EP1927686B1 - Spinning frame with electric drives - Google Patents
Spinning frame with electric drives Download PDFInfo
- Publication number
- EP1927686B1 EP1927686B1 EP07021866.4A EP07021866A EP1927686B1 EP 1927686 B1 EP1927686 B1 EP 1927686B1 EP 07021866 A EP07021866 A EP 07021866A EP 1927686 B1 EP1927686 B1 EP 1927686B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- voltage
- motors
- spinning machine
- machine according
- busbar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 238000009987 spinning Methods 0.000 title claims description 73
- 238000004804 winding Methods 0.000 claims description 37
- 239000000969 carrier Substances 0.000 claims description 3
- 230000001360 synchronised effect Effects 0.000 claims description 3
- 230000001276 controlling effect Effects 0.000 claims 2
- 238000000034 method Methods 0.000 claims 2
- 230000007246 mechanism Effects 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 claims 1
- 238000001514 detection method Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000007378 ring spinning Methods 0.000 description 1
- 230000020347 spindle assembly Effects 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01H—SPINNING OR TWISTING
- D01H1/00—Spinning or twisting machines in which the product is wound-up continuously
- D01H1/14—Details
- D01H1/20—Driving or stopping arrangements
- D01H1/32—Driving or stopping arrangements for complete machines
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01H—SPINNING OR TWISTING
- D01H1/00—Spinning or twisting machines in which the product is wound-up continuously
- D01H1/14—Details
- D01H1/20—Driving or stopping arrangements
- D01H1/24—Driving or stopping arrangements for twisting or spinning arrangements, e.g. spindles
- D01H1/244—Driving or stopping arrangements for twisting or spinning arrangements, e.g. spindles each spindle driven by an electric motor
Definitions
- the invention relates to a spinning machine with electric drives according to the preamble of the independent claim.
- Such a machine is used for example in the DE 39 004 08 A1 described.
- electrical energy is fed from an AC voltage network via a rectifier in a DC link.
- inverters On the input side of inverters, which are connected to the electric motors, electrical energy of constant voltage is provided, from the mentioned DC link.
- the electric drives are used for various functions in the spinning machine, for example for driving spinning spindles, or for operating a ring rail drive, or for driving a drafting system.
- a spindle assembly in which an electronic motor is shown as a DC motor with electrical commutation.
- the motor has means for detecting a load shedding, or too little stress, for example after a yarn breakage, and means for automatic shutdown and for reporting a change in the operating state to a central control.
- the DE-A-101 20 013 describes a spinning machine with drives, which are controlled via a frequency controller.
- the frequency adjuster is controlled via a central machine control unit.
- the EP-A-0 176 823 describes a voltage multiplier circuit for obtaining two by a factor of two different DC voltages by Graetz Eisentechnisch from a secondary winding of a power transformer.
- the present invention is based on the essential finding that a uniform power network within the spinning machine can not meet the different requirements.
- the power supply of a spinning machine with electric drives and a primary AC voltage source wherein at least one transformer (14) to an AC voltage network (10) is connected, and the input side of at least one rectifier (16 a, 16 b) connections to the transformer, and the output side of the rectifier DC networks ( U1, U2), to which drivers or commutation devices (24) for DC motors (26a, 26b) or inverters (28a, 28b) are connected, is designed so that the rectifier, in particular at least 2 rectifier groups (16a, 16b ), at least 2 DC busbars (18, 20, 22) are connected, and that a further DC busbar (22) is common to both DC voltage networks (U1, U2), so that at least 3 DC busbars are present, and wherein between the at least 3 rails DC voltages in particular of 270 V and 540th V present.
- Fig. 3 shows a circuit which is adapted to convert a DC motor to generator operation.
- a primary winding is connected to the power terminals 10 of the AC voltage network, in particular three-phase voltage network, and at least two secondary windings of a secondary AC voltage or three-phase voltage network are connected to each primary winding.
- the secondary windings supply power via rectifier in at least two DC voltage grids, each DC power supply to several or a plurality of motors with electrical energy. For example, spindle motors of a spinning machine are supplied in this way with a direct current of a voltage of 270 volts.
- the DC voltage networks can be closed together, it is also possible to supply direct current to a voltage which corresponds to the sum of the voltages of the individual DC voltage networks.
- the spindle motors are supplied with a DC voltage of 270 volts
- other pantographs can be supplied with direct current of a voltage of 540 volts, if two DC voltage grids of 270 volts are present, and as mentioned DC motors via controllers with DC power can be connected to the power supply of other motors, such as synchronous motors, inverters input side to the DC power grids, preferably an increased DC voltage of 540 volts for the control of drafting motors from the interconnected DC power supply is available.
- fuses 12 are primary windings 14b of a transformer 14 connected.
- terminals 14a may be provided for auxiliary drives, which are operated with alternating voltage of constant amplitude.
- a transformer 14 has three primary windings 14b and six secondary windings 14c and 14d, wherein one of the three primary windings 14b is associated with each of a first and second secondary winding 14c or 14d.
- two parallel transformers could be provided, each with 3 primary and 3 secondary windings. In this case, there are deviating from the drawing 6 primary windings 14b.
- each three windings 14c and 14d, rectifier 16a, b are connected so that emerge from the secondary three-phase networks or from the first and second secondary windings 14c and 14d initially two DC voltage networks.
- the first rectifier group 16a feeds into the first DC voltage network with the rails 18 and 22
- the second rectifier group 16b feeds into the second DC voltage network with the rails 22 and 20.
- the first DC voltage network is defined as the first DC busbar 18 and third DC busbar 22
- the second DC voltage network is formed by the third DC busbar 22 and the second DC busbar 20, each with pantographs between each 2 rails.
- different current collectors primarily DC motors 26a, b, can be connected to the various DC busbars as required.
