspitze gegen die Strömungsrichtung gegenüber einem Vorderkantenverlauf im mittleren Schaufelblattbereich zu neigen und dieser Neigung eine Neigung der Blattspitze in Rotationsrichtung des Laufschaufelgitters zu überlagern. Dieser Schaufel vorderkantenverlauf soll zu einer Verbesserung des Wirkungsgrades des Laufschaufelgitters führen, wobei folgender Effekt zu Nutze gemacht werden soll:To improve the flow conditions in the vane grids of axial flow machines, it is known from EP 0425 889 A1 to incline the blade leading edge of the rotor blades in the area of the blade tip against the flow direction with respect to a leading edge course in the central blade area and this inclination an inclination of the blade tip in the direction of rotation of the rotor blade lattice to overlay. This blade leading edge course should lead to an improvement in the efficiency of the blade grille, the following effect should be exploited:

Die Neigung der Schaufelvorderkanten gegen die Strömungsrichtung führt zu einem ebenfalls gegen die Strömungsrichtung geneigten Verlauf der Isobaren. Hieraus ergibt sich ein Anstieg des statischen Druckes nach radial außen, wodurch die unter dem Einfluß der Zentrifugalkraft stehende Grenzschicht der Rotorschaufel stromabwärts abgelenkt wird. Dadurch kann ein blattspitzennahes Ablösen der Grenzschicht vermieden werden.The inclination of the blade leading edges towards the direction of flow leads to a course of the isobars which is also inclined towards the direction of flow. This results in an increase in the static pressure radially outward, as a result of which the boundary layer of the rotor blade, which is influenced by the centrifugal force, is deflected downstream. In this way, detachment of the boundary layer close to the tip of the blade can be avoided.

Hiervon ausgehend ist es Aufgabe der Erfindung, eine für Leit- und Laufschaufelgitter geeignete Schaufelgestaltung zur Verbesserung des Stufenwirkungsgrades anzugeben.Proceeding from this, it is an object of the invention to provide a blade design suitable for guide and moving vane grids to improve the step efficiency.

Erfindungsgemäß wird die Aufgabe durch die kennzeichnenden Merkmale des Patentanspruches 1 gelöst.According to the invention the object is achieved by the characterizing features of patent claim 1.

Die erfindungsgemäße Gestaltung hat den Vorteil, daß durch den geradlinigen, gepfeilten Verlauf zusätzlich zu dem aus dem Stand der Technik bekannten Effekt, der Beeinflussung der Sekundärströmung bei Laufschaufelgittern, der radiale Druckgradient über den Schaufeln im begrenzungsnahen Bereich beeinflußbar ist, so daß die unerwünschte Ausbildung von Hufeisenwirbeln an der Seitenwand zumindest vermindert wird. Da die hierdurch erzielbare Verbesserung des Stufenwirkungsgrades nicht alleine auf der Beeinflussung der bei Rotorschaufeln von der Zentrifugalkraft geprägten Sekundärströmung beruht, wie dies aus dem Stand der Technik bekannt ist, kann die Erfindung bei Lauf- und Leitschaufelgittern von Verdichter- und Turbinenbeschaufelungen zu Nutze gemacht werden. Als Seitenwand wird sowohl die nabenseitige, also radial innere, als auch die gehäuseseitige, also radial äußere Begrenzung des Ringkanals verstanden, wobei diese als in Umfangs- und axiale Richtung ausgebildete Schaufelplattform bzw. als Deckband oder Maschinengehäuse ausgeführt sein kann. Vorzugsweise wird die erfindungsgemäße Gestaltung der Schaufelgitter an den Schaufeln sowohl nabenseitig an den Schaufelfüßen als auch gehäuseseitig an den Schaufelblattspitzen ausgeführt sein. Vorteilhafte Ausführungsformen der Erfindung ergeben sich durch die Merkmale der Patentansprüche 2 bis 13.The design according to the invention has the advantage that, in addition to the effect known from the prior art, the influence of the secondary flow in rotor blade grilles, the radial pressure gradient over the blades in the region close to the boundary can be influenced by the straight, arrow-shaped course, so that the undesirable formation of Horseshoe whirling on the side wall is at least reduced. Since the improvement in step efficiency that can be achieved in this way is not based solely on influencing the secondary flow in rotor blades, which is influenced by the centrifugal force, as is known from the prior art, the invention can be used in the case of rotor and guide vane grids of compressor and turbine blades. The side wall is understood to mean both the hub-side, that is to say the radially inner, and the housing-side, that is to say the radially outer, boundary of the ring channel, which can be designed as a blade platform formed in the circumferential and axial direction or as a shroud or machine housing. The inventive design of the blade grids on the blades is preferably carried out both on the hub side on the blade feet and on the housing side on the blade tip. Advantageous embodiments of the invention result from the features of claims 2 to 13.

Eine optimale Beeinflussung des begrenzungsnahen Druckfeldes und der dortigen Sekundärströmung ergibt sich bei geradlinigen Schaufelvorderkantenverlauf innerhalb der naben- bzw. gehäuseseitigen Grenzschicht, wobei je nach Grenzschichtdicke der geradlinige Verlauf innerhalb der Bereiche der Blattspitzen bzw. Schaufelfüße sich bis zu einem Abstand von der jeweiligen Seitenwand zur Schaufelmitte von ca. 10% der zugehörigen Schaufelhöhe erstreckt. Die zu einem Schaufelpunkt zugehörige Schaufelhöhe ergibt sich durch den zur Maschinenlängsachse senkrechten, durch den Schaufelpunkt gehenden Abstand zwischen der radial inneren Begrenzung und der radial äußeren Seitenwand.Optimal influencing of the pressure field close to the boundary and the secondary flow there arises in the case of a straight blade front edge course within the hub or housing-side boundary layer, the straight line within the areas of the blade tips or blade feet depending on the boundary layer thickness a distance from the respective side wall to the blade center of approximately 10% of the associated blade height. The blade height associated with a blade point results from the distance between the radially inner boundary and the radially outer side wall perpendicular to the longitudinal axis of the machine and through the blade point.

Strömungsgünstige positive Pfeilungswinkel δ G und δ N zwischen der Schaufelvorderkante und einem Lot auf die radial innere bzw. radial äußere Begrenzung des Ringkanals betragen zwischen 5° und 45°. Negative Pfeilungswinkel δ G und δ N zwischen -10° und 0° erlauben auch unter konstruktiv schwierigen Bedingungen die mit der Pfeilung verbundenen Vorteile.Flow-favorable positive arrow angles δ G and δ N between the front edge of the blade and a solder on the radially inner or radially outer boundary of the ring channel are between 5 ° and 45 °. Negative sweep angles δ G and δ N between -10 ° and 0 ° allow the advantages associated with sweeping even under structurally difficult conditions.

