EP1913979B1 - Inertisierungsvorrichtung mit Stickstoffgenerator - Google Patents
Inertisierungsvorrichtung mit Stickstoffgenerator Download PDFInfo
- Publication number
- EP1913979B1 EP1913979B1 EP07117620A EP07117620A EP1913979B1 EP 1913979 B1 EP1913979 B1 EP 1913979B1 EP 07117620 A EP07117620 A EP 07117620A EP 07117620 A EP07117620 A EP 07117620A EP 1913979 B1 EP1913979 B1 EP 1913979B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- inert gas
- inerting
- oxygen
- pipe system
- nitrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 title claims description 195
- 229910052757 nitrogen Inorganic materials 0.000 title claims description 98
- 239000011261 inert gas Substances 0.000 claims description 119
- 239000003570 air Substances 0.000 claims description 114
- 239000001301 oxygen Substances 0.000 claims description 112
- 229910052760 oxygen Inorganic materials 0.000 claims description 112
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 111
- 238000003860 storage Methods 0.000 claims description 23
- 239000012080 ambient air Substances 0.000 claims description 19
- 238000001514 detection method Methods 0.000 claims description 9
- 239000003638 chemical reducing agent Substances 0.000 claims description 7
- 238000012544 monitoring process Methods 0.000 claims 1
- 230000001681 protective effect Effects 0.000 description 18
- 239000012528 membrane Substances 0.000 description 12
- 238000011161 development Methods 0.000 description 9
- 230000018109 developmental process Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 230000001419 dependent effect Effects 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 239000012510 hollow fiber Substances 0.000 description 8
- 238000000926 separation method Methods 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 238000007689 inspection Methods 0.000 description 6
- 230000033228 biological regulation Effects 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 150000002829 nitrogen Chemical class 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 150000002835 noble gases Chemical class 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 208000023504 respiratory system disease Diseases 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 208000019553 vascular disease Diseases 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62C—FIRE-FIGHTING
- A62C99/00—Subject matter not provided for in other groups of this subclass
- A62C99/0009—Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames
- A62C99/0018—Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames using gases or vapours that do not support combustion, e.g. steam, carbon dioxide
Definitions
- the present invention relates to an inerting device for setting and maintaining predeterminable inertization levels in a protected space to be monitored, wherein the inerting device comprises a controllable inert gas system for providing inert gas, a first supply pipe system connected to the inert gas system, which can be connected to the protective space, around that provided by the inert gas system Inert gas supply to the shelter, and having a control unit which is adapted to control the inert gas system such that a certain specifiable inerting level is set and held in the shelter, the inert gas system having a compressed air source connected to a nitrogen generator to oxygen from the with the Compress compressed air source supplied compressed air and provide nitrogen-enriched air at a first output of the nitrogen generator, and wherein the nitrogen generator provided with Nitrogen-enriched air via the first output of the nitrogen generator can be supplied as an inert gas to the first supply pipe system.
- the inerting device comprises a controllable inert gas system for providing inert gas, a first supply pipe
- Such an inerting device is basically known from the prior art, for example EP 1 683 548 A1 ,
- EP 1 683 548 A1 for example, in the German patent DE 198 11 851 C2 an inerting device for reducing the risk and extinguishing fires in enclosed spaces described.
- the known system is designed, the oxygen content in an enclosed space (hereinafter "shelter” called) on a to reduce the level of pre-fixable ground inerting levels and, in the event of a fire, to further reduce the oxygen content rapidly to a certain level of full inertisation, thereby enabling effective extinguishment of a fire with the least possible storage capacity for inert gas cylinders.
- the known device comprises an inert gas system which can be controlled by means of a control unit and also a feed pipe system connected to the inert gas system and the protective space, via which the inert gas provided by the inert gas system is supplied to the protective space.
- an inert gas is either a steel cylinder battery in which the inert gas is stored compressed, a system for generating inert gases or a combination of both solutions in question.
- inerting of the type mentioned is a facility to reduce the risk and extinguish fires in the protected area to be monitored, with a permanent inerting of the shelter for fire prevention and fire fighting is used.
- the operation of the inerting device is based on the knowledge that in closed rooms the risk of fire can be counteracted by the fact that the oxygen concentration in the affected area is normally lowered permanently to a value of, for example, about 12% by volume. At this oxygen concentration, most flammable materials can no longer burn.
- the main areas of use are in particular IT areas, electrical switch and distribution rooms, enclosed facilities as well as storage areas with high-quality assets.
- the prevention or extinguishing effect resulting from the inertization process is based on the principle of oxygen displacement.
- the normal ambient air is known to be 21% by volume of oxygen, 78% by volume of nitrogen and 1% by volume of other gases.
- inert gas such as nitrogen.
- a extinguishing effect starts when the oxygen content drops below 15% by volume.
- further lowering of the oxygen content to, for example, 12 vol.% May be required.
- the risk of fire in the shelter is also effectively reduced can be.
- base inertization level generally refers to a reduced oxygen level in the room air of the shelter as compared to the oxygen level of the normal ambient air, although this reduced oxygen level does not in principle imply any endangerment to persons or animals from a medical point of view still be able to enter the shelter - under certain circumstances with certain precautionary measures.
- the setting of a basic inertization level which, unlike the so-called “full inertization level”, does not have to correspond to such a reduced oxygen content at which effective fire extinguishment already occurs, primarily to reduce the risk of fire in the shelter to reduce.
- the basic inerting level corresponds, depending on the circumstances of the individual case, to an oxygen content of, for example, 13% by volume to 15% by volume.
- full inertization level is to be understood as meaning a further reduced oxygen content in comparison to the oxygen content of the basic inertization level, in which the flammability of most materials has already been reduced to such an extent that they can no longer be ignited.
- the full inertization level is generally 11% by volume to 12% by volume oxygen concentration.
- the reduced oxygen content in the room air of the protected room corresponding to the basic inerting level in principle does not endanger persons and animals so that they can enter the shelter at least for a short time without major complications, for example without respiratory protection, they are permanently inertized at a basic inerting level
- Certain nationally prescribed safety measures must be taken into account, since in principle a stay in a reduced oxygen atmosphere can lead to an oxygen deficiency, which may have physiological effects on the human organism. These safety measures are specified in the respective national regulations and depend in particular on the amount of reduced oxygen content corresponding to the basic inerting level.
- Table 1 below shows these effects on the human organism and the flammability of materials.
- a shelter that would normally be at a basic inerting level of e.g. 13.8 to 14.5% by volume oxygen content in which, according to Table 1, an effective fire suppression can already be achieved, in the case of the inspection, for example for maintenance purposes, to a walkability level of e.g. Increase 15 to 17 vol .-% oxygen content.
- the inert gas system should also produce or provide inert gas during the period of inspection of the protective space, so that the inert gas is supplied to the shelter in order to maintain the inerting level there (possibly with a certain control range) at the accessibility level.
- the term "accessibility level” as used herein means a reduced oxygen content in the ambient air of the shelter as compared to the oxygen content of the normal ambient air, in which the respective national regulations for an inspection of the shelter are none or only slight require additional security measures.
- the walkability level usually corresponds to an oxygen content in the room air that is higher than at a basic inerting level.
- the present invention is based on the object of developing an inerting device of the type mentioned in such a way that it can be reliably ensured that the inerting level can be quickly raised to a walkability level in a permanently inertized shelter without the need for additional large-scale structural measures ,
- the present invention has for its object to provide an inerting device of the type mentioned, with which a set in a protected space to be monitored inerting can be set and / or maintained in a reliable, the switching of the set in the shelter inerting, for example between a basic or full inertisation level and a level of accessibility, can be carried out as quickly as possible, without the need for major structural measures.
- the inerting device further comprises a second supply pipe system connected to the inert gas system, which can be connected to the protective space, wherein the oxygen separated from the compressed air from the nitrogen generator oxygen-enriched air can be supplied to the second supply pipe system via a second outlet of the nitrogen generator in order to set and / or maintain a certain inerting level in the shelter.
- the use of nitrogen generators in inerting devices is known per se.
- the nitrogen generator is a system that can be used, for example, to generate nitrogen-enriched air from normal ambient air.
- This is a gas separation system whose function is based, for example, on gas separation membranes.
- the nitrogen generator is designed for the separation of oxygen from the ambient air.
- a compressed air network or at least a compressor is required which produces the predetermined capacity for the nitrogen generator.
- the principle of action of the nitrogen generator is based on the fact that in the membrane system provided in the nitrogen generator, the various components contained in the compressed air supplied to the nitrogen generator (oxygen, nitrogen, noble gases, etc.) diffuse at different speeds through hollow-fiber membranes in accordance with their molecular structure. Nitrogen with a low degree of diffusion penetrates the hollow-fiber membranes very slowly and accumulates in this way as it flows through the hollow fiber.
- the general discovery is that different gases diffuse through materials at different rates.
- the different diffusion rates of the main components of the air namely nitrogen, oxygen and water vapor, are used technically to produce a nitrogen stream or a nitrogen-enriched air.
- a separation material is applied to the outer surfaces of hollow-fiber membranes, through which water vapor and oxygen diffuse very well. The nitrogen, however, has only a low diffusion rate for this separation material.
- the PSA technology for example, in the nitrogen generator
- different binding rates of the atmospheric oxygen and atmospheric nitrogen on specially treated activated carbon are utilized.
- the structure of the activated carbon used is changed so that an extremely large surface with a large number of micro and submicropores (d ⁇ 1 nm) is present.
- the oxygen molecules of the air diffuse into the pores much faster than the nitrogen molecules, so that the air in the vicinity of the activated carbon enriches with nitrogen.
- the usually discharged into the ambient air exhaust air of the nitrogen generator which consist essentially of oxygen-enriched air used to adjust the oxygen concentration in the shelter with this exhaust air.
- the lifting of a full or basic inertisation level set in the shelter can be converted to a walkability level within a very short time.
- raising the full or basic inertization level set in the shelter to the walkability level by introducing the oxygen-enriched air it is possible to raise the oxygen content in the shelter by introducing a relatively small amount of gas.
- the air exchange rate in the shelter should be kept at a low value. Namely, if not the oxygen-enriched air but, for example, "normal" ambient air, i. Air with an oxygen content of 21% by volume, which is used to increase the oxygen content in the shelter, requires a significantly higher amount of gas compared to the oxygen-enriched air.
- the second supply pipe system discharges into the first supply pipe system and is thus connectable to the protection space via the first supply pipe system, so that this first supply pipe system is used solely to adjust or set a certain inertization level in the shelter . to keep.
- the inerting device further includes a shutoff valve associated with the second supply pipe system and controllable via the control unit for interrupting by means of the second supply pipe system between the having second output of the nitrogen generator and the shelter space producible connection.
- a controllable shut-off valve for example, a corresponding controllable control valve or the like in question.
- the inerting system further comprises a pressure storage tank for storing the oxygen-enriched air provided by the nitrogen generator, the control unit being adapted to associate with a so-called “oxygen pressure storage tank” and with the second one Supply pipe connected drive controllable pressure reducer in such a way to adjust or maintain a certain inerting in the shelter.
- a pressure-dependent valve device is furthermore provided, which is open in a first predeterminable pressure range and allows the oxygen pressure-accumulator container to be filled with the oxygen-enriched air provided by the nitrogen generator.
- the inerting device furthermore has at least one shut-off valve which is assigned to the first supply pipe system and can be actuated via the control unit for interrupting the connection which can be produced by means of the first supply pipe system between the first outlet of the nitrogen generator and the protective space.