- a DC voltage network formed from the first DC busbar 18 and the third DC busbar 22
- DC motors 26a are fed via fuses 12
- the second DC network consisting of the third DC busbar 22 and the second DC busbar 20 the DC motors 26b are supplied. These motors are all connected in parallel; but it is only one engine at a time 26a, b shown with Driver 24.
- motors 26a and 26b can be used.
- These motors, which are used for driving the spindles, are preferably brushless DC motors with electronic commutation, as described in one of the introductory patent publications, with sensors, in particular Hall sensors.
- sensors in particular Hall sensors.
- every motor 26a, b of a commutation device or driver 24 is required.
- the third DC voltage network preferably with the DC voltage 540 volts consisting of the first DC busbar 18 and the second DC busbar 20, as can be seen from FIG. 1
- These inverters generate from a current with DC voltage an AC voltage, for example, a maximum voltage and frequency of 400 volts or 200 hertz or more, wherein electric motors 30a, 30b, 30c, 30d are connected to these inverters.
- a higher-level controller 32 To control the various inverters and the commutation devices, a higher-level controller 32 must be provided, in which the spinning program is processed.
- the motors 30a, b, c, d are used to drive various function carriers in the spinning machine, for example, the drafting shafts or a ring frame hubantriebes.
- FIG. 2 shows one opposite the execution in FIG. 1 alternative conception of the internal machine power supply.
- a transformer 14 with center tap which provides a voltage of preferably 400 volts (AC) on the secondary side.
- a rectifier 16a is connected, which allows a DC power supply with a DC voltage of 540 volts. Further voltages of 270 volts can be tapped against the center of the transformer via the DC bus 22 connected thereto.
- the center of the transformer 14 serves only for potential determination; on the busbar 22 only small equalizing currents may flow, which requires that the motors or motor groups 26a and 26b be uniformly loaded.
- the mainly current-carrying conductors are the first DC voltage rail 18 and the second DC voltage rail 20. Also in this variant, terminals 14a for auxiliary drives are provided on the secondary side of the transformer. In FIG. 2 are only as far as reference signs are inserted, as differences to the execution after FIG. 1 result.
- a higher-level controller 32 which is designed such that both for the normal spinning operation, as well as for the power failure or voltage drop, the rotational speeds of the motors 26a, 26b, 30a, 30b can be driven after a predetermined speed-time program.
- the higher-level controller 32 of the DC motors or DC motor groups 26a, b is designed so that they provide power in a DC power failure in the DC power rails 18, 20, 22, and thus an energy exchange to the inverters 28a, 28b, 28c ect. can take place.
- a DC voltage preferably of 24 volts DC must be provided.
- the motors 26a, 26b are connected via a BUS or CanBUS, the is connected to the central controller 32, so guided that at a significant load drop, for example, 20% due to a thread break, or upon detection of other limit violations, an automatic shutdown of a motor 26a takes place.
- a power failure or substantial voltage dips is or are detected by the central controller 32, and a corresponding speed setpoint reduction is communicated to all drivers 24 via a BUS or CanBUS.
- the connected motors 26a, b go into the generator mode, as a result of the speed reduction, the stored energy in the rotating masses is converted into electrical energy, and the other consumers is supplied.
- the speed reduction is carried out so that the operating voltage of 270 volts DC of the motors 26a, b remains constant until reaching standstill. In the event of a shorter power failure and a recurring power supply, it is possible to automatically revert to the normal preset operating speed of the spinning program.
- the higher-level controller with 24 V DC is loud Fig. 1 via a voltage converter 33 to a 540 V DC power supply, or to the rails 18 and 20, connected.
- Parallel to the rectifiers 16a, b are capacitors between the rails 18 and 22 and 20th
- the motors 26a, b can be mounted on spinning spindles and / or spinning funnels. Like other motors 30a, b, c, d, they can be integrated in the respective drives of different function carriers in the spinning machine, in particular the drafting system shafts or a ring frame. In a three-cylinder drafting system of a spinning machine with two delay zones, individual cylinders with electric motors 30a, 30b, 30c can be driven; the latter can be distributed over the machine length distributed with gears in several places the drafting cylinders.
- a plurality of transformers 14 may be connected to power terminals 10, on the secondary side of each transformer 14 is connected a rectifier group 16a having an output voltage applied to two DC bus bars 18, 20 and at the midpoint of each Trans-formators 14 is connected to a further third DC busbar, and wherein between the first DC busbar 18 and the third at the center of the transformer 14 adjacent DC rail 22, a DC motor or a DC motor group 26 a is connected, and between the second DC busbar 20 and the third DC busbar 22nd another DC motor or a further DC motor group 26b of the same kind is connected.
- there are further motor groups in each section there are further motor groups in each section.
- Fig. 3 lies, as well as in the FIGS. 1 and 2 a DC motor 26a between two DC rails 18 and 22. It is assumed that in normal spinning operation (motor operation) is applied to the DC bus 18, a positive voltage, while the DC busbar 22 is the negative pole for the motor 26a. If the motor 26a in the generator mode, that is to say in the case of a recuperation of the kinetic energy in the DC voltage circuit 18, 22, returns energy, a reversal of the potential takes place so that the DC rail 22 represents the positive pole and the DC voltage rail 18 represents the negative pole.
- the actual speed n Ist is registered at the motor 26a by a sensor 26b, preferably as a Hall sensor, and fed back to the input of a speed controller 36.
- a sensor 26b preferably as a Hall sensor
- sensorless sensors With brushless DC motors with electronic commutation, it is also possible to use sensorless sensors with a device for measuring the zero crossing of the free phase.
- the controller 36 receives from a controlled by the central machine control speed controller 34, the target speed n target . From the controller 36, preferably designed as a PI controller, based on the deviation between n actual and n setpoint, a setpoint value for the current intensity I setpoint is output. The actual value of the motor current I ist is between the motor Registered 26a and an actuator 40 and returned to the input of a current regulator 38.
- the current regulator 38 performs on the basis of the deviation between I Ist and I Soll via a current limiter 41 according to Fig. 3 an actuator 40, which is preferably designed as an antiparallel transistor. There are two diodes, which can be switched alternately to current passage in normal spinning operation, or in the generator mode of the engine.