Im Anschluß an den geradlinigen Verlauf der Schaufelvorderkanten weisen diese in einem Übergangbereich zur Schaufelmitte hin einen gekrümmten Verlauf nach einem Polynom zweiter oder höherer Ordnung auf. Durch Variation der Krümmung kann wiederum der radiale Druckgradient strömungsgünstig manipuliert werden. Darüberhinaus kann bei Rotorschaufeln, die einer hohen Fliehkraftbeanspruchung unterliegen, der Übergangsbereich mit einer stetigen Krümmung spannungsarm gestaltet werden. In einer bevorzugten Ausführung erstreckt sich der gekrümmte Abschnitt im Anschluß an den geradlinigen Abschnitt bis zu einem relativen Abstand von 25% der zugehörigen Schaufelhöhe ausgehend von der jeweiligen Begrenzung ins Schaufelinnere.Following the rectilinear course of the blade leading edges, these have a curved course according to a second or higher order polynomial in a transition region to the center of the blade. By varying the curvature, the radial pressure gradient can in turn be manipulated in a streamlined manner. In addition, in the case of rotor blades which are subject to high centrifugal force stresses, the transition region can be designed with a constant curvature and with low stress. In a preferred embodiment, the curved section extends after the straight section up to a relative distance of 25% of the associated blade height, starting from the respective boundary into the interior of the blade.

Im Falle einer Ausführung der Laufschaufel als Hohlschaufel kann zur Vermeidung einer hohen Biegemomentbeanspruchung der unter Fliehkrafteinfluß stehenden Rotorbeschaufelung von Laufschaufelgittern weisen die Rotorschaufeln Hohlräume auf, die sich zumindest über einen Teil der Schaufellänge erstrecken, wobei die Ausdehnung der Hohlräume derart über die Schaufelprofiltiefe verteilt sind, daß die Schwerpunkte der Profilschnitte auf einer gemeinsamen Ebene liegen. Bei Laufschaufelgittern von Turbinen können die Hohlräume als Kühlkanäle ausgebildet sein.In the case of a design of the rotor blade as a hollow blade, in order to avoid a high bending moment load on the rotor blading of rotor blade grids under centrifugal force, the rotor blades have cavities which extend at least over part of the blade length, the expansion of the cavities being distributed over the blade profile depth such that the focal points of the profile cuts are on a common level. In turbine blades, the cavities can be used as cooling channels be trained.

Für massiv ausgeführte Laufschaufeln kann durch axialen Versatz der einzelnen Profilschnitte günstiger Einfluß auf die Biegemomentbeanspruchung des Schaufelblattes ausgeübt werden, wobei der Versatz derart gewählt werden kann, daß der Schaufelschwerpunkt in der Schwerelinie der Scheibe zum Liegen kommt.For massive blades, axial displacement of the individual profile cuts can have a favorable influence on the bending moment stress on the airfoil, the offset being able to be chosen such that the center of gravity of the blade comes to rest in the center of gravity of the disc.

Bei der Ausführung des Laufschaufelgitters mit einer die Rotorschaufeln aufnehmenden Scheibe liegt der Scheibenschwerpunkt ebenfalls auf der gemeinsamen Ebene. Festigkeitsmindernde Spannungen im Schaufelfußbereich werden somit vermieden. Das gleiche gilt für Laufschaufelgitter mit einem Deckband, welches das Schaufelgitter kanalkonzentrisch umgibt und mit den Schaufel spitzen verbunden ist, bzw. dort angebracht ist. Dabei sind die Schwerpunkte der Schaufeln eines solchen Schaufelgitters und der Schwerpunkt des Deckbandes derart axial vom Schwerpunkt des Schaufelgitters beabstandet, daß der Schwerpunkt der die Rotorschaufeln aufnehmenden Scheibe auf dem Schwerpunkt des Schaufelgitters liegt. Hierdurch ergibt sich wiederum eine biegespannungsarme Gestaltung im Bereich der Schaufelfüße.When designing the rotor blade grille with a disc that receives the rotor blades, the center of gravity of the disc is also on the common plane. Strength-reducing tensions in the blade root area are thus avoided. The same applies to rotor blade grilles with a shroud which concentrically surrounds the blade grille and is connected to the tip of the blade, or is attached there. The centers of gravity of the blades of such a vane grille and the center of gravity of the shroud are spaced axially from the center of gravity of the vane grille in such a way that the center of gravity of the disk receiving the rotor blades lies on the center of gravity of the vane grille. This in turn results in a design with low bending stress in the area of the blade feet.

Einen dem Verlauf der Schaufelvorderkanten ähnlichen Verlauf der Schaufelhinterkanten ergibt sich bei konstanter oder bei gleichmäßiger Zu- bzw. Abnahme der Schaufelblattiefe über die Schaufelblattlänge.A profile of the blade trailing edges which is similar to the shape of the blade leading edges results with a constant or with a constant increase or decrease in the blade depth over the blade length.

Bevorzugte Ausführungsformen der Erfindung werden nachfolgend unter Bezugnahme auf die beigefügte Zeichnung erläutert. Es zeigt:

Fig. 1 a
einen Längsschnitt durch die Niederdruckturbine eines Strahltriebwerkes mit gekrümmten Turbinenschaufeln,
Fig. 1 b
einen Längsschnitt durch die Niederdruckturbine eines Strahltriebwerkes mit geradlinig verlaufenden Turbinenschaufeln,
Fig. 2
einen vergrößerten Ausschnitt eines gekrümmten Schaufelblattes gemäß Fig. 1a,
Fig. 3
einen teilweisen Längsschnitt eines Laufschaufelgitters mit Scheibe und Deckband,
Fig. 4
einen Schnitt durch die Skelettfläche einer Laufschaufel mit hohlem Schaufelblatt und
Fig. 5
eine Ansicht eines Laufschaufelblattes mit Krümmung in Umfangsrichtung
Preferred embodiments of the invention are explained below with reference to the accompanying drawings. It shows:
Fig. 1 a
2 shows a longitudinal section through the low-pressure turbine of a jet engine with curved turbine blades,
Fig. 1 b
2 shows a longitudinal section through the low-pressure turbine of a jet engine with straight-line turbine blades,
Fig. 2
2 shows an enlarged section of a curved airfoil according to FIG. 1a,
Fig. 3
a partial longitudinal section of a rotor blade grille with washer and shroud,
Fig. 4
a section through the skeletal surface of a blade with a hollow blade and
Fig. 5
a view of a blade with curvature in the circumferential direction

Für Richtungs- und Bezugsangaben wird ein in der Strömungsmechanik übliches Axial-Umfangs-Radial-Koordinatensystem z-.φ.-r verwendet. Die Figuren 1a bis 4b zeigen Darstellungen in der z-r-Ebene. Die in Figur 1a schematisch dargestellte obere Hälfte einer zweistufigen Axialturbine weist paarweise axial hintereinander angeordnete Leit- und Laufschaufelgitter 2 bzw. 3 auf, die mit konkav entgegen der Strömungsrichtung S gekrümmten Leit- bzw. Laufschaufeln 4,5 bestückt sind. Die Schaufelblätter 6 der Leit- und Laufschaufeln 4,5 erstrecken sich radial in einem zur Maschinenlängsachse A der Axialturbine 1 konzentrisch angeordneten Ringkanal 7. Die achskonzentrisch verlaufenden naben- und gehäuseseitigen Seitenwände bilden die radial innere und radial äußere Kanalbegrenzung 8 bzw. 9 des Ringkanals 7 und geben diesem einen bezüglich der Strömungsrichtung S divergenten Verlauf.An axial-circumferential-radial coordinate system z-.φ.-r is used for directional and reference information. Figures 1a to 4b show representations in the z-r plane. The upper half of a two-stage axial turbine, shown schematically in FIG. The blades 6 of the guide and rotor blades 4, 5 extend radially in an annular channel 7 arranged concentrically to the machine longitudinal axis A of the axial turbine 1. The axially concentric hub and housing side walls form the radially inner and radially outer channel boundary 8 and 9 of the annular channel 7 and give it a divergent course with respect to the flow direction S.

