EP1905046B1 - Elektrischer isolator und herstellungsverfahren dafür - Google Patents

Elektrischer isolator und herstellungsverfahren dafür Download PDF

Info

Publication number
EP1905046B1
EP1905046B1 EP06792535.4A EP06792535A EP1905046B1 EP 1905046 B1 EP1905046 B1 EP 1905046B1 EP 06792535 A EP06792535 A EP 06792535A EP 1905046 B1 EP1905046 B1 EP 1905046B1
Authority
EP
European Patent Office
Prior art keywords
tube
fibers
mixture
mineral filler
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06792535.4A
Other languages
English (en)
French (fr)
Other versions
EP1905046A1 (de
Inventor
Jean-Luc Bessede
Yannick Kieffel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1905046A1 publication Critical patent/EP1905046A1/de
Application granted granted Critical
Publication of EP1905046B1 publication Critical patent/EP1905046B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins

Definitions

  • the present invention relates to an electrical insulator comprising a tube surrounded by an insulating sheath.
  • the sheath may be smooth or have fins.
  • the present invention also relates to a method of manufacturing this insulator.
  • the insulator of the present invention can be used in particular in high and medium voltage external applications, that is to say greater than 1000 V.
  • Polymer insulators especially for outdoor applications, are made of expensive materials and complex processes.
  • the usual methods use a central tube made of resin, for example epoxy, reinforced with fibers, for example glass.
  • the tube imparts mechanical strength to the insulator.
  • the outer surface of the tube is covered with a layer of insulating material, called the sheath, to provide the surface with its electrical properties required for example for high voltage insulators, and to protect the tube from the weather, moisture and humidity. arcing on the surface of the insulator.
  • the surface of the insulator is usually formed so as to have a series of fins which provide an extended escape distance.
  • the insulator has a smooth sheath, especially in the case of insulator for indoor use.
  • sheath designates both a smooth sheath and a sheath comprising fins.
  • fins means a sheath made of fins.
  • Mainly four techniques are used to form the sheath of an insulator and its fins: (1) direct molding on the tube, (2) manufacturing fins and then attaching them to the tube, (3) forming a band and which is then surrounded around the tube, (4) extrusion of the fins directly on the tube by means of a screw-shaped mold.
  • the technique (1) requires the formation of a special mold for the fins, the techniques (2) to (4) require a post-treatment of cross-linking of the fins.
  • all techniques (1) to (4) generally use silicone-based materials because of their hydrophobicity.
  • silicone or "silicone rubber” a composite elastomeric material composed of silicone polymer resin, single-component or two-component, optionally reinforced with a mineral filler.
  • the document EP-A-1091365 [1] discloses an insulator made of a fiber reinforced epoxy tube and surrounded by an insulating protection made of silicone rubber. This protection may be in the form of fins.
  • the insulator can be obtained by molding the vulcanized silicone rubber on the fiber reinforced epoxy tube. Silicone is used for its hydrophobicity and hydrophobicity transfer properties.
  • insulators however, have an interface of two different materials between the tube and the fins, which can cause voids and delamination phenomena due to different coefficients of thermal expansion, and leads, when using these insulators to partial discharges and subsequently to breakdowns.
  • the document WO 02/061767 [2] describes a housing for an electrical appliance.
  • This shell comprises a tube called sheath, at least one fin, and a hydrophobic coating disposed on the fin.
  • the tube is made of high temperature silicone vulcanization (type “HTV” for "High Temperature Vulcanising "), the silicone fin consists of room temperature vulcanizing silicone (“ RTV “type) and the hydrophobic coating of liquid silicone rubber (“ LS rubber ”) and silicone RTV. Liquid silicone is molded, and solid silicone is extruded.
  • any defect of the fins will be a point of weakness for the holding in time of the insulator.
  • fins may be torn when the insulator is resting on an angled portion.
  • the silicone can be attacked by animals, such as birds or rodents.
  • the resins used in this document do not make it possible to overcome all of the disadvantages described above: they do not withstand external aggression in operation (rodents, birds, rain, pollution, etc.), tracking, and the like. erosion (class 1B3 resin, according to IEC 60587). In addition, they do not withstand handling in the factory, mounting on site, cut or tear when opening packages. Indeed, these materials have mechanical characteristics similar to silicone. Thus, the same problems can be expected during the manufacturing process of the insulator, in assembly for its use as an insulator and in operation.
  • the document GB-A-2,147,225 discloses an electrical insulator in which the insulating material comprises a resin which is not a flexibilized resin but rather a rigid, brittle resin.
  • the document US Patent 3,645,899 relates to an electrical insulator consisting of a monolithic mass of an insulating material comprising a charged, cured epoxy resin.
  • the insulation is in the form of a block and not a sheath.
  • the present invention specifically relates to an electrical insulator that meets this and other needs.
  • the electrical insulator of the present invention is defined in claim 1. It comprises a hollow or solid tube surrounded by a insulating sheath.
  • the insulating sheath may be smooth or finned.
  • the insulator of the present invention is characterized in that the insulating sheath is made of a hardened charged flexibilized hydrophobic cycloaliphatic epoxy resin obtained by curing a mixture comprising: from 25 to 75% by weight of mineral filler, preferably 30 to 70% by weight of mineral filler, preferably 40 to 60% by weight of inorganic filler, more preferably 45 to 55% by weight of inorganic filler, for example 50% by weight, a hydrophobic cycloaliphatic epoxy resin and a hardener.
  • a hardened charged flexibilized hydrophobic cycloaliphatic epoxy resin obtained by curing a mixture comprising: from 25 to 75% by weight of mineral filler, preferably 30 to 70% by weight of mineral filler, preferably 40 to 60% by weight of inorganic filler, more preferably 45 to 55% by weight of inorganic filler, for example 50% by weight, a hydrophobic cycloaliphatic epoxy resin and a hardener.
  • charged resin is understood to mean a composite material composed of an epoxy resin, a hardener and a mineral filler.
  • the role of the mineral filler is to improve the mechanical properties of the hardened resin as well as its resistance to erosion and electrical flow.
  • the cured filled resin of the present invention is a so-called "flexibilized” resin.
  • this resin once polymerized, has particular mechanical properties such as a very high modulus of elasticity and deformation at break, namely a modulus of elasticity ranging from 200 to 4000 MPa and a deformation at break ranging from 10 to 30%.
  • This hardened filled resin is generally obtained by mixing a specially formulated base resin to obtain, at the end of the hardening process, a flexibilised hardened resin, hardener (s) specially formulated for the purpose of obtaining a flexibilised hardened resin and possible additives such as flexibilizers (these two or even three elements chemically reacting together, to obtain a flexibilized hardened resin), as well as mineral fillers.