- a diode is connected in series with a switch, wherein in each case one of the switches is closed, so that the adjusting element 40 can be selectively switched to current passage from the DC busbar 18 to the DC busbar 22, or vice versa.
- the higher-level machine controller 32 detects a voltage drop or voltage failure of the general power supply, as described above, this gives a control command for switching from motor to generator operation to the actuator 40. Further, the machine controller 32 in the generator mode via the speed controller 34th , which is designed for example as a potentiometer, sure that the generated voltage 42 remains constant according to a predetermined setpoint. This happens by the machine control lowered via the speed controller 34, the speed of the spindle. If the generated voltage is too small, the speed is reduced faster. If the generated voltage is too high, the speed will be reduced more slowly. This happens after the so-called speed gradient.
- the speed can not be adjusted according to a predetermined speed curve, as z. B. would be the case at a constant rotational mass, but must be lowered as described above via a control loop. In this way, the motor 26a can continuously feed back energy; these for use in other customers 28a, 30a.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Spinning Or Twisting Of Yarns (AREA)
- Control Of Multiple Motors (AREA)
Description
Die Erfindung betrifft eine Spinnmaschine mit elektrischen Antrieben nach dem Oberbegriff des unabhängigen Anspruchs.The invention relates to a spinning machine with electric drives according to the preamble of the independent claim.
Eine derartige Maschine wird beispielsweise in der
In der
In der
Es wird auch die Möglichkeit einer Drehstellungsdetektion des Rotors mit mindestens zwei Hallsensoren erwähnt. Aus diesen Drehstellungssignalen ist auch die Drehzahl der Spindel ableitbar. In der
Die
Die
Da in einer Spinnmaschine zahlreiche sehr unterschiedlich ausgelegte Elektromotoren Verwendung finden, muss bei der Auslegung der Stromversorgung auf die individuellen Anforderungen der einzelnen Motoren besonderer Wert gelegt werden.
Der vorliegenden Erfindung liegt als wesentliche Erkenntnis zugrunde, dass ein uniformes Stromnetz innerhalb der Spinnmaschine nicht den unterschiedlichen Anforderungen gerecht werden kann.Since many very differently designed electric motors are used in a spinning machine, particular importance must be attached to the individual requirements of the individual motors when designing the power supply.
The present invention is based on the essential finding that a uniform power network within the spinning machine can not meet the different requirements.
Demnach besteht die Aufgabe, innerhalb der Spinnmaschine oder auch innerhalb einer Spinnerei die Energieversorgung so zu gestalten, dass je nach Motortyp ideale Spannungsverhältnisse gegeben sind.Accordingly, there is the task within the spinning machine or even within a spinning mill to design the power supply so that, depending on the engine type ideal voltage conditions are given.
Diese Aufgabe wird durch die Merkmale des kennzeichnenden Teils des unabhängigen Anspruchs 1 gelöst.This object is solved by the features of the characterizing part of independent claim 1.
Die Stromversorgung einer Spinnmaschine mit elektrischen Antrieben und einer primären Wechselspannungsquelle, wobei mindestens ein Transformator (14) an ein Wechselspannungsnetz (10) angeschlossen ist, und eingangsseitig mindestens eines Gleichrichters (16a, 16b) Anschlüsse an den Transformator bestehen, und ausgangsseitig des Gleichrichters Gleichspannungsnetze (U1, U2) liegen, an welche Driver oder Kommutierungsgeräte (24) für Gleichstrommotoren(26a, 26b) oder Wechselrichter (28a, 28b) angeschlossen sind, ist so gestaltet, dass an den Gleich-richter, insbesondere mindestens 2 Gleichrichtergruppen (16a, 16b), mindestens 2 Gleichspannungsschienen (18, 20, 22) angeschlossen sind, und dass eine weitere Gleichspannungsschiene (22) beiden Gleichspannungsnetzen (U1, U2) gemeinsam ist, so dass mindestens 3 Gleichspannungsschienen vorhanden sind, und wobei zwischen den mindestens 3 Schienen Gleichspannungen insbesondere von 270 V und 540 V vorliegen.The power supply of a spinning machine with electric drives and a primary AC voltage source, wherein at least one transformer (14) to an AC voltage network (10) is connected, and the input side of at least one rectifier (16 a, 16 b) connections to the transformer, and the output side of the rectifier DC networks ( U1, U2), to which drivers or commutation devices (24) for DC motors (26a, 26b) or inverters (28a, 28b) are connected, is designed so that the rectifier, in particular at least 2 rectifier groups (16a, 16b ), at least 2 DC busbars (18, 20, 22) are connected, and that a further DC busbar (22) is common to both DC voltage networks (U1, U2), so that at least 3 DC busbars are present, and wherein between the at least 3 rails DC voltages in particular of 270 V and 540th V present.