Die Laufschaufelgitter 3 sind in Scheibenbauweise ausgeführt, d.h., die Laufschaufeln 5 sind jeweils gitterweise an einer Scheibe 10 angebracht.The rotor blade grids 3 are designed in a disk construction, i.e. the rotor blades 5 are each attached to a disk 10 in a grid manner.

Fig. 1b zeigt eine nach dem Stand der Technik ausgebildete Axialturbine 1' deren Leit- und Laufschaufelgitter 2' bzw. 3' mit ungekrümmten Leit- und Laufschaufeln 4' bzw. 5' bestückt ist.1b shows an axial turbine 1 'designed according to the prior art, the guide and rotor blade grids 2' and 3 'of which are uncurved Guide and rotor blades 4 'or 5' is equipped.

Fig. 2 zeigt die Auffädelung einzelner Profilschnitte P₁,P₂, P₃ und P₄ eines Schaufelblattes 6 der Axialturbine 1. Unter Auffädelung ist die Positionierung einzelner Profilschnitte Pn eines Schaufelblattes 6 bezüglich einer senkrecht auf der Maschinenlängsachse A stehenden Referenzlinie, Fädelachse F genannt, die bei Laufschaufeln 5 im allgemeinen durch den Schaufelschwerpunkt SPL läuft, zur Profilgebung eines Schaufelblattes 6 zu verstehen. Die Profilschnitte Pn fallen in der z-r-Ebene definitionsgemäß mit Linien gleicher relativer Schaufelhöhe h zusammen. Die zugehörige Schaufelhöhe h wiederum ergibt sich aus dem senkrecht zur Maschinenlängsachse A zu messenden Abstand zwischen der inneren und äußeren Kanalbegrenzung 8 bzw. 9. Die in Fig. 2 erkenntlichen Profilschnitte P₁, P₂, P₃ und P₄ sind bei 5-,25-,75- bzw. 95%iger relativer Schaufelhöhe gezogen und trennen Bereiche des Schaufelblattes 6 mit unterschiedlicher Formgebung der Schaufelvorderkante 11 ab. In den Bereichen der Randschnitte PG und PN bis zum Profil schnitt P₁ bzw. P₄ weist die Schaufelvorderkante 11 einen geradlinig verlaufenden Abschnitt BG bzw. BN in der r-z-Ebene auf. Der gegenüber einer Lotsrechten L auf die jeweilige Kanalbegrenzung 8,9 zu messende Pfeilungswinkel .δ.G bzw. .δ.N beträgt innerhalb der Abschnitte BG und BN gehäuseseitig 25° und nabenseitig 45°. Im Anschluß an die gradlinig verlaufenden Abschnitte festgelegten Übergangsbereiche zwischen den Profilschnitten P₃ und P₄ sowie P₁ und P₂ weist die Schaufelvorderkante 11 jeweils einen gekrümmten verlaufenden Abschnitt ÜG bzw. ÜN auf, der einem Polynom zweiter oder höherer Ordnung entspricht. Im Mittenbereich zwischen den Profilschnitten P₃ und P₂ ist die Schaufelkante 11 in der r-z-Ebene wiederum geradlinig ausgeführt. Zur Vermeidung unerwünschter aerodynamischer Effekte und von Spannungskonzentrationen sind die Übergänge von gekrümmten zum geradlinigen Verlauf in der Schaufelvorderkante 11 stetig ausgebildet. Der Verlauf der Schaufelhinterkante 12 ergibt sich durch Vorgabe der Schaufelblattiefe t(h), die hier mit zunehmender Kanalhöhe h linear abnimmt.Fig. 2 shows the threading of individual profile cuts P₁, P₂, P₃ and P₄ of an airfoil 6 of the axial turbine 1. With threading, the positioning of individual profile cuts Pn of an airfoil 6 with respect to a reference line perpendicular to the machine longitudinal axis A, called threading axis F, which are used in moving blades 5 generally runs through the blade center of gravity SP L to understand the profile of an airfoil 6. By definition, the profile cuts P n coincide with lines of the same relative blade height h in the zr plane. The associated blade height h in turn results from the distance to be measured perpendicular to the longitudinal axis A of the machine between the inner and outer channel boundaries 8 and 9. The profile cuts P 1, P 2, P 3 and P 4 shown in FIG - or 95% relative blade height pulled and separate areas of the blade 6 with different shapes of the blade leading edge 11. In the areas of the edge cuts P G and P N to the profile section P₁ or P₄, the blade leading edge 11 has a rectilinear section B G or B N in the rz plane. The arrow angle .δ.G and .δ.N to be measured relative to a perpendicular L to the respective channel boundary 8.9 is 25 ° within the sections B G and B N on the housing side and 45 ° on the hub side. Following the straight-line sections defined transition areas between the profile sections P₃ and P₄ as well as P₁ and P₂, the blade leading edge 11 each has a curved extending section Ü G or Ü N , which corresponds to a second or higher order polynomial. In the center area between the profile cuts P₃ and P₂, the blade edge 11 is again straight in the rz plane. In order to avoid undesired aerodynamic effects and stress concentrations, the transitions from curved to rectilinear course in the blade leading edge 11 are formed continuously. The shape of the trailing edge 12 of the blade results from the specification of the blade depth t (h), which decreases linearly here with increasing duct height h.

Das in der Fig. 3 in der r-z-Ebene dargestellte Laufschaufelgitter 3 ist in Scheibenbauweise ausgeführt, wobei die Laufschaufeln 5 über ihre angeformten Schaufelfüße 13 formschlüssig in gleichmäßig in Umfangsrichtung .φ. voneinander beabstandeten Scheibennuten 14 der Scheibe 10 angebracht sind.The rotor blade grille 3 shown in FIG. 3 in the r-z plane is of disk construction, the rotor blades 5 positively in a uniform manner in the circumferential direction via their molded-on blade feet 13. spaced apart disk grooves 14 of the disk 10 are attached.

Zur Vermeidung unnötiger Biegespannungen während des Betriebes in der Scheibe 10 und in den Laufschaufeln 5 des Laufschaufelgitters 3 fallen die auf der Maschinenlängsachse A liegenden Schwerpunkte SPG und SPS des Laufschaufelgitters 3 bzw. der Scheibe 10 zusammen. In diesem Sinne liegen die Schwerpunkte SPL der Laufschaufeln 5 durch entsprechende Auffädelung der Profilschnitte P auf einer gemeinsamen Ebene E, die senkrecht zur Maschinenachse A steht und durch den gemeinsamen Schwerpunkt SPS und SPG der Scheibe 10 bzw. des Laufschaufelgitters 3 verläuft. Das Laufschaufelgitter 3 ist zur Vermeidung von Druckverlusten und zur Verbesserung der Strömungsqualität mit einem in Umfangsrichtung .φ.. segmentierten Deckband 15 versehen, welches die Laufschaufeln am radial äußeren Ende umfaßt. Durch balancieren der Deckbandsegmente in z-Richtung liegen die Schwerpunkte SPD der Deckbandsegmente 15 ebenfalls auf der Ebene E, wodurch Biegespannungen in den Laufschaufeln 5 vermieden oder reduziert werden.In order to avoid unnecessary bending stresses during operation in the disk 10 and in the rotor blades 5 of the rotor blade grille 3, the centers of gravity SP G and SP S of the rotor blade grille 3 and the disk 10 lying on the machine longitudinal axis A coincide. In this sense, the focal points SP L of the moving blades 5 lie on a common plane E by appropriate threading of the profile cuts P, which is perpendicular to the machine axis A and runs through the common focal point SPS and SPG of the disk 10 or of the moving blade grille 3. To avoid pressure losses and to improve the flow quality, the rotor blade grille 3 is provided with a cover band 15 which is segmented in the circumferential direction and comprises the rotor blades at the radially outer end. By balancing the shroud segments in the z direction, the centers of gravity SP D of the shroud segments 15 are also on the plane E, whereby bending stresses in the blades 5 are avoided or reduced.