- the control unit for interrupting the connection which can be produced by means of the first supply pipe system between the first outlet of the nitrogen generator and the protective space.
- At least one oxygen detection device is provided for detecting the oxygen content in the room air of the protection space, the control unit being designed to control the amount of inert gas to be supplied to the protection space and / or or to adjust the oxygen concentration of the inert gas as a function of the measured in the room air of the shelter oxygen content, thus basically only the actually required to set or hold a certain inerting required in the shelter inert gas to the shelter.
- the provision of such an oxygen detection device ensures that the inerting levels to be set in the protective space can be set and maintained as accurately as possible by supplying a suitable inert gas quantity and / or a suitable fresh air or oxygen quantity.
- the oxygen detection device continuously or at predeterminable times emits a corresponding signal to the corresponding control unit, as a result of which the inert gas system is correspondingly activated in order always to supply the protective space with the inertization level necessary for maintaining the inertization level set in the protection space.
- the term "holding the oxygen content at a certain inertization level” as used herein means maintaining the oxygen content at the inertization level with a certain control range, the control range preferably being a function of the Type of shelter (for example, depending on an applicable for the shelter air exchange rate or depending on the materials stored in the shelter) and / or depending on the type of inerting system used for use.
- a control range is ⁇ 0.2 vol%.
- other control range sizes are also conceivable.
- an aspirative device offers itself here.
- the room air in the protected space to be monitored is constantly taken representative air samples and fed to an oxygen detector, which emits a corresponding detection signal to the corresponding control unit.
- the control unit being designed to control, for example, the air conveyor rate of the ambient air compressor such that the amount of inert gas supplied to the protective room by the inert gas system and / or the Oxygen concentration in the inert gas can be set to the appropriate value for setting and / or holding the first predetermined inerting.
- This preferred solution with regard to the inert gas system is characterized in particular by the fact that the inert gas system can generate the inert gas in situ, which eliminates the need, for example, to provide a pressure-cell battery in which the inert gas is stored in a compressed form.
- the inert gas system further comprises an inert gas pressure storage container, wherein the control unit should be designed to control a controllable pressure reducer associated with the inert gas pressure accumulator tank and connected to the first supply pipe system in such a way as to provide that provided by the inert gas unit Set amount of inert gas to be supplied to the shelter space and / or the oxygen concentration in the inert gas to the value suitable for setting and / or maintaining the predeterminable inertization.
- the inert gas pressure storage container may be provided in combination with the aforementioned ambient air compressor and / or inert gas generator or else alone.
- the inerting device further comprises a pressure-dependent valve device which opens in a first prescribable pressure range, for example between 1 and 4 bar is and a filling of the inert gas pressure storage tank with the inert gas system allowed.
- the solution according to the invention is not limited to setting or maintaining the accessibility level in the shelter. Rather, the claimed inerting device is designed such that the predeterminable inerting level can be a Vollinertmaschinesforementioned, a Grundinertmaschinesclude or a walkability level.
- the inert gas system further comprises a bypass pipe system preferably connectable with the control unit via a shut-off valve which is connected on the one hand to a compressed air source and on the other hand to the first supply pipe system Compressed air source supplied compressed air to the shelter as fresh air, and thus to adjust the oxygen concentration in the shelter at a level which corresponds to be set in the shelter and / or held certain inerting.
- a bypass pipe system preferably connectable with the control unit via a shut-off valve which is connected on the one hand to a compressed air source and on the other hand to the first supply pipe system Compressed air source supplied compressed air to the shelter as fresh air, and thus to adjust the oxygen concentration in the shelter at a level which corresponds to be set in the shelter and / or held certain inerting.
- the protective space supplied inert gas and the oxygen concentration in the inert gas can be controlled in the inert gas system to the necessary for setting or holding the predetermined inerting in the shelter value, the inert gas system the controllable inert gas system, which is connected to the control unit via a shut-off valve bypass pipe system which is connected on the one hand to a compressed air source and on the other hand to the first supply pipe system, and the supply pipe system.
- the inert gas system has the function of providing both (ideally pure) inert gas and fresh air, so that the supply pipe system, which connects the inert gas system with the shelter, for the supply of pure inert gas, pure fresh air or a mixture thereof is used.
- compressed air compressed air compressed air is to be understood in the broadest sense.
- compressed air but also compressed and oxygen-enriched air to be understood.
- the compressed air can either be stored in appropriate pressure vessels or generated locally with suitable compressor equipment.
- compressed air for example, fresh air is to be understood, is introduced by means of a suitable blower in the bypass pipe system. Since the introduced with a blower in the bypass pipe system air also has a higher pressure compared to the normal ambient air, so there is compressed air or compressed air.
- the amount of inert gas supplied by the inert gas system and / or the oxygen concentration in the inert gas can be controlled on the one hand by a corresponding control of the inert gas system, with which the absolute amount of inert gas provided per unit time is controlled on the other hand by a corresponding control of the bypass pipe system associated with the shut-off valve, whereby the absolute, the protection space per unit time supplied fresh air amount is set.
- the compressed-air source has a pressure storage container for storing oxygen, oxygen-enriched air or compressed air
- the control unit is designed to control a controllable pressure reducer associated with the pressure storage container and connected to the first supply pipe system, to set or maintain a certain inerting level in the shelter.
- the pressure storage container can be provided either as a compressed air source itself or as a separate unit in addition to the compressed air source in the inerting.
- the accumulator tank is in an advantageous manner in fluid communication with the via the shut-off valve switchable bypass pipe system.
- Fig. 1 1 schematically shows a first preferred embodiment of the inerting device 1 according to the invention for setting and maintaining predeterminable inerting levels in a protected space 2 to be monitored.
- the inerting device 1 consists of an inert gas system, which in the illustrated embodiment has an ambient air compressor 10 and an inert gas or nitrogen generator 11 connected thereto.
- a control unit 12 is provided, which is designed to turn on / off via corresponding control signals the ambient air compressor 10 and / or the nitrogen generator 11. In this way, by means of the control unit 12 in the shelter 2, a predetermined inerting level can be set and maintained.
- the inert gas generated by the inert gas system 10, 11 is supplied via a feed pipe system 20 ("first supply pipe system") to the protected space 2 to be monitored; Of course, however, several shelters may be connected to the supply pipe system 20.
- first supply pipe system the supply of the inert gas provided with the inert gas system 10, 11 via corresponding outlet nozzles 51, which are arranged at a suitable location in the shelter 2.
- the inert gas advantageously nitrogen, recovered locally from the ambient air.
- the inert gas generator or nitrogen generator 11 functions, for example, according to the known from the prior art membrane or PSA technology to produce nitrogen-enriched air with, for example, 90 vol .-% to 95 vol .-% nitrogen content.
- This nitrogen-enriched air is used in the Fig. 1 illustrated preferred embodiment as an inert gas, which is supplied to the shelter 2 via the supply pipe system 20.
- the nitrogen generator 11 has an (not explicitly shown) air separation system to separate oxygen from the compressed air supplied with the compressed air source 10 compressed air and nitrogen-enriched air at a first output 11a of the nitrogen generator 11.
- the nitrogen generator 11 provided by nitrogen and enriched Air via the first output 11a of the nitrogen generator 11 can be supplied as an inert gas to the first supply pipe system 20.
- the inerting device 11 further has a second supply pipe system 30 connected to the inert gas system 10, 11, which can be connected to the protective space 2 via a shut-off valve 31 which can be activated by the control unit 12, the oxygen separated from the compressed air by the nitrogen generator 11 being oxygen-enriched air via a second output 11b of the nitrogen generator 11 to the second supply pipe system 30 can be supplied.
- the second supply pipe system 30 opens in the first supply pipe system 20 and is therefore connectable to the shelter 2 via the first supply pipe system 20.
- control unit 12 depending on an example entered by the user in the control unit 12 inerting the inert gas system 10, 11 so controlled that the predetermined inerting is set and maintained in the shelter 2.
- the selection of the desired inerting levels on the control unit 12 can be carried out, for example, with a key switch or password-protected on a (not explicitly shown) control panel.
- the selection of the inertization level takes place according to a predetermined sequence of events.
- the basic inerting level is selected at the control unit 12, which was determined in advance taking into account the characteristic values of the protection space 2, and if no inertization level has been set in the selection of the basic inertization level in the protection space 2, ie if there is a gas atmosphere in the protection space, which is substantially identical to the chemical composition of the ambient air
- a shut-off valve 21 associated with the supply pipe system 20 is connected to the control unit 12 for direct forwarding of the inert gas provided by the inert gas system 10, 11 in the shelter 2.
- the oxygen content in the protective space 2 is preferably continuously measured with the aid of an oxygen detection device 50.
- the oxygen sensing device 50 communicates with the control unit 12 so that the Control unit 12 basically has knowledge of the oxygen content set in the shelter 2.
- the control unit 12 If it is determined by measurement of the oxygen content in the shelter 2 that the Grundinertmaschinesmat was reached in the shelter 2, the control unit 12 outputs a corresponding signal to the inert gas system 10, 11 and / or to the shut-off valve 21 to turn off the further supply of inert gas. In the course of time, inert gas escapes through certain leaks, so that the oxygen concentration in the indoor air atmosphere increases. When the inertization level has moved away from the set point by more than a predetermined amount, the control unit 12 sends a corresponding signal to the inert gas system 10, 11 and / or to the shut-off valve 21 to reactivate the supply of inert gas.
- Fig. 2 shows a schematic view of a second preferred embodiment of the inertization device according to the invention 1.
- the in Fig. 2 shown system differs from the embodiment according to Fig. 1 in that additionally an accumulator tank 32 is provided for storing the oxygen-enriched air provided by the nitrogen generator 11, the control unit 12 being adapted to control a controllable pressure reducer 33 associated with the oxygen accumulator tank 32 and connected to the second supply pipe system 30, to set the amount of inert gas to be supplied to the shelter 2 from the inert gas equipment 10, 11 and / or the oxygen concentration in the inert gas to the value suitable for setting and / or maintaining the determined inertization level.
- an accumulator tank 32 is provided for storing the oxygen-enriched air provided by the nitrogen generator 11, the control unit 12 being adapted to control a controllable pressure reducer 33 associated with the oxygen accumulator tank 32 and connected to the second supply pipe system 30, to set the amount of inert gas to be supplied to the shelter 2 from the inert gas equipment 10, 11 and /
- a pressure-dependent valve device 34 is provided, which is open in a first predeterminable pressure range and allows a filling of the oxygen pressure storage container 32 with the nitrogen generator 11 provided and oxygen-enriched air.
- the inerting device 1 an accumulator tank 22 serving to store, if necessary, the nitrogen-enriched air supplied from the nitrogen generator 11.
- the control unit 12 is designed to correspondingly control a valve system 23, 24 associated with the pressure accumulator tank 22 and connected to the first supply pipe system 20 via the controllable three-way valve 21 in order to connect the pressure accumulator tank 22 to the first supply pipe system 20 as needed, so that the provided in the accumulator tank 22 and with Nitrogen-enriched air can be supplied to the shelter 2.
- the controller 12 and the valve system 23, 24 should be designed so that from the accumulator tank 22, a sufficient amount of nitrogen-enriched air can be supplied to the shelter to hold or set in the shelter 2, the certain inerting.