In einem Ausführungsbeispiel einer Stromversorgung einer Spinnmaschine mit elektrischen Antrieben, gespeist von Gleichspannungs- und insbesondere Wechselspannungsquellen, ist mindestens ein Transformator (14) an ein Wechselspannungsnetz (10) angeschlossen, und eingangsseitig von Gleichrichtern (16a, 16b) bestehen Anschlüsse an den Transformator, und ausgangsseitig der Gleichrichter liegen Gleichspannungsnetze, an welche Driver oder Kommutierungs-geräte (24) für Gleichstrommotoren(26a, 26b) oder Wechselrichter (28a, 28b) angeschlossen sind, wobei an das Wechselspannungsnetz, insbesondere 400 Volt Drehspannung, mittelbar oder unmittelbar Transformatorenwicklungen (14b, 14c, 14d) und an diese Gleichrichter, insbesondere mindestens 2 Gleichrichtergruppen (16a, 16b), angeschlossen sind, die an je 2 Gleichspannungsschienen (18, 20, 22) gebunden sind, wobei eine Gleichspannungsschiene (22) beiden Gleichrichtern oder Gleichrichtergruppen gemeinsam ist, so dass mindestens 3 Gleichspannungsschienen vorhanden sind, und wobei zwischen den Schienen Gleichspannungen insbesondere von 270 V und 540 V vorliegen.In one embodiment, a power supply of a spinning machine with electric drives, powered by DC and in particular AC sources, at least one transformer (14) to an AC voltage network (10) is connected, and the input side of rectifiers (16a, 16b) are made connections to the transformer, and On the output side of the rectifier lie DC voltage networks to which drivers or commutation devices (24) for DC motors (26a, 26b) or inverters (28a, 28b) are connected, to the AC voltage network, in particular 400 V three-phase voltage, directly or indirectly transformer windings (14b, 14c, 14d) and to these rectifiers, in particular at least 2 rectifier groups (16a, 16b), which are connected to two DC busbars (18, 20, 22), wherein a DC busbar (22) is common to both rectifiers or rectifier groups, so that at least 3 dc be present, and wherein between the rails DC voltages in particular of 270 V and 540 V are present.
Insbesondere ist an der Spinnmaschine an die Netzklemmen (10) des Wechselspannungsnetzes, insbesondere Drehspannungsnetzes, je eine Primärwicklung angeschlossen, und an jede Primärwicklung sind mindestens zwei Sekundärwicklungen von sekundären Wechselspannungs- bzw. Drehspannungsnetzen angeschlossen sind, an welchen mindestens 2 Gleichrichtergruppen hängen.In particular, at the spinning machine to the power terminals (10) of the alternating voltage network, in particular three-voltage network, each connected a primary winding, and at least two secondary windings of secondary AC voltage or three-phase networks are connected to each primary winding, to which hang at least 2 rectifier groups.
Die Erfindung wird anhand der
In der Spinnmaschine oder in einer Spinnmaschinenanlage wird bzw. werden gemäss
Bei Stromausfall des Netzes an den Netzklemmen 10 kann im Generatorbetrieb der Gleichstrommotoren 26a, 26b ein Energieaustausch über die Gleichspannungsschienen 18, 20, 22 erfolgen, womit Energie an die Wechselrichter und die daran angeschlossenen Elektromotoren 30a, b zu Verfügung gestellt wird; dies ist für ein geordnetes Herunterfahren der Spinnmaschine bei Netzausfall erforderlich.In case of power failure of the network to the
An Netzklemmen 10, welche beispielsweise mit einem 400 Volt - Drehspannungsnetz verbunden sind, sind über Sicherungen 12 Primärwicklungen 14b eines Transformators 14 angeschlossen. Wie in
An den Sekundärwicklungen, jeweils drei Wicklungen 14c bzw. 14d, sind Gleichrichter 16a, b angeschlossen, so dass aus den sekundären Drehspannungsnetzen bzw. aus den ersten bzw. zweiten Sekundärwicklungen 14c bzw. 14d zunächst zwei Gleichspannungsnetze hervorgehen. Die erste Gleichrichtergruppe 16a speist in das erste Gleichspannungsnetz mit den Schienen 18 und 22, die zweite Gleichrichtergruppe 16b speist in das zweite Gleichspannungsnetz mit den Schienen 22 und 20 ein. Das erste Gleichspannungsnetz wird definiert als erste Gleichspannungsschiene 18 und dritte Gleichspannungsschiene 22, während das zweite Gleichspannungsnetz durch die dritte Gleichspannungsschiene 22 und die zweite Gleichspannungsschiene 20 gebildet wird, jeweils mit Stromabnehmern zwischen je 2 Schienen. Somit können an die verschiedenen Gleichspannungsschienen je nach Erfordernis verschiedene Stromabnehmer, in erster Linie Gleichstrommotoren 26a,b, angeschlossen werden. Während zwischen der ersten Gleichspannungsschiene 18 und der dritten Gleich-spannungsschiene 22 und der dritten Gleichspannungsschiene 22 und der zweiten Gleichspannungsschiene 20 jeweils ein Gleichstrom der Spannung 270 Volt zur Verfügung steht, kann aus einem dritten Gleichspannungsnetz bestehend aus der ersten Gleichspannungsschiene 18 und der zweiten Gleichspannungsschiene 20 eine Gleichspannung von 540 Volt an Stromabnehmer gelegt werden. Durch das erste Gleichspannungsnetz, gebildet aus der ersten Gleichspannungsschiene 18 und der dritten Gleichspannungsschiene 22, werden über Sicherungen 12 Gleichstrommotoren 26a gespeist, während aus dem zweiten Gleichspannungsnetz bestehend aus der dritten Gleichspannungsschiene 22 und der zweiten Gleichspannungsschiene 20 die Gleichstrommotoren 26b versorgt werden. Diese Motoren werden alle parallel geschaltet; es ist aber jeweils nur ein einziger Motor 26a,b mit Driver 24 dargestellt. In einer Spinnmaschine, insbesondere eine Ringspinnmaschine können mehrere hundert gleichartige Motoren 26a bzw. 26b Verwendung finden. Bei diesen Motoren, die für den Antrieb der Spindeln eingesetzt werden, handelt es sich vorzugsweise um bürstenlose Gleichstrommotoren mit elektronischer Kommutierung, wie in einer der einleitend erwähnten Patentpublikationen ausgeführt, mit Sensoren, insbesondere Hall-Sensoren.
Zur Ansteuerung der Motoren bedarf es für insbesondere jeden Motor 26a, b eines Kommutierungsgeräts bzw. Drivers 24.At the secondary windings, each three
For controlling the motors, in particular every
An das dritte Gleichspannungsnetz vorzugsweise mit der Gleichspannung 540 Volt bestehend aus der ersten Gleichspannungsschiene 18 und der zweiten Gleichspannungsschiene 20, können, wie aus
Mit dem beschriebenen Energieversorgungskonzept ist es möglich, in Spinnmaschinen mit einer sehr grossen Anzahl von Spinnstellen die Spindelmotoren bei einem günstigen Wirkungsgrad zu betreiben.With the energy supply concept described, it is possible to operate the spindle motors at low efficiency in spinning machines with a very large number of spinning stations.