Fig. 4 zeigt eine alternative Ausführung einer Laufschaufel 5 zur Vermeidung von Biegespannungen in der Laufschaufel 5 aufgrund unbalancierter Schwerpunktslagen SPP der Profilschnitte Pn. Hierzu weist das Innere des Schaufelblattes 6 einen sich über die Kanalhöhe h hinweg erstreckenden Hohlraum 16 auf, dessen Erstreckung über die Schaufelblattiefe t(h) derart gestaltet ist, daß die Schwerpunkte SPP der Profilschnitte Pn in einer gemeinsamen r-.φ..-Ebene liegen.Fig. 4 shows an alternative embodiment of a blade 5 to avoid bending stresses in the blade 5 due to unbalanced centers of gravity SP P of the profile cuts P n . For this purpose, the interior of the airfoil 6 has a cavity 16 which extends over the channel height h and whose extension over the airfoil depth t (h) is designed such that the centers of gravity SP P of the profile cuts P n are in a common r-.φ .. Level.

Fig. 5 zeigt ein zusätzlich bezüglich der Schaufelsaugseite 18 konkav, in Umfangsrichtung gekrümmtes Schaufelblatt 6. Durch diese zusätzliche Krümmung läßt sich vorteilhaft Einfluß auf den radialen Druckgradienten in der Abströmebene einer Leit- oder Laufschaufel 4,5 nehmen. Aufgrund der Umfangsbiegung werden die begrenzugsnahen Profilschnitte aerodynamisch entlastet. Bei gleichzeitiger höheren Belastung des Mittenbereiches der Schaufel 4,5, wodurch insgesamt für die Schaufel 4,5 ein günstigerer Wirkungsgrad erzielt werden kann.FIG. 5 shows a blade blade 6 which is additionally concave with respect to the blade suction side 18 and which is curved in the circumferential direction. This additional curvature advantageously has an influence on the radial pressure gradient in the outflow plane of a guide blade or rotor blade 4, 5 to take. Due to the circumferential bend, the profile cuts close to the limit are aerodynamically relieved. With a simultaneous higher load on the center area of the blade 4.5, as a result of which a more favorable efficiency can be achieved overall for the blade 4.5.

Claims (14)

Schaufelgitter für Axial-Strömungsmaschinen mit Ringkanal, wobei die Schaufelvorderkanten der Schaufeln des im Ringkanal angeordneten Schaufelgitters im Bereich der Schaufelblattspitzen und/oder im Bereich des Nabenschnittes PN der Schaufelblätter in axialer Richtung gepfeilt sind, dadurch gekennzeichent, daß die Schaufelvorderkanten (11) in dem Bereich einen geradlinig verlaufenden Abschnitt (BG bzw. BN) und im Anschluß an diesen Abschnitt, in Übergangsbereichen einen gekrümmt verlaufenden Abschnitt (ÜG bzw. ÜN) aufweisen.Blade grille for axial flow machines with an annular channel, the front edges of the blades of the blades arranged in the annular channel being swept in the axial direction in the area of the blade tip and / or in the area of the hub cut P N of the blade blades, characterized in that the blade edges (11) in that Area have a rectilinear section (B G or B N ) and following this section, in transition areas a curved section (Ü G or Ü N ). Schaufelgitter nach Anspruch 1, dadurch gekennzeichnet, daß die geradlinig verlaufenden Abschnitte (BG bzw. BN) sich um einen Abstand von der Schaufelblattspitze (17) bzw. von dem Nabenschnitt PN des Schaufelblattes (6) von bis zu 30% der zugehörigen Schaufelhöhe (h) erstrecken.Blade grid according to claim 1, characterized in that the rectilinear sections (B G or B N ) are spaced from the blade tip (17) or from the hub cut P N of the blade blade (6) by up to 30% of the associated Extend bucket height (h). Schaufelgitter nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß positive Pfeilungswinkel (δG bzw.δN) jeweils gemessen in einem Längsschnitt zwischen einem geradlinig verlaufenden Abschnitt (BG bzw. BN) einer Schaufelvorderkante (11) und einer Lotrechten (L) auf eine radial äußere bzw. radial innere Begrenzung (9,8) des Ringkanals (7) im Schnittpunkt mit der Schaufelvorderkante (11) zwischen 5° und 45° betragen.Blade grid according to claim 1 or 2, characterized in that positive sweep angles (δ G or δ N ) measured in each case in a longitudinal section between a rectilinear section (B G or B N ) of a blade front edge (11) and a perpendicular (L) to a radially outer or radially inner boundary (9, 8) of the Ring channel (7) at the intersection with the front edge of the blade (11) be between 5 ° and 45 °. Schaufelgitter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der gekrümmte Verlauf der Schaufelvorderkanten (11) in den Übergangsbereichen Polynomen zweiter oder höherer Ordnung entsprechen.Blade grid according to one of the preceding claims, characterized in that the curved course of the blade leading edges (11) in the transition regions correspond to second-order or higher-order polynomials. Schaufelgitter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Schaufelvorderkanten (11) im Anschluß an die Übergangsbereiche im Mittenbereich der Schaufelblätter (6) einen geradlinig verlaufenden Abschnitt (M) aufweisen.Blade grid according to one of the preceding claims, characterized in that the blade front edges (11) have a rectilinear section (M) following the transition areas in the center area of the blade blades (6). Schaufelgitter nach Anspruch 5, dadurch gekennzeichnet, daß die gekrümmt verlaufenden Abschnitte (ÜG bzw. ÜN) bis zu 50% der zugehörigen Schaufelhöhe einnehmen.Blade grid according to claim 5, characterized in that the curved sections (Ü G or Ü N ) occupy up to 50% of the associated blade height. Schaufelgitter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Schaufelblätter (6) zusätzlich zur Pfeilung in Umfangsrichtung gekrümmt sind.Blade grid according to one of the preceding claims, characterized in that the blade blades (6) are curved in addition to the sweep in the circumferential direction. Schaufelgitter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Schaufelgitter ein Laufschaufelgitter (3) mit Laufschaufeln (5) ist.Vane grille according to one of the preceding claims, characterized in that the vane grille is a moving vane grille (3) with moving blades (5). Schaufelgitter nach Anspruch 7, dadurch gekennzeichnet, daß die Laufschaufeln (5) Hohlräume (16) aufweisen, die sich zumindest über einen Teil der Schaufellänge erstrecken, wobei die Ausdehnung der Hohlräume (16) derart über die Schaufelprofiltiefe (t) verteilt sind, daß die Schwerpunkte der Profilschnitte (Pn) auf einer gemeinsamen Ebene (E) senkrecht zur Maschinenlängsachse (A) liegen.Blade grid according to claim 7, characterized in that the rotor blades (5) have cavities (16) which extend at least over part of the blade length, the expansion of the cavities (16) being distributed over the blade profile depth (t) such that the The focal points of the profile cuts (Pn) lie on a common plane (E) perpendicular to the machine longitudinal axis (A). Schaufelgitter nach Anspruch 9, dadurch gekennzeichnet, daß die Hohlräume (16) Kühlkanäle sind.Blade grid according to claim 9, characterized in that the Cavities (16) are cooling channels. Schaufelgitter nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, daß das Laufschaufelgitter (3) eine die Laufschaufeln (5) aufnehmende Scheibe (10) aufweist, deren Schwerpunkt (SPs) auf der gemeinsamen Ebene (E) liegt.Vane grille according to one of claims 8 to 10, characterized in that the moving vane grille (3) has a disk (10) which receives the moving blades (5) and whose center of gravity (SP s ) lies on the common plane (E). Schaufelgitter nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, daß das Laufschaufelgitter (3) ein Deckband (15) und eine, die Laufschaufeln (5) aufnehmende Scheibe (10) aufweist, wobei die Schwerpunkte (SPL) der Laufschaufeln (5) und der Schwerpunkte (SPD) des Deckbandes (15) derart axial vom Schwerpunkt (SPG) des Laufschaufelgitters (3) beabstandet sind, daß der Schwerpunkt (SPs) der Scheibe (10) auf dem Schwerpunkt (SPG) des Laufschaufelgitters (3) liegt.Vane grille according to one of claims 8 to 11, characterized in that the moving vane grating (3) has a shroud (15) and a disk (10) receiving the moving blades (5), the center of gravity (SP L ) of the moving blades (5) and the centers of gravity (SP D ) of the shroud (15) are spaced axially from the center of gravity (SP G ) of the rotor blade grille (3) such that the center of gravity (SP s ) of the disc (10) on the center of gravity (SP G ) of the rotor blade grille ( 3) lies. Schaufelgitter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Schaufelblattiefe t(h) zwischen Schaufelvorder- (11) und -hinterkante (12) der Laufschaufel (5) eines Schaufelgitters über die Schaufelhöhe (h) konstant ist oder linear verläuft.Blade grille according to one of the preceding claims, characterized in that the blade depth t (h) between the front (11) and rear edge (12) of the blade (5) of a blade grille is constant or linear over the blade height (h). Schaufelgitter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß dem Verlauf der Schaufelvorder- (11) und/oder -hinterkante (12) der Schaufel (5,6) im Bereich der randnahen Profilschnitte (PN bzw. PG) ein Ausrundungsradius (RN bzw. RG) überlagert ist.Blade grid according to one of the preceding claims, characterized in that the course of the blade front (11) and / or rear edge (12) of the blade (5, 6) in the region of the profile cuts (P N or P G ) near the edge has a radius of curvature ( R N or R G ) is superimposed.
EP19940119705 1993-12-23 1994-12-14 Axial blade cascade with blades of arrowed leading edge Expired - Lifetime EP0661413B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19934344189 DE4344189C1 (en) 1993-12-23 1993-12-23 Axial vane grille with swept front edges
DE4344189 1993-12-23

