EP1916675A1 - Coil comprising several coil branches and micro-inductance comprising one of the coils - Google Patents

Coil comprising several coil branches and micro-inductance comprising one of the coils Download PDF

Info

Publication number
EP1916675A1
EP1916675A1 EP07354055A EP07354055A EP1916675A1 EP 1916675 A1 EP1916675 A1 EP 1916675A1 EP 07354055 A EP07354055 A EP 07354055A EP 07354055 A EP07354055 A EP 07354055A EP 1916675 A1 EP1916675 A1 EP 1916675A1
Authority
EP
European Patent Office
Prior art keywords
winding
sections
branches
turns
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07354055A
Other languages
German (de)
French (fr)
Other versions
EP1916675B1 (en
Inventor
Bastien Orlando
Bernard Viala
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Centre National de la Recherche Scientifique CNRS
Commissariat a lEnergie Atomique CEA
STMicroelectronics SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Commissariat a lEnergie Atomique CEA, STMicroelectronics SA filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP1916675A1 publication Critical patent/EP1916675A1/en
Application granted granted Critical
Publication of EP1916675B1 publication Critical patent/EP1916675B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0033Printed inductances with the coil helically wound around a magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core

Definitions

  • the invention relates to a winding comprising a plurality of disjoint turns constituting a plurality of substantially parallel winding branches, each winding having a rectangular lower plane section in a lower plane, a rectangular upper plane section in an upper plane and two rising sections. , the rising sections of two adjacent branches disposed between the two adjacent branches being arranged alternately in a single plane.
  • the invention is part of the theme of integrated micro-inductors for applications in power electronics. It can, more generally, apply to all inductive systems integrated or not (inductors, transformers, magnetic recording heads, actuators, sensors, etc ...) requiring a high density of electrical power.
  • micro-inductances of various types For many years there have been micro-inductances of various types. However, the discrete components remain very predominantly used in applications using high power densities because only these allow to use very thick winding son to achieve very low levels of electrical resistance.
  • Most of the micro-inductors used on the market are discrete components manufactured by micromechanical processes of micro-machining, gluing, micro-winding, etc. These processes are difficult to implement. work, individual treatment, flexible in terms of design and greatly limit the miniaturization of power circuits. In particular, the thickness of the discrete micro-inductors (typically greater than 0.5 mm) does not allow appropriate packaging in the power supply circuits currently used for mobile telephony, for example.
  • the manufacturing techniques used in microelectronics allow a much greater flexibility in the implementation of different designs, provide a collective treatment and are compatible with the idea of miniaturization because the thickness (including substrate) can easily be less than 300 ⁇ m. However, they are poorly suited to deposition of high thicknesses (greater than 10 .mu.m) of conductive, magnetic or dielectric materials and to their etching after photolithography.
  • Micro-inductances of the toroidal solenoid type have a good compromise between losses and level of inductance because they approach the ideal case of the infinite solenoid.
  • the rising sections of two adjacent branches disposed between the two adjacent branches are arranged alternately in a single plane, which provides a small spacing between two adjacent branches.
  • the compactness of the device can thus be increased. For these devices, it is sought to increase the level of inductance and to minimize losses.
  • the object of the invention is to improve the performance of a micro-inductor, while increasing the compactness of the micro-inductance.
  • this object is achieved by a winding according to the appended claims and more particularly by the fact that the upper and lower sections corresponding to one and the same turn are aligned with respect to one another and having a width greater than the width of the corresponding rising sections disposed between two adjacent winding branches, the turns fill almost all of the envelope surface of the winding, a minimum isolation gap separating the adjacent turns.
  • the different types of winding described below can be made without necessarily using a magnetic core.
  • the coil wraps around a magnetic core.
  • the winding shown in Figures 1 to 3 comprises a plurality of turns 1 spaced apart from each other by a minimum separation gap 2 separating adjacent turns 1.
  • the isolation gap 2 is set by the constraints of technological achievement and the desired electromagnetic behavior.
  • the turns 1 constitute a winding around a magnetic core 3 having four parallel branches 11 (11a, 11b, 11c, 11d). One could also consider the same winding without magnetic core or with an open core.
  • the plurality of disjointed turns 1 constitute a winding around substantially parallel branches 11 of the magnetic core 3. When this coil is used without a magnetic core, the disjoint turns 1 constitute a plurality of substantially parallel winding branches.
  • Each turn 1 has a lower plane section 4 in a lower plane, an upper plane section 5 in an upper plane and two rising planar sections 12 and 13. It should be noted that these four elements (the lower plane section 4, the plane section upper 5 and the two planar rising sections 12 and 13) are not connected together so as to form a loop as, for example, in the case of a winding classical solenoid. Indeed, the flat sections 4 and 5 may belong to separate electrical conductors, each electrical conductor passing from the lower plane for a predetermined branch to the upper plane for an adjacent branch and vice versa. The turns 1 fill almost all the envelope surface of the winding, with the minimum isolation gap 2 near.
