EP1903127A1 - Process of manufacturing of workpieces by cold gas spraying and turbine workpiece - Google Patents
Process of manufacturing of workpieces by cold gas spraying and turbine workpiece Download PDFInfo
- Publication number
- EP1903127A1 EP1903127A1 EP06090174A EP06090174A EP1903127A1 EP 1903127 A1 EP1903127 A1 EP 1903127A1 EP 06090174 A EP06090174 A EP 06090174A EP 06090174 A EP06090174 A EP 06090174A EP 1903127 A1 EP1903127 A1 EP 1903127A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- base material
- core
- component
- turbine component
- sprayed onto
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D23/00—Casting processes not provided for in groups B22D1/00 - B22D21/00
- B22D23/003—Moulding by spraying metal on a surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F5/009—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/06—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
- B22F7/08—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
- C23C24/02—Coating starting from inorganic powder by application of pressure only
- C23C24/04—Impact or kinetic deposition of particles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/284—Selection of ceramic materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/288—Protective coatings for blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/30—Manufacture with deposition of material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/30—Manufacture with deposition of material
- F05D2230/31—Layer deposition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/90—Coating; Surface treatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/95—Preventing corrosion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/20—Oxide or non-oxide ceramics
- F05D2300/21—Oxide ceramics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/60—Properties or characteristics given to material by treatment or manufacturing
- F05D2300/611—Coating
Definitions
- the invention relates to a method for producing components, in particular turbine components.
- Turbine components today typically consist of a base body on which a layer system is often still applied.
- a method for producing a layer system is for example EP 1 382 707 A1 known.
- an intermediate layer and a thermal barrier coating are applied to a substrate by atmospheric plasma spraying or cold gas spraying.
- the substrate which forms the base body here is, for example, a nickel- or cobalt-based superalloy.
- the intermediate layer serves as a corrosion, oxidation, or adhesion-promoting layer and consists, for example, of MCrAlY, where M is an element of the group iron (Fe), cobalt (Co) or nickel (Ni).
- the thermal barrier coating is, for example, ceramic and consists, for example, of partially or fully stabilized zirconium oxide with up to 8% yttrium oxide or other rare earth oxides.
- the layer system described can be used in particular in turbine blades.
- Turbine blades and other turbine components are cast from the nickel or cobalt based superalloys and then coated. This requires several process steps and offers only a small degree of flexibility, since the casting molds have to be changed to change the component geometry. In addition, due to the high temperatures during casting, oxidation processes can occur on the superalloy material, so that it is not always possible to achieve the theoretically possible optimum result.
- the invention has for its object to provide a method for the manufacture of components, in particular of turbine components, available, in which the above-mentioned problem does not occur.
- Another object is to provide a turbine component with improved component properties.
- the object is achieved in a method for producing components which consist of a base material in which powdered base material is sprayed onto a core by means of a cold gas spraying process and the spraying is carried out in such a way that the contour of the component is worked out during spraying.
- components consisting of a base material for example turbine components such as blades or transition pieces
- turbine components such as blades or transition pieces
- inert gas eg helium or nitrogen
- the spray parameters such. Particle velocity or mass flow can be varied.
- the powder parameters e.g. the powder composition can be varied. This makes it possible to produce layered components and components with varying material properties (e.g., graded material composition).
- a porous region may be formed as a porous layer. This can form the surface of the component, but it can also be arranged between two dense layers.
- a heat-insulating material may be sprayed onto the base material to provide better protection against high temperatures.
- the heat-insulating material can either be designed so that it forms a porous layer after spraying, or so that it forms a dense layer after spraying. Porosity can improve the thermal insulation properties of the layer.
- a corrosion- and / or oxidation-inhibiting material can be sprayed on between the base material and the heat-insulating material, so that additional protection of the base material against corrosion and / or oxidation is ensured.
- a corrosion and / or oxidation-inhibiting material for example, a MCrAlX material can be used.
- MCrAlX M stands for at least one element of the group iron, cobalt or nickel and X for an active element such as yttrium (Y) and / or silicon (Si) and / or at least one element of the rare earths or hafnium (Hf).
- Such alloys are, for example, from EP 0 486 489 B1 .
- EP 0 412 397 B1 or EP 1 306 454 A1 known.
- the corrosion and / or oxidation-inhibiting material can also be added as sacrificial anodes acting particles.
- a base material in particular a superalloy on nickel, cobalt or iron base can be sprayed, which is a high-temperature resistant material.
- a ceramic material can be sprayed as a base material, which offers a high corrosion and temperature resistance. It may then be possible to dispense with corrosion-inhibiting / oxidation-inhibiting coatings and thermal barrier coatings altogether.
- a ceramic core for example, can be used, which can be rinsed after completion of the component by means of a strong acid, such as hydrofluoric acid.
- a strong acid such as hydrofluoric acid.
- HASTELLOY ® C-2000 or INCONEL ® Super alloys are resistant to strong acids such as sulfurous acid, hydrochloric acid or hydrofluoric acid.
- a further advantageous development consists in a turbine component which is produced by the method according to the invention and comprises a material which has regions of different porosity.
- the areas of different porosity may possibly serve for the passage of cooling air.
- the material of the turbine component with the regions of different porosity can be coating material, ie the regions of different porosity are present in a coating. But it is also possible that the material is present with the areas of different porosity base material. In other words, the regions of different porosity are already present in the uncoated turbine component. Of course, also base materials with areas different porosity mut coatings, which have areas of different porosity combined.