Publications (2)

Publication Number Publication Date
EP0661413A1 true EP0661413A1 (en) 1995-07-05
EP0661413B1 EP0661413B1 (en) 1998-08-26

Family

ID=6506022

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19940119705 Expired - Lifetime EP0661413B1 (en) 1993-12-23 1994-12-14 Axial blade cascade with blades of arrowed leading edge

Country Status (3)

Country Link
EP (1) EP0661413B1 (en)
DE (1) DE4344189C1 (en)
ES (1) ES2123700T3 (en)

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0833060A2 (en) * 1996-09-30 1998-04-01 Kabushiki Kaisha Toshiba Blade for axial fluid machine
WO1999013199A1 (en) * 1997-09-08 1999-03-18 Siemens Aktiengesellschaft Blade for a turbo-machine and steam turbine
EP0916812A1 (en) * 1997-11-17 1999-05-19 Asea Brown Boveri AG Final stage for an axial turbine
EP0957236A1 (en) * 1998-05-15 1999-11-17 Asea Brown Boveri AG Turbine rotor blade
WO1999064725A1 (en) * 1998-06-12 1999-12-16 Ebara Corporation Turbine nozzle vane
WO2000061918A2 (en) * 1999-03-22 2000-10-19 Siemens Westinghouse Power Corporation Airfoil leading edge vortex elimination device
EP1111188A3 (en) * 1999-12-21 2003-01-08 General Electric Company Swept airfoil with barrel shaped leading edge
FR2828709A1 (en) * 2001-08-17 2003-02-21 Snecma Moteurs Compressor splitter blade has leading edge comprising root part extending in radial direction and inclined to axial direction
WO2006059996A1 (en) * 2004-12-01 2006-06-08 United Technologies Corporation Balanced turbine rotor fan blade for a tip turbine engine
EP1710397A2 (en) 2005-03-31 2006-10-11 Kabushiki Kaisha Toshiba Bowed nozzle vane
EP1760321A2 (en) 2005-09-05 2007-03-07 Rolls-Royce Deutschland Ltd & Co KG Blade for turbomachine
EP1798375A2 (en) 2005-12-19 2007-06-20 Rolls-Royce Deutschland Ltd & Co KG Airfoil shape for variable stator vanes
EP1905952A2 (en) 2006-09-12 2008-04-02 United Technologies Corporation Turbine engine compressor vane and spacer
EP1927724A2 (en) * 2006-11-23 2008-06-04 Rolls-Royce Deutschland Ltd & Co KG Turbomachine blade
EP1985802A2 (en) * 2007-04-27 2008-10-29 Rolls-Royce Deutschland Ltd & Co KG Leading edge curve for turbo engine components
EP1995469A1 (en) * 2006-03-14 2008-11-26 Mitsubishi Heavy Industries, Ltd. Blade for axial-flow fluid machine
EP1731716A3 (en) * 2005-06-06 2009-10-21 General Electric Company Forward tilted turbine nozzle
EP1731733A3 (en) * 2005-06-06 2009-10-28 General Electric Company Integrated counterrotating turbofan
US8382438B2 (en) 2004-11-12 2013-02-26 Rolls-Royce Deutschland Ltd & Co Kg Blade of a turbomachine with enlarged peripheral profile depth
RU2498082C2 (en) * 2007-12-14 2013-11-10 Снекма Single-crystal turbine blade, turbomachine module and turbomachine
WO2014090907A1 (en) * 2012-12-13 2014-06-19 Nuovo Pignone Srl Turbomachine blade, corresponding turbomachine and method of manufacturing a turbine blade
EP2824277A1 (en) * 2013-07-12 2015-01-14 MTU Aero Engines GmbH Gas turbine stage
RU2558171C2 (en) * 2010-10-18 2015-07-27 Сименс Акциенгезелльшафт Gas turbine annular diffuser
WO2015126941A1 (en) 2014-02-19 2015-08-27 United Technologies Corporation Gas turbine engine airfoil
WO2015175051A2 (en) 2014-02-19 2015-11-19 United Technologies Corporation Gas turbine engine airfoil
CN105089709A (en) * 2014-05-12 2015-11-25 阿尔斯通技术有限公司 Airfoil with improved cooling
EP3163019A1 (en) * 2015-10-26 2017-05-03 MTU Aero Engines GmbH Rotor blade
US9752439B2 (en) 2014-02-19 2017-09-05 United Technologies Corporation Gas turbine engine airfoil
US9777580B2 (en) 2014-02-19 2017-10-03 United Technologies Corporation Gas turbine engine airfoil
US10036257B2 (en) 2014-02-19 2018-07-31 United Technologies Corporation Gas turbine engine airfoil
EP2218874B1 (en) * 2009-02-13 2018-09-19 United Technologies Corporation Turbine vane airfoil with turning flow and axial/circumferential trailing edge configuration
US10184483B2 (en) 2014-02-19 2019-01-22 United Technologies Corporation Gas turbine engine airfoil
US10309414B2 (en) 2014-02-19 2019-06-04 United Technologies Corporation Gas turbine engine airfoil
US10352331B2 (en) 2014-02-19 2019-07-16 United Technologies Corporation Gas turbine engine airfoil
US10370974B2 (en) 2014-02-19 2019-08-06 United Technologies Corporation Gas turbine engine airfoil
US10385866B2 (en) 2014-02-19 2019-08-20 United Technologies Corporation Gas turbine engine airfoil
US10393139B2 (en) 2014-02-19 2019-08-27 United Technologies Corporation Gas turbine engine airfoil
US10422226B2 (en) 2014-02-19 2019-09-24 United Technologies Corporation Gas turbine engine airfoil
US10465702B2 (en) 2014-02-19 2019-11-05 United Technologies Corporation Gas turbine engine airfoil
US10495106B2 (en) 2014-02-19 2019-12-03 United Technologies Corporation Gas turbine engine airfoil
US10502229B2 (en) 2014-02-19 2019-12-10 United Technologies Corporation Gas turbine engine airfoil
US10519971B2 (en) 2014-02-19 2019-12-31 United Technologies Corporation Gas turbine engine airfoil
US10550852B2 (en) 2014-02-19 2020-02-04 United Technologies Corporation Gas turbine engine airfoil
US10557477B2 (en) 2014-02-19 2020-02-11 United Technologies Corporation Gas turbine engine airfoil
US10570915B2 (en) 2014-02-19 2020-02-25 United Technologies Corporation Gas turbine engine airfoil
US10584715B2 (en) 2014-02-19 2020-03-10 United Technologies Corporation Gas turbine engine airfoil
US10590775B2 (en) 2014-02-19 2020-03-17 United Technologies Corporation Gas turbine engine airfoil
US10605259B2 (en) 2014-02-19 2020-03-31 United Technologies Corporation Gas turbine engine airfoil
EP3816397A1 (en) * 2019-10-31 2021-05-05 General Electric Company Controlled flow turbine blades
US11220910B2 (en) * 2019-07-26 2022-01-11 Pratt & Whitney Canada Corp. Compressor stator