Zu einem geordneten Betrieb der Spinnmaschine ist es - wie auch bei der Ausführung nach
Für die Steuerung der Kommutierungsgeräte bzw. Driver und anderer Elemente muss eine Gleichspannung vorzugsweise von 24 Volt DC bereitgestellt werden. An den einzelnen Motorgehäusen der Gleichstrommotoren 26a, 26b sind Ein/Ausschalter anzubringen. Insbesondere die Motoren 26a, b werden über einen BUS oder CanBUS, der an die zentrale Steuerung 32 angeschlossen ist, so geführt, dass bei einem wesentlichen Lastabfall, beispielsweise 20% infolge eines Fadenbruchs, oder bei Feststellung anderer Grenzwertüberschreitungen eine automatische Abschaltung eines Motors 26a erfolgt. Ein Netzausfall oder wesentliche Spannungseinbrüche wird oder werden von der zentralen Steuerung 32 detektiert, und es wird eine entsprechende Drehzahl- Sollwertabsenkung über einen BUS oder CanBUS an alle Driver 24 übermittelt. Dabei gehen die daran angeschlossenen Motoren 26a, b in den Generator-betrieb, wobei infolge der Drehzahlabsenkung die in den rotierenden Massen gespeicherte Energie in elektrische Energie umgewandelt wird, und den anderen Verbrauchern zugeführt wird. Die Drehzahlreduktion erfolgt dabei so, dass die Betriebsspannung von 270 Volt DC der Motoren 26a,b bis zum Erreichen des Stillstandes konstant bleibt. Bei einem kürzeren Netzausfall und wiederkehrendem Netz kann automatisch wieder auf die normale vorgegebene Betriebsdrehzahl des Spinn-programmes hochgefahren werden. Bei längerem Netzausfall werden alle Motoren 26a, 26b, 30a sowie die anderen Antriebe synchron auf Stillstand herabgefahren, wobei die Drehzahlen der Motoren 26a, 30a so geregelt werden, dass eine konstante Spannung an den Gleichspannungsschienen 18, 20, 22, mit anderen Worten am Greichstrom-zwischenkreis 18, 20 bzw. den Gleichspannungszwischenkreisen 18, 22 und 22, 20 anliegt.To control the commutation devices or drivers and other elements, a DC voltage preferably of 24 volts DC must be provided. At the individual motor housings of the
Die übergeordnete Steuerung mit 24 V DC ist laut
Die Motoren 26a,b können an Spinnspindeln und / oder Spinntrichtern montiert sein. Sie können ebenso wie andere Motoren 30a, b, c, d in die betreffenden Antriebe verschiedener Funktionsträger in der Spinnmaschine, insbesondere der Streckwerks-wellen oder eines Ringsrahmens, integriert sein. Bei einem Dreizylinderstreckwerk einer Spinnmaschine mit zwei Verzugszonen können einzelne Zylinder mit Elektromotoren 30a, 30b, 30c antreibbar sein; letztere können über die Maschinenlänge verteilt mit Getrieben an mehreren Stellen den Streckwerkszylindern zugeordnet sein.The
Bezüglich der Ausführung nach
Gemäss
Die Ist-Drehzahl nIst wird am Motor 26a durch einen Sensor 26b, bevorzugt als Hall-Sensor ausgeführt, registriert und an den Eingang eines Drehzahlreglers 36 zurückgeführt. Es kann bei bürstenlosen Gleichstrommotoren mit elektronischer Kommutierung auch sensorlos mit einer Einrichtung zur Messung des Nulldurchgangs der freien Phase gefahren werden.The actual speed n Ist is registered at the
Der Regler 36 erhält von einem von der zentralen Maschinensteuerung angesteuerten Drehzahlsteller 34 die Soll-Drehzahl nSoll. Vom Regler 36, bevorzugt als PI-Regler ausgeführt, wird auf Basis der Abweichung zwischen nIst und nSoll ein Sollwert für die Stromstärke ISoll ausgegeben. Der Ist-Wert des Motorstroms IIst wird zwischen dem Motor 26a und einem Stellelement 40 registriert und an den Eingang eines Stromreglers 38 zurückgeführt. Der Stromregler 38 führt auf Basis der Abweichung zwischen IIst und ISoll über einen Strombegrenzer 41 gemäss
Wenn die übergeordnete Maschinensteuerung 32 einen Spannungsabfall oder Spannungsausfall der allgemeinen Stromversorgung, wie im Vorstehenden be-schrieben, feststellt, so gibt diese einen Steuerbefehl zur Umschaltung vom Motor- auf Generatorbetrieb an das Stellelement 40. Ferner stellt die Maschinensteuerung 32 im Generatorbetrieb über den Drehzahlsteller 34, welcher beispielsweise als Potentiometer ausgeführt ist, sicher, dass die generierte Spannung 42 gemäss einem vorgegebenen Sollwert konstant bleibt. Dies geschieht indem die Maschinensteuerung über den Drehzahlsteller 34 die Drehzahl der Spindel geführt absenkt. Ist die generierte Spannung zu klein, so wird die Drehzahl schneller abgeregelt. Ist die generierte Spannung zu gross, so wird die Drehzahl langsamer reduziert. Dies geschieht nach der sogenannten Drehzahlsteilheit. Da die Kopsmasse in Abhängigkeit seiner Garn-bewicklung bei einem Stromausfall nicht zum Voraus bekannt ist, kann die Drehzahl nicht gemäss einer vorgegebenen Drehzahlkurve abgeregelt werden, wie dies z. B. bei einer konstanten Drehmasse der Fall wäre, sondern muss wie oben beschrieben über einen Regelkreis abgesenkt werden. Auf diese Weise kann der Motor 26a laufend Energie zurückspeisen; diese zur Verwendung in anderen Abnehmern 28a, 30a.If the higher-
Claims (34)
- Spinning machine with electric drives and a primary AC voltage source, at least one transformer (14) being connected to an AC voltage network (10), and connections to the transformer being provided on the input side of at least one rectifier (16a, 16b), and DC voltage networks being present on the output side of the rectifier with at least 2 DC voltage sources of the voltages U1 and U2 to which drivers or commutation devices (24) for DC motors (26a, 26b) or inverters (28a, 28b) are connected, characterized in that at least 2 DC voltage busbars (18, 20, 22) are connected to the at least one rectifier, and in that a further DC voltage busbar (22) is common to the two DC voltage networks (U1, U2), so that at least 3 DC voltage busbars are provided, and in that current consumers are optionally connected to in each case 2 of the at least 3 busbars so that at least optionally the following DC voltages are availablea. U1 + U2 between a first and second busbarb. U1 between the first and a third busbarc. U2 between the second and third busbars.wherein between the at least 3 busbars DC voltages in particular of 270 V (U1, U2) and 540 V (U1+U2) being present.