  • the envelope surface of the coil means a continuous surface delimited by the coil and connecting the adjacent turns to each other.
  • the envelope surface of the winding thus includes turns 1 and isolation gaps 2. This envelope surface of the winding must be filled to the maximum by the turns 1, the isolation gap 2 serving only to ensure the electrical insulation between the turns 1.
  • the isolation gaps 2 can, moreover, be filled by a material insulating.
  • the turns constitute a quasi-total envelope of the branches of the magnetic core 3.
  • the micro-inductor uses all the space potentially available for winding and leaves no room for unused space.
  • the micro-inductance thus has a lower resistance for a predetermined size.
  • the thickness of the winding is a compromise between the ease of realization and the desired level of resistance.
  • the rising sections 12a and 12b of two adjacent branches 11a and 11b disposed between the two adjacent branches 11a and 11b are arranged alternately (12a, 12b, 12a, 12b, ...) in a single plane.
  • this single plane is perpendicular to the plane of the magnetic core 3 and passes through the axis CC which passes through the rising sections 12a and 12b.
  • the turns 1 constitute an almost total envelope of the branches 11 of the magnetic core, a minimum isolation gap 2 separating adjacent turns 1.
  • the turns 1 fill almost all the envelope surface of the winding, the winding being constituted by several winding branches, with or without magnetic core.
  • the upper 5 and lower 4 sections represent, given their size, the bulk of the surface of the turns.
  • the length Lm (FIG. 1) of the rising sections 12 is, for example, of the order of 20 microns
  • the length Ls of the lower 4 and upper sections 5 is, for example, of the order of several hundred microns.
  • the upper 5 and lower 4 sections preferably have a substantially rectangular shape (see FIGS. 1 to 4), to which are added connections to the rising sections 12.
  • the upper section 5 advantageously has the same dimensions and, preferably, the same shape as the lower section 4 corresponding to the same turn 1 and they are preferably aligned relative to each other. Thus, they are superimposed completely, that is to say their projections in a plane parallel to the upper sections 4 and 5 are the same.
  • the upper sections 4 and lower 5 have a width greater than the width of corresponding rising sections 12a and 12b disposed between two adjacent branches 11a and 11b.
  • the width of the rising sections 12a and 12b disposed between two adjacent branches 11a and 11b is preferably less than half the width of the upper and lower sections 4 to allow entanglement of the turns at the crossings between the turns.
  • the upper 5 and lower 4 sections have a width greater than the sum of the widths of the corresponding rising sections 12 disposed between two adjacent winding branches.
  • the rising sections 12a and 12b have the same surface.
  • the rising sections 13 disposed outside an outer branch 11a of the micro-inductor may have the same width as the upper 4 and lower 5 sections of the corresponding turns 1 of the same branch 11a.
  • each turn 1 corresponding to the branch 11a (right in Figure 1) are connected by the rising sections 13 disposed outside.
  • the upper 4 and lower 5 sections of each turn 1 corresponding to the branch 11d at the other end (left in Figure 1) of the core 3 are connected by the rising sections 12c disposed between the adjacent branches 11c and 11d.
  • Two adjacent turns corresponding to the branch 11d at the end of the core 3 (shown on the left in FIG. 1) are connected by an upwardly mounted rising section 12d and a connection section 14 arranged in the lower plane corresponding to the sections lower 4.
  • the sizing of this winding can be done in the following manner illustrated in FIG. 2.
  • the length C of the magnetic core is defined. It will be considered that all the branches of the core are of the same width WMAG.
  • the technological and electrical constraints set the dimensions V of the rising sections 12, the inter-turn distance INT and the spacing M between the coil and the magnetic circuit. It should be noted that FIG. 2 is not to scale and that the spacing M is, thus, variable in FIG. 2.
  • the inter-turn distance INT between two adjacent turns corresponds to the difference 2 of minimum isolation.
  • the winding can then be fully defined.
  • the number of turns per N-branch (five in FIG. 2) is determined by the desired level of inductance.
  • the thickness of conductive material is finally fixed as a compromise between the ease of realization and the desired level of resistance.
  • FIG. 4 illustrates a micro-inductance with a substantially annular closed magnetic core 3 of which only two parallel branches 11 are covered by a winding constituting an almost total envelope of the two branches 11.
  • the same type of winding as that previously described can be used.
  • the particular embodiment makes it possible to improve the performance of the inductive systems and in particular to increase the inductance of the micro-inductance and the compactness of the winding.
  • the turns constitute an almost complete envelope of the magnetic core on the entire parallel branches of the multi-branch core. Only the minimum isolation gaps 2 separate the lower planar sections 4 from two adjacent turns, the upper planar sections 5 from two adjacent turns and two adjacent rising sections. The minimum isolation gap 2 depends on the manufacturing technology used and the electromagnetic constraints. The gap between turns does not exceed the minimum isolation gap 2.
  • the two variants do not present any additional manufacturing difficulties compared to the conventional pre-existing systems.
  • the upper and lower sections 4 may respectively be etched in conductive layers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