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59907976D1 (en) 1998-02-20 2004-01-22 Rolls Royce Deutschland Arrangement of axial turbine blades
DE602004031986D1 (en) 2004-12-01 2011-05-05 United Technologies Corp BLOWER TURBINE ROTOR ASSEMBLY FOR A TOP TURBINE ENGINE
US7874802B2 (en) 2004-12-01 2011-01-25 United Technologies Corporation Tip turbine engine comprising turbine blade clusters and method of assembly
US8561383B2 (en) 2004-12-01 2013-10-22 United Technologies Corporation Turbine engine with differential gear driven fan and compressor
DE602004031470D1 (en) 2004-12-01 2011-03-31 United Technologies Corp TRANSITION CHANNEL WITH MEANS FOR FLOW VECTOR INFLUENCE ON A GAS TURBINE
US7878762B2 (en) 2004-12-01 2011-02-01 United Technologies Corporation Tip turbine engine comprising turbine clusters and radial attachment lock arrangement therefor
EP1819907A2 (en) 2004-12-01 2007-08-22 United Technologies Corporation Fan blade with integral diffuser section and tip turbine blade section for a tip turbine engine
US8468795B2 (en) 2004-12-01 2013-06-25 United Technologies Corporation Diffuser aspiration for a tip turbine engine
WO2006060000A1 (en) 2004-12-01 2006-06-08 United Technologies Corporation Variable fan inlet guide vane assembly, turbine engine with such an assembly and corresponding controlling method
EP1825113B1 (en) 2004-12-01 2012-10-24 United Technologies Corporation Counter-rotating gearbox for tip turbine engine
US8152469B2 (en) 2004-12-01 2012-04-10 United Technologies Corporation Annular turbine ring rotor
US8096753B2 (en) 2004-12-01 2012-01-17 United Technologies Corporation Tip turbine engine and operating method with reverse core airflow
US7980054B2 (en) 2004-12-01 2011-07-19 United Technologies Corporation Ejector cooling of outer case for tip turbine engine
WO2006059972A1 (en) 2004-12-01 2006-06-08 United Technologies Corporation Compressor variable stage remote actuation for turbine engine
WO2006059975A1 (en) 2004-12-01 2006-06-08 United Technologies Corporation Peripheral combustor for tip turbine engine
WO2006059985A1 (en) 2004-12-01 2006-06-08 United Technologies Corporation Axial compressor for tip turbine engine
WO2006060004A1 (en) 2004-12-01 2006-06-08 United Technologies Corporation Combustor for turbine engine
US7976272B2 (en) 2004-12-01 2011-07-12 United Technologies Corporation Inflatable bleed valve for a turbine engine
DE102015224151A1 (en) 2015-12-03 2017-06-08 MTU Aero Engines AG Center point threading of blades

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB719061A (en) * 1950-06-21 1954-11-24 United Aircraft Corp Blade arrangement for improving the performance of a gas turbine plant
DE2034890A1 (en) * 1969-07-21 1971-02-04 Rolls Royce Ltd Derby, Derbyshire (Großbritannien) Blade for axial flow machines
US4012172A (en) * 1975-09-10 1977-03-15 Avco Corporation Low noise blades for axial flow compressors
GB2004599A (en) * 1977-09-26 1979-04-04 Hitachi Ltd Blade lattice structure for axial fluid machine
GB2151310A (en) * 1983-12-12 1985-07-17 Gen Electric Gas turbine engine blade
GB2164098A (en) * 1984-09-07 1986-03-12 Rolls Royce Improvements in or relating to aerofoil section members for turbine engines
WO1993005275A1 (en) * 1991-08-30 1993-03-18 Airflow Research And Manufacturing Corporation Forward skew fan with rake and chordwise camber corrections

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2665005B2 (en) * 1989-10-24 1997-10-22 三菱重工業株式会社 Blades of axial flow machines

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB719061A (en) * 1950-06-21 1954-11-24 United Aircraft Corp Blade arrangement for improving the performance of a gas turbine plant
DE2034890A1 (en) * 1969-07-21 1971-02-04 Rolls Royce Ltd Derby, Derbyshire (Großbritannien) Blade for axial flow machines
US4012172A (en) * 1975-09-10 1977-03-15 Avco Corporation Low noise blades for axial flow compressors
GB2004599A (en) * 1977-09-26 1979-04-04 Hitachi Ltd Blade lattice structure for axial fluid machine
GB2151310A (en) * 1983-12-12 1985-07-17 Gen Electric Gas turbine engine blade
GB2164098A (en) * 1984-09-07 1986-03-12 Rolls Royce Improvements in or relating to aerofoil section members for turbine engines
WO1993005275A1 (en) * 1991-08-30 1993-03-18 Airflow Research And Manufacturing Corporation Forward skew fan with rake and chordwise camber corrections