- Spinning machine according to claim 1, characterized in that at least 2 DC voltage busbars (18, 20, 22) are connected to at least 2 rectifier groups (16a, 16b), and in that a further DC voltage busbar (22) is common to the two DC voltage networks (U1, U2).
- Spinning machine according to claim 1 or 2 with electric drives and a power supply device for electric motors, with DC voltage and in particular AC voltage sources, at least one transformer (14) being connected to an AC voltage network (10), and connections to the transformer being provided on the input side of rectifiers (16a, 16b), and DC voltage networks being present on the output side of the rectifiers, to which DC voltage networks drivers or commutation devices (24) for DC motors (26a, 26b) or inverters (28a, 28b) are connected, characterized in that transformer windings (14b, 14c, 14d) are connected to the AC voltage network, in particular 400 volt three-phase voltage, indirectly or directly, and rectifiers, in particular at least 2 rectifier groups (16a, 16b), are connected to said transformer windings and are linked to in each case 2 DC voltage busbars (18, 20, 22), one DC voltage busbar (22) being common to the two rectifiers or rectifier groups, so that at least 3 DC voltage busbars are provided, and DC voltages of 270 V and 540 V being present between the busbars.
- Spinning machine according to claim 1, 2 or 3, characterized in that in each case one primary winding (14b) is connected to the network terminals (10) of the AC voltage network, in particular the three-phase voltage network, and at least two secondary windings (14c, d) of secondary AC voltage or three-phase voltage networks, to which at least 2 rectifier groups (16a, b) are connected, are connected to each primary winding.
- Spinning machine according to claim 4, characterized in that energy can be supplied into at least two DC voltage networks (U1, U2) by the secondary windings (14c, d) via rectifiers (16a, b), each DC voltage network being connected to a plurality or a multiplicity of motors (26a, b).
- Spinning machine according to one of the preceding claims, characterized in that the motors (26a, b) are mounted on spinning spindles and/or spinning funnels.
- Spinning machine according to one of the preceding claims, characterized in that a plurality of DC voltage networks (U1, U2) are interconnected in such a way that direct current of a voltage which corresponds to the sum of the voltages (U1+U2) of the individual DC voltage networks is available.
- Spinning machine according to one of the preceding claims, characterized in that 2 groups of spindle motors (26a, b) are connected to in each case one DC voltage network with a DC voltage of 270 volts, and other current consumers (28a, b, c) are connected to a further DC voltage network (U1+U2) of a voltage of 540 volts, two DC voltage networks of in particular in each case 270 volts being provided, and the DC motors being connected to the first DC voltage networks directly via commutation devices (24), and, in order to supply current to other AC motors (30a, b), inverters (28a, b) being connected on the input side to the further DC voltage network, an increased DC voltage of 540 volts for controlling drawing equipment motors (30a, b) from the interconnected DC voltage networks (U1, U2) being available.
- Spinning machine according to one of the preceding claims, characterized in that network terminals (10), which are connected to a 400 volt three-phase voltage network, are connected via fuses (12) to primary windings (14b) of a transformer (14).
- Spinning machine according to one of the preceding claims, characterized in that terminals (14a) for auxiliary drives are provided on transformer windings, which auxiliary drives can be operated with an AC voltage of constant amplitude.
- Spinning machine according to one of the preceding claims, characterized in that a transformer (14) has three first primary windings (14c) and at least six secondary windings (14c and 14d), in each case one of the three primary windings (14b) being associated with at least two secondary windings.
- Spinning machine according to one of Claims 1 to 9, characterized in that two parallel transformers are provided with in each case 3 primary and three secondary windings.
- Spinning machine according to one of the preceding claims, characterized in that rectifiers (16a, b) are connected to the secondary windings, in each case three windings (14c and 14d), in such a way that two DC voltage networks are assigned to the secondary three-phase voltage networks of the first or second secondary windings (14c and 14d).
- Spinning machine according to one of the preceding claims, characterized in that a first rectifier group (16a) is connected to a first DC voltage network with two DC voltage busbars (18 and 22), and a second rectifier group (16b) is connected to a second DC voltage network with DC voltage busbars (18 and 20).
- Spinning machine according to one of the preceding claims, characterized in that a first DC voltage network is defined as the first DC voltage busbar (18) and third DC voltage busbar (22), while a second DC voltage network is formed by the third DC voltage busbar (22) and the second DC voltage busbar (20), in each case with current consumers (24, 26a, b) between in each case 2 busbars.
- Spinning machine according to one of the preceding claims, characterized in that, depending on requirements, various current consumers (24, 30) are connected to the various DC voltage busbars (18, 20, 22).