- FIG. 1 schematically shows the production of a turbine component 28 by a method according to the invention.
- Base material 24 is sprayed onto a ceramic core 26 by a cold gas spray nozzle 22.
- the spray parameters can be varied, in particular the mass flow, the particle velocity, the particle size and the particle composition.
- the particle size determines the porosity properties of the sprayed base material.
- the turbine component is formed by the relative movement between the ceramic core 26 and spray nozzle 22.
- the base material is sprayed, for example, a Ni, Co or Fe based superalloy.
- Suitable superalloys are e.g., those known under the designations HASTELLOY ® or INCONEL ® superalloys.
- the composition of the spray powder is, for example, changed to a MCrAlX composition and a primer layer (not shown in Fig. 1) applied to the base material.
- a further change in the composition of the spray powder for example to Y-stabilized zirconium oxide (ZrO 2 )
- ZrO 2 Y-stabilized zirconium oxide
- a thermal thermal barrier coating is finally sprayed onto the MCrAlX layer.
- the ceramic core 26 is leached, for example by hydrofluoric acid (HF).
- HF hydrofluoric acid
- the leaching of the ceramic core 26 can be carried out either after the completion of the turbine component or after the spraying of the base material, but before completion of the entire turbine component 28, for example, before the application of a coating.
- the advantage of premature leaching is that it can avoid possible damage to a ceramic coating (eg, ceramic thermal barrier coating, TBC) during the leaching process.
- a ceramic material is sprayed as a base material for the turbine component 28 instead of a superalloy.
- the core may, for example, consist of a burn-out material.
- the material of the core should be chosen so that removal of the core is possible without attacking the ceramic base material.
- FIG. 2 shows a perspective view of a blade 12 as an example of a component made by cold gas spraying on a core which is leached.
- the rotor blade 12 has a fastening region 14, a blade platform 18 and an airfoil region 16.
- a blade root 20 is formed, which is for fastening the blade 12 to a shaft of a turbomachine, also not shown, in particular a gas turbine.
- the turbine blade 12, particularly in its airfoil region 16, has a complex geometry which can be produced by a method according to the invention, with a high degree of flexibility with respect to changes in the geometry of the rotor blade.
- a section through the wall of a turbine component 28 according to a first embodiment variant is shown in highly schematic form in FIG.
- a core 26 is a applied by cold gas spraying dense layer 2, which consists of a base material and forms the inside of the component wall.
- the dense layer 2 may consist of a superalloy or of a ceramic material as the base material.
- the core 26 may be made in a superalloy as a dense layer 2, for example. Made of ceramic.
- the pores 7 of the porous layer 3 can be traversed by a cooling air flow 5, which serves to cool the turbine component 28.
- the size of the pores can be adjusted by choosing the size of the spattered particles.
- this dense layer 4 is also applied by cold gas spraying.
- This dense layer 4 may be wholly or partly made of a thermally insulating or of a corrosion and / or oxidation-inhibiting material, such as e.g. MCrA1X exist.
- a part of the dense layer 4 can also form the outer surface of the turbine component 28 as a thermal barrier coating (TBC). It is also possible to spray the thermal barrier coating directly onto the base material.
- FIG. 4 shows a schematic cross section through a turbine component 28, for example a turbine blade, with a central one Air duct 6, which consists of a dense portion 8 and a porous portion 10 with pores 7.
- the central air channel is created by leaching the ceramic core after spraying the base material.
- a cooling air flow 5 flows in through the central air duct 6 and out through the pores 7 of the porous section 10, thus cooling the porous section 10.
- the two sections are as well as the dense layers 2 and 4 and the porous layer 3 in FIG Cold gas spraying made.
- Porous sections are preferably formed where the thermal loading of the turbine component 28 is greatest. By suitable position of the porous sections in the turbine component 28 and by suitable shaping and dimensioning of these sections, the generation of cooling air films over the outer surface of the turbine component 28 can also be achieved.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Composite Materials (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zum Herstellen von Bauteilen, insbesondere Turbinenbauteilen.The invention relates to a method for producing components, in particular turbine components.
Turbinenbauteile bestehen heutzutage typischerweise aus einem Grundkörper, auf dem häufig noch ein Schichtsystem aufgebracht ist. Ein Verfahren zum Herstellen eines Schichtsystems ist beispielsweise aus
Turbinenschaufeln und andere Turbinenkomponenten wie bspw. Übergangsstücke werden aus den nickel- oder kobaltbasierten Superlegierungen gegossen und anschließend beschichtet. Dies erfordert mehrere Verfahrensschritte und bietet nur einen geringen Grad an Flexibilität, da für eine Änderung der Komponentengeometrie die Gießformen zu ändern sind. Zusätzlich können auf Grund der hohen Temperaturen beim Gießen Oxidationsprozesse am Superlegierungsmaterial auftreten, so dass sich nicht immer das theoretisch mögliche optimale Ergebnis erzielen lässt.Turbine blades and other turbine components, such as adapters, are cast from the nickel or cobalt based superalloys and then coated. This requires several process steps and offers only a small degree of flexibility, since the casting molds have to be changed to change the component geometry. In addition, due to the high temperatures during casting, oxidation processes can occur on the superalloy material, so that it is not always possible to achieve the theoretically possible optimum result.