Cited By (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0833060A3 (en) * 1996-09-30 1998-12-02 Kabushiki Kaisha Toshiba Blade for axial fluid machine
AU701429B2 (en) * 1996-09-30 1999-01-28 Kabushiki Kaisha Toshiba Blade for axial fluid machine
US6079948A (en) * 1996-09-30 2000-06-27 Kabushiki Kaisha Toshiba Blade for axial fluid machine having projecting portion at the tip and root of the blade
EP0833060A2 (en) * 1996-09-30 1998-04-01 Kabushiki Kaisha Toshiba Blade for axial fluid machine
CN1100194C (en) * 1996-09-30 2003-01-29 株式会社东芝 Blade for axial-flow type fluid machinery
WO1999013199A1 (en) * 1997-09-08 1999-03-18 Siemens Aktiengesellschaft Blade for a turbo-machine and steam turbine
US6354798B1 (en) 1997-09-08 2002-03-12 Siemens Aktiengesellschaft Blade for a fluid-flow machine, and steam turbine
EP0916812A1 (en) * 1997-11-17 1999-05-19 Asea Brown Boveri AG Final stage for an axial turbine
US6099248A (en) * 1997-11-17 2000-08-08 Abb Alstom Power (Switzerland) Ltd Output stage for an axial-flow turbine
EP0957236A1 (en) * 1998-05-15 1999-11-17 Asea Brown Boveri AG Turbine rotor blade
US6491493B1 (en) 1998-06-12 2002-12-10 Ebara Corporation Turbine nozzle vane
WO1999064725A1 (en) * 1998-06-12 1999-12-16 Ebara Corporation Turbine nozzle vane
WO2000061918A3 (en) * 1999-03-22 2001-01-11 Siemens Westinghouse Power Airfoil leading edge vortex elimination device
WO2000061918A2 (en) * 1999-03-22 2000-10-19 Siemens Westinghouse Power Corporation Airfoil leading edge vortex elimination device
EP1111188A3 (en) * 1999-12-21 2003-01-08 General Electric Company Swept airfoil with barrel shaped leading edge
FR2828709A1 (en) * 2001-08-17 2003-02-21 Snecma Moteurs Compressor splitter blade has leading edge comprising root part extending in radial direction and inclined to axial direction
US8382438B2 (en) 2004-11-12 2013-02-26 Rolls-Royce Deutschland Ltd & Co Kg Blade of a turbomachine with enlarged peripheral profile depth
WO2006059996A1 (en) * 2004-12-01 2006-06-08 United Technologies Corporation Balanced turbine rotor fan blade for a tip turbine engine
EP1710397A3 (en) * 2005-03-31 2008-03-12 Kabushiki Kaisha Toshiba Bowed nozzle vane
EP1710397A2 (en) 2005-03-31 2006-10-11 Kabushiki Kaisha Toshiba Bowed nozzle vane
EP1731733A3 (en) * 2005-06-06 2009-10-28 General Electric Company Integrated counterrotating turbofan
EP1731716A3 (en) * 2005-06-06 2009-10-21 General Electric Company Forward tilted turbine nozzle
EP1760321A2 (en) 2005-09-05 2007-03-07 Rolls-Royce Deutschland Ltd & Co KG Blade for turbomachine
EP1798375A2 (en) 2005-12-19 2007-06-20 Rolls-Royce Deutschland Ltd & Co KG Airfoil shape for variable stator vanes
EP1995469A4 (en) * 2006-03-14 2013-08-14 Mitsubishi Heavy Ind Ltd Blade for axial-flow fluid machine
EP1995469A1 (en) * 2006-03-14 2008-11-26 Mitsubishi Heavy Industries, Ltd. Blade for axial-flow fluid machine
EP1905952A3 (en) * 2006-09-12 2011-07-06 United Technologies Corporation Turbine engine compressor vane and spacer
EP1905952A2 (en) 2006-09-12 2008-04-02 United Technologies Corporation Turbine engine compressor vane and spacer
US7726937B2 (en) * 2006-09-12 2010-06-01 United Technologies Corporation Turbine engine compressor vanes
EP1927724A3 (en) * 2006-11-23 2009-05-20 Rolls-Royce Deutschland Ltd & Co KG Turbomachine blade
US8152473B2 (en) 2006-11-23 2012-04-10 Rolls-Royce Deutschland Ltd & Co Kg Airfoil design for rotor and stator blades of a turbomachine
EP1927724A2 (en) * 2006-11-23 2008-06-04 Rolls-Royce Deutschland Ltd & Co KG Turbomachine blade
EP1985802A3 (en) * 2007-04-27 2010-11-17 Rolls-Royce Deutschland Ltd & Co KG Leading edge curve for turbo engine components
US8047802B2 (en) 2007-04-27 2011-11-01 Rolls-Royce Deutschland Ltd & Co Kg Course of leading edges for turbomachine components
EP1985802A2 (en) * 2007-04-27 2008-10-29 Rolls-Royce Deutschland Ltd & Co KG Leading edge curve for turbo engine components
RU2498082C2 (en) * 2007-12-14 2013-11-10 Снекма Single-crystal turbine blade, turbomachine module and turbomachine
EP2218874B1 (en) * 2009-02-13 2018-09-19 United Technologies Corporation Turbine vane airfoil with turning flow and axial/circumferential trailing edge configuration
US9441502B2 (en) 2010-10-18 2016-09-13 Siemens Aktiengesellschaft Gas turbine annular diffusor
RU2558171C2 (en) * 2010-10-18 2015-07-27 Сименс Акциенгезелльшафт Gas turbine annular diffuser
JP2016505754A (en) * 2012-12-13 2016-02-25 ヌオーヴォ ピニォーネ ソチエタ レスポンサビリタ リミタータNuovo Pignone S.R.L. Turbomachine blade, corresponding turbomachine, and method of manufacturing a turbine blade
WO2014090907A1 (en) * 2012-12-13 2014-06-19 Nuovo Pignone Srl Turbomachine blade, corresponding turbomachine and method of manufacturing a turbine blade
CN105121787A (en) * 2012-12-13 2015-12-02 诺沃皮尼奥内股份有限公司 Turbomachine blade, corresponding turbomachine and method of manufacturing a turbine blade
CN105121787B (en) * 2012-12-13 2018-02-09 诺沃皮尼奥内股份有限公司 Turbine blade, corresponding turbine and the method for manufacturing turbo blade
US9617863B2 (en) 2013-07-12 2017-04-11 MTU Aero Engines AG Gas turbine stage
EP2824277A1 (en) * 2013-07-12 2015-01-14 MTU Aero Engines GmbH Gas turbine stage
US10422226B2 (en) 2014-02-19 2019-09-24 United Technologies Corporation Gas turbine engine airfoil
US10890195B2 (en) 2014-02-19 2021-01-12 Raytheon Technologies Corporation Gas turbine engine airfoil
EP3108109A4 (en) * 2014-02-19 2017-03-15 United Technologies Corporation Gas turbine engine airfoil
US10495106B2 (en) 2014-02-19 2019-12-03 United Technologies Corporation Gas turbine engine airfoil
US9752439B2 (en) 2014-02-19 2017-09-05 United Technologies Corporation Gas turbine engine airfoil
US9777580B2 (en) 2014-02-19 2017-10-03 United Technologies Corporation Gas turbine engine airfoil
WO2015126941A1 (en) 2014-02-19 2015-08-27 United Technologies Corporation Gas turbine engine airfoil
US9988908B2 (en) 2014-02-19 2018-06-05 United Technologies Corporation Gas turbine engine airfoil
EP4279747A3 (en) * 2014-02-19 2024-03-13 RTX Corporation Turbofan engine with geared architecture and lpc blades
US10036257B2 (en) 2014-02-19 2018-07-31 United Technologies Corporation Gas turbine engine airfoil
US10465702B2 (en) 2014-02-19 2019-11-05 United Technologies Corporation Gas turbine engine airfoil
US10184483B2 (en) 2014-02-19 2019-01-22 United Technologies Corporation Gas turbine engine airfoil
US10502229B2 (en) 2014-02-19 2019-12-10 United Technologies Corporation Gas turbine engine airfoil
US10309414B2 (en) 2014-02-19 2019-06-04 United Technologies Corporation Gas turbine engine airfoil
US10352331B2 (en) 2014-02-19 2019-07-16 United Technologies Corporation Gas turbine engine airfoil
US10358925B2 (en) 2014-02-19 2019-07-23 United Technologies Corporation Gas turbine engine airfoil
US10370974B2 (en) 2014-02-19 2019-08-06 United Technologies Corporation Gas turbine engine airfoil
US10385866B2 (en) 2014-02-19 2019-08-20 United Technologies Corporation Gas turbine engine airfoil
US10393139B2 (en) 2014-02-19 2019-08-27 United Technologies Corporation Gas turbine engine airfoil
WO2015175051A2 (en) 2014-02-19 2015-11-19 United Technologies Corporation Gas turbine engine airfoil
US11867195B2 (en) 2014-02-19 2024-01-09 Rtx Corporation Gas turbine engine airfoil
US11767856B2 (en) 2014-02-19 2023-09-26 Rtx Corporation Gas turbine engine airfoil
US11408436B2 (en) 2014-02-19 2022-08-09 Raytheon Technologies Corporation Gas turbine engine airfoil
US10519971B2 (en) 2014-02-19 2019-12-31 United Technologies Corporation Gas turbine engine airfoil
US10550852B2 (en) 2014-02-19 2020-02-04 United Technologies Corporation Gas turbine engine airfoil
US10557477B2 (en) 2014-02-19 2020-02-11 United Technologies Corporation Gas turbine engine airfoil
US10570916B2 (en) 2014-02-19 2020-02-25 United Technologies Corporation Gas turbine engine airfoil
US10570915B2 (en) 2014-02-19 2020-02-25 United Technologies Corporation Gas turbine engine airfoil
US10584715B2 (en) 2014-02-19 2020-03-10 United Technologies Corporation Gas turbine engine airfoil
US10590775B2 (en) 2014-02-19 2020-03-17 United Technologies Corporation Gas turbine engine airfoil
US10605259B2 (en) 2014-02-19 2020-03-31 United Technologies Corporation Gas turbine engine airfoil
EP3108115A4 (en) * 2014-02-19 2017-03-15 United Technologies Corporation Gas turbine engine airfoil
US10914315B2 (en) 2014-02-19 2021-02-09 Raytheon Technologies Corporation Gas turbine engine airfoil
US11391294B2 (en) 2014-02-19 2022-07-19 Raytheon Technologies Corporation Gas turbine engine airfoil
US11041507B2 (en) 2014-02-19 2021-06-22 Raytheon Technologies Corporation Gas turbine engine airfoil
US11193496B2 (en) 2014-02-19 2021-12-07 Raytheon Technologies Corporation Gas turbine engine airfoil
US11193497B2 (en) 2014-02-19 2021-12-07 Raytheon Technologies Corporation Gas turbine engine airfoil
US11209013B2 (en) 2014-02-19 2021-12-28 Raytheon Technologies Corporation Gas turbine engine airfoil
CN105089709A (en) * 2014-05-12 2015-11-25 阿尔斯通技术有限公司 Airfoil with improved cooling
CN105089709B (en) * 2014-05-12 2018-06-22 安萨尔多能源瑞士股份公司 Airfoil with improved cooling
US10267157B2 (en) 2015-10-26 2019-04-23 MTU Aero Engines AG Rotating blade
EP3163019A1 (en) * 2015-10-26 2017-05-03 MTU Aero Engines GmbH Rotor blade
US11220910B2 (en) * 2019-07-26 2022-01-11 Pratt & Whitney Canada Corp. Compressor stator
EP3816397A1 (en) * 2019-10-31 2021-05-05 General Electric Company Controlled flow turbine blades