- Spinning machine according to one of the preceding claims, characterized in that in each case a direct current of the voltage 270 volts is available between the first DC voltage busbar (18) and the third DC voltage busbar (22) and the third DC voltage busbar (22) and the second DC voltage busbar (20), and in a third DC voltage network, which comprises the first DC voltage busbar (18) and the second DC voltage busbar (20), a DC voltage of 540 volts for current consumers (28a, 30a) is available.
- Spinning machine according to one of the preceding claims, characterized in that DC motors (26a) are connected to the first DC voltage network, formed from the first DC voltage busbar (18) and the third DC voltage busbar (22), via fuses (12) and via drivers, while drivers for other DC motors (26b), in particular identical motors (26a or 26b), are connected to the second DC voltage network comprising the third DC voltage busbar (22) and the second DC voltage busbar (20).
- Spinning machine according to one of the preceding claims, characterized in that the motors (26a, b), which can be used for driving spindles or funnels, are preferably in the form of brushless DC motors with electronic commutation, with sensors, in particular Hall sensors, or without any sensors, with a device for measuring the zero crossing of the free phase.
- Spinning machine according to one of the preceding claims, characterized in that one commutation device (24) is provided per motor (26a, b) for driving purposes.
- Spinning machine according to one of the preceding claims, characterized in that an AC voltage of a maximum voltage and frequency of 400 volts and 200 hertz or more can be produced using inverters (28a, b) from a current with a DC voltage of 540 volts, electric motors (30a, 30b, 30c, 30d) being connected to said inverters.
- Spinning machine according to one of the preceding claims, characterized in that, for controlling various inverters (28a, b) and the commutation devices (24), a superordinate controller is provided in which a spinning program is stored.
- Spinning machine according to one of the preceding claims, characterized in that motors (30a, b, c, d) are integrated in drives of various functional carriers in the spinning machine, in particular the drawing equipment shafts or a ring frame.
- Spinning machine according to one of the preceding claims, characterized in that, in three-cylinder drawing equipment with two drawing zones, individual cylinders can be driven by electric motors (30a, 30b, 30c).
- Spinning machine according to one of the preceding claims, characterized in that, distributed over the machine length, a plurality of electric motors (30a, 30b, 30c) with gear mechanisms are assigned to the drawing equipment cylinders.
- Spinning machine according to one of the preceding claims, characterized in that, in addition to DC motors (26a, b), asynchronous motors, synchronous motors, reluctance motors or servomotors are used as further drives.
- Spinning machine according to one of the preceding claims, characterized in that the commutation devices or drivers (24) and the inverters (28a, 28b) and other collectors, in particular electric motors (30a, b), are connected to a superordinate controller (32), which is designed such that the rotation speeds of the motors (26a, 26b, 30a, 30b) can be set on the basis of a predetermined rotation speed/time program both for normal spinning operation and for power failure or voltage drop, the rotation speeds of the motors (26a, 30a) being controlled in such a way that a constant voltage is present at the DC voltage busbars (18, 20, 22).
- Spinning machine according to claim 1, characterized in that a transformer (14) is connected to network terminals (10), and in that, on the secondary side of the transformer (14), a rectifier group (16a) is connected with an output voltage which is present at two DC voltage busbars (18, 20), and in that, at the centre point of the transformer (14), a further third DC voltage busbar is connected, a DC motor or a DC motor group (26a) being connected between the first DC voltage busbar (18) and the third DC voltage busbar (22), which is present at the centre point of the transformer (14), and a further DC motor or a further DC motor group (26b) of the same type being connected between the second DC voltage busbar (20) and the third DC voltage busbar (22).
- Spinning machine according to claim 28, characterized in that a plurality of transformers (14) are connected to network terminals (10), and in that, on the secondary side of each transformer (14), a rectifier group (16a) is connected with an output voltage which is present at two DC voltage busbars (18, 20), and in that, at the centre point of each transformer (14), a further third DC voltage busbar is connected, a DC motor or a DC motor group (26a) being connected between the first DC voltage busbar (18) and the third DC voltage busbar (22), which is present at the centre point of the transformer (14), and a further DC motor or a further DC motor group (26b) of the same type being connected between the second DC voltage busbar (20) and the third DC voltage busbar (22).
- Spinning machine according to one of the preceding claims, characterized in that a superordinate controller with 24 V DC is connected to a 540 V DC voltage network via a voltage converter.
- Spinning machine according to one of the preceding claims, characterized in that, during normal operation of the spinning machine, commutation devices or drivers (24) for DC motors (26a, b) and inverters (28a, 28b) for AC motors (30a, b) are connected to a superordinate controller (32), which is designed in such a way that the rotation speeds of the motors (26a, 26b, 30a, 30b) can be run on the basis of a predetermined rotation speed/time program both for normal spinning operation and for power failure or voltage drop, the superordinate controller (32) of the DC motors or DC motor groups (26a, b) also being designed in such a way that said DC motors or said DC motor groups provide current into the DC voltage busbars (18, 20, 22) in the event of a network failure in the generator operating mode, and therefore an energy exchange to the inverters (28a, 28b, 28c) takes place.
- Spinning machine according to one of the preceding claims, characterized in that a DC motor (26a), which has been provided with a sensor (26b) for detecting the rotation speed and is positioned between two DC voltage busbars (18, 22), is connected to an actuating element (40), which is connected back-to-back in parallel and is in the form of a transistor, which is positioned between the motor (26a) and a DC voltage busbar (18), which is designed in such a way that, depending on the switching of the transistor, current can be connected in a first direction for motor operation or in a second, opposite direction for generator operation, and in that the motor (26a), the sensor (26c), a rotation speed controller (36) and a current controller (38) are connected together with the actuating element (40) and the motor (26a) to form a control loop.
- Method for operating a spinning machine according to one of the preceding claims, characterized in that drivers or commutation devices (24) for DC motors (26a, 26b) or DC motors (26a, 26b) or further current consumers are controlled in such a way that, in the event of a network failure or a voltage drop, energy is produced at the network terminals (10) in the generator operating mode of the DC motors (26a, 26b), is output to the DC voltage busbars (18, 20, 22) and is made available to other consumers, in particular inverters (28a, 28b).