Zugrundeliegende AufgabeUnderlying task
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Herstellen von Bauteilen, insbesondere von Turbinenbauteilen, zur Verfügung zu stellen, bei dem die oben genannte Problematik nicht auftritt.The invention has for its object to provide a method for the manufacture of components, in particular of turbine components, available, in which the above-mentioned problem does not occur.
Eine weitere Aufgabe besteht darin, ein Turbinenbauteil mit verbesserten Bauteileigenschaften zur Verfügung zu stellen.Another object is to provide a turbine component with improved component properties.
Diese Aufgaben werden erfindungsgemäß durch ein Verfahren mit den Merkmalen des Anspruchs 1 bzw. durch ein Turbinenbauteil nach Anspruch 13 gelöst. Die abhängigen Ansprüche enthalten vorteilhafte Weiterbildungen der Erfindung.These objects are achieved by a method with the features of claim 1 and by a turbine component according to claim 13. The dependent claims contain advantageous developments of the invention.
Erfindungsgemäß besteht die Lösung der Aufgabe in einem Verfahren zum Herstellen von Bauteilen, welche aus einem Grundwerkstoff bestehen, in dem pulverförmiger Grundwerkstoff mittels eines Kaltgasspritzverfahrens auf einen Kern aufgespritzt wird und das Spritzen so erfolgt, dass während des Spritzens die Kontur des Bauteils herausgearbeitet wird.According to the invention, the object is achieved in a method for producing components which consist of a base material in which powdered base material is sprayed onto a core by means of a cold gas spraying process and the spraying is carried out in such a way that the contour of the component is worked out during spraying.
Dadurch können aus einem Grundwerkstoff bestehende Bauteile, bspw. Turbinenbauteile wie etwa Schaufeln oder Übergangsstücke, mit komplexen Strukturen hergestellt werden, und es ist kein sonst zur Herstellung von Turbinenbauteilen eingesetzter aufwendiger Gussvorgang mehr nötig. Aufgrund der Verwendung von Inertgas (bspw. Helium oder Stickstoff) als Treibgas beim Kaltgasspritzen kann die Oxidation des Grundwerkstoffes vermieden werden.As a result, components consisting of a base material, for example turbine components such as blades or transition pieces, can be manufactured with complex structures, and there is no longer any need for a complex casting operation otherwise used for the production of turbine components. Due to the use of inert gas (eg helium or nitrogen) as a propellant in cold gas spraying, the oxidation of the base material can be avoided.
Bei einer vorteilhaften Weiterbildung der Erfindung ist das Herausarbeiten der Kontur durch Verwendung eines konturierten Kerns vereinfacht.In an advantageous embodiment of the invention, the working out of the contour by using a contoured core is simplified.
Eine andere vorteilhafte Weiterbildung besteht darin, dass auch während des Spritzvorgangs die Spritzparameter wie z.B. Partikelgeschwindigkeit oder Massenstrom variiert werden können. Außerdem können die Pulverparameter, z.B. die Pulverzusammensetzung, variiert werden. Dadurch wird das Herstellen von geschichteten Bauteilen und von Bauteilen mit variierenden Materialeigenschaften (z.B. gradierte Werkstoffzusammensetzung) möglich.Another advantageous development is that even during the injection process, the spray parameters such. Particle velocity or mass flow can be varied. In addition, the powder parameters, e.g. the powder composition can be varied. This makes it possible to produce layered components and components with varying material properties (e.g., graded material composition).
Es kann auch die Partikelgröße im pulverförmigen Werkstoff variiert werden. Dies ermöglicht das Herstellen von Bauteilen, die Bereiche mit unterschiedlicher Porosität aufweisen. So können beispielsweise Turbinenschaufeln mit porösen Bereichen erzeugt werden. Insbesondere kann ein poröser Bereich als poröse Schicht ausgebildet sein. Diese kann die Oberfläche des Bauteils bilden, sie kann aber auch zwischen zwei dichten Schichten angeordnet werden.It is also possible to vary the particle size in the powdery material. This makes it possible to produce components having regions with different porosity. For example, turbine blades with porous regions can be produced. In particular, a porous region may be formed as a porous layer. This can form the surface of the component, but it can also be arranged between two dense layers.
Zusätzlich dazu kann nach dem Aufspritzen des Grundwerkstoffs auf den Kern ein wärmedämmender Werkstoff auf dem Grundwerkstoff aufgespritzt werden, um einen besseren Schutz gegen hohe Temperaturen zu gewährleisten. Der wärmedämmender Werkstoff kann entweder so ausgestaltet sein, dass er nach dem Aufspritzen eine poröse Schicht bildet, oder so, dass er nach dem Aufspritzen eine dichte Schicht bildet. Durch eine Porosität können die Wärmeisolationseigenschaften der Schicht verbessert werden.Additionally, after spraying the base material onto the core, a heat-insulating material may be sprayed onto the base material to provide better protection against high temperatures. The heat-insulating material can either be designed so that it forms a porous layer after spraying, or so that it forms a dense layer after spraying. Porosity can improve the thermal insulation properties of the layer.
Optional kann zwischen dem Grundwerkstoff und dem wärmedämmenden Werkstoff ein korrosions- und/oder oxidationshemmender Werkstoff aufgespritzt werden, so dass ein zusätzlicher Schutz des Grundwerkstoffs gegen Korrosion und/oder Oxidation gewährleistet wird.Optionally, a corrosion- and / or oxidation-inhibiting material can be sprayed on between the base material and the heat-insulating material, so that additional protection of the base material against corrosion and / or oxidation is ensured.