  • the term "flexibilized resin” is a term commonly used in this field of the art and whose meaning is perfectly clear and unambiguous to those skilled in the art. Flexibility of the resins can be achieved by chemically modifying the hardener and potentially resin molecules, and / or potentially incorporating flexibilizer (flexible chains such as aliphatic chains) upon polymerization.
  • a flexibilized resin may have a reduced degree of crosslinking with respect to this resin prior to any flexibilization treatment.
  • the flexibilization of a cured resin is obtained mainly by modifying the cycloaliphatic hardener by removing the two reactive aliphatic rings by insertion of an aliphatic chain.
  • the cured loaded flexibilized cycloaliphatic epoxy resin of the present invention has a modulus of elasticity of 200 to 4000 MPa.
  • the cured loaded flexibilized hydrophobic cycloaliphatic epoxy resin used in the present invention has a glass transition temperature of 0 to 50 ° C, preferably 10 to 30 ° C, more preferably 18 to 30 ° C, a modulus of elasticity from 200 to 4000 MPa; an elongation at break of 10 to 30%; a breaking stress of 14 to 40 MPa: and in addition a shore A hardness greater than 98, and / or a resistance to tracking and erosion of class 1A3.5 or 1B3.5 or higher according to the standard IEC 60587.
  • the inorganic filler preferably comprises 25 to 75% by weight of alumina trihydrate (ATH) (Al (OH) 3 ), preferably 40 to 60% by weight, for example 50% by weight, the remainder being at least one other mineral filler material.
  • ATH alumina trihydrate
  • Al (OH) 3 alumina trihydrate
  • the other inorganic filler material may advantageously be chosen from the group comprising alumina (Al 2 O 3 ), silica (SiO 2 ), calcium oxide (CaO), magnesium (MgO), zinc oxide (ZnO), silicon fluoride, wollastonite, calcium carbonate (CaCO 3 ), oxide titanium (TiO 2 ), clay nanoparticles or a mixture of two or more thereof.
  • the other filler material is alumina or silica or a mixture of alumina and silica.
  • the inorganic filler comprises from 25 to 75% by weight of alumina trihydrate, preferably from 40 to 60% by weight of alumina trihydrate, for example 50% by weight, the remainder consisting of alumina or silica or a mixture of alumina and silica.
  • this mixture may consist, for example, of from 1 to 99% by weight of alumina, for example from 5 to 95% by weight of alumina, for example from 30 to 70% by weight. % by weight of alumina, the remainder being silica.
  • the mineral filler is preferably composed of particles of different particle sizes: particles of one or more of the chemical types mentioned above (mineral filler) of submicron size and particles of one or more chemical types among those mentioned above (mineral filler) of micron size, these reinforcing particles of different sizes may be of identical or different chemical composition.
  • the inorganic filler may be a mixture of micron-size filler and submicron size.
  • the micron-size particles may be of several different chemical compositions, as well as the submicron-sized particles.
  • the particles of submicron size have a size at least twice as much small as the size of micron sized particles.
  • the notion of size refers to the "median diameter" of the particle distribution in the case where the particles used have a geometry close to the spherical geometry. It is recalled that the "median diameter” is the diameter of the particle at the median of the particle diameter distribution, the median representing the value where the total frequency of the values above and the total frequency below that value. value are identical. In the case where the particles used have morphologies with strong form factors, for example lamellar morphologies such as leaflets or rods, the notion of size then relates to the largest dimension of the particle, for example the length in the case of a leaflet.
  • the size of the particles of submicron size is less than or equal to one micrometer, and that the size of the micron-sized particles is greater than one micrometer.
  • the micron-sized particles have a size of between 1 and 30 microns and the particles of submicron size have a size of less than 1 micrometer.
  • the particles of submicron size have a size of a few hundred nanometers and a minimum of 5 nanometers.
  • the particles of the mineral filler (s) are surface-chemically treated to improve wetting and adhesion with the epoxy resin.
  • the silica is modified by silanization.
  • the mixture which, after curing, makes it possible to obtain a hardened charged flexibilized hydrophobic cycloaliphatic epoxy resin comprises an unmodified hydrophobic cycloaliphatic base epoxy resin.
  • said mixture also comprises a hardener.
  • a hardener Any of the cycloaliphatic epoxy resin hardeners known to those skilled in the art can be used to practice the present invention. It may be for example a cycloaliphatic anhydride. The amount of this hardener is generally 60 to 100% by weight based on the total mass of the unloaded resin used in the present invention.
  • the hardener can be chemically modified to flexibilize the resin once cured.
  • This component is known as a flexibilizer hardener.
  • said mixture may comprise chemical additives including flexibilizers, accelerators, one or more specific additives making it possible to make the resin hydrophobic chosen from an -OH-terminated polysiloxane, a polysiloxane / polyether copolymer and a polysiloxane cyclic or a mixture of two or three of these polysiloxanes
  • said mixture may further comprise elastomeric spheres.
  • elastomeric spheres are added at a rate of 5 to 10% by weight of elastomeric spheres. This percentage is of course expressed relative to the weight of the hydrophobic cycloaliphatic epoxy resin loaded.
  • These spheres absorb the energy of shocks that may suffer the insulator.
  • These may be, for example, Durastrength Impact Modifier spheres (trademark) marketed by Arkema.
  • said mixture may further comprise one or more additive (s) chosen from an -OH-terminated polysiloxane, a polysiloxane / polyether copolymer and a cyclic polysiloxane or a mixture of two or three of these polysiloxanes. . More specifically, it may be for example dodecamethylcyclohexasiloxane.
  • the amount of this or these additive (s) is generally from 1 to 10% by weight relative to the total mass of the filled resin used in the present invention.
  • the inorganic filler is preferably desiccated and degassed before being mixed with the epoxy resin to form the hydrophobic cycloaliphatic epoxy resin used in the present invention. Indeed, this makes it possible to improve the dispersion of the filler in the resin and to obtain a homogeneous mixture.
  • This drying and degassing can be carried out simultaneously, for example by placing the mineral filler under vacuum at a temperature of 70 to 100 ° C, for example for 10 to 30 hours.
  • the cured loaded flexibilized hydrophobic cycloaliphatic epoxy resin used in the present invention can be prepared by simply mixing the uncured resin, the filler and the hardener and any additives.
  • this mixture is of course designed so as to obtain a homogeneous mixture, that is to say a homogeneous dispersion of the mineral filler and hardener and any additives in the resin.
  • a part of the inorganic filler is mixed with the liquid resin (that is to say uncured resin), another part of the mineral filler, preferably dried and degassed, is mixed with liquid hardener, and the two mixtures obtained are mixed together to form a filled resin for use in the present invention.
  • the liquid resin that is to say uncured resin
  • another part of the mineral filler preferably dried and degassed