- Method for operating a spinning machine according to claim 33, characterized in that, during normal operation of the spinning machine, commutation devices or drivers (24) for DC motors (26a, b) and inverters (28a, 28b) for AC motors (30a, b) are guided by a superordinate controller (32) in such a way that the rotation speeds of the motors (26a, 26b, 30a, 30b) are run on the basis of a predetermined rotation speed/time program both for normal spinning operation and for power failure or voltage drop, the DC motors or DC motor groups (26a, b) providing current into the DC voltage busbars (18, 20, 22) in the event of a networks failure in the generator operating mode whilst being regulated by the superordinate controller (32) of said DC motors or DC motor groups, and therefore an energy exchange to the inverters (28a, 28b, 28c) taking place.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07021866.4A EP1927686B1 (en) | 2006-12-01 | 2007-11-10 | Spinning frame with electric drives |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06024925A EP1927685A1 (en) | 2006-12-01 | 2006-12-01 | Spinning machine with electric drive |
EP07021866.4A EP1927686B1 (en) | 2006-12-01 | 2007-11-10 | Spinning frame with electric drives |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1927686A2 EP1927686A2 (en) | 2008-06-04 |
EP1927686A3 EP1927686A3 (en) | 2008-07-16 |
EP1927686B1 true EP1927686B1 (en) | 2018-07-25 |
Family
ID=39333374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07021866.4A Ceased EP1927686B1 (en) | 2006-12-01 | 2007-11-10 | Spinning frame with electric drives |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP1927686B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2110470B1 (en) | 2008-04-15 | 2013-03-13 | Maschinenfabrik Rieter Ag | Spinning machine with individual spindle drive |
EP3961898B1 (en) | 2020-08-31 | 2023-01-25 | Maschinenfabrik Rieter AG | Spinning frame |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3434272A1 (en) | 1984-09-19 | 1986-03-20 | Deutsche Thomson-Brandt Gmbh, 7730 Villingen-Schwenningen | VOLTAGE MULTIPLIER |
DE3900408A1 (en) * | 1989-01-09 | 1990-07-12 | Rieter Ag Maschf | TEXTILE MACHINE, IN PARTICULAR RING SPINNING MACHINE |
DE19522933C1 (en) * | 1995-06-23 | 1996-12-12 | Zinser Textilmaschinen Gmbh | Monitoring system for ring spinning machine with individual spindle drives |
DE19821251A1 (en) * | 1998-05-12 | 1999-11-18 | Csm Gmbh | Drive system for a spinning machine with a number of spindle drive motors |
EP0999298B1 (en) * | 1998-11-05 | 2004-01-21 | Kabushiki Kaisha Toyota Jidoshokki | Ring spinning machine with individual spindle drives |
DE10120013A1 (en) | 2000-08-11 | 2002-02-21 | Rieter Ag Maschf | Drive control at a ring spinner has a central control unit linked to frequency setters, at each drive, to give the required direction of rotation and an intermediate stop phase between direction changes |
-
2007
- 2007-11-10 EP EP07021866.4A patent/EP1927686B1/en not_active Ceased
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP1927686A3 (en) | 2008-07-16 |
EP1927686A2 (en) | 2008-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3961898B1 (en) | Spinning frame | |
DE69521978T2 (en) | Control system for an electric vehicle | |
DE2521940C2 (en) | Circuit arrangement for controlling electric motors in a spinning machine | |
EP3383692B1 (en) | Power converter | |
DE102005026779A1 (en) | Electric drive device | |
EP2681841A2 (en) | Control unit | |
DE102005043576A1 (en) | Method for operating an electrical machine | |
DE102007052232A1 (en) | Power control system for reducing power requirement of e.g. injection molding machine, has common power controller assigned to controllable drives, where drives are serially supplied with power via programmable power distribution modules | |
EP1927686B1 (en) | Spinning frame with electric drives | |
DE102018201340B3 (en) | Method for operating a rotating field machine of a motor vehicle, transmission device, drive unit and motor vehicle | |
DE102017105237B4 (en) | Control device and control method of an AC lathe | |
WO2013041202A2 (en) | Electric motor, in particular pole-changing motor, method for operating an electric motor, and electric motor | |
DE4128803A1 (en) | Static frequency changer with rectifier connected to AC mains - has DC voltage intermediate circuit connected to rectifier and inverters mounted on cooler | |
EP1927685A1 (en) | Spinning machine with electric drive | |
DE102013218679A1 (en) | drive control | |
DE2425362A1 (en) | SPEED-CHANGEABLE ELECTRIC DRIVE DEVICE WITH USED BRAKING POSSIBILITY | |
DE112019001048T5 (en) | ENGINE DRIVE CONTROL DEVICE AND ENGINE DRIVE CONTROL METHOD | |
WO1997048177A1 (en) | Arrangement with an electronically commutated motor | |
DE4017442A1 (en) | Separate spindle drive - has a two=phase synchronous motor with two coil groups for synchronised running through switches and frequency converter | |
DE102013218197A1 (en) | hybrid engine | |
DE102015210001A1 (en) | Braking circuit in the AC motor circuit | |
DE69610264T2 (en) | Power circuit for reluctance machine | |
DE102017130869A1 (en) | Electric transmission and method for operating an electric motor | |
EP3672058A1 (en) | Operation of switching elements of an inverter of a vehicle driven by at least one synchronous engine which is at least a three-phase synchronous engine, in particular a rail-bound vehicle | |
DE102012223895A1 (en) | Method for electrically connecting an inverter to an electrical machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
17P | Request for examination filed |
Effective date: 20081027 |
|
17Q | First examination report despatched |
Effective date: 20081229 |
|
AKX | Designation fees paid |
Designated state(s): CH DE LI |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20180413 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE LI |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502007016295 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502007016295 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20190426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181130 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20201119 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502007016295 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220601 |