Als korrosions- und/oder oxidationshemmender Werkstoff kann z.B. ein MCrAlX-Werkstoff verwendet werden. In MCrAlX steht M für zumindest ein Element der Gruppe Eisen, Kobalt oder Nickel und X für ein Aktivelement wie Yttrium (Y) und/oder Silizium (Si) und/oder zumindest ein Element der Seltenen Erden bzw. Hafnium (Hf). Solche Legierungen sind bspw. aus
Als Grundwerkstoff kann insbesondere eine Superlegierung auf Nickel-, Kobalt- oder Eisenbasis verspritzt werden, die einen hochwarmfesten Werkstoff darstellt. Alternativ kann aber auch ein Keramikwerkstoff als Grundwerkstoff verspritzt werden, der eine hohe Korrosions- und Temperaturfestigkeit bietet. Auf korrosionshemmende/oxidationshemmende Beschichtungen und auf Wärmedämmbeschichtungen kann dann eventuell ganz verzichtet werden.As a base material, in particular a superalloy on nickel, cobalt or iron base can be sprayed, which is a high-temperature resistant material. Alternatively, however, a ceramic material can be sprayed as a base material, which offers a high corrosion and temperature resistance. It may then be possible to dispense with corrosion-inhibiting / oxidation-inhibiting coatings and thermal barrier coatings altogether.
Als Kern kann bspw. ein Keramikkern Verwendung finden, der nach dem Fertigstellen des Bauteils mittels einer starken Säure, etwa mittels Flusssäure, ausgespült werden kann. Bspw. die unter dem Namen HASTELLOY® C-2000 oder INCONEL® bekannte Superlegierungen sind gegenüber starken Säuren wie schwefelhaltige Säure, Salzsäure oder Flusssäure resistent.As a core, for example, a ceramic core can be used, which can be rinsed after completion of the component by means of a strong acid, such as hydrofluoric acid. For example. known under the name HASTELLOY ® C-2000 or INCONEL ® Super alloys are resistant to strong acids such as sulfurous acid, hydrochloric acid or hydrofluoric acid.
Eine weitere vorteilhafte Weiterbildung besteht in einem Turbinenbauteil, welches nach dem erfindungsgemäßen Verfahren hergestellt ist und einen Werkstoff umfasst, welcher Bereiche unterschiedlicher Porosität besitzt. Die Bereiche unterschiedlicher Porosität können eventuell zur Durchleitung von Kühlluft dienen.A further advantageous development consists in a turbine component which is produced by the method according to the invention and comprises a material which has regions of different porosity. The areas of different porosity may possibly serve for the passage of cooling air.
Der Werkstoff des Turbinenbauteils mit den Bereichen unterschiedlicher Porosität kann Beschichtungswerkstoff sein, d.h. die Bereiche unterschiedlicher Porosität liegen in einer Beschichtung vor. Es ist aber auch möglich, dass als Werkstoff mit den Bereichen unterschiedlicher Porosität Grundwerkstoff vorhanden ist. Mit anderen Worten, die Bereiche unterschiedlicher Porosität sind bereits im unbeschichteten Turbinenbauteil vorhanden. Natürlich können auch Grundwerkstoffe mit Bereichen unterschiedlicher Porosität mut Beschichtungen, welche Bereiche unterschiedlicher Porosität aufweisen, kombiniert werden.The material of the turbine component with the regions of different porosity can be coating material, ie the regions of different porosity are present in a coating. But it is also possible that the material is present with the areas of different porosity base material. In other words, the regions of different porosity are already present in the uncoated turbine component. Of course, also base materials with areas different porosity mut coatings, which have areas of different porosity combined.
Weitere Merkmale, Eigenschaften und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen unter Bezugnahme auf die beiliegenden Figuren. Es zeigt:
- Fig. 1
- einen Querschnitt durch ein Turbinenbauteil mit Kern während der Herstellung.
- Fig. 2
- ein Turbinenbauteil, das nach dem erfindungsgemäßen Verfahren hergestellt ist.
- Fig. 3
- eine Beschichtung eines Turbinenbauteils, das nach dem erfindungsgemäßen Verfahren hergestellt ist, und bei dem sich eine poröse Schicht zwischen zwei dichten Schichten befindet.
- Fig. 4
- ein Turbinenbauteil, das nach dem erfindungsgemäßen Verfahren hergestellt ist, und bei dem ein poröser Abschnitt an einen dichten Abschnitt angrenzt.
- Fig. 1
- a cross section through a turbine component with core during manufacture.
- Fig. 2
- a turbine component, which is produced by the method according to the invention.
- Fig. 3
- a coating of a turbine component made by the method of the invention and having a porous layer between two dense layers.
- Fig. 4
- a turbine component made according to the method of the invention, wherein a porous portion is adjacent to a dense portion.