Also Published As

Publication number Publication date
DE4344189C1 (en) 1995-08-03
ES2123700T3 (en) 1999-01-16
EP0661413B1 (en) 1998-08-26

Similar Documents

Publication Publication Date Title
EP0661413B1 (en) Axial blade cascade with blades of arrowed leading edge
DE60031941T2 (en) Inclined airfoil with barrel-shaped leading edge
DE602004006323T2 (en) Method for producing a turbine with turbine blades of different resonance frequencies including such a turbine
EP2473743B1 (en) Compressor blade for an axial compressor
EP0990090B1 (en) Rotor blade of an axial-flow engine
DE60314024T2 (en) Arrangement of guide vanes and rotor blades in the exhaust area of a turbine
EP0972128B1 (en) Surface structure for the wall of a flow channel or a turbine blade
DE112006001614B4 (en) A blade
EP2025945B1 (en) Flow working machine with ring canal wall fitting
EP1875045B1 (en) Turbine wheel
EP0916812B1 (en) Final stage for an axial turbine
EP0799973B1 (en) Wall contour for an axial turbomachine
EP2226509B1 (en) Turbo compressor or pump with fluid injection to influence the boundary layer
DE102008055824A1 (en) steam turbine
WO2005116404A1 (en) Vane comprising a transition zone
EP2096260A2 (en) Turbo machine comprising rotor assemblies with small outlet flow deviation angle
EP0846867A2 (en) Turbomachine with a transsonic compression stage
EP2249044A2 (en) Compressor or pump with fluid extraction
DE3223164C2 (en) Turbo machine rotor assembly and blade
WO2005088135A1 (en) Compressor of a gas turbine and gas turbine
EP0798447B1 (en) Turbomachine blade
DE102016124806A1 (en) A turbine blade assembly for a gas turbine and method of providing sealing air in a turbine blade assembly
DE3835622A1 (en) RADIAL COMPRESSORS
EP2597257B1 (en) Blades
EP1081336B1 (en) Vane ring assembly for gas turbines

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19951118

17Q First examination report despatched

Effective date: 19970304

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH ES FR GB IT LI NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19981127

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2123700

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101221

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20111227

Year of fee payment: 18

Ref country code: SE

Payment date: 20111223

Year of fee payment: 18

Ref country code: ES

Payment date: 20111227

Year of fee payment: 18

Ref country code: NL

Payment date: 20111228

Year of fee payment: 18

Ref country code: FR

Payment date: 20120105

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20111229

Year of fee payment: 18

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20130701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121215

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121214

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130701

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130102

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121214

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121215