  • liquid hardener is mixed with liquid hardener, and the two mixtures obtained are mixed together to form a filled resin for use in the present invention.
  • each mixture is made at a temperature of 40 to 60 ° C and degassed.
  • the mixtures can be made mechanically, for example in the form of kneading.
  • the insulator of the present invention also includes a tube.
  • the insulator tube may be a solid or hollow tube. It gives the insulator its mechanical strength. It can be flexible or rigid. Preferably, it is rigid.
  • the geometry of the tube is not limited to a particular shape. It is chosen in particular according to the intended application. It may be for example a tube chosen from a straight tube, a conical tube, a frustoconical tube, a barrel-shaped tube, etc. or a tube having a combination of these different shapes or geometries. Most often, the tube is straight, or conical or frustoconical or barrel-shaped.
  • the section of the tube is also not limited to a particular geometry. It is chosen in particular according to the intended application. It is most commonly round, but it can also be square, triangular, polygonal, for example from 5 to 30 sides. The ease of its manufacture can also be a criterion for choosing the geometry of the tube and its section.
  • the tube may for example be a thermosetting polymer or thermoplastic resin tube reinforced with short or long fibers of mineral or organic chemical nature.
  • Short fibers are fibers of average length less than 30 mm.
  • long fibers are meant fibers of average length greater than 30 mm.
  • the tube is made by injection. The injection points are defined so as to obtain a good alignment of the fibers parallel to the axis of the tube.
  • the tube may advantageously be formed from a tube-shaped fiber arrangement.
  • These fibers can be long or short.
  • the fiber arrangement can be formed for example by filament winding of long fibers or from short fibers.
  • a fiber arrangement it may consist for example of a fiber arrangement selected from a fiber mat or a fabric of one-dimensional, two-dimensional or three-dimensional fibers.
  • the fiber arrangement may be in woven or nonwoven form.
  • the fibers are preferably chosen from mineral fibers such as glass fibers, quartz fibers, silicon carbide fibers, or from organic fibers such as aramid fibers, e.g. kevlar (trade mark), polyester fibers, and polybenzobisoxazole fibers, e.g. zylon (trademark).
  • mineral fibers such as glass fibers, quartz fibers, silicon carbide fibers
  • organic fibers such as aramid fibers, e.g. kevlar (trade mark), polyester fibers, and polybenzobisoxazole fibers, e.g. zylon (trademark).
  • the fibers of the arrangement are preferably impregnated with an epoxy resin, and more preferably with a cycloaliphatic epoxy resin, for example a hydrophobic cycloaliphatic epoxy resin loaded with an organic or inorganic particulate reinforcement (such as alumina, silica or a mixture of both) according to the present invention, as defined above.
  • a cycloaliphatic epoxy resin for example a hydrophobic cycloaliphatic epoxy resin loaded with an organic or inorganic particulate reinforcement (such as alumina, silica or a mixture of both) according to the present invention, as defined above.
  • the fiber arrangement is impregnated with hydrophobic cycloaliphatic epoxy resin comprising from 25 to 75% by weight mineral filler and a hardener.
  • the fibers may have / be subjected to a specific surface treatment in order to improve their compatibility with the impregnating resin, in particular the wettability of the resin on the fibers.
  • the fiber arrangement thus constitutes a precursor of the insulator tube of the present invention.
  • the tube may be for example a thermosetting or thermoplastic polymeric resin tube reinforced with inorganic or organic filler, for example an epoxy resin tube reinforced with alumina or silica.
  • the present invention relates generally to the use, as defined in claim 29, of a cured loaded flexibilized hydrophobic cycloaliphatic epoxy resin obtained by curing a mixture comprising from 25 to 75% by weight of inorganic filler, preferably from 30 to 70% by weight of mineral filler, preferably from 40 to 60% by weight of inorganic filler, more preferably from 45 to 55% by weight of inorganic filler, for example 50% by weight, an epoxy resin hydrophobic cycloaliphatic and a hardener for the manufacture of an electrical insulator, in particular for the manufacture of the outer sheath of an insulator, this sheath may be provided with fins or not.
  • the loaded flexibilized hydrophobic cycloaliphatic epoxy resin cured in the course of this use has the same properties as those obtained above.
  • the mineral filler makes it possible both to improve the tracking behavior and the erosion of the material.
  • the filled resin can be used to manufacture only the sheath of the insulator, provided or not with fins, for example to replace the silicone-based materials of the prior art, or to manufacture the tube, the sheath and the fins of the insulator, for example when the tube consists of a fiber arrangement.
  • the present invention may for example consist of molding said fins on a tube
  • the tube may for example be constituted by an arrangement of fibers reinforced with an epoxy resin identical to or different from that used for the sheath, with or without fins.
  • the tube may be for example a tube made of fibers reinforced with an epoxy resin as described and obtained in document [1].
  • the present invention may be implemented for example in a method of manufacturing an electrical insulator comprising a hollow or solid tube surrounded by an insulating sheath, said sheath being able to be provided with fins, as defined in claim 16.
  • a precursor of the tube is used, this precursor consisting of a fiber arrangement as indicated above.
  • the precursor (fiber arrangement) is placed in the mold, said fiber arrangement being impregnated with the filled resin during the step of introducing said resin into the mold to form after curing. the resin the tube.
  • the charged resin forms the tube and the fins of the insulator.
  • a sleeve is placed in the tube formed by the fiber arrangement so that the resin does not fill the hollow tube.
  • a tube which is a resin tube reinforced with a short fiber arrangement. or long of chemical nature mineral or organic.
  • the resin is the same or different from the filled resin used to form the sheath and fins.
  • This may be for example a CEVOLIT (trademark) tube manufactured by Tyco Electronics Energy. It may be for example a tube such as that described in document [1]. This tube can be made for example as indicated in this document, and then used in the process of the present invention to manufacture the insulator.
  • the finned electric insulator mold is preferably made of a metallic material, preferably stainless steel. It is preferably of cylindrical shape and draws the fins of the insulator. More generally, it may be, as for the shape of the tube, any desired geometric shape, for example of cylindrical, conical, frustoconical or barrel shape or any other form advantageous for its use.
  • Such molds can be manufactured by machining in the mass of stainless steel using precision devices, such as digital milling machines and digital grinders.
  • An electroerosion, chemical polishing or even mechanical polishing surface treatment can make it possible to improve the surface quality of the mold, and consequently the surface quality of the insulator (low surface roughness).
  • These molds can be designed and made by companies such as Techni-Molds, REP France or FAMACOM.
  • a release agent based on silicone (s) can be used to facilitate the demolding of the insulator.
  • the release agent L 94-700 (commercial reference) from Kluber Chemie can be used.
  • the mixture is introduced into the mold by any appropriate means to fill it.
  • the mixture is injected under pressure into the mold, for example using an injection molding machine of the same type as that used to inject the silicone into the manufacture of the insulators of the prior art.
  • the mixture is injected hot, to allow it to fit more easily the shape of the mold, for example at a temperature of 100 to 140 ° C.
  • the mold is heated at this temperature, for the same reasons, during the injection of the resin.
  • the mixture is injected at several points along the insulator.
  • the hollow or solid tube for example hollow based on epoxy resin reinforced with long glass fibers, is previously arranged in the mold, and preferably maintained at the same temperature as the mold (for example 130-140 ° C.) in order to have a good adhesion of the resin on the tube.
  • the tube preferably longer than the mold, protrudes from both sides of the mold.
  • the mixture is maintained at its polymerization temperature, generally from 120 to 140 ° C., for example for a period of 4 to 10 hours.
  • the insulator obtained is removed from the mold.
  • the insulator it is possible to post-cure the insulator, for example at a temperature of 130 to 150 ° C., for example for 6 to 10 hours in order to obtain optimum mechanical characteristics of the resin.
  • the insulator obtained can undergo a finishing treatment.
  • the hollow tube can be cut to the final length of the insulator if it is too long.
  • Molding traces such as burrs at the join of the mold can be removed by mechanical action, for example by mechanical polishing.
  • one or two metal collar (s) can be fixed in a traditional manner, for example by gluing respectively to one or both ends of the insulator, for example with an epoxy adhesive.
  • the hooping technique is used in which the metal collar is expanded in temperature, which makes it possible to force the glue-in tube into the glued collar.
  • the shrinkage of the metal collar on the composite tube ensures a good adhesion of the collar on the tube. This adhesion is reinforced by the glue.
  • the method may further comprise a step of bonding one or two collar (s) respectively to one or both ends of the electrical insulator.
  • the manufactured insulator is a carrier insulator.
  • Two metal collars may be attached as described above in the case of a carrier insulator to be connected at both ends.
  • a single metal collar is attached as described above in the case of an insulator used as a single support.
  • the other end can be machined to receive the lead brought to the potential.
  • the machining can be done in the form of a notch in the case of a bar support or it can achieve a bore in the tube to pass a conductor.
  • the insulator of the present invention for example solid tube or composite / glass mat may be cylindrical, conical, barrel or any other form useful for its use.
  • Example 1 Manufacture of a hollow tube insulator according to the invention
  • the mold used is cylindrical and draws the fins of the insulator. It is steel.
  • the mold consists of two joined shells, each having an internal half insulator lengthwise. Thus, the demolding of the fin isolator can be done by simple separation of the two shells.
  • a hollow cylindrical composite tube based on glass fiber reinforced epoxy resin (in the form of fiberglass mat) is arranged centrally on the longitudinal axis of the mold.
  • the composite tube is longer than the mold, it exceeds both sides of the mold.
  • a flexibilized hydrophobic cycloaliphatic epoxy resin comprising 50% by weight mineral filler is prepared.
  • the inorganic filler composed of 50% by weight of silica and 50% by weight of alumina trihydrate (ATH) is dried under vacuum at 80 ° C for 24 hours.
  • Second step preparation of the resin and hardener:
  • Part of the mineral filler 15 parts by weight, previously dried and degassed, is incorporated to a liquid cycloaliphatic resin of the diglycidyl ester type (100 parts by weight) having a density of 1.1.
  • the resulting mixture has a density of 1.2. It is mechanically kneaded at a temperature between 40 ° C and 60 ° C and degassed under vacuum at an absolute pressure of between 1000 and 10000 Pa (between 10 and 100 March). A resin + filler by-product is obtained.
  • the balance of the inorganic filler i.e. the remaining 35 parts by weight, is incorporated into a liquid cycloaliphatic anhydride hardener (100 weight parts).
  • the mixture thus obtained has a density of about 1.9. It is mechanically kneaded at a temperature between 40 and 60 ° C and degassed as before. A hardener + filler by-product is obtained.
  • the two by-products resin + filler and hardener + filler are mechanically mixed together until a homogeneous dispersion is obtained.
  • the mixing is carried out at a temperature between 40 and 60 ° C and degassed as before.
  • the resulting mixture is ready for use to mold the insulator.
  • the previously obtained mixture is injected under pressure into the two-part mold preheated to the polymerization temperature of the resin, here between 130 ° C. and 140 ° C., using a standard injection molding machine for the silicone.
  • the temperature is homogeneous in the mold.
  • the hollow composite tube is maintained at the mold temperature (120-130 ° C) in order to have a good adhesion of the resin on the composite tube.
  • the resin is injected at several points along the insulator to properly fill the fins drawn by the mold.
  • the resin is maintained at a temperature of 130-140 ° C for a period of 20-30 minutes for curing.
  • the hollow tube insulator (1) is extracted from the mold after curing the resin by opening it. It is represented schematically on the figure 1 attached. It comprises a tube (3) surrounded by an insulating sheath (5) provided with fins (7).
  • the insulating sheath and the fins consist of the charged flexibilized hydrophobic cycloaliphatic epoxy resin prepared in this example.
  • the tube (3) consists of a fiberglass mat reinforced with epoxy resin.
  • the insulator is post-baked at 140 ° C for 8 hours to optimize the mechanical characteristics of the resin.
  • the hollow tube is then cut to the final length of the insulator.
  • Molding traces such as burrs at the join of the mold are removed by polishing.
  • One or two metal collars are then fixed in a traditional way by bonding to both ends of the insulator.
  • the number of metal clamps depends on the application of the insulator. Similarly, one end can be machined to support a conductor.
  • the insulator obtained can be used in a high voltage application.
  • Example 2 Process for manufacturing a solid-tube insulator according to the invention
  • Example 2 The same protocol as that described in Example 1 is used for the production of the charged resin and the insulator, but the hollow tube is replaced by a solid tube.
  • An electrical isolator (1) according to the present invention is obtained.
  • This insulator is represented on the figure 2 attached. It comprises the solid tube (3 ') surrounded by an insulating sheath (5) provided with fins (7).
  • the insulating sheath and the fins are made from the prepared loaded flexibilized hydrophobic cycloaliphatic epoxy resin.
  • the tube (3 ') is a rod made of epoxy resin reinforced by a fiberglass arrangement.
  • This isolator is suitable for example for use in high voltage line supports air.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Insulating Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Insulators (AREA)
  • Organic Insulating Materials (AREA)

Claims (30)

  1. Elektrischer Isolator, eine hohle oder volle Röhre (3) umfassend, umgeben von einer isolierenden Hülle (5),
    dadurch gekennzeichnet, dass die isolierende Hülle aus einem gehärteten flexibilisierten füllstoffenthaltenden hydrophoben cycloaliphatischen Epoxidharz ist, hergestellt durch Härtung eines Gemisches, umfassend : 25 bis 75 Gew.-% mineralischen Füllstoff, ein hydrophobes cycloaliphatisches Epoxidharz und einen Härter ;
    bei dem das gehärtete flexibilisierte füllstoffenthaltende hydrophobe cycloaliphatische Epoxidharz die folgenden Eigenschaften hat:
    - Glasübergangstemperatur : 0 bis 50 °C ; vorzugsweise 10 bis 30 °C, noch besser 18 bis 30 °C ;
    - Bruchspannung : 14 bis 40 MPa ;
    - Elastizitätsmodul : 200 bis 4000 MPa ;
    - Reißdehnung : 10 bis 30 % ;
    und dessen gehärtetes flexibilisiertes füllstoffenthaltendes hydrophobes cycloaliphatisches Epoxidharz außerdem aufweist:
    - eine SHORE A-Härte über oder gleich 98, und/oder
    - einen Kriech- und Erosionswiderstand der Klasse höher oder gleich 1A3,5 oder 1B3,5 gemäß der Norm IEC 60578.
  2. Elektrischer Isolator nach Anspruch 1, bei dem das Gemisch 30 bis 70 Gew.-% mineralischen Füllstoff, vorzugsweise 40 bis 60 Gew.-% mineralischen Füllstoff, noch besser 45 bis 55 % Gew.-% mineralischen Füllstoff, zum Beispiel 50 Gew.-% mineralischen Füllstoff enthält.
  3. Elektrischer Isolator nach Anspruch 1, bei dem der mineralische Füllstoff 25 bis 75 Gew.-% Aluminiumoxidtrihydrat umfasst und der Rest durch mindestens einen anderen Füllstoff gebildet wird.
  4. Elektrischer Isolator nach Anspruch 3, bei dem der andere Füllstoff ausgewählt wird aus der Gruppe, die umfasst: Aluminiumoxid, Siliziumdioxid SiO2, Kalziumoxid, Magnesiumoxid, Siliziumfluorid, Wollastonit, Kalziumcarbonat, Titanoxid, Nano-Tonteilchen oder ein Gemisch aus zwei oder mehr von diesen.
  5. Elektrischer Isolator nach Anspruch 1, bei dem der mineralische Füllstoff 25 bis 75 Gew.-% Aluminiumoxidtrihydrat, vorzugsweise 40 bis 60 Gew.-% Aluminiumoxidtrihydrat enthält, wobei der Rest durch Aluminiumoxid oder Siliziumdioxid SiO2 oder einem Gemisch aus Aluminiumoxid und Siliziumdioxid SiO2 gebildet wird.
  6. Elektrischer Isolator nach Anspruch 1, bei dem der mineralische Füllstoff ein Füllstoffgemisch von mikrometrischer Größe und submikrometrischer Größe ist.
  7. Isolator nach Anspruch 1, bei dem das Gemisch außerdem 5 bis 10 Gew.-% Elastomerkugeln enthält.
  8. Isolator nach Anspruch 1, bei dem das Gemisch außerdem einen oder mehrere Additive enthält, ausgewählt unter einem Polysiloxan mit -OH-Endungen, einem Polysiloxan/Polyether-Copolymer und einem zyklischen Polysiloxan oder einer Mischung aus zwei oder drei dieser Polysiloxane.
  9. Isolator nach Anspruch 1, bei dem die volle oder hohle Röhre durch eine rohrförmige Fasern-Anordnung gebildet wird.
  10. Isolator nach Anspruch 9, bei dem die Fasern-Anordnung gebildet wird durch eine zwischen einer Fasermatte oder einem Fasergewebe ausgewählte Anordnung eindimensionaler, zweidimensionaler oder dreidimensionaler Fasern.
  11. Isolator nach Anspruch 9, bei dem die Fasern-Anordnung mit einem hydrophoben cycloaliphatischen Epoxidharz imprägniert wird, das 25 bis 75 Gew.-% mineralischen Füllstoff und einen Härter enthält.
  12. Isolator nach Anspruch 11, bei dem die Fasern ausgewählt werden unter mineralischen Fasern wie zum Beispiel Glasfasern, Quarzfasern, Siliziumkarbidfasern, oder unter organischen Faser wie zum Beispiel Aramidfasern, Polyesterfasern und Polybenzobisoxazole-Fasern.
  13. Isolator nach einem der Ansprüche 1 bis 8, bei dem die volle oder hohle Röhre aus einem Harz mit Beimengung einer organischen oder anorganischen Teilchenverstärkung besteht.
  14. Isolator nach einem der Ansprüche 1 bis 8, bei dem die volle oder hohle Röhre aus einem Harz mit Beimengung von Aluminiumoxid, Siliziumdioxid SiO2 oder einer Mischung aus Aluminiumdioxid und Siliziumdioxid SiO2 besteht.
  15. Isolator nach Anspruch 1, bei dem die Röhre ausgewählt wird unter einer geraden Röhre, einer konischen Röhre, einer kegelstumpfförmigen Röhre, einer tonnenförmigen Röhre und einer eine Kombination dieser Formen aufweisenden Röhre.
  16. Verfahren zur Herstellung eines elektrischen Isolators, umfassend eine von einer isolierenden Hülle umgebene hohle oder volle Röhre, wobei die genannte Hülle Rippen aufweisen kann, dadurch gekennzeichnet, dass es die folgenden Schritte umfasst :
    - Anordnen der Isolator-Röhre - oder, wenn die Röhre hohl ist, ein Vorprodukt von dieser, eventuell gebildet durch eine rohrförmige Fasern-Anordnung -, in einer Form für elektrische Isolatoren, eventuell mit Rippen,
    - Hineingeben eines Gemisches in die Form, umfassend : 25 bis 75 Gew.-% mineralischen Füllstoff, ein hydrophobes cycloaliphatisches Epoxidharz und einen Härter, um die Hülle und eventuell ihre Rippen um die genannte Röhre oder ihr Vorprodukt herum zu formen,
    - Härten des in die Form hineingegebenen Gemisches, um ein gehärtetes flexibilisiertes füllstoffenthaltendes hydrophobes cycloaliphatisches Epoxidharz zu erhalten, um so den Isolator herzustellen, und
    - Entnehmen des hergestellten Isolator aus der Form, dessen gehärtetes flexibilisiertes füllstoffenthaltendes hydrophobes cycloaliphatisches Epoxidharz die folgenden Eigenschaften hat :
    - Glasübergangstemperatur : 0 bis 50 °C ; besser 10 bis 30 °C ; noch besser 18 bis 30 °C ;
    - Bruchspannung : 14 bis 40 MPa ;
    - Elastizitätsmodul : 200 bis 4000 MPa ;
    - Reißdehnung : 10 bis 30 % ;
    und dessen gehärtetes flexibilisiertes füllstoffenthaltendes hydrophobes cycloaliphatisches Epoxidharz außerdem aufweist:
    - eine SHORE A-Härte über oder gleich 98, und/oder
    - einen Kriech- und Erosionswiderstand der Klasse höher oder gleich 1A3,5 oder 1B3,5 gemäß der Norm IEC 60578.
  17. Verfahren nach Anspruch 16, bei dem das Gemisch 30 bis 70 Gew.-% mineralischen Füllstoff, vorzugsweise 40 bis 60 Gew.-% mineralischen Füllstoff, noch besser 45 bis 55 % Gew.-% mineralischen Füllstoff, zum Beispiel 50 Gew.-% mineralischen Füllstoff enthält.
  18. Verfahren nach Anspruch 16, bei dem der mineralische Füllstoff 25 bis 75 Gew.-% Aluminiumoxidtrihydrat umfasst, und der Rest durch mindestens einen anderen Füllstoff gebildet wird.
  19. Verfahren nach Anspruch 16, bei dem der andere Füllstoff ausgewählt wird aus der Gruppe, die umfasst: Aluminiumoxid, Siliziumdioxid, Kalziumoxid, Magnesiumoxid, Siliziumfluorid, Wollastonit, Kalziumcarbonat, Titanoxid, Nano-Tonteilchen oder ein Gemisch aus zwei oder mehr von diesen.
  20. Verfahren nach Anspruch 16, bei dem der mineralische Füllstoff 25 bis 75 Gew.-% Aluminiumoxidtrihydrat, vorzugsweise 40 bis 60 Gew.-% Aluminiumoxidtrihydrat enthält, wobei der Rest durch Aluminiumoxid oder Siliciumdioxid oder einem Gemisch aus Aluminiumoxid und Siliciumdioxid gebildet wird.
  21. Verfahren nach Anspruch 16, bei dem der mineralische Füllstoff ein Füllstoffgemisch von mikrometrischer Größe und submikrometrischer Größe ist.
  22. Verfahren nach Anspruch 16, bei dem das Gemisch außerdem 5 bis 10 Gew.-% Elastomerkugeln enthält.
  23. Verfahren nach Anspruch 16, bei dem das Gemisch außerdem ein Polysiloxan mit - OH-Endungen und/oder ein Polysiloxan/Polyether-Copolymer und/oder ein zyklisches Polysiloxan enthält.
  24. Verfahren nach Anspruch 16, bei dem ein Vorprodukt der Röhre in der Form angeordnet wird, wobei dieses Vorprodukt gebildet wird durch eine eine hohle Röhre bildende Fasern-Anordnung, und bei der die Fasern-Anordnung ausgewählt wird zwischen einer Fasermatte oder einem Fasergewebe aus eindimensionalen, zweidimensionalen oder dreidimensionalen Fasern.
  25. Verfahren nach Anspruch 24, bei dem die Fasern ausgewählt werden aus der Gruppe der mineralischen Fasern wie zum Beispiel Glasfasern, Quarzfasern, Siliziumkarbidfasern, oder unter organischen Faser wie zum Beispiel Aramidfasern, Polyesterfasern und Polybenzobisoxazole-Fasern.
  26. Verfahren nach Anspruch 16, bei dem ein Vorprodukt der Röhre in der Form angeordnet wird, wobei dieses Vorprodukt eine eine hohle Röhre bildende Fasern-Anordnung ist, und die Fasern-Anordnung beim Hineingeben des genannten Harzes in die Form imprägniert wird mit dem ungehärteten füllstoffenthaltenden hydrophoben cycloaliphatischen Epoxidharz, um nach dem Härten des Harzes die Röhre und die Hülle zu bilden.
  27. Verfahren nach einem der Ansprüche 16 bis 26, bei dem die Röhre ausgewählt wird unter einer geraden Röhre, einer konischen Röhre, einer kegelstumpfförmigen Röhre, einer tonnenförmigen Röhre und einer eine Kombination dieser Formen aufweisenden Röhre.
  28. Verfahren nach Anspruch 16, außerdem einen Schritt zum Festkleben von einem Ring (collier) oder zwei Ringen jeweils an einem oder an zwei bzw. beiden Enden des elektrischen Isolators umfassend.
  29. Verwendung eines gehärteten flexibilisierten füllstoffenthaltenden hydrophoben cycloaliphatischen Epoxidharz, hergestellt durch Härtung eines Gemisches, umfassend : 25 bis 75 Gew.-% mineralischen Füllstoff, ein hydrophobes cycloaliphatisches Epoxidharz und einen Härter zur Herstellung eines elektrischen Isolators nach Anspruch 1;
    wobei das gehärtete flexibilisierte füllstoffenthaltende hydrophobe cycloaliphatische Epoxidharz die folgenden Eigenschaften hat :
    - Glasübergangstemperatur : 0 bis 50 °C ; vorzugsweise 10 bis 30 °C, noch besser 18 bis 30 °C ;
    - Bruchspannung : 14 bis 40 MPa ;
    - Elastizitätsmodul : 200 bis 4000 MPa ;
    - Reißdehnung : 10 bis 30 % ;
    und das gehärtete flexibilisierte füllstoffenthaltende hydrophobe cycloaliphatische Epoxidharz außerdem aufweist:
    - eine SHORE A-Härte über oder gleich 98,
    und/oder
    - einen Kriech- und Erosionswiderstand der Klasse höher oder gleich 1A3,5 oder 1B3,5 gemäß der Norm IEC 60578.
  30. Verwendung nach Anspruch 29, bei der das Gemisch 30 bis 70 Gew.-% mineralischen Füllstoff, vorzugweise 40 bis 60 Gew.-% mineralischen Füllstoff, noch besser 45 bis 55 Gew.-% mineralischen Füllstoff, zum Beispiel 50 Gew.-% mineralischen Füllstoff enthält.
EP06792535.4A 2005-07-20 2006-07-20 Elektrischer isolator und herstellungsverfahren dafür Not-in-force EP1905046B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0552253 2005-07-20
PCT/EP2006/064473 WO2007010025A1 (fr) 2005-07-20 2006-07-20 Isolateur electrique et procede de fabrication.

Publications (2)

Publication Number Publication Date
EP1905046A1 EP1905046A1 (de) 2008-04-02
EP1905046B1 true EP1905046B1 (de) 2013-04-24

Family

ID=35840109

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06792535.4A Not-in-force EP1905046B1 (de) 2005-07-20 2006-07-20 Elektrischer isolator und herstellungsverfahren dafür

Country Status (3)

Country Link
US (1) US7989704B2 (de)
EP (1) EP1905046B1 (de)
WO (1) WO2007010025A1 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2868875B1 (fr) * 2004-04-07 2011-09-23 Areva T & D Sa Appareil electrique comprenant un isolateur composite muni d'une fenetre d'observation des contacts
CA2708133A1 (en) * 2007-12-05 2009-06-11 Corinne Jean Greyling A polymeric high voltage insulator with a hard, hydrophobic surface
US20100078198A1 (en) * 2008-08-13 2010-04-01 John Richardson Harris High Gradient Multilayer Vacuum Insulator
EP2182527A1 (de) * 2008-10-31 2010-05-05 ABB Research Ltd. Isolierstoffhohlkörper für einen Hochspannungsisolator
FR2941811A1 (fr) * 2009-01-30 2010-08-06 Areva T & D Sa Isolateur electrique a fibre(s) optique(s) protegee(s) contre les agents chimiques
JP5679561B2 (ja) * 2011-02-23 2015-03-04 矢崎総業株式会社 樹脂成形品
RU2499317C2 (ru) * 2012-02-21 2013-11-20 Общество с ограниченной ответственностью "Инвест-Энерго" Способ нанесения равнотолщинного гидрофобного покрытия на электроизоляционную конструкцию
RU2496168C1 (ru) * 2012-02-21 2013-10-20 Общество с ограниченной ответственностью "Инвест-Энерго" Электроизоляционная конструкция с равнотолщинным гидрофобным покрытием
CA3023296C (en) * 2016-08-31 2023-12-19 Ofs Fitel, Llc Multi-fiber optical distribution cable for hallway installations
CN108122650A (zh) * 2016-11-29 2018-06-05 黄璜 可适变异形衬管
FR3067164B1 (fr) 2017-06-02 2019-08-02 Sediver Sa Procede de traitement d'un composant en verre ou porcelaine a revetement protecteur super-hydrophobe
CN109143510B (zh) * 2018-10-15 2024-01-05 富通集团(嘉善)通信技术有限公司 连续化生产光缆的方法以及系统
FR3091406B1 (fr) * 2018-12-31 2021-01-15 Centre National De Recherche Scient Cnrs Matériau pour l’isolation électrique et procédé de fabrication
US11227708B2 (en) 2019-07-25 2022-01-18 Marmon Utility Llc Moisture seal for high voltage insulator
RU2714682C1 (ru) * 2019-08-27 2020-02-19 Акционерное общество «Южноуральский арматурно-изоляторный завод» Электроизоляционная конструкция с гидрофобным покрытием
CN112280247A (zh) * 2020-10-29 2021-01-29 西安永兴科技发展有限公司 一种耐高温高湿热纤维增强复合材料及其制备方法
US11916448B2 (en) 2021-02-01 2024-02-27 The Timken Company Small-fraction nanoparticle resin for electric machine insulation systems
CN113345659A (zh) * 2021-03-25 2021-09-03 天津大学 一种基于柔性涂覆的盆式绝缘子表面电荷防控方法
CN113593794B (zh) * 2021-07-01 2023-08-08 搏世因(北京)高压电气有限公司 自动压力凝胶纯干式电容型高压绝缘套管及其制造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1172048A (en) 1967-06-12 1969-11-26 Westinghouse Electric Corp Crack Resistant Epoxy Resin Casting Composition
US3645899A (en) 1968-08-19 1972-02-29 Ohio Brass Co Molded epoxy resin electrical insulating body containing alumina and silica
GB1233310A (de) * 1969-08-04 1971-05-26
US4259545A (en) * 1979-12-31 1981-03-31 Hayden Robert K High voltage safety-glow insulator
GB2147225B (en) 1983-09-28 1987-02-25 Richard Hall Clucas Method of manufacturing coated resin bonded glass fibre rods
US4810836A (en) * 1987-06-03 1989-03-07 Ngk Insulators, Ltd. Optical fiber-containing insulators
JPH0664953B2 (ja) * 1988-08-10 1994-08-22 日本碍子株式会社 光ファイバ内蔵碍子およびその製造法
FR2725302B1 (fr) * 1994-09-30 1997-03-14 Sediver Un isolateur electrique equipe de fibres optiques et son procede de fabrication
DE59812650D1 (de) * 1997-08-27 2005-04-21 Huntsman Adv Mat Switzerland Hydrophobes Epoxidharzsystem
US6049946A (en) * 1998-06-08 2000-04-18 Newell Operating Company Adjustable hinge
JP4823419B2 (ja) 1998-12-09 2011-11-24 ハンツマン アドバンスト マテリアルズ (スイッツァランド) ゲーエムベーハー 疎水性エポキシ樹脂系
DE50014006D1 (de) * 1999-03-16 2007-03-15 Huntsman Adv Mat Switzerland Härtbare zusammensetzung mit besonderer eigenschaftskombination
EP1091365B1 (de) 1999-10-07 2005-10-26 Axicom AG, Zweigniederlassung Wohlen Verfahren zur Herstellung eines hohlen Verbundisolators
US6657128B2 (en) 2001-01-29 2003-12-02 Mcgraw-Edison Company Hydrophobic properties of polymer housings

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BEISELE C: "Hydrophobic cycloaliphatic epoxy latest findings and future developments", WORLD INSULATOR CONGRESS AND EXHIBITION PROCEEDINGS, 2001, pages 141 - 153 *

Also Published As

Publication number Publication date
US7989704B2 (en) 2011-08-02
WO2007010025A1 (fr) 2007-01-25
EP1905046A1 (de) 2008-04-02
US20080296046A1 (en) 2008-12-04

Similar Documents

Publication Publication Date Title
EP1905046B1 (de) Elektrischer isolator und herstellungsverfahren dafür
EP2864399B1 (de) Verfahren zur herstellung von fasermaterialen, die mit einem thermoplastischen polymer vor-imprägniert sind
FR2579005A1 (fr) Elements resistant aux hautes tensions, tels qu'isolateurs, et leurs procedes de production
CN102024533B (zh) 一种复合柔性绝缘子的制造方法
WO2019113699A1 (fr) Composite, traverse enrobée du composite et leur utilisation dans un réseau électrique
EP1195775B1 (de) Lackzusammensetzung, Verfahren zur Herstellung; Wickeldraht für elektrische Spule und so hergestellte Spule
EP1627017B1 (de) Elektrische leitung beschichtet mit einer haftenden schicht und herstellungsprozess davon
EP2062268B1 (de) Isolationshalterung für eine hochspannungs- oder mittelspannungsanordnung und anordnung damit
Yu et al. Fiber length distribution and thermal, mechanical and morphological properties of thermally conductive polycarbonate/chopped carbon fiber composites
FR2847895A1 (fr) Procede de fabrication d'une fibre optique a revetements de natures distinctes
EP3175980A1 (de) Kontinuierlicher faserverbundwerkstoff und verfahren zur herstellung des kontinuierlichen faserverbundwerkstoffs
FR2938967A1 (fr) Surmoulage pour ampoule a vide en materiau composite smc ou bmc
EP2704896B1 (de) Wärmeschutz durch ein faserwickelverfahren und entsprechendes verfahren
EP0671746A1 (de) Ummantelter Kabel mit erhörter Flexibilität, Verfahren zu deren Herstellung
CN113421728B (zh) 一种带防鸟粪均压罩的硬质材料护套复合绝缘子的制备方法
EP0554173A1 (de) Formverfahren zur Herstellung eines Verbundwerkstoffproduktes
EP3806112A1 (de) Zubehörteil für kabel mit verbesserter dielektrischer festigkeit
EP3824480A1 (de) Material zur elektrischen isolierung mit einer mischung aus mikrometrischen anorganischen füllstoffen und herstellungsverfahren
CN114854177B (zh) 一种非线性电导环氧树脂复合材料及其制备方法和应用
FR3001458A1 (fr) Materiau composite conducteur et methode de fabrication dudit materiau composite conducteur
CN110600211B (zh) 一种改性poe塑料作外层的复合绝缘子芯棒
RU2143147C1 (ru) Способ получения полимерных изоляторов
EP4457195A1 (de) Zusammensetzung zur direkten herstellung eines keramischen matrixverbundwerkstoffs
CN115447176A (zh) 一种永磁同步电机转子保护套及其制备方法
JPH1064355A (ja) 有機複合絶縁体

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: KIEFFEL, YANNICK

Inventor name: BESSEDE, JEAN-LUC

17Q First examination report despatched

Effective date: 20080725

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AREVA T&D SAS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AREVA T&D SAS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM GRID SAS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 609051

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006035931

Country of ref document: DE

Effective date: 20130620

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130424

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130424

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130826

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130725

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130424

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130824

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130424

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130424

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130424

BERE Be: lapsed

Owner name: ALSTOM TECHNOLOGY LTD

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130424

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130424

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130424

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130424

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130424

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130424

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130724

26N No opposition filed

Effective date: 20140127

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130724

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006035931

Country of ref document: DE

Effective date: 20140127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130720

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140711

Year of fee payment: 9

Ref country code: NL

Payment date: 20140630

Year of fee payment: 9

Ref country code: CH

Payment date: 20140715

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140731

Year of fee payment: 9

Ref country code: SE

Payment date: 20140717

Year of fee payment: 9

Ref country code: AT

Payment date: 20140619

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060720

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130720

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006035931

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 609051

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150720

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20150801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160202

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150720

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150801

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150721