In Figur 1 ist die Herstellung eines Turbinenbauteiles 28 durch ein erfindungsgemäßes Verfahren schematisch dargestellt. Grundwerkstoff 24 wird durch eine Kaltgasspritzdüse 22 auf einen Keramikkern 26 aufgespritzt. Die Spritzparameter können variiert werden, insbesondere der Massenstrom, die Partikelgeschwindigkeit, die Partikelgröße und die Partikelzusammensetzung. Die Partikelgröße bestimmt dabei die Porositätseigenschaften des aufgespritzten Grundwerkstoffes.FIG. 1 schematically shows the production of a
Das Turbinenbauteil entsteht durch die Relativbewegung zwischen Keramikkern 26 und Spritzdüse 22. Zuerst wird das Grundwerkstoffmaterial verspritzt, bspw. eine Superlegierung auf Ni-, Co- oder Fe-Basis. Geeignete Superlegierungen sind bspw. die unter den Bezeichnungen HASTELLOY® oder INCONEL® bekannten Superlegierungen.The turbine component is formed by the relative movement between the
Danach wird die Zusammensetzung des Spritzpulvers bspw. zu einer MCrAlX-Zusammensetzung geändert und eine Haftvermittlerschicht (in Fig. 1 nicht gezeigt) auf den Grundwerkstoff aufgebracht. Nach einer neuerlichen Änderung der Zusammensetzung des Spritzpulvers, bspw. zu mit Y stabilisiertemZirkonoxid (ZrO2) wird schließlich eine thermische Wärmedämmschicht auf die MCrA1X-Schicht aufgespritzt. Nach dem Spritzen des Turbinenbauteils 28 wird der Keramikkern 26 ausgelaugt, bspw. durch Flusssäure (HF). Das Auslaugen des Keramikkerns 26 kann entweder nach der Fertigstellung des Turbinenbauteils oder nach dem Aufspritzen des Grundwerkstoffs, aber vor Fertigstellen des gesamten Turbinenbauteils 28, z.B. vor dem Aufbringen einer Beschichtung, erfolgen. Der Vorteil des frühzeitigen Auslaugens besteht darin, dass dadurch eine eventuelle Beschädigung einer keramischen Beschichtung (z.B. keramische Wärmedämmschicht, TBC) während des Auslaugprozesses vermieden werden kann.Thereafter, the composition of the spray powder is, for example, changed to a MCrAlX composition and a primer layer (not shown in Fig. 1) applied to the base material. After a further change in the composition of the spray powder, for example to Y-stabilized zirconium oxide (ZrO 2 ), a thermal thermal barrier coating is finally sprayed onto the MCrAlX layer. After spraying the
In einer alternativen Ausgestaltung des Verfahrens wird statt einer Superlegierung ein Keramikmaterial als Grundwerkstoff für das Turbinenbauteil 28 verspritzt. In diesem Fall kann der Kern bspw. aus einem ausbrennbaren Material bestehen. Auf jeden Fall sollte das Material des Kerns so gewählt sein, dass ein Entfernen des Kerns möglich ist, ohne den keramischen Grundwerkstoff anzugreifen.In an alternative embodiment of the method, a ceramic material is sprayed as a base material for the
Figur 2 zeigt eine perspektivische Ansicht einer Laufschaufel 12 als Beispiel für ein Bauteil, das durch Kaltgasspritzen auf einen Kern, der ausgelaugt wird, hergestellt ist. Die Laufschaufel 12 weist einen Befestigungsbereich 14, eine Schaufelplattform 18 sowie einen Schaufelblattbereich 16 auf.Figure 2 shows a perspective view of a
Im Befestigungsbereich 14 ist ein Schaufelfuß 20 gebildet, der zur Befestigung der Laufschaufel 12 an einer Welle einer ebenfalls nicht dargestellten Strömungsmaschine, insbesondere einer Gasturbine, darstellt. Die Turbinenschaufel 12 weist besonders in ihrem Schaufelblattbereich 16 eine komplexe Geometrie auf, die durch ein erfindungsgemäßes Verfahren hergestellt werden kann, wobei eine hohe Flexibilität gegenüber Änderungen der Geometrie der Laufschaufel gegeben ist.In the mounting
In Figur 3 ist, stark schematisiert, ein Schnitt durch die Wand eines Turbinenbauteils 28 gemäß einer ersten Ausführungsvariante dargestellt. Auf einem Kern 26 befindet sich eine durch Kaltgasspritzen aufgetragene dichte Schicht 2, die aus einem Grundwerkstoff besteht und die Innenseite der Bauteilwand bildet. Die dichte Schicht 2 kann aus einer Superlegierung oder aus einem Keramikwerkstoff als Grundwerkstoff bestehen. Der Kern 26 kann bei einer Superlegierung als dichter Schicht 2 bspw. aus Keramik hergestellt sein.A section through the wall of a
Auf der dichten Schicht 2 befindet sich eine poröse Schicht 3 mit Poren 7, die ebenfalls durch Kaltgasspritzen aufgebracht ist. Die Poren 7 der porösen Schicht 3 können von einem Kühlluftstrom 5 durchströmt werden, das zur Kühlung des Turbinenbauteils 28 dient. Die Größe der Poren kann durch Wahl der Größe der verspritzten Partikel eingestellt werden.On the
Auf der porösen Schicht 3 ist eine weitere dichte Schicht 4 ebenfalls durch Kaltgasspritzen aufgebracht. Diese dichte Schicht 4 kann vollständig oder teilweise aus einem wärmedämmenden oder aus einem korrosions- und/oder oxidationshemmenden Werkstoff wie z.B. MCrA1X bestehen. Ein Teil der dichten Schicht 4 kann auch als Wärmedämmschicht (Thermal Barrier Coating, TBC) die Außenfläche des Turbinenbauteils 28 bilden. Es ist auch möglich, die Wärmedämmschicht direkt auf den Grundwerkstoff aufzuspritzen.On the porous layer 3, another