The winding has a set of disjointed loops (1), each having a rectangular lower flat section (4) in a lower plane and a rectangular upper flat section (5) in upper plane, inner plane up section (6) and outer plane up section (7). The loops fill a covering surface of the winding, and a minimum isolation space (2) separates the adjacent loops. The section (6) is narrow than that of the section (7), and the upper and lower flat sections expand towards the outside of the winding. The sections (4, 5) corresponding to a same loop have same shape.

Description

Domaine technique de l'inventionTechnical field of the invention

L'invention est relative à un bobinage comportant une pluralité de spires disjointes constituant une pluralité de branches de bobinage sensiblement parallèles, chaque spire comportant une section plane inférieure rectangulaire dans un plan inférieur, une section plane supérieure rectangulaire dans un plan supérieur et deux sections montantes, les sections montantes de deux branches adjacentes disposées entre les deux branches adjacentes étant disposées en alternance dans un plan unique.The invention relates to a winding comprising a plurality of disjoint turns constituting a plurality of substantially parallel winding branches, each winding having a rectangular lower plane section in a lower plane, a rectangular upper plane section in an upper plane and two rising sections. , the rising sections of two adjacent branches disposed between the two adjacent branches being arranged alternately in a single plane.

État de la techniqueState of the art

L'invention s'inscrit dans la thématique des micro-inductances intégrées pour des applications en électronique de puissance. Elle peut, d'une manière plus générale, s'appliquer à tous les systèmes inductifs intégrés ou non (inductances, transformateurs, têtes d'enregistrement magnétique, actionneurs, capteurs, etc...) nécessitant une haute densité de puissance électrique.The invention is part of the theme of integrated micro-inductors for applications in power electronics. It can, more generally, apply to all inductive systems integrated or not (inductors, transformers, magnetic recording heads, actuators, sensors, etc ...) requiring a high density of electrical power.

Il existe depuis de nombreuses années des micro-inductances de divers types. Cependant, les composants discrets restent très majoritairement utilisés dans des applications utilisant de fortes densités de puissance car seuls ces derniers permettent d'utiliser des fils de bobinage très épais permettant d'atteindre de très faibles niveaux de résistance électrique. La plupart des micro-inductances utilisées sur le marché sont des composants discrets fabriqués par des procédés micromécaniques de micro usinage, collage, micro-enroulement, etc... Ces procédés sont lourds à mettre en oeuvre, à traitement individuel, peu flexibles en termes de conception et limitent grandement la miniaturisation des circuits de puissance. En particulier, l'épaisseur des micro-inductances discrètes (typiquement supérieur à 0.5 mm) ne permet pas une mise en boîtier appropriée aux circuits d'alimentation utilisés actuellement pour la téléphonie mobile, par exemple.For many years there have been micro-inductances of various types. However, the discrete components remain very predominantly used in applications using high power densities because only these allow to use very thick winding son to achieve very low levels of electrical resistance. Most of the micro-inductors used on the market are discrete components manufactured by micromechanical processes of micro-machining, gluing, micro-winding, etc. These processes are difficult to implement. work, individual treatment, flexible in terms of design and greatly limit the miniaturization of power circuits. In particular, the thickness of the discrete micro-inductors (typically greater than 0.5 mm) does not allow appropriate packaging in the power supply circuits currently used for mobile telephony, for example.

Les techniques de fabrications utilisées en microélectronique permettent une flexibilité bien plus grande au niveau de la mise en oeuvre de conceptions différentes, assurent un traitement collectif et sont compatibles avec l'idée de miniaturisation car l'épaisseur (substrat compris) peut facilement être inférieure à 300 µm. Cependant, elles sont mal adaptées au dépôt de fortes épaisseurs (supérieures à 10µm) de matériaux conducteurs, magnétiques ou diélectriques et à leur gravure après photolithographie.The manufacturing techniques used in microelectronics allow a much greater flexibility in the implementation of different designs, provide a collective treatment and are compatible with the idea of miniaturization because the thickness (including substrate) can easily be less than 300 μm. However, they are poorly suited to deposition of high thicknesses (greater than 10 .mu.m) of conductive, magnetic or dielectric materials and to their etching after photolithography.

Pour les composants intégrés, on se heurte à des contraintes de réalisation technologique. En effet, des dépôts de couches conductrices ayant une épaisseur supérieure à 100 micromètres ne sont pour l'instant pas envisageable dans un procédé industriel standard.For integrated components, there are constraints of technological achievement. Indeed, deposits of conductive layers having a thickness greater than 100 microns are currently not feasible in a standard industrial process.

Des micro-inductances de type solénoïde torique présentent un bon compromis entre pertes et niveau d'inductance car elles s'approchent du cas idéal du solénoïde infini.Micro-inductances of the toroidal solenoid type have a good compromise between losses and level of inductance because they approach the ideal case of the infinite solenoid.

L'article « Numerical Inductor Optimization » de A. von der Weth et al. (Trans. Magn. Soc. Japan, Vol.2, No.5, pp.361-366, 2002 ) décrit une micro-inductance avec un circuit magnétique ouvert composé d'une pluralité de noyaux parallélépipédiques. Une pluralité de spires disjointes constitue un bobinage autour des branches du noyau magnétique. Chaque spire comporte une section plane inférieure dans un plan inférieur, une section plane supérieure dans un plan supérieur et deux sections planes montantes.Article Numerical Inductor Optimization by A. von der Weth et al. (Japan Magnetic Trans., Vol.2, No.5, pp.361-366, 2002). ) discloses a micro-inductance with an open magnetic circuit composed of a plurality of parallelepiped cores. A plurality of disjoint turns constitutes a winding around the branches of the magnetic core. Each turn has a lower plane section in a lower plane, an upper plane section in an upper plane and two rising plane sections.

Les sections montantes de deux branches adjacentes disposées entre les deux branches adjacentes sont disposées en alternance dans un plan unique, ce qui permet d'obtenir un faible espacement entre deux branches adjacentes. La compacité du dispositif peut ainsi être augmentée. Pour ces dispositifs, on cherche à augmenter le niveau d'inductance et à minimiser les pertes.The rising sections of two adjacent branches disposed between the two adjacent branches are arranged alternately in a single plane, which provides a small spacing between two adjacent branches. The compactness of the device can thus be increased. For these devices, it is sought to increase the level of inductance and to minimize losses.

Objet de l'inventionObject of the invention

L'objet de l'invention consiste à améliorer les performances d'une micro-inductance, tout en augmentant la compacité de la micro-inductance.The object of the invention is to improve the performance of a micro-inductor, while increasing the compactness of the micro-inductance.

Selon l'invention, ce but est atteint par un bobinage selon les revendications annexées et plus particulièrement par le fait que les sections supérieure et inférieure correspondant à une même spire étant alignées l'une par rapport à l'autre et ayant une largeur supérieure à la largeur des sections montantes correspondantes disposées entre deux branches de bobinage adjacentes, les spires remplissent la quasi-totalité de la surface enveloppe du bobinage, un écart d'isolement minimum séparant les spires adjacentes.According to the invention, this object is achieved by a winding according to the appended claims and more particularly by the fact that the upper and lower sections corresponding to one and the same turn are aligned with respect to one another and having a width greater than the width of the corresponding rising sections disposed between two adjacent winding branches, the turns fill almost all of the envelope surface of the winding, a minimum isolation gap separating the adjacent turns.

