EP1917701B1 - Prise electrique universelle - Google Patents

Prise electrique universelle Download PDF

Info

Publication number
EP1917701B1
EP1917701B1 EP06795200A EP06795200A EP1917701B1 EP 1917701 B1 EP1917701 B1 EP 1917701B1 EP 06795200 A EP06795200 A EP 06795200A EP 06795200 A EP06795200 A EP 06795200A EP 1917701 B1 EP1917701 B1 EP 1917701B1
Authority
EP
European Patent Office
Prior art keywords
socket
pair
contact
electrical
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06795200A
Other languages
German (de)
English (en)
Other versions
EP1917701A2 (fr
Inventor
Kwok Kit Patrick 13/F West Wing Warwick House LEE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clipsal Asia Holdings Ltd
Original Assignee
Clipsal Asia Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clipsal Asia Holdings Ltd filed Critical Clipsal Asia Holdings Ltd
Priority to EP09171402A priority Critical patent/EP2133961B1/fr
Publication of EP1917701A2 publication Critical patent/EP1917701A2/fr
Application granted granted Critical
Publication of EP1917701B1 publication Critical patent/EP1917701B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/10Sockets for co-operation with pins or blades
    • H01R13/11Resilient sockets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/44Means for preventing access to live contacts
    • H01R13/447Shutter or cover plate
    • H01R13/453Shutter or cover plate opened by engagement of counterpart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/44Means for preventing access to live contacts
    • H01R13/447Shutter or cover plate
    • H01R13/453Shutter or cover plate opened by engagement of counterpart
    • H01R13/4534Laterally sliding shutter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/648Protective earth or shield arrangements on coupling devices, e.g. anti-static shielding  
    • H01R13/652Protective earth or shield arrangements on coupling devices, e.g. anti-static shielding   with earth pin, blade or socket
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R24/00Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure
    • H01R24/76Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure with sockets, clips or analogous contacts and secured to apparatus or structure, e.g. to a wall
    • H01R24/78Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure with sockets, clips or analogous contacts and secured to apparatus or structure, e.g. to a wall with additional earth or shield contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R27/00Coupling parts adapted for co-operation with two or more dissimilar counterparts
    • H01R27/02Coupling parts adapted for co-operation with two or more dissimilar counterparts for simultaneous co-operation with two or more dissimilar counterparts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2103/00Two poles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R25/00Coupling parts adapted for simultaneous co-operation with two or more identical counterparts, e.g. for distributing energy to two or more circuits

Definitions

  • the present invention relates to power connection means and, more particularly, to electrical power sockets and outlets. More specifically, the present invention relates to power sockets more commonly known as universal power sockets.
  • Electrical power connection means is essential for power delivery between a power source and a load.
  • power coupling means such as plugs and socket pairs
  • plugs and socket pairs are widely used.
  • power outlets more commonly known as wall sockets are available in many buildings or structures at distributed locations so that power can be more convenient coupled to electrical appliances using compatible plugs.
  • connection means more commonly known as universal sockets or adaptors are known.
  • Such universal sockets and adaptors are, for example, described in US Patent Nos. 5,007,848 , 5,836,777 and 6,010,347 .
  • Conventional universal-type sockets typically comprise a pair of base contact receptacles and a third contact receptacle which are disposed at the vertices of an isosceles triangle.
  • the pair of base contact receptacles is disposed at the base vertices of the isosceles triangle and the third contact receptacle is disposed at the top vertices of the isosceles triangle.
  • Each of the contact receptacles and the associated metallic contacts are configured so that various types of electric plugs of different prong sizes can be inserted into the corresponding contact receptacles for making electrical, connections.
  • conventional universal-type sockets are designed to fit as many varieties of plugs as possible which means some plugs may be very loosely received within the contact receptacles while other plugs may be too-tightly received.
  • the circular prongs of the more commonly available standard plugs have a diameter between 3.7 - 5.1mm.
  • Such a range when translated into the design of a universal socket or adaptor, means that if a contact mechanism can tightly receive a 5mm circular prong and a prong with non-circular cross-section, such as a base prong of a British BS1363 13A plug, is tightly received, an electrical plug with a 3.7mm circular prong will be in loose contact and this may lead to overheating, fire or other hazards.
  • US 6,010,347 discloses a universal socket which can be used with a variety of electrical plugs.
  • This socket includes an insulative bottom having a pair of spaced ribs defining three separated chambers and three downwardly extending protruding portions below the chambers.
  • An insulative cover shell covers the bottom shell so that the chambers are electrically insulated from one another.
  • the cover may include ribs that interfit with the ribs of the bottom shell's ribs to isolate contacts disposed in the chambers.
  • a grounding contact plate and two blade contact plates are respectively mounted in the chambers of the bottom shell.
  • the grounding contact plate and the blade contact plates each have a plurality of receiving portions for receiving the grounding prong or blades of any of a variety of electric plugs.
  • the bottom shell comprises two longitudinal partition walls arranged in parallel, a middle chamber defined between the partition walls, two symmetrical side chambers separated by the partition walls at two opposite sides of the middle chamber.
  • Two blade contact metal plates are respectively mounted in the side chambers inside the bottom shell, each having a set of blade receiving portions for receiving the blades of any of a variety of electric plugs.
  • a grounding metal plate is mounted in the middle chamber inside the bottom shell, having a set of grounding prong receiving portions for receiving the grounding prong of any of a variety of electric plugs.
  • the cover shell comprises a set of grounding prong insertion holes and symmetrical sets of blade insertion holes at two opposite sides of the grounding prong insertion holes for receiving the blades and grounding prong of any of a variety of electric plugs.
  • the blade insertion holes may include a set of round blade insertion holes for receiving the round blades of an electric plug of South Africa's specifications, and a set of combination holes, each combination hole formed of two perpendicularly connected rectangular holes and a round hole integral with one rectangular hole on the middle.
  • an electrical socket for receiving an electrical plug comprising:
  • the isosceles triangular arrangement formed by the contact receptacles of said first socket region and said second socket region are in inverted relationship with respect to each other.
  • An axis joining the base pair of contact receptacles of said first socket region is preferably parallel to an axis joining the base pair of contact receptacles of said second socket region, wherein the contact receptacles of said first and second socket region are on the vertices of a trapezium.
  • the first socket region is preferably disposed between the pair of base contact receptacles and the third contact receptacle of said second socket region.
  • the second socket region comprises a movable protective member which is movable between a closed position and a open position, wherein when in the closed position the protective member obstructs insertion of a pair of base contact prongs of an electrical plug of the first type into said second socket region, and wherein when in the open position, the protective member opens the pair of base contact receptacles of said second socket region.
  • the protective member is preferably movable away from the obstruction configuration upon insertion of a pair of base contact prongs of an electrical plug of the second type into said second socket region.
  • the protective member is slidable between an open position for receiving contact prongs of an electrical plug and a closed position for obstructing the insertion of contact prongs of an electrical plug, said protection member is under spring bias to return to the closed position.
  • the protective member preferably comprises a first protective member and a second protective member, said first protective member comprising means for closing the third contact receptacle of said second socket region, said second protective member for closing the base contact receptacles of said second socket region and is slidable relative to said first protective member when the first protective member is at a position at which the third contact receptacle of the second socket region is closed.
  • the first protective member and said second protective member are under independent spring bias to move towards the closed position.
  • Each of said first and second protective members preferably comprises an inclined surface which is below the contact receptacle it is covering, the inclined surfaces papering away from the axis joining the base contact receptacles of said pair of second contact receptacles in a manner such that said first and second protective members are urged towards to the open position upon insertion of an electrical plug of the second type.
  • the second protective member is pivotally movable about an axis which is substantially orthogonal to an axis joining the base contact receptacles of said second socket region.
  • the second protective member is preferably arranged so as to pivot about said axis upon non-symmetrical insertion of a pair of prongs into said pair of base contact receptacles.
  • Each one of the pair of base contact receptacle of said first socket region is preferably adapted for receiving a prong of an electrical plug of diameter between 3.7 to 5.1 mm.
  • an electrical socket which is adapted for receiving electrical plugs of different standards are more commonly referred to as a “universal sockets or an "international type socket".
  • the term “universal socket” is only used for convenience and is not meant to incorporate any specific technical meaning for the avoidance of doubt.
  • a universal socket includes an international type socket which is for receiving plugs conforming to various national standards. '
  • FIG. 1 there is shown a first preferred embodiment of a socket of this invention.
  • This socket 100 is adapted to receive electrical plugs of various national and international standards with some examples illustrated in Tables A and B below for convenience.
  • the socket of Fig. 1 comprises first (1) and second (2) socket regions for receiving electrical plugs of a first type and a second type.
  • Two socket regions are provided in this invention to cater for electrical lugs of various prong sizes and configuration so that plugs will not be too loosely received in the contact, receptacles to mitigate the risk of overheating and/or arcing which may cause fire hazards or personal injuries.
  • Each of the first socket region (1) and the second socket region (2) comprises a pair of base contact receptacles and a third contact receptacle, with the three contact receptacles forming the vertices of an isosceles triangle.
  • Each contact receptacle comprises a contact aperture and a contact mechanism which is directly underneath the contact aperture.
  • the contact aperture defines the size and shape of an aperture which is accessible to a contact prong of an electrical plug upon insertion.
  • the contact aperture is typically formed on a rigid front housing which is usually made of durable plastics so that the prong contact mechanisms and the underlying wiring connections are insulated from the outside.
  • the contact mechanism typically comprises metallic contacts which form a resilient bracket-type catch so that an appropriate prong of an electrical plug can be compressively held for good electrical contact.
  • the pair of base contact receptacles (121, 122) (111, 112) is on the base vertices of the isosceles triangle while the third contact receptacle (113, 123) is on the top vertice.
  • the respective electrical connection of each of the individual contact receptacles of the first and second socket regions of this socket is more particularly illustrated in Fig. 1 using various standard nomenclatures for easy reference.
  • the pair of base receptacles is respectively connected to the N (neutral) and L (live) terminals with the third contact receptacle (113, 123) is for connection to the E (earth) terminal. It can be seen from Fig.
  • contact receptacles are arranged so that contact receptacles of the first socket region and the second socket region on the same side of the third contact receptacles are for connection to the terminal of the same marking.
  • contact receptacles on the left side of the third contact receptacles are connected to the "N" terminals while those on the right side are connected to the L terminals with the third contact receptacles for connection to the E terminals.
  • the second socket region (2) is adapted for receiving electrical plugs of the second type (Type 2 sockets) as set out in Table B below for illustrative purposes.
  • the second type plugs include plugs conforming to the following standards, British standard BS1363 (250V, 13A), BS546 (250V, 5A), Chinese standard GB1002 (250V, 10A), Australian standard AS3112 (250V, 10A), IEC standard IEC60884-1 (250V, 16A).
  • the second column on Table B illustrates how the various plugs are fitted into the second socket region and how the second socket region universally accommodates the various plugs.
  • the Chinese standard plug GB1002 comprises two parallel prongs of a substantially rectangular cross-section with the longer sides of the pair of prongs parallel to each other.
  • the portion of the contact aperture adapted for receiving the pair of parallel prongs of this GB1002 plug is formed on the pair of base contact apertures proximal to each other.
  • the portion of the pair of contact apertures closest to each other are also shaped to receive a pair of divergent prongs of the AS3112.
  • the third contact aperture on the second socket region is also formed and shaped to receive the third prong of the plugs where an electrical plug comprises a third prong.
  • the IEC 60884-1 plug is similar to the configuration of GB1002 but with a third prong and the second socket region is provided with an appropriately shaped and configured third contact aperture.
  • the BS1363 plug comprises a pair of prongs having a substantially rectangular cross-section with the longitudinal axis of the pair of prongs substantially co-linear.
  • the third prong of the BS1363 plug has a substantially rectangular cross-section with the longitudinal axis substantially orthogonal to the line joining the pair of base prongs forming the base vertices of an isosceles triangle.
  • the contact apertures of the second socket region are dimensioned to receive the pair of base prongs as shown in row 13 of Table B.
  • the top contact aperture is also dimensioned to receive the top prong of this plug.
  • the BS546 plug comprises prongs of a substantially circular cross-section and the contact apertures are accordingly dimensioned to accommodate the three substantially circular prongs, preferably in a closely-fitted manner.
  • the first socket region is adapted for receiving various plugs which are collectively referred to as type-one plugs, examples of which are set out in column 1 of Table A. More particularly, the type-one plug comprises a pair of substantially parallel prongs with a substantially circular cross-section. As a convenient examples, the base contact apertures of this first socket region are dimensioned so that circular prongs with a diameter between 3.7mm and 5.1 mm can be received in a closely-fitted manner under compressive contact of the resilient metallic contacts underneath the contact apertures. Of course, the range of diameter of the prongs to be receivable by the base apertures can be varied according to individual applications without loss of generality. Typical type-one plugs are shown in the second column of Fig.
  • a pair of alternative circular apertures are provided intermediate the pair of base contact apertures as shown in the region one illustration. More particularly, the pair of alternative circular contact apertures comprises a first circular aperture co-linear with the pair of base contact apertures and a second one which is offset from the line joining the two base apertures. The first alternative circular aperture which is in line with the pair of base apertures is provided to receive a third prong of a plug of a corresponding configuration such as the Italian CE123-16 plug with three contact prongs.
  • the offset middle contact aperture is for receiving the offset prong of Swiss plug/Spanish plug SEV1011.
  • the dimension of the base contact receptacle of the first socket region is adapted for receiving a plug with prongs of a circular cross-sectional shape and dimension, while a plug comprising a prong or prongs of non-circular cross-sectional shape is for the second socket region.
  • the first socket region and the second socket region are disposed so that the isosceles triangles formed by the corresponding contact apertures are in inverted relation to each other.
  • the vertices corresponding to the two pairs of base contact receptacles substantially forms the vertices of a trapezoid with the top vertices of the pair of isosceles triangles pointing towards each other.
  • Fig. 3 illustrates the application of the Fig.1 configuration as a wall socket with a front housing mounting plate made of durable plastics.
  • the first and second socket regions are disposed so that the pairs of isosceles triangles formed by the respective contact receptacles are also inverted relative to each other.
  • the first-socket region (comprising 211, 212 and 213 ) is completely disposed intermediate the pair of base contact receptacles (221, 222) and the third top receptacle (223) of the second socket region.
  • the size of the trapezoid is substantially reduced, resulting in a more compact design so that the effective area to be occupied by all the contact receptacles are substantially identical to the dimensions of a typical single-standard socket.
  • the configuration of the Figs. 2 and 2A universal socket is applied as an illustrative example of a wall socket as shown in Fig. 4 .
  • the two socket regions are arranged as two pairs of inverted isosceles triangles, it will be appreciated that it is not necessary so and the two triangles can be arranged in a parallel configuration.
  • protective means is provided. Because the second socket region is best catered for type-two plugs which comprise both two-pronged and three-pronged plugs, conventional shutter-gate type protective members comprising an insulated shutter gate which normally closes the three-contact apertures but will be opened when a rigid post is inserted into the third contact receptacle is inappropriate.
  • the protective means comprises a first shutter-gate sub-assembly (320) and a second shutter-gate sub-assembly (340) which together form a shutter-gate assembly (300).
  • the shutter-gate assembly (300) comprises a plurality of insulated shutter members which are movable between a closing position and an opening position. In the closing position, the insulating shutter members are directly underneath the contact apertures while, at the opening position, the insulating shutter members are clear of the contact apertures so that the contact mechanisms underneath the contact aperture can be accessible from the outside.
  • the shutter-gate assembly is under spring bias so that the shutter members are normally at the closing position by spring urge.
  • a plurality of coil springs (350) is used as example.
  • the first shutter-gate sub-assembly (320) comprises a rigid body moulded of durable plastics with a pair of wing-like shutter members (322, 324) symmetrically formed about a central axis (326).