Fig. 4 zeigt einen schematischen Querschnitt durch ein Turbinenbauteil 28, bspw. eine Turbinenschaufel, mit einem zentralen Luftkanal 6, das aus einem dichten Abschnitt 8 und einem porösen Abschnitt 10 mit Poren 7 besteht. Der zentrale Luftkanal entsteht durch Auslaugen des Keramikkerns nach dem Aufspritzen des Grundwerkstoffs. Ein Kühlluftstrom 5 strömt durch den zentralen Luftkanal 6 ein und durch die Poren 7 des porösen Abschnitts 10 wieder aus und kühlt so den porösen Abschnitt 10. Die beiden Abschnitte sind ebenso wie die dichten Schichten 2 und 4 und die poröse Schicht 3 in Figur 3 durch Kaltgasspritzen hergestellt. Poröse Abschnitte sind vorzugsweise dort gebildet, wo die thermische Belastung des Turbinenbauteils 28 am größten ist. Durch geeignete Position der porösen Abschnitte im Turbinenbauteil 28 sowie durch geeignete Form und Dimensionierung dieser Abschnitte kann auch das Erzeugen von Kühlluftfilmen über der äußeren Oberfläche des Turbinenbauteils 28 erreicht werden.4 shows a schematic cross section through a
Abschließend sei angemerkt, dass sämtlichen Merkmalen, die in den Anmeldungsunterlagen und insbesondere in den abhängigen Ansprüchen genannt sind, trotz des vorgenommenen formalen Rückbezugs auf einen oder mehrere bestimmte Ansprüche, auch einzeln oder in beliebiger Kombination eigenständiger Schutz zukommen soll.Finally, it should be noted that all the features that are mentioned in the application documents and in particular in the dependent claims, despite the formal reference to one or more specific claims, even individually or in any combination should receive independent protection.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06090174A EP1903127A1 (en) | 2006-09-21 | 2006-09-21 | Process of manufacturing of workpieces by cold gas spraying and turbine workpiece |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06090174A EP1903127A1 (en) | 2006-09-21 | 2006-09-21 | Process of manufacturing of workpieces by cold gas spraying and turbine workpiece |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1903127A1 true EP1903127A1 (en) | 2008-03-26 |
Family
ID=37775272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06090174A Withdrawn EP1903127A1 (en) | 2006-09-21 | 2006-09-21 | Process of manufacturing of workpieces by cold gas spraying and turbine workpiece |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP1903127A1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008052030A1 (en) * | 2008-10-16 | 2010-04-22 | Mtu Aero Engines Gmbh | Method for connecting at least one turbine blade with a turbine disk or a turbine ring |
DE102008057159A1 (en) * | 2008-11-13 | 2010-05-20 | Mtu Aero Engines Gmbh | Gas turbine useful in aircraft engine, comprises two rotor discs, which are braced to each other and which directly adjoin to each other in a contact area, where one of the rotor discs is equipped in the contact area |
WO2010094273A3 (en) * | 2009-02-21 | 2011-01-20 | Mtu Aero Engines Gmbh | Production of a turbine blisk having an oxidation and/or corrosion protection layer |
DE102009036407A1 (en) * | 2009-08-06 | 2011-02-10 | Mtu Aero Engines Gmbh | Abradable blade tip pad |
DE102009037894A1 (en) * | 2009-08-18 | 2011-02-24 | Mtu Aero Engines Gmbh | Thin-walled structural component and method for its production |
GB2474345A (en) * | 2009-10-07 | 2011-04-13 | Gen Electric | Fabricating and repairing turbine rotors by cold spraying powder |
WO2011044876A1 (en) | 2009-10-17 | 2011-04-21 | Mtu Aero Engines Gmbh | Method for producing a rotor or stator blade and such a blade |
DE102010022597A1 (en) * | 2010-05-31 | 2011-12-01 | Siemens Aktiengesellschaft | Method for producing a layer by means of cold gas spraying and use of such a layer |
WO2012051978A3 (en) * | 2010-10-13 | 2012-06-28 | Mtu Aero Engines Gmbh | Component, and method for developing, repairing and/or constructing such a component |
EP2617869A2 (en) * | 2012-01-20 | 2013-07-24 | General Electric Company | Process of fabricating a thermal barrier coating and an article having a cold sprayed thermal barrier coating |
US8697184B2 (en) | 2009-07-17 | 2014-04-15 | Mtu Aero Engines Gmbh | Gas dynamic cold spraying of oxide-containing protective layers |
EP2725120A1 (en) * | 2012-10-24 | 2014-04-30 | Hitachi Ltd. | High temperature components with thermal barrier coatings for gas turbine |
WO2014197789A2 (en) * | 2013-06-07 | 2014-12-11 | General Electric Company | Hollow metal objects and methods for making same |
EP2845918A1 (en) * | 2013-09-04 | 2015-03-11 | Siemens Aktiengesellschaft | Method for at least partially coating a blade, a coating device and a blade |
WO2015150071A3 (en) * | 2014-03-31 | 2015-11-26 | Siemens Aktiengesellschaft | Method for producing a hollow body by cold spraying and mould core suitable for carrying out said method |
US11662300B2 (en) | 2019-09-19 | 2023-05-30 | Westinghouse Electric Company Llc | Apparatus for performing in-situ adhesion test of cold spray deposits and method of employing |
US11898986B2 (en) | 2012-10-10 | 2024-02-13 | Westinghouse Electric Company Llc | Systems and methods for steam generator tube analysis for detection of tube degradation |