Description sommaire des dessinsBrief description of the drawings

D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels :

  • les figures 1 à 3 représentent un mode de réalisation particulier de l'invention, respectivement en vue de perspective, en vue de dessus et en coupe vue de dessous selon le plan défini par les deux axes A-A et B-B de la figure 2,
  • la figure 4 représente, en vue de perspective, un autre mode de réalisation particulier de l'invention.
Other advantages and features will emerge more clearly from the following description of particular embodiments of the invention given by way of non-limiting example and represented in the accompanying drawings, in which:
  • FIGS. 1 to 3 represent a particular embodiment of the invention, respectively for perspective, in top view and in cut from below according to the plane defined by the two axes AA and BB of FIG. 2,
  • Figure 4 shows, for perspective, another particular embodiment of the invention.

Description d'un mode préférentiel de l'inventionDescription of a preferred embodiment of the invention

Les différents types de bobinage décrits ci-dessous peuvent être réalisés sans nécessairement utiliser un noyau magnétique. De préférence, cependant, le bobinage enveloppe un noyau magnétique.The different types of winding described below can be made without necessarily using a magnetic core. Preferably, however, the coil wraps around a magnetic core.

Le bobinage représentée aux figures 1 à 3 comporte une pluralité de spires 1 espacées les unes des autres par un écart 2 d'isolement minimum séparant les spires 1 adjacentes. L'écart 2 d'isolement est fixé par les contraintes de réalisation technologique et le comportement électromagnétique souhaité. Les spires 1 constituent un bobinage autour d'un noyau magnétique 3 comportant quatre branches parallèles 11 (11a, 11b, 11c, 11d). On pourrait également envisager le même bobinage sans noyau magnétique ou avec un noyau ouvert. La pluralité de spires 1 disjointes constituent un bobinage autour des branches 11 sensiblement parallèles du noyau magnétique 3. Lorsque ce bobinage est utilisé sans noyau magnétique, les spires 1 disjointes constituent une pluralité de branches de bobinage sensiblement parallèles.The winding shown in Figures 1 to 3 comprises a plurality of turns 1 spaced apart from each other by a minimum separation gap 2 separating adjacent turns 1. The isolation gap 2 is set by the constraints of technological achievement and the desired electromagnetic behavior. The turns 1 constitute a winding around a magnetic core 3 having four parallel branches 11 (11a, 11b, 11c, 11d). One could also consider the same winding without magnetic core or with an open core. The plurality of disjointed turns 1 constitute a winding around substantially parallel branches 11 of the magnetic core 3. When this coil is used without a magnetic core, the disjoint turns 1 constitute a plurality of substantially parallel winding branches.

Chaque spire 1 comporte une section plane inférieure 4 dans un plan inférieur, une section plane supérieure 5 dans un plan supérieur et deux sections planes montantes 12 et 13. Il est à noter que ces quatre éléments (la section plane inférieure 4, la section plane supérieure 5 et les deux sections planes montantes 12 et 13) ne sont pas reliés entre eux de façon à former une boucle comme, par exemple, dans le cas d'un bobinage solénoïde classique. En effet, les sections planes 4 et 5 peuvent appartenir à des conducteurs électriques distincts, chaque conducteur électrique passant du plan inférieur pour une branche prédéterminée au plan supérieur pour une branche adjacente et inversement. Les spires 1 remplissent la quasi-totalité de la surface enveloppe du bobinage, à l'écart 2 d'isolement minimum près.Each turn 1 has a lower plane section 4 in a lower plane, an upper plane section 5 in an upper plane and two rising planar sections 12 and 13. It should be noted that these four elements (the lower plane section 4, the plane section upper 5 and the two planar rising sections 12 and 13) are not connected together so as to form a loop as, for example, in the case of a winding classical solenoid. Indeed, the flat sections 4 and 5 may belong to separate electrical conductors, each electrical conductor passing from the lower plane for a predetermined branch to the upper plane for an adjacent branch and vice versa. The turns 1 fill almost all the envelope surface of the winding, with the minimum isolation gap 2 near.

On entend par surface enveloppe du bobinage une surface continue délimitée par le bobinage et reliant les spires adjacentes entre elles. La surface enveloppe du bobinage inclut ainsi les spires 1 et les écarts 2 d'isolement. Cette surface enveloppe du bobinage doit être remplie au maximum par les spires 1, l'écart 2 d'isolement servant uniquement à assurer l'isolation électrique entre les spires 1. Les écarts 2 d'isolement peuvent, par ailleurs être remplis par un matériau isolant.The envelope surface of the coil means a continuous surface delimited by the coil and connecting the adjacent turns to each other. The envelope surface of the winding thus includes turns 1 and isolation gaps 2. This envelope surface of the winding must be filled to the maximum by the turns 1, the isolation gap 2 serving only to ensure the electrical insulation between the turns 1. The isolation gaps 2 can, moreover, be filled by a material insulating.

Ainsi, sur la figure 1, les spires constituent une enveloppe quasi-totale des branches du noyau magnétique 3. Contrairement aux dispositifs de l'art antérieur, la micro-inductance utilise toute la place potentiellement disponible pour le bobinage et ne laisse pas d'espace inutilisé. La micro-inductance a ainsi une résistance plus faible pour un encombrement prédéterminé.Thus, in FIG. 1, the turns constitute a quasi-total envelope of the branches of the magnetic core 3. Unlike the devices of the prior art, the micro-inductor uses all the space potentially available for winding and leaves no room for unused space. The micro-inductance thus has a lower resistance for a predetermined size.

L'épaisseur du bobinage est un compromis entre la facilité de réalisation et le niveau de résistance désiré.The thickness of the winding is a compromise between the ease of realization and the desired level of resistance.

Les sections montantes 12a et 12b de deux branches adjacentes 11a et 11b disposées entre les deux branches adjacentes 11a et 11b, sont disposées en alternance (12a, 12b, 12a, 12b,...) dans un plan unique. Dans le mode de réalisation particulier représenté à la figure 1, ce plan unique est perpendiculaire au plan du noyau magnétique 3 et passe par l'axe C-C qui passe par les sections montantes 12a et 12b. Les spires 1 constituent une enveloppe quasi-totale des branches 11 du noyau magnétique, un écart 2 d'isolement minimum séparant les spires 1 adjacentes.The rising sections 12a and 12b of two adjacent branches 11a and 11b disposed between the two adjacent branches 11a and 11b are arranged alternately (12a, 12b, 12a, 12b, ...) in a single plane. In the particular embodiment shown in Figure 1, this single plane is perpendicular to the plane of the magnetic core 3 and passes through the axis CC which passes through the rising sections 12a and 12b. The turns 1 constitute an almost total envelope of the branches 11 of the magnetic core, a minimum isolation gap 2 separating adjacent turns 1.

Ainsi, les spires 1 remplissent la quasi-totalité de la surface enveloppe du bobinage, le bobinage étant constitué par plusieurs branches de bobinage, avec ou sans noyau magnétique.Thus, the turns 1 fill almost all the envelope surface of the winding, the winding being constituted by several winding branches, with or without magnetic core.

Les sections supérieure 5 et inférieure 4 représentent, compte tenu de leur dimensions, l'essentiel de la surface des spires. Ainsi, tandis que la longueur Lm (figure 1) des sections montantes 12 est, par exemple, de l'ordre de 20 microns, la longueur Ls des sections inférieures 4 et supérieures 5 est, par exemple, de l'ordre de plusieurs centaines de microns. Les sections supérieure 5 et inférieure 4 ont, de préférence, une forme sensiblement rectangulaire (voire figures 1 à 4), à laquelle s'ajoute des raccords aux sections montantes 12. La section supérieure 5 a avantageusement les mêmes dimensions et, de préférence, la même forme que la section inférieure 4 correspondant à la même spire 1 et elles sont, de préférence, alignées l'une par rapport à l'autre. Ainsi, elles se superposent complètement, c'est-à-dire leurs projections dans un plan parallèle aux sections supérieure 4 et inférieure 5 sont les mêmes.The upper 5 and lower 4 sections represent, given their size, the bulk of the surface of the turns. Thus, while the length Lm (FIG. 1) of the rising sections 12 is, for example, of the order of 20 microns, the length Ls of the lower 4 and upper sections 5 is, for example, of the order of several hundred microns. The upper 5 and lower 4 sections preferably have a substantially rectangular shape (see FIGS. 1 to 4), to which are added connections to the rising sections 12. The upper section 5 advantageously has the same dimensions and, preferably, the same shape as the lower section 4 corresponding to the same turn 1 and they are preferably aligned relative to each other. Thus, they are superimposed completely, that is to say their projections in a plane parallel to the upper sections 4 and 5 are the same.

Sur les figures 1-3, les sections supérieure 4 et inférieure 5 ont une largeur supérieure à la largeur des sections montantes 12a et 12b correspondantes disposées entre deux branches adjacentes 11a et 11b. La largeur des sections montantes 12a et 12b disposées entre deux branches adjacentes 11a et 11b est, de préférence, inférieure à la moitié de la largeur les sections supérieure 4 et inférieure 5 afin de permettre l'enchevêtrement des spires au niveau des croisements entre les spires. Ainsi, les sections supérieure 5 et inférieure 4 ont une largeur supérieure à la somme des largeurs des sections montantes 12 correspondantes disposées entre deux branches de bobinage adjacentes. Avantageusement, les sections montantes 12a et 12b ont la même surface.In Figures 1-3, the upper sections 4 and lower 5 have a width greater than the width of corresponding rising sections 12a and 12b disposed between two adjacent branches 11a and 11b. The width of the rising sections 12a and 12b disposed between two adjacent branches 11a and 11b is preferably less than half the width of the upper and lower sections 4 to allow entanglement of the turns at the crossings between the turns. . Thus, the upper 5 and lower 4 sections have a width greater than the sum of the widths of the corresponding rising sections 12 disposed between two adjacent winding branches. Advantageously, the rising sections 12a and 12b have the same surface.

Les sections montantes 13 disposées à l'extérieur d'une branche extérieure 11a de la micro-inductance peuvent présenter la même largeur que les sections supérieure 4 et inférieure 5 des spires 1 correspondantes de la même branche 11a.The rising sections 13 disposed outside an outer branch 11a of the micro-inductor may have the same width as the upper 4 and lower 5 sections of the corresponding turns 1 of the same branch 11a.

Sur les figures 1-3, les sections supérieure 4 et inférieure 5 de chaque spire 1 correspondant à la branche 11a (à droite sur la figure 1) sont reliées par les sections montantes 13 disposées à l'extérieur. Les sections supérieure 4 et inférieure 5 de chaque spire 1 correspondant à la branche 11d à l'autre extrémité (à gauche sur la figure 1) du noyau 3 sont reliées par les sections montantes 12c disposées entre les branches 11c et 11d adjacentes. Deux spires adjacentes correspondant à la branche 11d à l'extrémité du noyau 3 (représentée à gauche sur la figure 1) sont reliées par une section montante 12d disposée à l'extérieur et une section de connexion 14 disposée dans le plan inférieur correspondant aux sections inférieures 4.In Figures 1-3, the upper 4 and lower 5 sections of each turn 1 corresponding to the branch 11a (right in Figure 1) are connected by the rising sections 13 disposed outside. The upper 4 and lower 5 sections of each turn 1 corresponding to the branch 11d at the other end (left in Figure 1) of the core 3 are connected by the rising sections 12c disposed between the adjacent branches 11c and 11d. Two adjacent turns corresponding to the branch 11d at the end of the core 3 (shown on the left in FIG. 1) are connected by an upwardly mounted rising section 12d and a connection section 14 arranged in the lower plane corresponding to the sections lower 4.

Le dimensionnement de ce bobinage peut se faire de la manière suivante illustrée à la figure 2. On définit la longueur C du noyau magnétique. On considèrera que toutes les branches du noyau sont de même largeur WMAG. Les contraintes technologiques et électriques fixent les dimensions V des sections montantes 12, la distance inter-spire INT et l'espacement M entre le bobinage et le circuit magnétique. Il est à noter que la figure 2 n'est pas à l'échelle et que l'espacement M est, ainsi, variable sur la figure 2. La distance inter-spire INT entre deux spires adjacentes correspond à l'écart 2 d'isolement minimum. L'espacement entre les branches I doit au moins être I=V+2*M. Le bobinage peut alors être entièrement défini. Le nombre de spires par branche N (cinq sur la figure 2) est déterminé par le niveau d'inductance désiré. La largeur WMAX des sections supérieure 5 et inférieure 4 est calculée selon la formule WMAX=(C-2*WMAG-(N-1)*INT-2M)/N. La largeur WMIN des sections montantes 12 est calculée selon la formule WMIN=(WMAX-INT)/2. L'épaisseur de matériau conducteur est finalement fixée comme un compromis entre la facilité de réalisation et le niveau de résistance souhaité.The sizing of this winding can be done in the following manner illustrated in FIG. 2. The length C of the magnetic core is defined. It will be considered that all the branches of the core are of the same width WMAG. The technological and electrical constraints set the dimensions V of the rising sections 12, the inter-turn distance INT and the spacing M between the coil and the magnetic circuit. It should be noted that FIG. 2 is not to scale and that the spacing M is, thus, variable in FIG. 2. The inter-turn distance INT between two adjacent turns corresponds to the difference 2 of minimum isolation. The spacing between the branches I must be at least I = V + 2 * M. The winding can then be fully defined. The number of turns per N-branch (five in FIG. 2) is determined by the desired level of inductance. The WMAX width of the upper 5 and lower 4 sections is calculated according to the formula WMAX = (C-2 * WMAG- (N-1) * INT-2M) / N. The width WMIN of the rising sections 12 is calculated according to the formula WMIN = (WMAX-INT) / 2. The thickness of conductive material is finally fixed as a compromise between the ease of realization and the desired level of resistance.

Sur la figure 4 est illustré une micro-inductance avec un noyau magnétique fermé 3 sensiblement annulaire dont seulement deux branches parallèles 11 sont couvertes d'un bobinage constituant une enveloppe quasi-totale des deux branches 11. Le même type de bobinage que celui précédemment décrit peut être utilisé.FIG. 4 illustrates a micro-inductance with a substantially annular closed magnetic core 3 of which only two parallel branches 11 are covered by a winding constituting an almost total envelope of the two branches 11. The same type of winding as that previously described can be used.

Le mode de réalisation particulier permet d'améliorer les performances des systèmes inductifs et notamment d'augmenter l'inductance de la micro-inductance et la compacité du bobinage.The particular embodiment makes it possible to improve the performance of the inductive systems and in particular to increase the inductance of the micro-inductance and the compactness of the winding.

Dans le mode de réalisation particulier décrit, les spires constituent une enveloppe quasi-complète du noyau magnétique sur les branches parallèles entières du noyau multi-branche. Seuls les écarts 2 d'isolement minimum séparent les sections planes inférieures 4 de deux spires adjacentes, les sections planes supérieures 5 de deux spires adjacentes et deux sections montantes adjacentes. L'écart 2 d'isolement minimum dépend de la technologie de fabrication utilisée et des contraintes électromagnétiques. L'écart entre spires ne dépasse pas l'écart 2 d'isolement minimum.In the particular embodiment described, the turns constitute an almost complete envelope of the magnetic core on the entire parallel branches of the multi-branch core. Only the minimum isolation gaps 2 separate the lower planar sections 4 from two adjacent turns, the upper planar sections 5 from two adjacent turns and two adjacent rising sections. The minimum isolation gap 2 depends on the manufacturing technology used and the electromagnetic constraints. The gap between turns does not exceed the minimum isolation gap 2.

Pour les composants intégrés utilisant des techniques de micro-fabrication classiques, les deux variantes ne présentent aucune difficulté de fabrication additionnelle par rapport aux systèmes conventionnels préexistants. Par exemple, les sections 5 supérieures et inférieures 4 peuvent respectivement être gravées dans des couches conductrices.For the integrated components using conventional micro-manufacturing techniques, the two variants do not present any additional manufacturing difficulties compared to the conventional pre-existing systems. For example, the upper and lower sections 4 may respectively be etched in conductive layers.

Claims (6)

Bobinage comportant une pluralité de spires (1) disjointes constituant une pluralité de branches de bobinage sensiblement parallèles, chaque spire (1) comportant une section plane inférieure (4) rectangulaire dans un plan inférieur, une section plane supérieure (5) rectangulaire dans un plan supérieur et deux sections montantes (12a, 12b, 13), les sections montantes (12a, 12b) de deux branches adjacentes disposées entre les deux branches adjacentes étant disposées en alternance dans un plan unique, bobinage caractérisé en ce que les sections supérieure (5) et inférieure (4) correspondant à une même spire étant alignées l'une par rapport à l'autre et ayant une largeur supérieure à la largeur des sections montantes (12) correspondantes disposées entre deux branches de bobinage adjacentes les spires (1) remplissent la quasi-totalité de la surface enveloppe du bobinage, un écart (2) d'isolement minimum séparant les spires (1) adjacentes.Winding comprising a plurality of disjoint turns (1) constituting a plurality of substantially parallel winding branches, each turn (1) having a lower plane section (4) rectangular in a lower plane, an upper plane section (5) rectangular in a plane two rising sections (12a, 12b, 13), the rising sections (12a, 12b) of two adjacent branches arranged between the two adjacent branches being arranged alternately in a single plane, the winding being characterized in that the upper sections (5 ) and lower (4) corresponding to the same turn being aligned relative to each other and having a width greater than the width of the corresponding rising sections (12) arranged between two adjacent winding branches the turns (1) fill almost all of the envelope surface of the coil, a minimum isolation gap (2) separating the adjacent turns (1). Bobinage selon la revendication 1, caractérisé en ce que les sections supérieure (5) et inférieure (4) correspondant à une même spire ont la même forme.Winding according to claim 1, characterized in that the upper (5) and lower (4) sections corresponding to the same turn have the same shape. Bobinage selon l'une des revendications 1 et 2, caractérisé en ce que les sections supérieure (5) et inférieure (4) ont une largeur supérieure à la somme des largeurs des sections montantes (12) correspondantes disposées entre deux branches de bobinage adjacentes.Winding according to one of claims 1 and 2, characterized in that the upper (5) and lower (4) sections have a width greater than the sum of the widths of the corresponding rising sections (12) arranged between two adjacent winding branches. Bobinage selon l'une quelconque des revendications 1 à 3, caractérisé en ce que les sections montantes (13) disposées à l'extérieur d'une branche de bobinage extérieure du bobinage présentent la même largeur que les sections supérieure (5) et inférieure (4) des spires correspondantes.Winding according to one of Claims 1 to 3, characterized in that the rising sections (13) arranged outside an outer winding leg of the winding have the same width as the upper (5) and lower (5) sections. 4) corresponding turns. Micro-inductance, caractérisée en ce qu'elle comporte un bobinage selon l'une quelconque des revendications 1 à 4.Micro-inductor, characterized in that it comprises a winding according to any one of Claims 1 to 4. Micro-inductance selon la revendication 5, caractérisée en ce qu'elle comporte un noyau magnétique enveloppé par le bobinage.Micro-inductor according to claim 5, characterized in that it comprises a magnetic core enveloped by the winding.
EP07354055.1A 2006-10-23 2007-10-05 Coil comprising several coil branches and micro-inductance comprising one of these coils Not-in-force EP1916675B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0609274A FR2907590B1 (en) 2006-10-23 2006-10-23 ANNULAR SOLENOID WINDING, WINDING HAVING MULTIPLE WINDING BRANCHES AND MICRO-INDUCTANCE COMPRISING ONE OF THE WINDINGS

Publications (2)

Publication Number Publication Date
EP1916675A1 true EP1916675A1 (en) 2008-04-30
EP1916675B1 EP1916675B1 (en) 2016-11-09

Family

ID=37835232

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07354055.1A Not-in-force EP1916675B1 (en) 2006-10-23 2007-10-05 Coil comprising several coil branches and micro-inductance comprising one of these coils

Country Status (4)

Country Link
US (1) US7423509B2 (en)
EP (1) EP1916675B1 (en)
JP (1) JP2008109139A (en)
FR (1) FR2907590B1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7868431B2 (en) * 2007-11-23 2011-01-11 Alpha And Omega Semiconductor Incorporated Compact power semiconductor package and method with stacked inductor and integrated circuit die
US8217748B2 (en) * 2007-11-23 2012-07-10 Alpha & Omega Semiconductor Inc. Compact inductive power electronics package
US7884452B2 (en) 2007-11-23 2011-02-08 Alpha And Omega Semiconductor Incorporated Semiconductor power device package having a lead frame-based integrated inductor
US7884696B2 (en) * 2007-11-23 2011-02-08 Alpha And Omega Semiconductor Incorporated Lead frame-based discrete power inductor
FR2972795B1 (en) * 2011-03-15 2013-10-11 Crouzet Automatismes INDUCTIVE PROXIMITY SENSOR AND METHOD OF MOUNTING SAME
US9548158B2 (en) * 2014-12-02 2017-01-17 Globalfoundries Inc. 3D multipath inductor
JP7302276B2 (en) * 2019-05-15 2023-07-04 株式会社デンソー inductor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198440A (en) * 1992-01-20 1993-08-06 Amorphous Denshi Device Kenkyusho:Kk Coil for thin-film magnetic element and wire wound type thin film transformer
DE10104648A1 (en) * 2000-07-14 2002-01-31 Karlsruhe Forschzent I-inductor as a high-frequency micro-inductor

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2709791A (en) * 1950-10-20 1955-05-31 Jr Robert L Anderson Saturable reactor
US3798059A (en) * 1970-04-20 1974-03-19 Rca Corp Thick film inductor with ferromagnetic core
US3798959A (en) 1972-08-11 1974-03-26 Bowles Fluidics Corp Acoustic gauge and fluidic signal processing circuitry therefor
JPS58137206A (en) * 1982-02-09 1983-08-15 Sony Corp Inductance element
JPS61196505A (en) * 1985-02-26 1986-08-30 Nec Corp Inductance structure
EP0262293B1 (en) * 1986-09-29 1990-12-27 Landis & Gyr Betriebs AG Measuring transformer for the measurement of a current flowing in an electric conductor
JPS63318114A (en) * 1987-06-19 1988-12-27 Hitachi Koki Co Ltd Toroidal coil
JPH0696951A (en) * 1991-10-02 1994-04-08 Amorphous Denshi Device Kenkyusho:Kk Three-dimensional closed-magnetic circuit core type inductance element
JPH05343230A (en) * 1992-06-12 1993-12-24 Hitachi Metals Ltd Thin inductance element
US5939966A (en) * 1994-06-02 1999-08-17 Ricoh Company, Ltd. Inductor, transformer, and manufacturing method thereof
JPH09139313A (en) * 1995-11-10 1997-05-27 Sony Corp Thin film inductance device and semiconductor device
US5793272A (en) * 1996-08-23 1998-08-11 International Business Machines Corporation Integrated circuit toroidal inductor
JPH11261325A (en) * 1998-03-10 1999-09-24 Shiro Sugimura Coil element and its manufacture
JPH11329866A (en) * 1998-05-08 1999-11-30 Alps Electric Co Ltd Cored coil and manufacture thereof
US6380727B1 (en) * 1998-07-03 2002-04-30 Ascom Energy Systems Ag Current sensor
EP1301931A1 (en) * 2000-07-14 2003-04-16 Forschungszentrum Karlsruhe GmbH I-inductor as a high-frequency microinductor
TW577094B (en) * 2002-05-10 2004-02-21 Ind Tech Res Inst High-density multi-turn micro coil and its manufacturing method
US6833781B1 (en) * 2002-06-27 2004-12-21 National Semiconductor Corporation High Q inductor in multi-level interconnect
JP4764668B2 (en) * 2005-07-05 2011-09-07 セイコーエプソン株式会社 Electronic substrate manufacturing method and electronic substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198440A (en) * 1992-01-20 1993-08-06 Amorphous Denshi Device Kenkyusho:Kk Coil for thin-film magnetic element and wire wound type thin film transformer
DE10104648A1 (en) * 2000-07-14 2002-01-31 Karlsruhe Forschzent I-inductor as a high-frequency micro-inductor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WETH AXEL VON DER: "NUMERICAL INDUCTOR OPTIMIZATION", TRANSACTIONS OF THE MAGNETICS SOCIETY OF JAPAN, MAGNETICS SOCIETY OF JAPAN, TOKYO, JP, vol. 2, 1 December 2002 (2002-12-01), pages 361 - 366, XP008076549, ISSN: 1346-7948 *

Also Published As

Publication number Publication date
US20080094165A1 (en) 2008-04-24
US7423509B2 (en) 2008-09-09
FR2907590A1 (en) 2008-04-25
EP1916675B1 (en) 2016-11-09
FR2907590B1 (en) 2009-01-23
JP2008109139A (en) 2008-05-08

Similar Documents

Publication Publication Date Title
EP1916675B1 (en) Coil comprising several coil branches and micro-inductance comprising one of these coils
CA2308871A1 (en) Micro-inductance or micro-transformer micro-components, and manufacturing process for such micro-components
EP0523588B1 (en) Transformer winding composed of an insulating tape comprising electrically conductive patterns for realizing a parallel arrangement of the patterns when zigzag folding this tape
EP2618496B1 (en) NFC antenna with interleaved coils
FR2813987A1 (en) MICRO-COMPONENT OF THE MICRO-INDUCTANCE OR MICRO-TRANSFORMER TYPE
EP1901317A1 (en) Integrated magnetic device with piezoelectric control
EP1157395B1 (en) Discrete inductive-type electronic component, method for the production thereof
FR2704357A1 (en) Integrated electronic elements with variable electrical characteristics, in particular for microwave frequencies.
EP3579255B1 (en) Integrated circuit comprising variable inductance
EP1921640B1 (en) Spiral-shaped closed magnetic core and integrated micro-inductance comprising such a closed magnetic core
EP0439389B1 (en) Method of making electromagnetic coils
EP2278664A1 (en) Left handed composite media, waveguide and antenna using such media, and method of production
FR2811135A1 (en) MICRO-COMPONENT OF THE MICRO-INDUCTANCE OR MICRO-TRANSFORMER TYPE
FR3066854A1 (en) INTEGRATED MAGNETIC DEVICE WITH VARIABLE INDUCTANCE AND METHOD OF MAKING SAME
EP1597606A2 (en) Miniature magnetic field sensor
FR3103625A1 (en) Winding, corresponding production method and aircraft comprising such a winding
FR3037187B1 (en) MAGNETOELECTRIC INDUCTIVE COMPONENT ELECTROSTATICALLY CONNECTED
EP1376758B1 (en) Compact patch antenna with a matching circuit
CA2352452A1 (en) Microcomponent of the micro-inductor or micro-transformer type
FR2819921A1 (en) DATA TRANSMISSION DEVICE FOR GALVANICALLY SEPARATE SIGNAL TRANSMISSION AND USE OF THE DEVICE
WO2008071886A1 (en) Optimised solenoid winding
FR2769122A1 (en) METHOD FOR INCREASING THE FREQUENCY OF OPERATION OF A MAGNETIC CIRCUIT AND CORRESPONDING MAGNETIC CIRCUIT
FR2823365A1 (en) Inductance electrical winding having continuous wire with first direction wire emanating central point/second wire opposite direction with both wires having same electrical sense
FR2802762A1 (en) LOW THICKNESS INDUCTIVE COMPONENT
FR2576447A1 (en) Interference attenuating low-current transmission line device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20081021

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160701

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 844609

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007048632

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161109

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 844609

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170210

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170309

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007048632

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170209

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170810

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171005

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20071005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20211020

Year of fee payment: 15

Ref country code: DE

Payment date: 20211008

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20211029

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007048632

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221005