  • the first shutter-gate sub-assembly is movable relative to the second shutter-gate sub-assembly along the axial direction of the central axis (326) and between an opening position and a closing position. In the closing position, the pair of wing-like shutter members is directly underneath the base contact apertures of the second socket region and, at the opening position, the shutter members are cleared away from the pair of base contact apertures of the second socket region to allow insertion of a pair of prongs of an electrical plug of the second type.
  • Each of the wing-like shutter member of the first shutter-gate sub-assembly (320) is tapered along the axial direction of the central axis so that when a pair of prongs of an electrical plug with a projection falling on the shutter members is inserted towards the shutter members (322, 324), the tapering will cause the shutter members to be urged in a direction along the axial direction of central axis (326), thereby opening the contact apertures.
  • the tapering is towards the axial end of the shutter members which approaches the third contact receptacle of the second socket region, as is more clearly seen in Fig. 8D .
  • a spring means is disposed at the distal end (that is, the end which is away from the tapered end) so that when the shutter member is moved towards the distal end for opening the contact aperture, spring bias will be built-up to store energy to return the shutter members towards the closing position.
  • a coil spring is installed and retained in position by an axial protrusion (328) formed at the distal end of the shutter member.
  • the lateral dimension (that is, the width) of the wing-like shutter members are adapted so that the maximum lateral extent of the wing-like shutter members corresponds to the maximum extent of a pair of base contact-prongs of a two-pronged type-two electrical plugs.
  • the pair of wing-like shutter member are also shaped and dimensioned so that the two prongs of a type-one plug cannot act on the two tapered regions on the shutter members. As a result, the pair of shutter members cannot be opened by a type-one two-pronged plug.
  • the first shutter-gate sub-assembly (320) further provides means to alleviate the risk of unbalanced insertion, for example, due to insertion of a single post into one of the base contact receptacles of the second socket region. This is achieved by supporting the first shutter assembly at the longitudinal ends of the central axis (326) so that the pair of shutter members will be pivoted above the central axis (326) when subject to an unbalanced insertion force as more particularly depicted in Figs. 8A to 8D . In addition, this arrangement of the first shutter assembly also alleviates the risks of unsymmetrical or tilted insertion of the two prongs into the socket.
  • the first shutter-gate sub-assembly is also pivotable relative to the second shutter-gate sub-assembly and about a longitudinal axis substantially along the line "E" in Fig. 1A .
  • the second shutter-gate sub-assembly comprises a fork-like member made also of durable plastics with a first shutter member (342) formed on one side of the fork-like body and a pair of bifurcated shutter member (344, 346) formed at the other side and extending along an opposite direction to the first shutter member (342).
  • the second shutter-gate sub-assembly is also movable between a close position and an opened position.
  • the shutter members of this second shutter-gate sub-assembly are underneath the three contact apertures of the second socket region under normal circumstances so that, in combination with the first shutter-gate sub-assembly, all the three contact apertures of the second socket region are closed unless and until an appropriate electrical plug is inserted.
  • the first shutter member (342) of this second shutter-gate sub-assembly is accessible through the third contact receptacle (the Earth Terminal) of the second socket region and the shutter member extends substantially axially away from the pair of fork-like shutter members.
  • the first shutter member (342) is also tapered towards its free end, as more particularly shown in Figs. 5A and 5B . With this tapered arrangement, when a third prong of a type-two electrical plug is inserted into the third contact aperture, the downward insertion of the third prong towards the tapered end will push the second shutter-gate sub-assembly towards the opening position, as more particularly shown in Fig. 6 , thereby opening the entire sub-assembly to allow plug insertion.
  • the first shutter- gate sub-assembly is embraced between the pair of fork-like members, the movement of the second shutter-gate sub-assembly towards the opening position will also drive the first shutter-gate sub-assembly towards the opening position, thereby opening all the three contact apertures against spring bias. Furthermore, since the pair of fork-like members are not tapered, when a pair of circular prongs corresponding to the foot-print of the pair of fork-like members is inserted against the pair of fork-like shutter members, there will be no sliding movement unless there is a third post acting on the tapered first shutter member.
  • Figs. 8, 8A and 8B illustrate in various views the pivotal movement of the first shutter-gate sub-assembly relative to the socket housing and the second shutter-gate sub-assembly when subject to an unbalanced insertion force.
  • Figs. 9 and 9A illustrate the situation when a pair of posts of a type-one two-pronged electrical plug is inserted into the second socket region. Because the foot-print of the type-one prongs are outside the maximum lateral extent of the wing-like shutter members of the first shutter-gate sub-assembly, the pair of prongs will fall partially on the fork-like member and, in the absence of the driving of a tapered and of one of the shutter members, the shutter members will remain close.
  • the protective means described above have been described with reference to a universal socket comprising a first socket region and a second socket region, it will be appreciated that this protective means can be applied in a universal socket with only a second-socket region without loss of generality.

Landscapes

  • Details Of Connecting Devices For Male And Female Coupling (AREA)
  • Connector Housings Or Holding Contact Members (AREA)
  • Prostheses (AREA)
  • Massaging Devices (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)
  • Transplanting Machines (AREA)
  • Harvester Elements (AREA)

Claims (13)

  1. Prise électrique (100) destinée à recevoir une fiche électrique, la prise comprenant : une première (1) région de prise et une seconde (2) région de prise qui sont connectées électriquement pour une utilisation alternative, chacune desdites première et seconde régions de prise comprenant une paire de base (121, 122), (111, 112) de réceptacles de contact et un troisième réceptacle de contact (113, 123) qui sont positionnés aux sommets d'un agencement triangulaire isocèle avec la paire de base de réceptacles de contact disposée aux sommets de base de l'agencement triangulaire isocèle,
    ladite première région de prise et ladite seconde région de prise étant adaptées pour recevoir des fiches électriques d'un premier type et d'un second type respectivement,
    dans laquelle une fiche électrique dudit premier type et une fiche électrique dudit second type comprennent au moins une paire de broches de contact de base qui sont respectivement insérables dans la paire de réceptacles de contact de base desdites première et seconde régions de prise respectivement, caractérisée en ce que :
    l'empreinte d'une paire de broches de contact de base d'une fiche électrique du premier type se trouve au sein de l'empreinte de la paire de réceptacles de contact de base de la seconde région de prise, et l'empreinte d'une paire de broches de contact de base d'une fiche électrique dudit second type dépasse l'empreinte de la paire de réceptacles de contact de base de ladite première région de prise.
  2. Prise électrique selon la revendication 1, dans laquelle les agencements triangulaires isocèles formés par les réceptacles de contact de ladite première région de prise et de ladite seconde région de prise sont en relation inversée l'un par rapport à l'autre.
  3. Prise électrique selon la revendication 2, dans laquelle un axe joignant la paire de base de réceptacles de contact de ladite première région de prise est parallèle à un axe joignant la paire de base de réceptacles de contact de ladite seconde région de prise, dans laquelle les réceptacles de contact desdites première et seconde régions de prise sont sur les sommets d'un trapèze.
  4. Prise électrique selon les revendications 2 ou 3, dans laquelle ladite première région de prise est disposée entre la paire de réceptacles de contact de base et le troisième réceptacle de contact de ladite seconde région de prise.
  5. Prise électrique selon une quelconque des revendications précédentes, dans laquelle ladite seconde région de prise comprend un élément de protection mobile qui est mobile entre une position fermée et une position ouverte, dans laquelle, lorsqu'il est dans la position fermée, l'élément de protection obstrue l'insertion d'une paire de broches de contact de base d'une fiche électrique du premier type dans ladite seconde région de prise, et dans laquelle, lorsqu'il est dans la position ouverte, l'élément de protection ouvre la paire de réceptacles de contact de base de ladite seconde région de prise.
  6. Prise électrique selon la revendication 5, dans laquelle l'élément de protection peut être éloigné de la configuration d'obstruction lors de l'insertion d'une paire de broches de contact de base d'une fiche électrique du second type dans ladite seconde région de prise.
  7. Prise électrique selon la revendication 5, dans laquelle, ledit élément de protection pouvant coulisser entre une position ouverte pour recevoir des broches de contact d'une fiche électrique et une position fermée pour obstruer l'insertion de broches de contact d'une fiche électrique, ledit élément de protection est soumis à une sollicitation élastique pour retourner dans la position fermée.
  8. Prise électrique selon les revendications 5 ou 6 ou 7, dans laquelle ledit élément de protection comprend un premier élément de protection et un second élément de protection, ledit premier élément de protection comprenant des moyens pour fermer le troisième réceptacle de contact de ladite seconde région de prise, ledit second élément de protection pour fermer les réceptacles de contact de base de ladite seconde région de prise et peut coulisser par rapport audit premier élément de protection lorsque le premier élément de protection est dans une position dans laquelle le troisième réceptacle de contact de la seconde région de prise est fermé.
  9. Prise électrique selon la revendication 8, dans laquelle ledit premier élément de protection et ledit second élément de protection sont soumis à des sollicitations élastiques indépendantes pour se déplacer vers la position fermée.
  10. Prise électrique selon les revendications 7, 8 ou 9, dans laquelle chacun desdits premier et second éléments de protection comprend une surface inclinée qui est en dessous du réceptacle de contact qu'il recouvre, les surfaces inclinées s'effilant en s'éloignant de l'axe joignant les réceptacles de contact de base de ladite paire de seconds réceptacles de contact de manière telle que lesdits premier et second éléments de protection sont poussés vers la position ouverte lors de l'insertion d'une fiche électrique du second type.
  11. Prise électrique selon les revendications 7 à 9, dans laquelle ledit second élément de protection est mobile de façon pivotante autour d'un axe qui est sensiblement orthogonal à un axe joignant les réceptacles de contact de base de ladite seconde région de prise.
  12. Prise électrique selon les revendications 7 à 11, dans laquelle ledit second élément de protection est agencé afin de pivoter autour dudit axe lors de l'insertion non symétrique d'une paire de broches dans ladite paire de réceptacles de contact de base.
  13. Prise électrique selon l'une quelconque des revendications précédentes, dans laquelle chacun des réceptacles de la paire de contact de base de ladite première région de prise est destiné à recevoir une broche d'une fiche électrique d'un diamètre compris entre 3,7 et 5,1 mm.
EP06795200A 2005-08-03 2006-08-03 Prise electrique universelle Not-in-force EP1917701B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09171402A EP2133961B1 (fr) 2005-08-03 2006-08-03 Prise universale

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200510006661 2005-08-03
PCT/IB2006/002117 WO2007015156A2 (fr) 2005-08-03 2006-08-03 Prise electrique universelle

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP09171402A Division EP2133961B1 (fr) 2005-08-03 2006-08-03 Prise universale

Publications (2)

Publication Number Publication Date
EP1917701A2 EP1917701A2 (fr) 2008-05-07
EP1917701B1 true EP1917701B1 (fr) 2009-09-30

Family

ID=37453264

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06795200A Not-in-force EP1917701B1 (fr) 2005-08-03 2006-08-03 Prise electrique universelle

Country Status (10)

Country Link
EP (1) EP1917701B1 (fr)
KR (2) KR101260485B1 (fr)
CN (1) CN101317308A (fr)
AT (1) ATE444581T1 (fr)
AU (2) AU2006274636B2 (fr)
DE (1) DE602006009528D1 (fr)
GB (1) GB2442426B (fr)
HK (1) HK1111819A1 (fr)
NZ (1) NZ565679A (fr)
WO (1) WO2007015156A2 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200843222A (en) * 2006-11-17 2008-11-01 Clipsal Australia Pty Ltd International socket
MY153395A (en) * 2007-11-21 2015-02-13 Novar Ed & S Ltd Electric socket
FR2932317B1 (fr) * 2008-06-10 2010-06-11 Legrand France Prise de courant universelle munie d'un obturateur de securite.
EP2297825B1 (fr) 2008-06-17 2014-05-14 Walter Ruffner Connecteur multiple
CA2763823A1 (fr) * 2008-06-17 2009-12-23 Walter Ruffner Adaptateur de connexion
US8382493B2 (en) 2008-06-17 2013-02-26 Walter Ruffner Three-pole adapter set with a plug part and a socket part which may be plugged in the plug part
GB2477313B (en) * 2010-01-29 2013-05-22 Electrium Sales Ltd An electrical socket with a shutter mechanism for an electrical connector
GB2480087A (en) * 2010-05-06 2011-11-09 Alvin Ashman Electrical socket for plugs of different countries
CN102244330A (zh) * 2010-05-11 2011-11-16 飞雕电器集团有限公司 一种用于五孔插座的双保护门结构
CN202196926U (zh) * 2011-07-14 2012-04-18 澳大利亚克林普斯有限公司 具有智能保护门的16a插座
CH708281A1 (de) 2013-07-10 2015-01-15 Worldconnect Ag Mehrfachsteckdose.
US9484659B1 (en) * 2015-04-10 2016-11-01 Europlugs LLC UL compliant and IEC compliant power connector products

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB525901A (en) * 1939-03-02 1940-09-06 Telephone Mfg Co Ltd Improvements in or relating to electric plug and socket connectors
GB719387A (en) * 1951-08-23 1954-12-01 Clang Ltd Improvements in or relating to electrical plug and socket couplings
GB1475170A (en) * 1974-11-11 1977-06-01 Contactum Ltd Shuttered electrical socket connectors
GB1585094A (en) * 1977-05-13 1981-02-25 Tenby Elect Accessories Ltd Electrical sockets
GB2199996B (en) * 1987-01-20 1991-07-10 Ever Winner Electric Works Ltd Electric socket shutter arrangement
GB2234865A (en) * 1989-07-04 1991-02-13 Travel Accessories Shutter arrangement for an electrical socket outlet
GB2234866B (en) * 1989-08-01 1994-03-30 Lee Chiu Shan Multipurpose safety receptacle
US5577923A (en) * 1994-12-12 1996-11-26 Lee; Chiu-Shan 125V/250V safety electric socket devices
US5885109A (en) 1997-10-16 1999-03-23 Lee; Chiu-Shan Electrical adapters
US6010347A (en) * 1998-10-02 2000-01-04 Lee; Chiu-Shan Universal electric socket
FR2823911B1 (fr) * 2001-04-23 2003-08-15 Legrand Sa Socle de prise de courant pour fiche complementaire a deux ou trois broches, equipe d'un obturateur de securite a deux volets
KR100526791B1 (ko) 2003-10-15 2005-11-08 씨엔텍 코퍼레이션 온수 자동순환장치

Also Published As

Publication number Publication date
GB0802516D0 (en) 2008-03-19
CN101317308A (zh) 2008-12-03
EP1917701A2 (fr) 2008-05-07
NZ565679A (en) 2011-01-28
HK1111819A1 (en) 2008-08-15
DE602006009528D1 (de) 2009-11-12
GB2442426B (en) 2011-06-22
KR20110098011A (ko) 2011-08-31
ATE444581T1 (de) 2009-10-15
WO2007015156A3 (fr) 2007-06-21
KR101128092B1 (ko) 2012-03-29
AU2010246500A1 (en) 2010-12-23
AU2010246500B2 (en) 2011-07-07
GB2442426A (en) 2008-04-02
KR101260485B1 (ko) 2013-05-06
KR20080041680A (ko) 2008-05-13
WO2007015156A2 (fr) 2007-02-08
AU2006274636A1 (en) 2007-02-08
AU2006274636B2 (en) 2010-12-23

Similar Documents

Publication Publication Date Title
EP1917701B1 (fr) Prise electrique universelle
US6749449B2 (en) Safety receptacle with jacketed internal switches
US8242362B2 (en) Tamper-resistant electrical wiring device system
EP2777095B1 (fr) Disjoncteur muni de connecteurs enfichables à barre omnibus
US8366463B2 (en) Safety structure for electric receptacles and power strips
US6111210A (en) Electrical safety outlet
US6935878B2 (en) Electrical plug with pivotable and retractable terminals
KR20150119856A (ko) 스프링 부하형 연결 단자 및 전도체 연결 단자
CA2763823A1 (fr) Adaptateur de connexion
WO2007115386A1 (fr) Dispositif a prise electrique de securite
EP2133961B1 (fr) Prise universale
US5833357A (en) Trouble light
WO2008058476A1 (fr) Douille universelle
US5873754A (en) Electrical terminal
KR20080072599A (ko) 콘센트 안전커버
KR200185381Y1 (ko) 플러그 회전 접속형 콘센트
ES2197413T3 (es) Caja de acometida e interruptor para la corriente de la red.
CN111971858B (zh) 电插头插座装置
CN109155222A (zh) 具有压配合插座的断路器
US6204449B1 (en) Projections on face electrical receptacle for preventing inadvertent tripping of test switch by oversized electrical plug
CN219144585U (zh) 插座
CN220172542U (zh) 多标准转换插头
GB2242320A (en) Improvements relating to electrical connectors
WO2015111068A1 (fr) Réceptacle électrique femelle à mécanisme de sécurité utilisable dans un adaptateur multiprise et prises murales
JP3319875B2 (ja) 3極コンセント

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080222

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LEE, KWOK, KIT, PATRICK13/F, WEST WING, WARWICK HO

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1111819

Country of ref document: HK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

DAX Request for extension of the european patent (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602006009528

Country of ref document: DE

Date of ref document: 20091112

Kind code of ref document: P

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1111819

Country of ref document: HK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100201

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100110

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100130

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110502

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006009528

Country of ref document: DE

Effective date: 20110301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110301

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100803

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100401

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120816

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130803