US11935662B2 (en) | 2019-07-02 | 2024-03-19 | Westinghouse Electric Company Llc | Elongate SiC fuel elements |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3139219A1 (en) * | 1980-10-06 | 1982-05-27 | General Electric Co., Schenectady, N.Y. | "PLASMA INJECTION MOLDING PARTS" |
EP0747151A1 (en) * | 1995-06-07 | 1996-12-11 | Howmet Corporation | Method and apparatus for removing cores from castings |
EP1083013A2 (en) * | 1999-09-08 | 2001-03-14 | Linde Gas Aktiengesellschaft | Preparation of foamable metal bodies and metal foams |
WO2002061177A2 (en) * | 2001-01-30 | 2002-08-08 | Siemens Westinghouse Power Corporation | Thermal barrier coating applied with cold spray technique |
EP1659195A2 (en) * | 2004-11-23 | 2006-05-24 | United Technologies Corporation | Cold gas dynamic spraying of high strength copper |
-
2006
- 2006-09-21 EP EP06090174A patent/EP1903127A1/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3139219A1 (en) * | 1980-10-06 | 1982-05-27 | General Electric Co., Schenectady, N.Y. | "PLASMA INJECTION MOLDING PARTS" |
EP0747151A1 (en) * | 1995-06-07 | 1996-12-11 | Howmet Corporation | Method and apparatus for removing cores from castings |
EP1083013A2 (en) * | 1999-09-08 | 2001-03-14 | Linde Gas Aktiengesellschaft | Preparation of foamable metal bodies and metal foams |
WO2002061177A2 (en) * | 2001-01-30 | 2002-08-08 | Siemens Westinghouse Power Corporation | Thermal barrier coating applied with cold spray technique |
EP1659195A2 (en) * | 2004-11-23 | 2006-05-24 | United Technologies Corporation | Cold gas dynamic spraying of high strength copper |
Non-Patent Citations (3)
Title |
---|
KIM G E ET AL: "Near net-shape forming of thermal barrier coated components for gas turbine engine applications", PROCEEDINGS OF THE INTERNATIONAL THERMAL SPRAY CONFERENCE 1998, vol. 2, 1998, pages 1229 - 1232, XP009080178 * |
PATTISON J ET AL: "Cold gas dynamic manufacturing: A non-thermal approach to freeform fabrication", NTERNATIONAL JOURNAL OF MACHINE TOOLS AND MANUFACTURE, vol. 47, no. 3-4, 12 June 2006 (2006-06-12), pages 627 - 634, XP002423531 * |
SCHMITT-THOMAS KH G ET AL: "Korrosionsuntersuchungen an Aluminium-Korrosionsschutzüberzügen für Verdichterschaufeln", WERKSTOFFE UND KORROSION, vol. 41, no. 9, September 1990 (1990-09-01), pages 523 - 536, XP002423622 * |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008052030B4 (en) * | 2008-10-16 | 2011-06-16 | Mtu Aero Engines Gmbh | Method for connecting at least one turbine blade with a turbine disk or a turbine ring |
DE102008052030A1 (en) * | 2008-10-16 | 2010-04-22 | Mtu Aero Engines Gmbh | Method for connecting at least one turbine blade with a turbine disk or a turbine ring |
DE102008057159A1 (en) * | 2008-11-13 | 2010-05-20 | Mtu Aero Engines Gmbh | Gas turbine useful in aircraft engine, comprises two rotor discs, which are braced to each other and which directly adjoin to each other in a contact area, where one of the rotor discs is equipped in the contact area |
WO2010094273A3 (en) * | 2009-02-21 | 2011-01-20 | Mtu Aero Engines Gmbh | Production of a turbine blisk having an oxidation and/or corrosion protection layer |
US8697184B2 (en) | 2009-07-17 | 2014-04-15 | Mtu Aero Engines Gmbh | Gas dynamic cold spraying of oxide-containing protective layers |
DE102009036407A1 (en) * | 2009-08-06 | 2011-02-10 | Mtu Aero Engines Gmbh | Abradable blade tip pad |
US9260784B2 (en) | 2009-08-06 | 2016-02-16 | Mtu Aero Engines Gmbh | Blade tip coating that can be rubbed off |
US9393622B2 (en) | 2009-08-18 | 2016-07-19 | Mtu Aero Engines Gmbh | Thin-walled structural component, and method for the production thereof |
DE102009037894A1 (en) * | 2009-08-18 | 2011-02-24 | Mtu Aero Engines Gmbh | Thin-walled structural component and method for its production |
US8261444B2 (en) | 2009-10-07 | 2012-09-11 | General Electric Company | Turbine rotor fabrication using cold spraying |
US9138838B2 (en) | 2009-10-07 | 2015-09-22 | General Electric Company | Method of repairing a turbine rotor using cold spraying |
GB2474345A (en) * | 2009-10-07 | 2011-04-13 | Gen Electric | Fabricating and repairing turbine rotors by cold spraying powder |
GB2474345B (en) * | 2009-10-07 | 2015-06-03 | Gen Electric | Turbine rotor fabrication using cold spraying |
US9132508B2 (en) * | 2009-10-17 | 2015-09-15 | Mtu Aero Engines Gmbh | Method for producing a rotor or stator blade and such a blade |
US20120201691A1 (en) * | 2009-10-17 | 2012-08-09 | Mtu Aero Engines Gmbh | Method for producing a rotor or stator blade and such a blade |
WO2011044876A1 (en) | 2009-10-17 | 2011-04-21 | Mtu Aero Engines Gmbh | Method for producing a rotor or stator blade and such a blade |
DE102009049707A1 (en) | 2009-10-17 | 2011-07-28 | MTU Aero Engines GmbH, 80995 | Method for producing a rotor or stator blade and such a blade |
GB2487024B (en) * | 2009-10-17 | 2015-08-12 | MTU Aero Engines AG | Method for producing a rotor blade or stator blade and such a blade |
GB2487024A (en) * | 2009-10-17 | 2012-07-04 | Mtu Aero Engines Gmbh | Method for producing a rotor or stator blade and such a blade |