- the pressure accumulator tank 22 associated valve system 23, 24 includes a pressure-dependent valve device 24 which is open in a first predetermined pressure range and allows filling of the pressure storage container 22 with the nitrogen generator 11 provided and enriched with nitrogen air. Furthermore, the valve system has a controllable by the control three-way valve 24. This three-way valve 24, together with the three-way valve 21, allows an outlet pipe system connected to the outside atmosphere, the accumulator tank 22, and the first supply pipe system 20 to be connected to each other as necessary
- Fig. 3 shows a schematic view of another embodiment of the inertization device according to the invention 1.
- a bypass pipe system 40 on the one hand and on the other hand a second supply pipe system 30 between the second output 11b of the nitrogen generator 11 and the first supply pipe system 20 is provided.
- the bypass pipe system 40 connects the output of the compressed air source 10 to the supply pipe system 20.
- the supply pipe 20 and thus the shelter 2 directly supplied from the compressed air source 10 compressed air can be supplied as fresh air as needed.
- a direct supply of fresh air in the protection space 2 may be required if the inertization level set in the protection space 2 corresponds to an oxygen concentration which is lower than the oxygen concentration of an inertization level to be set in the protection space 2.
- the amount of inert gas to be supplied to the protective space and / or the oxygen concentration in the inert gas are provided for setting and / or maintaining a certain inertization level, the protective space 2 being provided by the inert gas system via one and the same supply pipe system 20 Inert gas is supplied.
- the nitrogen generator 11 may comprise, for example, a cascade of single-membrane units, the number of individual-membrane units being selectable for separating oxygen from that supplied to the compressed-air source 10 via the control unit 12 Compressed air and for providing the nitrogen-enriched air at the first exit 11a of the nitrogen generator 11, the degree of nitrogen enrichment in the nitrogen-enriched air provided by the nitrogen generator 11 being controlled in response to the number of single-membrane units selected via the control unit 12 can.
Landscapes
- Health & Medical Sciences (AREA)
- Public Health (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
Description
- Die vorliegende Erfindung betrifft eine Inertisierungsvorrichtung zum Einstellen und Halten vorgebbarer Inertisierungsniveaus in einem zu überwachenden Schutzraum, wobei die Inertisierungsvorrichtung eine ansteuerbare Inertgasanlage zum Bereitstellen von Inertgas, ein mit der Inertgasanlage verbundenes erstes Zufuhrrohrsystem, welches mit dem Schutzraum verbindbar ist, um das von der Inertgasanlage bereitgestellte Inertgas dem Schutzraum zuzuführen, und eine Steuereinheit aufweist, welche ausgelegt ist, die Inertgasanlage derart anzusteuern, dass ein bestimmtes vorgebbares Inertisierungsniveau in dem Schutzraum eingestellt und dort gehalten wird, wobei die Inertgasanlage einen mit einer Druckluftquelle verbundenen Stickstoffgenerator aufweist, um Sauerstoff aus der mit der Druckluftquelle zugeführten Druckluft abzuscheiden und mit Stickstoff angereicherte Luft an einem ersten Ausgang des Stickstoffgenerators bereitzustellen, und wobei die vom Stickstoffgenerator bereitgestellte mit Stickstoff angereicherte Luft über den ersten Ausgang des Stickstoffgenerators als Inertgas dem ersten Zufuhrrohrsystem zuführbar ist.
- Eine solche Inertisierungsvorrichtung ist dem Grunde nach aus dem Stand der Technik bekannt z.B.
EP 1 683 548 A1 . Beispielsweise ist in derdeutschen Patentschrift DE 198 11 851 C2 eine Inertisierungsvorrichtung zur Minderung des Risikos und zum Löschen von Bränden in geschlossenen Räumen beschrieben. Das bekannte System ist dabei ausgelegt, den Sauerstoffgehalt in einem umschlossenen Raum (nachfolgend "Schutzraum" genannt) auf ein vorab festlegbares Grundinertisierungsniveau abzusenken, und im Falle eines Brandes den Sauerstoffgehalt rasch auf ein bestimmtes Vollinertisierungsniveau weiter abzusenken, um somit eine effektive Löschung eines Brandes bei möglichst geringer Lagerkapazität für Inertgasflaschen zu ermöglichen. Hierzu weist die bekannte Vorrichtung eine mittels einer Steuereinheit ansteuerbare Inertgasanlage sowie ein mit der Inertgasanlage und dem Schutzraum verbundenes Zufuhrrohrsystem auf, über welches das von der Inertgasanlage bereitgestellte Inertgas dem Schutzraum zugeführt wird. Als Inertgasanlage kommt entweder eine Stahlflaschenbatterie, in welcher das Inertgas komprimiert gelagert ist, eine Anlage zum Erzeugen von Inertgasen oder eine Kombination beider Lösungen in Frage. - Bei der Inertisierungsvorrichtung der eingangs genannten Art handelt es sich um eine Anlage zur Minderung des Risikos und zum Löschen von Bränden in dem zu überwachenden Schutzraum, wobei eine Dauerinertisierung des Schutzraumes zur Brandverhütung bzw. Brandbekämpfung eingesetzt wird. Die Wirkungsweise der Inertisierungsvorrichtung beruht auf der Kenntnis, dass in geschlossenen Räumen der Brandgefahr dadurch begegnet werden kann, dass die Sauerstoffkonzentration in dem betroffenen Bereich im Normalfall auf einen Wert von beispielsweise etwa 12 Vol.-% dauerhaft abgesenkt wird. Bei dieser Sauerstoffkonzentration können die meisten brennbaren Materialien nicht mehr brennen. Haupteinsatzgebiet sind insbesondere EDV-Bereiche, elektrische Schalt- und Verteilerräume, umschlossene Einrichtungen sowie Lagerbereiche mit hochwertigen Wirtschaftsgütern.
- Die bei dem Inertisierungsverfahren resultierende Präventions- bzw. Löschwirkung beruht dabei auf dem Prinzip der Sauerstoffverdrängung. Die normale Umgebungsluft besteht bekanntlich zu 21 Vol.-% aus Sauerstoff, zu 78 Vol.-% aus Stickstoff und zu 1 Vol.-% aus sonstigen Gasen. Um in einem Schutzraum das Risiko der Entstehung eines Brandes wirksam zu verringern, wird die Sauerstoffkonzentration in dem betreffenden Raum durch Einleiten von Inertgas, wie beispielsweise Stickstoff verringert. Im Hinblick auf die Brandlöschung von den meisten Feststoffen ist es beispielsweise bekannt, dass eine Löschwirkung einsetzt, wenn der Sauerstoffanteil unter 15 Vol.-% absinkt. Abhängig von den in dem Schutzraum vorhandenen brennbaren Materialien kann ein weiteres Absenken des Sauerstoffanteils auf beispielsweise 12 Vol.-% erforderlich sein. Anders ausgedrückt bedeutet dies, dass durch eine Dauerinertisierung des Schutzraumes auf einem so genannten "Grundinertisierungsniveau", bei welchem der Sauerstoffanteil in der Raumluft unter beispielsweise 15 Vol.-% abgesenkt ist, auch das Risiko der Entstehung eines Brandes in dem Schutzraum in effektiver Weise vermindert werden kann.
- Unter dem hierin verwendeten Begriff "Grundinertisierungsniveau" ist allgemein ein im Vergleich zum Sauerstoffgehalt der normalen Umgebungsluft reduzierter Sauerstoffgehalt in der Raumluft des Schutzraumes zu verstehen, wobei allerdings dieser reduzierte Sauerstoffgehalt im Prinzip aus medizinischer Sicht noch keinerlei Gefährdung von Personen oder Tieren bedeutet, so dass diese noch den Schutzraum - unter Umständen mit gewissen Vorsichtsmaßnahmen - betreten können. Wie bereits angedeutet, dient das Einstellen eines Grundinertisierungsniveaus, welches im Unterschied zu dem so genannten "Vollinertisierungsniveau" nicht einem derart reduzierten Sauerstoffanteil entsprechen muss, bei welchem bereits eine wirksame Brandlöschung eintritt, in erster Linie dazu, das Risiko der Entstehung eines Brandes in dem Schutzraum zu reduzieren. Das Grundinertisierungsniveau entspricht - abhängig von den Umständen des Einzelfalls - einem Sauerstoffgehalt von beispielsweise 13 Vol.-% bis 15 Vol.-%.
- Hingegen ist unter dem Begriff "Vollinertisierungsniveau" ein im Vergleich zum Sauerstoffgehalt des Grundinertisierungsniveaus weiter reduzierter Sauerstoffgehalt zu verstehen, bei welchem die Entflammbarkeit der meisten Materialien bereits soweit herabgesetzt ist, dass sich diese nicht mehr entzünden können. Abhängig von der in dem betroffenen Schutzraum vorhandenen Brandlast liegt das Vollinertisierungsniveau in der Regel bei 11 Vol.-% bis 12 Vol.-% Sauerstoffkonzentration.
- Obwohl der dem Grundinertisierungsniveau entsprechende reduzierte Sauerstoffgehalt in der Raumluft des Schutzraumes im Prinzip noch keinerlei Gefährdung von Personen und Tieren bedeutet, so dass diese den Schutzraum zumindest kurzzeitig ohne größere Beschwernisse, beispielsweise ohne Atemschutz, betreten können, sind bei der Begehung eines auf einem Grundinertisierungsniveau dauerinertisierten Raumes gewisse national vorgeschriebene Sicherheitsmaßnahmen zu beachten, da grundsätzlich der Aufenthalt in einer reduzierten Sauerstoffatmosphäre zu einem Sauerstoffmangel führen kann, was unter Umständen physiologische Auswirkungen auf den menschlichen Organismus hat. Diese Sicherheitsmaßnahmen sind in den jeweiligen nationalen Vorschriften festgelegt und hängen insbesondere von dem Betrag des reduzierten Sauerstoffgehaltes ab, der dem Grundinertisierungsniveau entspricht.
- In der nachfolgend angegebenen Tabelle 1 sind diese Auswirkungen auf den menschlichen Organismus und auf die Brennbarkeit von Materialien angegeben.
- Um die hinsichtlich der Begehbarkeit des Schutzraums durch die nationalen Vorschriften auferlegten Sicherheitsmaßnahmen, die mit Abnahme des Sauerstoffanteils in der Raumluft des Schutzraumes zunehmend strenger werden, auf einfache und insbesondere leicht zu realisierende Weise zu erfüllen, wäre es denkbar, zum Zwecke und für den Zeitraum der Begehung die Dauerinertisierung des Schutzraumes von dem Grundinertisierungsniveau auf ein so genanntes Begehbarkeitsniveau anzuheben, bei welchem die vorgeschriebenen Sicherheitsanforderungen geringer sind und ohne größere Umstände eingehalten werden können.
Tabelle 1 Sauerstoffanteil im Schutzraum Auswirkung auf den menschlichen Organismus Auswirkung auf die Brennbarkeit von Materialien 8 Vol.-% Lebensgefahr Nicht brennbar 10 Vol.-% Urteilskraft und Schmerzempfinden lassen nach Nicht brennbar 12 Vol.-% Ermüdung, Erhöhung von Atemvolumen und Puls Schwer entflammbar 15 Vol.-% Keine Schwer entflammbar 21 Vol.-% Keine Keine - Beispielsweise wäre es sinnvoll, einen Schutzraum, der im Normalfall auf einem Grundinertisierungsniveau von z.B. 13,8 bis 14,5 Vol.-% Sauerstoffanteil dauerinertisiert ist, bei welchem gemäß Tabelle 1 bereits eine wirksame Brandunterdrückung erzielt werden kann, im Falle der Begehung, beispielsweise zu Wartungszwecken, auf ein Begehbarkeitsniveau von z.B. 15 bis 17 Vol.-% Sauerstoffanteil anzuheben.
- Aus medizinischer Sicht ist ein zeitlich begrenzter Aufenthalt in einer auf dieses Begehbarkeitsniveau reduzierten Sauerstoffatmosphäre für alle Personen unbedenklich, bei denen keine Herz-, Kreislauf-, Gefäß- oder Atemwegserkrankungen vorliegen, so dass die jeweiligen nationalen Vorschriften hierfür keine oder wenn überhaupt nur geringe zusätzlichen Sicherheitsmaßnahmen fordern.
- Üblicherweise erfolgt das Anheben des im Schutzraum eingestellten Inertisierungsniveaus von dem Grundinertisierungsniveau auf das Begehbarkeitsniveau durch eine entsprechende Ansteuerung der Inertgasanlage. Hierbei ist es insbesondere aus wirtschaftlichen Gründen sinnvoll, während der Begehung des Schutzraumes das in dem Schutzraum eingestellte Inertisierungsniveau (ggf. mit einem entsprechenden Regelbereich) dauerhaft auf dem Begehbarkeitsniveau zu halten, um die nach der Begehung des Schutzraumes zum erneuten Einstellen des Grundinertisierungsniveaus in den Schutzraum einzuleitende Inertgasmenge möglichst gering zu halten. Aus diesem Grund sollte die Inertgasanlage auch während des Zeitraumes der Begehung des Schutzraumes Inertgas erzeugen bzw. bereitstellen, so dass dem Schutzraum das Inertgas entsprechend zugeführt wird, um dort das Inertisierungsniveau (ggf. mit einem gewissen Regelbereich) auf dem Begehbarkeitsniveau zu halten.
- Hierbei sei darauf hingewiesen, dass unter dem hierin verwendeten Begriff "Begehbarkeitsniveau" ein im Vergleich zum Sauerstoffgehalt der normalen Umgebungsluft reduzierter Sauerstoffgehalt in der Raumluft des Schutzraumes zu verstehen ist, bei welchem die jeweiligen nationalen Vorschriften für eine Begehung des Schutzraumes keine oder wenn überhaupt nur geringe zusätzliche Sicherheitsmaßnahmen fordern. Das Begehbarkeitsniveau entspricht in der Regel einem Sauerstoffanteil in der Raumluft, der höher ist als bei einem Grundinertisierungsniveau.
- Der vorliegenden Erfindung liegt nun die Aufgabe zugrunde, eine Inertisierungsvorrichtung der eingangs genannten Art derart weiterzuentwickeln, dass in zuverlässiger Weise sichergestellt werden kann, dass das Inertisierungsniveau in einem dauerinertisierten Schutzraum schnell auf ein Begehbarkeitsniveau angehoben werden kann, ohne dass hierzu zusätzliche größere bauliche Maßnahmen erforderlich sind.
- Allgemein ausgedrückt liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine Inertisierungsvorrichtung der genannten Art anzugeben, mit welcher in zuverlässiger Weise ein in einem zu überwachenden Schutzraum vorgebbares Inertisierungsniveau eingestellt und/oder gehalten werden kann, wobei das Umschalten der in dem Schutzraum eingestellten Inertisierungsniveaus, beispielsweise zwischen einem Grund- oder einem Vollinertisierungsniveau und einem Begehbarkeitsniveau, möglichst rasch ausgeführt werden kann, wobei hierzu keine größeren baulichen Maßnahmen erforderlich sind.
- Diese Aufgaben werden mit einer Inertisierungsvorrichtung der eingangs genannten Art dadurch gelöst, dass die Inertisierungsvorrichtung ferner ein mit der Inertgasanlage verbundenes zweites Zufuhrrohrsystem aufweist, welches mit dem Schutzraum verbindbar ist, wobei der vom Stickstoffgenerator aus der Druckluft abgeschiedene Sauerstoff als mit Sauerstoff angereicherte Luft über einen zweiten Ausgang des Stickstoffgenerators dem zweiten Zufuhrrohrsystem zuführbar ist, um somit im Schutzraum ein bestimmtes Inertisierungsniveau einzustellen und/oder zu halten.
- Der Einsatz von Stickstoffgeneratoren in Inertisierungsvorrichtungen ist an sich bekannt. Der Stickstoffgenerator ist ein System, mit dem aus beispielsweise der normalen Umgebungsluft mit Stickstoff angereicherte Luft erzeugt werden kann. Es handelt sich hierbei um ein Gasseparationssystem, dessen Funktion beispielsweise auf Gasseparationsmembranen basiert. Der Stickstoffgenerator ist dabei zur Abscheidung von Sauerstoff aus der Umgebungsluft konzipiert. Zum Aufbau eines betriebsfähigen Gasseparationssystems, welches auf einem Stickstoffgenerator basiert, ist ein Druckluftnetz oder zumindest ein Kompressor erforderlich, der die vorgegebene Kapazität für den Stickstoffgenerator produziert. Das Wirkungsprinzip des Stickstoffgenerators basiert darauf, dass in dem im Stickstoffgenerator vorgesehenen Membransystem die verschiedenen in der dem Stickstoffgenerator zugeführten Druckluft enthaltenen Komponenten (Sauerstoff, Stickstoff, Edelgase, etc.) entsprechend ihrer molekularen Struktur unterschiedlich schnell durch Hohlfasermembranen diffundieren. Stickstoff mit einem niedrigen Diffusionsgrad durchdringt die Hohlfasermembranen sehr langsam und reichert sich auf diese Weise beim Durchströmen der Hohlfaser an.
- Wenn beispielsweise im Stickstoffgenerator eine Membrantechnik zum Einsatz kommt, wird die allgemeine Erkenntnis ausgenutzt, dass verschiedene Gase unterschiedlich schnell durch Materialien diffundieren. Beim Stickstoffgenerator werden in diesem Fall die unterschiedlichen Diffusionsgeschwindigkeiten der Hauptbestandteile der Luft, nämlich Stickstoff, Sauerstoff und Wasserdampf, technisch zur Erzeugung eines Stickstoffstromes bzw. einer mit Stickstoff angereicherten Luft genutzt. Im einzelnen wird zur technischen Realisierung eines auf der Membrantechnik basierenden Stickstoffgenerators auf die Außenflächen von Hohlfasermembranen ein Separationsmaterial aufgebracht, durch welches Wasserdampf und Sauerstoff sehr gut diffundieren. Der Stickstoff hingegen besitzt für dieses Separationsmaterial nur eine geringe Diffusionsgeschwindigkeit. Wird die derart präparierte Hohlfaser innen von Luft durchströmt, diffundieren Wasserdampf und Sauerstoff schnell durch die Hohlfaserwandung nach außen, während der Stickstoff weitgehend im Faserinneren gehalten wird, so dass während des Durchganges durch die Hohlfaser eine starke Aufkonzentration des Stickstoffes stattfindet. Die Effektivität dieses Trennungsvorganges ist im wesentlichen von der Strömungsgeschwindigkeit in der Faser und der Druckdifferenz über die Hohlfaserwandung hinweg abhängig. Mit sinkender Strömungsgeschwindigkeit und/oder höherer Druckdifferenz zwischen Innen- und Außenseite der Hohlfasermembran steigt die Reinheit des resultierenden Stickstoffstromes an.
- Wenn andererseits beispielsweise im Stickstoffgenerator die PSA-Technik zum Einsatz kommt, werden unterschiedliche Bindungsgeschwindigkeiten des Luftsauerstoffes und Luftstickstoffes an speziell behandelter Aktivkohle ausgenutzt. Dabei ist die Struktur der verwendeten Aktivkohle so verändert, dass eine extrem große Oberfläche mit einer großen Anzahl von Mikro- und Submikroporen (d < 1 nm) vorhanden ist. Bei dieser Porengröße diffundieren die Sauerstoffmoleküle der Luft wesentlich schneller in die Poren hinein, als die Stickstoffmoleküle, so dass sich die Luft in der Umgebung der Aktivkohle mit Stickstoff anreichert.
- Erfindungsgemäß wird die üblicherweise in die Umgebungsluft abgeblasene Abluft des Stickstoffgenerators, die im wesentlichen aus mit Sauerstoff angereicherter Luft bestehen, verwendet, um mit dieser Abluft die Sauerstoffkonzentration im Schutzraum einzustellen.
- Die mit der erfindungsgemäßen Lösung erzielbaren Vorteile liegen auf der Hand. Demnach kann bei der Inertisierungsvorrichtung gemäß der Erfindung beispielsweise das Anheben eines im Schutzraum eingestellten Voll- oder Grundinertisierungsniveaus auf ein Begehbarkeitsniveau innerhalb kürzester Zeit umgesetzt werden. Da ferner das Anheben des im Schutzraum eingestellten Voll- oder Grundinertisierungsniveaus auf das Begehbarkeitsniveau durch das Einbringen der mit Sauerstoff angereicherten Luft erfolgt, ist es gleichzeitig möglich, durch Einleitung einer relativ geringen Gasmenge den Sauerstoffgehalt im Schutzraum anzuheben. Dies ist insbesondere dann von Vorteil, wenn die Luftwechselrate im Schutzraum auf einem niedrigen Wert gehalten werden soll. Wenn nämlich nicht die mit Sauerstoff angereicherte Luft, sondern beispielsweise "normale" Umgebungsluft, d.h. Luft mit einem Sauerstoffgehalt von 21 Vol.-%, zur Anhebung des Sauerstoffgehaltes im Schutzraum verwendet wird, ist im Vergleich zu der mit Sauerstoff angereicherten Luft eine deutlich höhere Gasmenge erforderlich.
- Insbesondere ist bei der vorliegenden Erfindung vorzugsweise ferner vorgesehen, dass das zweite Zufuhrrohrsystem in dem ersten Zufuhrrohrsystem mündet und somit über das erste Zufuhrrohrsystem mit dem Schutzraum verbindbar ist, so dass dieses erste Zufuhrrohrsystem einzig und allein verwendet wird, um ein bestimmtes Inertisierungsniveau im Schutzraum einzustellen bzw. zu halten.
- Um bei der Inertisierungsvorrichtung gemäß der vorliegenden Erfindung das vorgegebene Dauerinertisierungsniveau im Schutzraum möglichst schnell einstellen und genau halten zu können, ist bevorzugt vorgesehen, dass die Inertisierungsvorrichtung ferner ein dem zweiten Zufuhrrohrsystem zugeordnetes und über die Steuereinheit ansteuerbares Absperrventil zum Unterbrechen der mittels des zweiten Zufuhrrohrsystems zwischen dem zweiten Ausgang des Stickstoffgenerators und dem Schutzraum herstellbaren Verbindung aufweist. Als ansteuerbares Absperrventil kommt beispielsweise ein entsprechendes ansteuerbares Regelventil oder dergleichen in Frage.
- Bei einer bevorzugten Weiterentwicklung der Inertisierungsvorrichtung gemäß der vorliegenden Erfindung weist die Inertisierungsanlage ferner einen Druckspeicherbehälter zum Speichern der von dem Stickstoffgenerator bereitgestellten und mit Sauerstoff angereicherten Luft auf, wobei die Steuereinheit ausgelegt ist, einen diesem so genannten "Sauerstoff-Druckspeicherbehälter" zugeordneten und mit dem zweiten Zufuhrrohrsystem verbundenen ansteuerbaren Druckminderer derart anzusteuern, um ein bestimmtes Inertisierungsniveau im Schutzraum einzustellen bzw. zu halten.
- In einer bevorzugten Realisierung der zuletzt genannten Ausführungsform der Inertisierungsvorrichtung ist ferner eine druckabhängige Ventileinrichtung vorgesehen, die in einem ersten vorgebbaren Druckbereich geöffnet ist und eine Befüllung des Sauerstoff-Druckspeicherbehälters mit der von dem Stickstoffgenerator bereitgestellten und mit Sauerstoff angereicherten Luft erlaubt.
- Nachfolgend werden bevorzugte Weiterentwicklungen angegeben, die bei den zuvor genannten Ausführungsformen der erfindungsgemäßen Inertisierungsvorrichtung anwendbar sind.
- So wäre es beispielsweise denkbar, dass die Inertisierungsvorrichtung ferner zumindest ein dem ersten Zufuhrrohrsystem zugeordnetes und über die Steuereinheit ansteuerbares Absperrventil zum Unterbrechen der mittels des ersten Zufuhrrohrsystems zwischen dem ersten Ausgang des Stickstoffgenerators und dem Schutzraum herstellbaren Verbindung aufweist. Mit diesem dem ersten Zuführrohrsystem zugeordneten ansteuerbaren Absperrventil kann somit die Stickstoffzufuhr geregelt werden. Dies ist insbesondere im Hinblick auf das Halten eines vorgebbaren Inertisierungsniveaus im Schutzraum von Vorteil, da in diesem Fall die Menge des dem Schutzraum zuzuführenden Inertgases und/oder die Sauerstoffkonzentration des Inertgases in erster Linie nur von der Luftwechselrate des Schutzraumes abhängt und je nach Auslegung des Schutzraumes einen entsprechend geringen Wert annehmen kann.
- In einer, wenn auch teilweise aus dem Stand der Technik bekannten vorteilhaften Weiterentwicklung der erfindungsgemäßen Inertisierungsvorrichtung ist ferner zumindest eine Sauerstoff-Erfassungseinrichtung zum Erfassen des Sauerstoffanteiles in der Raumluft des Schutzraumes vorgesehen, wobei die Steuereinheit ausgelegt ist, die Menge des dem Schutzraum zuzuführenden Inertgases und/oder die Sauerstoffkonzentration des Inertgases in Abhängigkeit von dem in der Raumluft des Schutzraumes gemessenen Sauerstoffanteil einzustellen, um somit grundsätzlich nur die tatsächlich zum Einstellen bzw. Halten eines bestimmten Inertisierungsniveaus im Schutzraum erforderliche Inertgasmenge dem Schutzraum zuzuführen. Insbesondere wird mit dem Vorsehen einer derartigen Sauerstoff-Erfassungseinrichtung erreicht, dass die in dem Schutzraum einzustellenden Inertisierungsniveaus möglichst genau durch Zufuhr einer geeigneten Inertgasmenge und/oder einer geeigneten Frischluft- bzw. Sauerstoffmenge eingestellt und gehalten werden können. Denkbar hierbei wäre es, dass die Sauerstofferfassungseinrichtung kontinuierlich oder zu vorgebbaren Zeitpunkten ein entsprechendes Signal an die entsprechende Steuereinheit abgibt, infolgedessen die Inertgasanlage entsprechend angesteuert wird, um dem Schutzraum stets die zur Aufrechterhaltung des im Schutzraum eingestellten Inertisierungsniveaus notwendige Menge an Inertgas zuzuführen.
- An dieser Stelle sei darauf hingewiesen, dass der Fachmann erkennt, dass unter dem hierin verwendeten Begriff "Halten des Sauerstoffgehalts auf einem bestimmten Inertisierungsniveau" das Halten des Sauerstoffgehaltes auf dem Inertisierungsniveau mit einem gewissen Regelbereich zu verstehen ist, wobei der Regelbereich vorzugsweise in Abhängigkeit von der Art des Schutzraumes (beispielsweise in Abhängigkeit von einer für den Schutzraum geltenden Luftwechselrate oder in Abhängigkeit von den in dem Schutzraum gelagerten Materialien) und/oder in Abhängigkeit von dem Typ der zum Einsatz kommenden Inertisierungsanlage gewählt sein kann. In typischer Weise liegt ein derartiger Regelbereich bei ± 0,2 Vol.-%. Selbstverständlich sind aber auch andere Regelbereichsgrößen denkbar.
- Zusätzlich zu der oben genannten kontinuierlichen bzw. regelmäßigen Messung des Sauerstoffgehaltes kann allerdings auch das Halten des Sauerstoffgehaltes auf dem vorgebbaren bestimmten Inertisierungsniveau in Abhängigkeit einer zuvor durchgeführten Berechnung erfolgen, wobei in dieser Berechnung bestimmte Auslegungsparameter des Schutzraumes einfliesen sollten, wie beispielsweise die für den Schutzraum geltende Luftwechselrate, insbesondere der n50-Wert des Schutzraumes, und/oder die Druckdifferenz zwischen dem Schutzraum und der Umgebung.
- Als Sauerstoff-Erfassungseinrichtung bietet sich hier insbesondere eine aspirativ arbeitende Einrichtung an. Bei einer derartigen Einrichtung werden der Raumluft in dem zu überwachenden Schutzraum ständig repräsentative Luftproben entnommen und einem Sauerstoffdetektor zugeführt, der ein entsprechendes Detektionssignal an die entsprechende Steuereinheit abgibt.
- Grundsätzlich ist denkbar, als Inertgasanlage einen Umgebungsluft-Kompressor und einen hiermit verbundenen Inertgasgenerator vorzusehen, wobei die Steuereinheit ausgelegt ist, beispielsweise die Luftfördererrate des Umgebungsluft-Kompressors derart zu steuern, dass die von der Inertgasanlage bereitgestellte Menge des dem Schutzraum zuzuführenden Inertgases und/oder die Sauerstoffkonzentration in dem Inertgas auf den zum Einstellen und/oder Halten des ersten vorgebbaren Inertisierungsniveaus geeigneten Wert gesetzt werden. Diese im Hinblick auf die Inertgasanlage bevorzugte Lösung zeichnet sich insbesondere dadurch aus, dass die Inertgasanlage das Inertgas vor Ort erzeugen kann, wodurch die Notwendigkeit entfällt, beispielsweise eine Druckflaschenbatterie vorzusehen, in welcher das Inertgas in einer komprimierten Form gelagert wird.
- Zusätzlich hierzu ist es selbstverständlich auch denkbar, dass die Inertgasanlage ferner einen Inertgas-Druckspeicherbehälter aufweist, wobei die Steuereinheit dahingehend ausgelegt sein sollte, einen den Inertgas-Druckspeicherbehälter zugeordneten und mit dem ersten Zufuhrrohrsystem verbundenen, ansteuerbaren Druckminderer derart anzusteuern, um die von der Inertgasanlage bereitgestellte Menge des dem Schutzraum zuzuführenden Inertgases und/oder die Sauerstoffkonzentration in dem Inertgas auf den zum Einstellen und/oder Halten des vorgebbaren Inertisierungsniveaus geeigneten Wert zu setzen. Der Inertgas-Druckspeicherbehälter kann dabei in Kombination mit dem zuvor genannten Umgebungsluft-Kompressor und /oder Inertgasgenerator oder aber auch alleine vorgesehen sein.
- Bei einer bevorzugten Weiterentwicklung der zuletzt genannten Ausführungsform, bei welcher die Inertgasanlage einen so genannten "Inertgas-Druckspeicherbehälter" aufweist, ist vorgesehen, dass die Inertisierungsvorrichtung ferner eine druckabhängige Ventileinrichtung aufweist, die in einem ersten vorgebbaren Druckbereich, beispielsweise zwischen 1 bis 4 bar, geöffnet ist und eine Befüllung des Inertgas-Druckspeicherbehälters mit der Inertgasanlage erlaubt.
- Wie bereits angedeutet, ist die erfindungsgemäße Lösung nicht nur auf das Einstellen bzw. Halten des Begehbarkeitsniveaus im Schutzraum beschränkt. Vielmehr ist die beanspruchte Inertisierungsvorrichtung so ausgelegt, dass das vorgebbare Inertisierungsniveau ein Vollinertisierungsniveau, ein Grundinertisierungsniveau oder ein Begehbarkeitsniveau sein kann.
- Schließlich ist in einer bevorzugten Realisierung der erfindungsgemäßen Inertisierungsvorrichtung noch vorgesehen, dass die Inertgasanlage ferner ein vorzugsweise mit der Steuereinheit über ein Absperrventil durchschaltbares Bypass-Rohrsystem aufweist, welches einerseits mit einer Druckluftquelle und andererseits mit dem ersten Zufuhrrohrsystem verbunden ist, um bei Bedarf die von der Druckluftquelle bereitgestellte Druckluft dem Schutzraum als Frischluft zuzuleiten, und um somit die Sauerstoffkonzentration in dem Schutzraum auf einem Niveau einzustellen, welches dem im Schutzraum einzustellenden und/oder zu haltenden bestimmten Inertisierungsniveau entspricht. Bei dieser Weiterbildung kann also zusätzlich zu der von dem Stickstoffgenerator erzeugten mit Sauerstoff angereicherten Luft auch die von der Druckluftquelle bereitgestellte Druckluft zur Anhebung des Sauerstoffgehalts in dem Schutzraum verwendet werden.
- Die mit dieser Weiterbildung erzielbaren Vorteile liegen auf der Hand: Demnach kann die dem Schutzraum zugeführte Inertgasmenge und die Sauerstoffkonzentration in dem Inertgas bereits in dem Inertgasanlagensystem auf den zum Einstellen bzw. Halten des vorgebbaren Inertisierungsniveaus in dem Schutzraum notwendigen Wert geregelt werden, wobei das Inertgasanlagensystem aus der ansteuerbaren Inertgasanlage, dem mit der Steuereinheit über ein Absperrventil durchschaltbaren Bypass-Rohrsystem, welches einerseits mit einer Druckluftquelle und andererseits mit dem ersten Zufuhrrohrsystem verbunden ist, und dem Zufuhrrohrsystem besteht. Demnach kommt bei dieser Weiterbildung der Inertgasanlage die Funktion des Bereitstellens von sowohl (im Idealfall reinem) Inertgas als auch von Frischluft zu, so dass das Zufuhrrohrsystem, welches die Inertgasanlage mit dem Schutzraum verbindet, für die Zufuhr von reinem Inertgas, reiner Frischluft oder einem Gemisch hiervon verwendet wird.
- Hierbei sei darauf hingewiesen, dass unter dem Begriff "Druckluft" komprimierte Luft im weitesten Sinne zu verstehen ist. Insbesondere soll unter dem Begriff "Druckluft" aber auch komprimierte und mit Sauerstoff angereicherte Luft zu verstehen sein. Die Druckluft kann entweder in entsprechenden Druckbehältern gelagert sein oder vor Ort mit geeigneten Kompressoranlagen erzeugt werden. Hierbei sei ergänzend darauf hingewiesen, dass unter dem Begriff "Druckluft" auch beispielsweise Frischluft zu verstehen ist, mit Hilfe eines geeigneten Gebläses in das Bypass-Rohrsystem eingebracht wird. Da die mit einem Gebläse in das Bypass-Rohrsystem eingebrachte Luft ebenfalls im Vergleich zur normalen Umgebungsluft einen höheren Druck aufweist, liegt somit komprimierte Luft bzw. Druckluft vor.
- Im einzelnen kann mit der zuletzt genannten Weiterbildung der erfindungsgemäßen Lösung die Menge des von der Inertgasanlage bereitgestellten und dem Schutzraum zuzuführenden Inertgases und/oder die Sauerstoffkonzentration in dem Inertgas einerseits durch eine entsprechende Ansteuerung der Inertgasanlage, mit welcher die absolute Menge des pro Zeiteinheit bereitgestellten Inertgases geregelt wird, und andererseits durch eine entsprechende Ansteuerung des dem Bypass-Rohrsystem zugeordneten Absperrventils geregelt werden, wodurch die absolute, dem Schutzraum pro Zeiteinheit zugeführte Frischluftmenge eingestellt wird.
- In einer bevorzugten Realisierung der zuletzt genannten Weiterbildung ist vorgesehen, dass die Druckluftquelle einen Druckspeicherbehälter zum Speichern von Sauerstoff, mit Sauerstoff angereicherter Luft oder Druckluft aufweist, wobei die Steuereinheit ausgelegt ist, einen dem Druckspeicherbehälter zugeordneten und mit dem ersten Zufuhrrohrsystem verbundenen ansteuerbaren Druckminderer derart anzusteuern, um im Schutzraum ein bestimmtes Inertisierungsniveau einzustellen bzw. zu halten. Dabei sei darauf hingewiesen, dass bei dieser bevorzugten Realisierung der Druckspeicherbehälter entweder als Druckluftquelle selber oder als separate Einheit zusätzlich zur Druckluftquelle in der Inertisierungsvorrichtung vorgesehen sein kann. Der Druckspeicherbehälter steht dabei in vorteilhafter Weise in Fluidkommunikation mit dem über das Absperrventil durchschaltbaren Bypass-Rohrsystem.
- Im Folgenden werden bevorzugte Ausführungsformen der erfindungsgemäßen Inertisierungsvorrichtung anhand der Zeichnungen näher beschrieben.
- Es zeigen:
- Fig. 1:
- eine schematische Ansicht einer ersten bevorzugten Ausführungsform der erfindungsgemäßen Inertisierungsvorrichtung;
- Fig. 2:
- eine schematische Ansicht einer zweiten bevorzugten Ausführungsform der erfindungsgemäßen Inertisierungsvorrichtung; und
- Fig. 3:
- eine schematische Ansicht einer dritten bevorzugten Ausführungsform der erfindungsgemäßen Inertisierungsvorrichtung.
- In
Fig. 1 ist schematisch eine erste bevorzugte Ausführungsform der erfindungsgemäßen Inertisierungsvorrichtung 1 zum Einstellen und Halten vorgebbarer Inertisierungsniveaus in einem zu überwachenden Schutzraum 2 gezeigt. Im wesentlichen besteht die Inertisierungsvorrichtung 1 aus einer Inertgasanlage, welche in der dargestellten Ausführungsform einen Umgebungsluft-Kompressor 10 und einen hiermit verbundenen Inertgas- bzw. Stickstoffgenerator 11 aufweist. Des weiteren ist eine Steuereinheit 12 vorgesehen, die ausgelegt ist, über entsprechende Steuersignale den Umgebungsluft-Kompressors 10 und/oder den Stickstoffgenerator 11 ein-/auszuschalten. Auf diese Weise kann mittels der Steuereinheit 12 im Schutzraum 2 ein vorgegebenes Inertisierungsniveau eingestellt und gehalten werden. - Das von der Inertgasanlage 10, 11 erzeugte Inertgas wird über ein Zufuhrrohrsystem 20 ("erstes Zufuhrrohrsystem") dem zu überwachenden Schutzraum 2 zugeführt; selbstverständlich können aber auch mehrere Schutzräume mit dem Zufuhrrohrsystem 20 verbunden sein. Im einzelnen erfolgt die Zufuhr des mit der Inertgasanlage 10, 11 bereitgestellten Inertgases über entsprechende Auslassdüsen 51, die an geeigneter Stelle im Schutzraum 2 angeordnet sind.
- Bei der in
Fig. 1 dargestellten bevorzugten Ausführungsform der erfindungsgemäßen Lösung wird das Inertgas, in vorteilhafter Weise Stickstoff, vor Ort aus der Umgebungsluft gewonnen. Der Inertgasgenerator bzw. Stickstoffgenerator 11 funktioniert beispielsweise nach der aus dem Stand der Technik bekannten Membran- oder PSA-Technik, um mit Stickstoff angereicherte Luft mit beispielsweise 90 Vol.-% bis 95 Vol.-% Stickstoffanteil zu erzeugen. Diese mit Stickstoff angereicherte Luft dient bei der inFig. 1 dargestellten bevorzugten Ausführungsform als Inertgas, welches dem Schutzraum 2 über das Zufuhrrohrsystem 20 zugeführt wird. - Im einzelnen ist vorgesehen, dass der Stickstoffgenerator 11 ein (nicht explizit dargestelltes) Luftseparationssystem aufweist, um Sauerstoff aus der mit der Druckluftquelle 10 zugeführten Druckluft abzuscheiden und mit Stickstoff angereicherte Luft an einem ersten Ausgang 11a des Stickstoffgenerators 11 bereitzustellen. Im einzelnen ist vorgesehen, dass die vom Stickstoffgenerator 11 bereitgestellte und mit Stickstoff angereicherte Luft über den ersten Ausgang 11a des Stickstoffgenerators 11 als Inertgas dem ersten Zufuhrrohrsystem 20 zuführbar ist.
- Die Inertisierungsvorrichtung 11 weist ferner ein mit der Inertgasanlage 10, 11 verbundenes zweites Zufuhrrohrsystem 30 auf, welches mit dem Schutzraum 2 über ein mit der Steuereinheit 12 ansteuerbares Absperrventil 31 verbindbar ist, wobei der vom Stickstoffgenerator 11 aus der Druckluft abgeschiedene Sauerstoff als mit Sauerstoff angereicherte Luft über einen zweiten Ausgang 11b des Stickstoffgenerators 11 dem zweiten Zufuhrrohrsystem 30 zuführbar ist. Das zweite Zufuhrrohrsystem 30 mündet dabei in dem ersten Zufuhrrohrsystem 20 und ist demnach mit dem Schutzraum 2 über das erste Zufuhrrohrsystem 20 verbindbar. Durch eine geeignete Ansteuerung der Inertgasanlage 10, 11, des dem ersten Zufuhrrohrsystem 20 zugeordneten Absperrventil 21 und/oder des dem zweiten Zufuhrrohrsystem 30 zugeordneten Absperrventil 31 ist es somit möglich, im Schutzraum 2 ein bestimmtes Inertisierungsniveau schnell einzustellen und genau zu halten.
- Im einzelnen ist vorgesehen, dass die Steuereinheit 12 abhängig von einem beispielsweise von dem Benutzer in die Steuereinheit 12 eingegebenen Inertisierungssignal die Inertgasanlage 10, 11 so ansteuert, dass das vorgegebene Inertisierungsniveau in dem Schutzraum 2 eingestellt und gehalten wird. Die Auswahl der gewünschten Inertisierungsniveaus an der Steuereinheit 12 kann beispielsweise mit einem Schlüsselschalter oder passwortgeschützt an einem (nicht explizit dargestellten) Bedienteil erfolgen. Selbstverständlich ist hier aber auch denkbar, dass die Auswahl des Inertisierungsniveaus gemäß einem vorgegebenen Ereignisablauf erfolgt.
- Wenn an der Steuereinheit 12 beispielsweise das Grundinertisierungsniveau ausgewählt ist, welches vorab insbesondere unter Berücksichtigung der charakteristischen Werte des Schutzraumes 2 festgelegt wurde, und wenn bei der Auswahl des Grundinertisierungsniveaus im Schutzraum 2 noch kein Inertisierungsniveau eingestellt wurde, d.h. wenn in dem Schutzraum eine Gasatmosphäre vorliegt, die im wesentlichen identisch mit der chemischen Zusammensetzung der Umgebungsluft ist, wird ein dem Zufuhrrohrsystem 20 zugeordnetes Absperrventil 21 mit der Steuereinheit 12 auf direkte Weiterleitung des von der Inertgasanlage 10, 11 bereitgestellten Inertgases in den Schutzraum 2 geschaltet. Gleichzeitig wird mit Hilfe einer Sauerstoff-Erfassungseinrichtung 50 vorzugsweise kontinuierlich der Sauerstoffgehalt im Schutzraum 2 gemessen. Wie dargestellt, steht die Sauerstoff-Erfassungseinrichtung 50 mit der Steuereinheit 12 in Verbindung, so dass die Steuereinheit 12 grundsätzlich Kenntnis von dem im Schutzraum 2 eingestellten Sauerstoffgehalt hat.
- Wenn durch Messung des Sauerstoffgehaltes im Schutzraum 2 festgestellt wird, dass im Schutzraum 2 das Grundinertisierungsniveau erreicht wurde, gibt die Steuereinheit 12 ein entsprechendes Signal an die Inertgasanlage 10, 11 und/oder an das Absperrventil 21 ab, um die weitere Zufuhr von Inertgas abzuschalten. Im Laufe der Zeit entweicht Inertgas durch gewisse Leckagen, so dass die Sauerstoffkonzentration in der Raumluftatmosphäre ansteigt. Wenn sich das Inertisierungsniveau um mehr als einen vorgegebenen Betrag vom Sollwert entfernt hat, gibt die Steuereinheit 12 ein entsprechendes Signal an die Inertgasanlage 10, 11 und/oder an das Absperrventil 21 ab, um die Zufuhr von Inertgas wieder einzuschalten.
-
Fig. 2 zeigt eine schematische Ansicht einer zweiten bevorzugten Ausführungsform der erfindungsgemäßen Inertisierungsvorrichtung 1. Das inFig. 2 gezeigte System unterscheidet sich von der Ausführungsform gemäßFig. 1 dadurch, dass zusätzlich ein Druckspeicherbehälter 32 zum Speichern der von dem Stickstoffgenerator 11 bereitgestellten und mit Sauerstoff angereicherten Luft vorgesehen ist, wobei die Steuereinheit 12 ausgelegt ist, einen dem Sauerstoff-Druckspeicherbehälter 32 zugeordneten und mit dem zweiten Zufuhrrohrsystem 30 verbundenen ansteuerbaren Druckminderer 33 derart anzusteuern, um die von der Inertgasanlage 10, 11 bereitgestellte Menge des dem Schutzraum 2 zuzuführenden Inertgases und/oder die Sauerstoffkonzentration in dem Inertgas auf den zum Einstellen und/oder Halten des bestimmten Inertisierungsniveaus geeigneten Wert zu setzen. - Des weiteren ist eine druckabhängige Ventileinrichtung 34 vorgesehen, die in einem ersten vorgebbaren Druckbereich geöffnet ist und eine Befüllung des Sauerstoff-Druckspeicherbehälters 32 mit der von dem Stickstoffgenerator 11 bereitgestellten und mit Sauerstoff angereicherten Luft erlaubt.
- Ferner weist die Inertisierungsvorrichtung 1 gemäß
Fig. 2 einen Druckspeicherbehälter 22 auf, der dazu dient, bei Bedarf die von dem Stickstoffgenerator 11 bereitgestellte und mit Stickstoff angereicherte Luft zu speichern. Dabei ist die Steuereinheit 12 ausgelegt, ein dem Druckspeicherbehälter 22 zugeordnetes und mit dem ersten Zufuhrrohrsystem 20 über das ansteuerbare Drei-Wegeventil 21 verbundenes Ventilsystem 23, 24 entsprechend anzusteuern, um bei Bedarf den Druckspeicherbehälter 22 mit dem ersten Zufuhrrohrsystem 20 zu verbinden, so dass die in dem Druckspeicherbehälter 22 bereitgestellte und mit Stickstoff angereicherte Luft dem Schutzraum 2 zugeführt werden kann. Wenn die in dem Druckspeicherbehälter 22 bereitgestellte und mit Stickstoff angereicherte Luft dem Schutzraum 2 zugeführt wird, ist es möglich, den Stickstoffgenerator 11 zumindest zwischenzeitlich abzuschalten oder zu drosseln, was die Betriebskosten der Anlage senkt. Vorzugsweise sollten dabei die Steuerung 12 und das Ventilsystem 23, 24 so ausgeführt sein, dass von dem Druckspeicherbehälter 22 eine hinreichende Menge mit Stickstoff angereicherte Luft dem Schutzraum zugeführt werden kann, um in dem Schutzraum 2 das bestimmte Inertisierungsniveaus zu halten oder einzustellen. - Das dem Druckspeicherbehälter 22 zugeordnete Ventilsystem 23, 24 umfasst eine druckabhängige Ventileinrichtung 24, die in einem ersten vorgebbaren Druckbereich geöffnet ist und eine Befüllung des Druckspeicherbehälters 22 mit der vom Stickstoffgenerator 11 bereitgestellten und mit Stickstoff angereicherten Luft erlaubt. Ferner weist das Ventilsystem ein von der Steuerung entsprechend ansteuerbares Drei-Wegeventil 24 auf. Dieses Drei-Wegeventil 24 gestatten es zusammen mit dem Drei-Wegeventil 21, dass ein mit der Außenatmosphäre verbundenes Auslassrohrsystem, der Druckspeicherbehälter 22 und das erste Zufuhrrohrsystem 20 bei Bedarf miteinander verbunden werden können
-
Fig. 3 zeigt eine schematische Ansicht einer weiteren Ausführungsform der erfindungsgemäßen Inertisierungsvorrichtung 1. Bei dieser Ausführungsform ist einerseits ein Bypass-Rohrsystem 40 und andererseits ein zweites Zufuhrrohrsystem 30 zwischen dem zweiten Ausgang 11b des Stickstoffgenerators 11 und dem ersten Zufuhrrohrsystem 20 vorgesehen. Das Bypass-Rohrsystem 40 verbindet den Ausgang der Druckluftquelle 10 mit dem Zufuhrrohrsystem 20. Über dieses Bypass-Rohrsystem 40 kann bei Bedarf dem Zufuhrrohrsystem 20 und somit dem Schutzraum 2 direkt die von der Druckluftquelle 10 bereitgestellte Druckluft als Frischluft zugeleitet werden. Eine direkte Frischluftzuleitung in dem Schutzraum 2 kann erforderlich sein, wenn das im Schutzraum 2 eingestellte Inertisierungsniveau einer Sauerstoffkonzentration entspricht, die niedriger als die Sauerstoffkonzentration eines im Schutzraum 2 einzustellenden Inertisierungsniveaus ist. Dies wäre beispielsweise dann der Fall, wenn beim Einstellen des Grundinertisierungsniveaus im Schutzraum 2 versehentlich oder aus anderen Gründen zuviel Inertgas eingeleitet wurde. Andererseits ist eine Frischluftzufuhr auch dann von Nöten, wenn möglichst rasch im Schutzraum 2 eine bereits dort eingestellte Dauerinertisierung zumindest teilweise wieder aufgehoben werden muss, wie es beispielsweise im Falle der Begehung des Schutzraumes 2 erforderlich ist. - Allgemein ausgedrückt kann mit der Inertgasanlage gemäß dieser in
Fig. 3 dargestellten Ausführungsform der erfindungsgemäßen Inertisierungsvorrichtung 1 die zum Einstellen und/oder Halten eines bestimmten Inertisierungsniveaus notwendige Menge des dem Schutzraum zuzuführenden Inertgases und/oder die Sauerstoffkonzentration in dem Inertgas bereitgestellt werden, wobei dem Schutzraum 2 über ein und das selbe Zufuhrrohrsystem 20 dieses von der Inertgasanlage bereitgestellte Inertgas zugeführt wird. - Selbstverständlich ist aber auch denkbar, in dem System gemäß
Fig. 3 des weiteren einen Druckspeicherbehälter für die mit Sauerstoff angereicherte Luft und/oder einen Druckspeicherbehälter für die mit Stickstoff angereicherte Luft vorzusehen, wie es in den Ausführungsformen gemäßFig. 2 der Fall ist. - Hinsichtlich der Ansteuerung des Stickstoffgenerators 11 über die Steuereinheit 12 sei abschließend angemerkt, dass der Stickstoffgenerator 11 beispielsweise eine Kaskade von Einzelmembraneinheiten aufweisen kann, wobei über die Steuereinheit 12 die Anzahl der Einzelmembraneinheiten auswählbar ist, welche zum Abscheiden von Sauerstoff aus der mit der Druckluftquelle 10 zugeführten Druckluft und zum Bereitstellen der mit Stickstoff angereicherten Luft an dem ersten Ausgang 11a des Stickstoffgenerators 11 verwendet werden, wobei der Grad der Stickstoffanreicherung in der vom Stickstoffgenerator 11 bereitgestellten und mit Stickstoff angereicherten Luft in Abhängigkeit von der über die Steuereinheit 12 ausgewählten Anzahl der Einzelmembraneinheiten gesteuert werden kann.
- Es sei darauf hingewiesen, dass die Ausführung der Erfindung nicht auf die in den
Figuren 1 bis 3 beschriebenen Ausführungsbeispiele beschränkt ist, sondern auch in einer Vielzahl von Varianten möglich ist. -
- 1
- Inertisierungsvorrichtung
- 2
- Schutzraum
- 10
- Druckluftquelle; Umgebungsluft-Kompressor
- 11
- Inertgasgenerator
- 11a
- erster Ausgang des Stickstoffgenerators zur Abgabe von mit Stickstoff angereicherter Luft
- 11b
- zweiter Ausgang des Stickstoffgenerators zur Abgabe von mit Sauerstoff angereicherter Luft
- 12
- Steuereinheit
- 20
- erstes Zufuhrrohrsystem
- 21
- ansteuerbares Absperrventil
- 22
- Inertgas-Druckspeicherbehälter
- 23
- druckabhängige Ventileinrichtung
- 24
- ansteuerbares Drei-Wegeventil
- 30
- zweites Zufuhrrohrsystem
- 31
- ansteuerbares Absperrventil
- 32
- Sauerstoff-Druckspeicherbehälter
- 33
- Druckminderer
- 34
- druckabhängige Ventileinrichtung
- 40
- Bypass-Rohrsystem
- 41
- ansteuerbares Absperrventil
- 50
- Sauerstoff-Erfassungseinrichtung
- 51
- Ausblasdüsen
Claims (12)
- Inertisierungsvorrichtung (1) zum Einstellen und Halten vorgebbarer Inertisierungsniveaus in einem zu überwachenden Schutzraum (2), mit:- einer ansteuerbaren Inertgasanlage (10, 11) zum Bereitstellen von Inertgas;- einem mit der Inertgasanlage (10, 11) verbundenen ersten Zufuhrrohrsystem (20), welches mit dem Schutzraum (2) verbindbar ist, um das von der Inertgasanlage (10, 11) bereitgestellte Inertgas dem Schutzraum (2) zuzuführen; und- einer Steuereinheit (12), welche ausgelegt ist, die Inertgasanlage (10, 11) derart anzusteuern, dass ein bestimmtes vorgebbares Inertisierungsniveau in dem Schutzraum (2) eingestellt und dort gehalten wird,wobei die Inertgasanlage (10, 11) einen mit einer Druckluftquelle (10) verbundenen Stickstoffgenerator (11) aufweist, um Sauerstoff aus der mit der Druckluftquelle (10) zugeführten Druckluft abzuscheiden und mit Stickstoff angereicherte Luft an einem ersten Ausgang (11a) des Stickstoffgenerators (11) bereitzustellen, und wobei die vom Stickstoffgenerator (11) bereitgestellte mit Stickstoff angereicherte Luft über den ersten Ausgang (11a) des Stickstoffgenerators (11) als Inertgas dem ersten Zufuhrrohrsystem (20) zuführbar ist,
dadurch gekennzeichnet, dass
die Inertisierungsvorrichtung (1) ferner ein mit der Inertgasanlage (10, 11) verbundenes zweites Zufuhrrohrsystem (30) aufweist, welches mit dem Schutzraum (2) verbindbar ist, wobei der vom Stickstoffgenerator (11) aus der Druckluft abgeschiedene Sauerstoff als mit Sauerstoff angereicherte Luft über einen zweiten Ausgang (11b) des Stickstoffgenerators (11) dem zweiten Zufuhrrohrsystem (30) zuführbar ist, um somit im Schutzraum (2) ein bestimmtes Inertisierungsniveau einzustellen und/oder zu halten. - Inertisierungsvorrichtung (1) nach Anspruch 1, wobei
das zweite Zufuhrrohrsystem (30) in dem ersten Zufuhrrohrsystem (20) mündet und somit über das erste Zufuhrrohrsystem (20) mit dem Schutzraum (2) verbindbar ist. - Inertisierungsvorrichtung (1) nach Anspruch 1 oder 2, welche ferner ein dem zweiten Zufuhrrohrsystem (30) zugeordnetes und über die Steuereinheit (12) ansteuerbares Absperrventil (31) zum Unterbrechen der mittels des zweiten Zufuhrrohrsystems (30) zwischen dem zweiten Ausgang (11b) des Stickstoffgenerators (11) und dem Schutzraum (2) herstellbaren Verbindung aufweist.
- Inertisierungsvorrichtung (1) nach einem der Ansprüche 1 bis 3, wobei
die Inertgasanlage (10, 11) ferner einen Druckspeicherbehälter (32) zum Speichern der von dem Stickstoffgenerator (11) bereitgestellten mit Sauerstoff angereicherten Luft aufweist, wobei die Steuereinheit (12) ausgelegt ist, einen dem Sauerstoff-Druckspeicherbehälter (32) zugeordneten und mit dem zweiten Zufuhrrohrsystem (30) verbundenen ansteuerbaren Druckminderer (33) derart anzusteuern, um die Menge des von der Inertgasanlage (10, 11) bereitgestellten und dem Schutzraum (2) zuzuführenden Inertgases und/oder die Sauerstoffkonzentration in dem Inertgas auf die zum Einstellen und/oder Halten des bestimmten Inertisierungsniveaus geeigneten Werte zu setzen. - Inertisierungsvorrichtung (1) nach Anspruch 4, welche ferner eine druckabhängige Ventileinrichtung (34) aufweist, die in einem ersten vorgebbaren Druckbereich geöffnet ist und eine Befüllung des Sauerstoff-Druckspeicherbehälters (32) mit der von dem Stickstoffgenerator (11) bereitgestellten mit Sauerstoff angereicherten Luft erlaubt.
- Inertisierungsvorrichtung (1) nach einem der vorhergehenden Ansprüche, welche ferner zumindest ein dem ersten Zufuhrrohrsystem (20) zugeordnetes und über die Steuereinheit (12) ansteuerbares Absperrventil (21) zum Unterbrechen der mittels des ersten Zufuhrrohrsystems (20) zwischen dem ersten Ausgang (11a) des Stickstoffgenerators (11) und dem Schutzraum (2) herstellbaren Verbindung aufweist.
- Inertisierungsvorrichtung (1) nach einem der vorhergehenden Ansprüche, welche ferner zumindest eine Sauerstoff-Erfassungseinrichtung (50) zum Erfassen des Sauerstoffanteils in der Raumluft des Schutzraumes (2) aufweist, wobei die Steuereinheit (12) ausgelegt ist, die Menge des von der Inertgasanlage (10, 11) bereitgestellten und dem Schutzraum (2) zuzuführenden Inertgases und/oder die Sauerstoffkonzentration in dem Inertgas in Abhängigkeit von dem in der Raumluft des Schutzraumes (2) gemessenen Sauerstoffanteil einzustellen.
- Inertisierungsvorrichtung (1) nach Anspruch 7, wobei die Sauerstoff-Erfassungseinrichtung (50) eine aspirative Sauerstoff-Erfassungseinrichtung ist.
- Inertisierungsvorrichtung (1) nach einem der vorhergehenden Ansprüche, wobei die Inertgasanlage (10, 11) ferner einen Druckspeicherbehälter (22) zum Speichern der vorzugsweise von dem Stickstoffgenerator (11) bereitgestellten mit Stickstoff angereicherten Luft aufweist, wobei die Steuereinheit (12) ausgelegt ist, einen dem Stickstoff-Druckspeicherbehälter (22) zugeordneten und mit dem ersten Zufuhrrohrsystem (20) verbundenen ansteuerbaren Druckminderer (23) derart anzusteuern, um die Menge des von der Inertgasanlage (10, 11) bereitgestellten und dem Schutzraum (2) zuzuführenden Inertgases und/oder die Sauerstoffkonzentration in dem Inertgas auf den zum Einstellen und/oder Halten des bestimmten Inertisierungsniveaus geeigneten Wert zu setzen.
- Inertisierungsvorrichtung (1) nach Anspruch 9, welche ferner eine druckabhängige Ventileinrichtung (24) aufweist, die in einem ersten vorgebbaren Druckbereich geöffnet ist und eine Befüllung des Stickstoff-Druckspeicherbehälters (22) mit der vom Stickstoffgenerator (11) bereitgestellten mit Stickstoff angereicherten Luft erlaubt.
- Inertisierungsvorrichtung (1) nach einem der vorhergehenden Ansprüche, wobei das vorgebbare Inertisierungsniveau ein Vollinertisierungsniveau, ein Grundinertisierungsniveau oder ein Begehbarkeitsniveau ist.
- Inertisierungsvorrichtung (1) nach einem der vorhergehenden Ansprüche, wobei die Inertgasanlage (10, 11) ferner ein vorzugsweise mit der Steuereinheit (12) über ein Absperrventil (41) durchschaltbares Bypass-Rohrsystem (40) aufweist, welches einerseits mit einer Druckluftquelle (10) und andererseits mit dem ersten Zufuhrrohrsystem (20) verbunden ist, um bei Bedarf die von der Druckluftquelle (10) bereitgestellte Druckluft dem Schutzraum (2) als Frischluft zuzuleiten, und um somit im Schutzraum (2) ein bestimmtes Inertisierungsniveau einzustellen und/oder zu halten.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI200730017T SI1913979T1 (sl) | 2006-10-19 | 2007-10-01 | Inertizacijski sistem z generatorjem dušika |
EP07117620A EP1913979B1 (de) | 2006-10-19 | 2007-10-01 | Inertisierungsvorrichtung mit Stickstoffgenerator |
PL07117620T PL1913979T3 (pl) | 2006-10-19 | 2007-10-01 | Urządzenie inertyzujące z wytwornicą azotu |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06122593A EP1913978B1 (de) | 2006-10-19 | 2006-10-19 | Inertisierungsvorrichtung mit Stickstoffgenerator |
EP07117620A EP1913979B1 (de) | 2006-10-19 | 2007-10-01 | Inertisierungsvorrichtung mit Stickstoffgenerator |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1913979A1 EP1913979A1 (de) | 2008-04-23 |
EP1913979B1 true EP1913979B1 (de) | 2009-01-14 |
Family
ID=39201987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07117620A Active EP1913979B1 (de) | 2006-10-19 | 2007-10-01 | Inertisierungsvorrichtung mit Stickstoffgenerator |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1913979B1 (de) |
PL (1) | PL1913979T3 (de) |
SI (1) | SI1913979T1 (de) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100259589A1 (en) | 2009-04-14 | 2010-10-14 | Jonathan Barry | Inert uv inkjet printing |
US8567936B2 (en) | 2010-11-10 | 2013-10-29 | Electronics For Imaging, Inc. | LED roll to roll drum printer systems, structures and methods |
US9527307B2 (en) | 2010-12-15 | 2016-12-27 | Electronics For Imaging, Inc. | Oxygen inhibition for print-head reliability |
US9487010B2 (en) | 2010-12-15 | 2016-11-08 | Electronics For Imaging, Inc. | InkJet printer with controlled oxygen levels |
EP3626327B1 (de) * | 2018-09-19 | 2023-11-01 | Wagner Group GmbH | Inertisierungsverfahren und inertisierungsanlage, insbesondere zur brandvermeidung, sowie verwendung einer inertisierungsanlage |
CN112797542B (zh) * | 2021-01-04 | 2022-12-02 | 珠海格力电器股份有限公司 | 灭火装置、控制方法及空调器 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10249126B4 (de) * | 2002-10-22 | 2004-08-19 | Minimax Gmbh | Verfahren und Anlage zum Erzeugen einer sauerstoffarmen Atmosphäre |
ES2398958T3 (es) * | 2005-01-21 | 2013-03-22 | Amrona Ag | Procedimiento de inertización para la prevención de incendios |
-
2007
- 2007-10-01 PL PL07117620T patent/PL1913979T3/pl unknown
- 2007-10-01 EP EP07117620A patent/EP1913979B1/de active Active
- 2007-10-01 SI SI200730017T patent/SI1913979T1/sl unknown
Also Published As
Publication number | Publication date |
---|---|
EP1913979A1 (de) | 2008-04-23 |
SI1913979T1 (sl) | 2009-06-30 |
PL1913979T3 (pl) | 2009-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1913978B1 (de) | Inertisierungsvorrichtung mit Stickstoffgenerator | |
EP1683548B1 (de) | Inertisierungsverfahren zur Brandvermeidung | |
EP1913980B1 (de) | Inertisierungsvorrichtung mit Sicherheitseinrichtung | |
EP3141287B1 (de) | Verfahren und vorrichtung zum bestimmen und/oder überwachen der luftdichtigkeit eines umschlossenen raumes | |
EP1930048B1 (de) | Verfahren und Vorrichtung zum geregelten Zuführen von Zuluft | |
EP1913979B1 (de) | Inertisierungsvorrichtung mit Stickstoffgenerator | |
EP2547406B1 (de) | Inertisierungsverfahren zur brandverhütung und/oder feuerlöschung sowie inertisierungsanlage zur durchführung des verfahrens | |
EP2186546B1 (de) | Inertgasfeuerlöschanlage zur Minderung des Risikos und zum Löschen von Bränden in einem Schutzraum | |
EP2801392B1 (de) | Inertisierungsverfahren sowie Anlage zur Sauerstoffreduzierung | |
EP2204219A1 (de) | Inertisierungsverfahren zur Brandverhütung und/oder Feuerlöschung sowie Inertisierungsanlage zur Durchführung des Verfahrens | |
EP2046459B1 (de) | Inertisierungsverfahren zur minderung des risikos einer brandentstehung in einem umschlossenen raum sowie vorrichtung zur durchführung des verfahrens | |
DE60207319T2 (de) | Verfahren und Vorrichtung zur Brandbekämpfung in einem Flugzeugabteil, das mit dieser Vorrichtung ausgerüstet ist | |
EP2602006B1 (de) | Verfahren zum Löschen eines Brandes in einem umschlossenen Raum sowie Feuerlöschanlage | |
WO2017109069A1 (de) | Sauerstoffreduzierungsanlage und verfahren zum betreiben einer sauerstoffreduzierungsanlage | |
EP1550481B1 (de) | Inertisierungsverfahren zur Minderung des Risikos eines Brandes | |
EP2998002B1 (de) | Inertgaslöschanlage | |
EP1041245A1 (de) | Vorrichtung zur Menschenrettung und Brandbekämpfung im Tunnel | |
DE102006025212A1 (de) | Feuerlöschverfahren und Anlage zum Feuerlöschen in einem umschlossenen Raum |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20071121 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: DIE ERFINDER HABEN AUF IHRE NENNUNG VERZICHTET. |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1115828 Country of ref document: HK |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: BRAUNPAT BRAUN EDER AG |
|
REF | Corresponds to: |
Ref document number: 502007000383 Country of ref document: DE Date of ref document: 20090305 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20090319 |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2318831 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20090401046 Country of ref document: GR |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: GR Ref document number: 1115828 Country of ref document: HK |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E005525 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090514 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20091015 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101001 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LT Payment date: 20150921 Year of fee payment: 9 Ref country code: RO Payment date: 20150924 Year of fee payment: 9 Ref country code: SK Payment date: 20150929 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20151023 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20151021 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20151013 Year of fee payment: 9 Ref country code: BG Payment date: 20151014 Year of fee payment: 9 Ref country code: EE Payment date: 20151013 Year of fee payment: 9 Ref country code: GR Payment date: 20151013 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SI Payment date: 20150923 Year of fee payment: 9 Ref country code: SE Payment date: 20151021 Year of fee payment: 9 Ref country code: HU Payment date: 20151021 Year of fee payment: 9 Ref country code: LV Payment date: 20151013 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MM4D Effective date: 20161001 |
|
REG | Reference to a national code |
Ref country code: EE Ref legal event code: MM4A Ref document number: E003078 Country of ref document: EE Effective date: 20161031 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20161031 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: MM4A Ref document number: E 5399 Country of ref document: SK Effective date: 20161001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170504 Ref country code: LT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161001 Ref country code: SK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161001 Ref country code: EE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161031 Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161001 Ref country code: RO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161001 |
|
REG | Reference to a national code |
Ref country code: SI Ref legal event code: KO00 Effective date: 20170612 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161001 Ref country code: SI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161002 Ref country code: HU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161002 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161001 Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161002 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161031 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCAR Free format text: NEW ADDRESS: HOLEESTRASSE 87, 4054 BASEL (CH) |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170808 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20200924 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20201001 Year of fee payment: 14 Ref country code: IE Payment date: 20201022 Year of fee payment: 14 Ref country code: PT Payment date: 20201001 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20201028 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20211223 Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211001 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20211031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220401 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211001 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230526 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20231124 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20230922 Year of fee payment: 17 Ref country code: NL Payment date: 20231019 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231020 Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221002 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20231026 Year of fee payment: 17 Ref country code: FR Payment date: 20231023 Year of fee payment: 17 Ref country code: DE Payment date: 20231020 Year of fee payment: 17 Ref country code: CH Payment date: 20231102 Year of fee payment: 17 Ref country code: AT Payment date: 20231020 Year of fee payment: 17 |