US8993048B2 (en) | 2010-05-31 | 2015-03-31 | Siemens Aktiengesellschaft | Method for producing a layer by means of cold spraying and use of such a layer |
DE102010022597A1 (en) * | 2010-05-31 | 2011-12-01 | Siemens Aktiengesellschaft | Method for producing a layer by means of cold gas spraying and use of such a layer |
WO2012051978A3 (en) * | 2010-10-13 | 2012-06-28 | Mtu Aero Engines Gmbh | Component, and method for developing, repairing and/or constructing such a component |
EP2617869A3 (en) * | 2012-01-20 | 2014-09-24 | General Electric Company | Process of fabricating a thermal barrier coating and an article having a cold sprayed thermal barrier coating |
EP2617869A2 (en) * | 2012-01-20 | 2013-07-24 | General Electric Company | Process of fabricating a thermal barrier coating and an article having a cold sprayed thermal barrier coating |
US11898986B2 (en) | 2012-10-10 | 2024-02-13 | Westinghouse Electric Company Llc | Systems and methods for steam generator tube analysis for detection of tube degradation |
EP2725120A1 (en) * | 2012-10-24 | 2014-04-30 | Hitachi Ltd. | High temperature components with thermal barrier coatings for gas turbine |
CN105592961A (en) * | 2013-06-07 | 2016-05-18 | 通用电气公司 | Hollow metal objects and methods for making the same |
WO2014197789A2 (en) * | 2013-06-07 | 2014-12-11 | General Electric Company | Hollow metal objects and methods for making same |
CN105592961B (en) * | 2013-06-07 | 2019-08-13 | 通用电气公司 | Hollow metal object and method for manufacturing it |
US10408083B2 (en) | 2013-06-07 | 2019-09-10 | General Electric Company | Hollow metal objects and methods for making same |
WO2014197789A3 (en) * | 2013-06-07 | 2015-02-26 | General Electric Company | Hollow metal objects and methods for making same |
EP2845918A1 (en) * | 2013-09-04 | 2015-03-11 | Siemens Aktiengesellschaft | Method for at least partially coating a blade, a coating device and a blade |
WO2015150071A3 (en) * | 2014-03-31 | 2015-11-26 | Siemens Aktiengesellschaft | Method for producing a hollow body by cold spraying and mould core suitable for carrying out said method |
US11935662B2 (en) | 2019-07-02 | 2024-03-19 | Westinghouse Electric Company Llc | Elongate SiC fuel elements |
US11662300B2 (en) | 2019-09-19 | 2023-05-30 | Westinghouse Electric Company Llc | Apparatus for performing in-situ adhesion test of cold spray deposits and method of employing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1903127A1 (en) | Process of manufacturing of workpieces by cold gas spraying and turbine workpiece | |
DE102011055246B4 (en) | Process for manufacturing and coating components with re-entrant cooling channels | |
DE102011055612B4 (en) | Turbine components with cooling devices and method for manufacturing the same | |
DE102011055245B4 (en) | Component and method for producing and coating a component | |
EP3191244B1 (en) | Method for manufacturing a rotor blade and blade obtained thereby | |
DE102014104453A1 (en) | Component with two-sided cooling structures and method of manufacture | |
CH708915A2 (en) | Components with cooling multilayer structures and methods of making the same. | |
DE102011056905A1 (en) | Cooling channel systems for coating coated high temperature components and related processes | |
WO2011020462A1 (en) | Thin-walled structural component, and method for the production thereof | |
DE102014103000A1 (en) | Component with micro-cooled laser-deposited material layer and method for the production | |
CH701998B1 (en) | Method for producing a rotor that is at least near net shape or repairing a rotor using cold spraying. | |
WO2010121597A2 (en) | Method for producing a plating of a vane tip and correspondingly produced vanes and gas turbines | |
EP1902160B1 (en) | Ceramic heat insulating layer | |
WO2011015187A1 (en) | Blade tip coating that can be rubbed off | |
DE102014116215A1 (en) | Method of producing cooling ducts and corresponding products | |
EP3419783A1 (en) | Method for producing a workpiece by coating and additive production, and corresponding workpiece | |
EP2695964B1 (en) | Protective coating tailored to a component | |
EP2547488A1 (en) | Method for reprocessing a turbine blade having at least one platform | |
WO2011113831A1 (en) | Repair of component edges by means of psp strips and component | |
EP0868253A2 (en) | Method of repairing cracks in a metal component, in particular a turbine blade, and turbine blades | |
WO2013143631A1 (en) | Method for producing and restoring ceramic heat insulation coatings in gas turbines and associated gas turbine | |
EP1382707A1 (en) | Layer system | |
EP2213759A1 (en) | Method for coating a component with film cooling holes and component | |
DE102013109116A1 (en) | Component with cooling channels and method of manufacture | |
EP2589682A1 (en) | Ceramic thermal insulation coating on structured surface and production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
AKX | Designation fees paid | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20080927 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |