EP1903127A1 - Verfahren zum Herstellen von Bauteilen durch Kaltgasspritzen und Turbinenbauteil - Google Patents

Verfahren zum Herstellen von Bauteilen durch Kaltgasspritzen und Turbinenbauteil Download PDF

Info

Publication number
EP1903127A1
EP1903127A1 EP06090174A EP06090174A EP1903127A1 EP 1903127 A1 EP1903127 A1 EP 1903127A1 EP 06090174 A EP06090174 A EP 06090174A EP 06090174 A EP06090174 A EP 06090174A EP 1903127 A1 EP1903127 A1 EP 1903127A1
Authority
EP
European Patent Office
Prior art keywords
base material
core
component
turbine component
sprayed onto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06090174A
Other languages
English (en)
French (fr)
Inventor
Rene Jabado
Jens Dahl Dr. Jensen
Ursus Dr. Krüger
Daniel Körtvelyessy
Volkmar Dr. Lüthen
Ralph Reiche
Michael Rindler
Raymond Ullrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP06090174A priority Critical patent/EP1903127A1/de
Publication of EP1903127A1 publication Critical patent/EP1903127A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • B22D23/003Moulding by spraying metal on a surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/009Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/95Preventing corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/611Coating

Definitions

  • the invention relates to a method for producing components, in particular turbine components.
  • Turbine components today typically consist of a base body on which a layer system is often still applied.
  • a method for producing a layer system is for example EP 1 382 707 A1 known.
  • an intermediate layer and a thermal barrier coating are applied to a substrate by atmospheric plasma spraying or cold gas spraying.
  • the substrate which forms the base body here is, for example, a nickel- or cobalt-based superalloy.
  • the intermediate layer serves as a corrosion, oxidation, or adhesion-promoting layer and consists, for example, of MCrAlY, where M is an element of the group iron (Fe), cobalt (Co) or nickel (Ni).
  • the thermal barrier coating is, for example, ceramic and consists, for example, of partially or fully stabilized zirconium oxide with up to 8% yttrium oxide or other rare earth oxides.
  • the layer system described can be used in particular in turbine blades.
  • Turbine blades and other turbine components are cast from the nickel or cobalt based superalloys and then coated. This requires several process steps and offers only a small degree of flexibility, since the casting molds have to be changed to change the component geometry. In addition, due to the high temperatures during casting, oxidation processes can occur on the superalloy material, so that it is not always possible to achieve the theoretically possible optimum result.
  • the invention has for its object to provide a method for the manufacture of components, in particular of turbine components, available, in which the above-mentioned problem does not occur.
  • Another object is to provide a turbine component with improved component properties.
  • the object is achieved in a method for producing components which consist of a base material in which powdered base material is sprayed onto a core by means of a cold gas spraying process and the spraying is carried out in such a way that the contour of the component is worked out during spraying.
  • components consisting of a base material for example turbine components such as blades or transition pieces
  • turbine components such as blades or transition pieces
  • inert gas eg helium or nitrogen
  • the spray parameters such. Particle velocity or mass flow can be varied.
  • the powder parameters e.g. the powder composition can be varied. This makes it possible to produce layered components and components with varying material properties (e.g., graded material composition).
  • a porous region may be formed as a porous layer. This can form the surface of the component, but it can also be arranged between two dense layers.
  • a heat-insulating material may be sprayed onto the base material to provide better protection against high temperatures.
  • the heat-insulating material can either be designed so that it forms a porous layer after spraying, or so that it forms a dense layer after spraying. Porosity can improve the thermal insulation properties of the layer.
  • a corrosion- and / or oxidation-inhibiting material can be sprayed on between the base material and the heat-insulating material, so that additional protection of the base material against corrosion and / or oxidation is ensured.
  • a corrosion and / or oxidation-inhibiting material for example, a MCrAlX material can be used.
  • MCrAlX M stands for at least one element of the group iron, cobalt or nickel and X for an active element such as yttrium (Y) and / or silicon (Si) and / or at least one element of the rare earths or hafnium (Hf).
  • Such alloys are, for example, from EP 0 486 489 B1 .
  • EP 0 412 397 B1 or EP 1 306 454 A1 known.
  • the corrosion and / or oxidation-inhibiting material can also be added as sacrificial anodes acting particles.
  • a base material in particular a superalloy on nickel, cobalt or iron base can be sprayed, which is a high-temperature resistant material.
  • a ceramic material can be sprayed as a base material, which offers a high corrosion and temperature resistance. It may then be possible to dispense with corrosion-inhibiting / oxidation-inhibiting coatings and thermal barrier coatings altogether.
  • a ceramic core for example, can be used, which can be rinsed after completion of the component by means of a strong acid, such as hydrofluoric acid.
  • a strong acid such as hydrofluoric acid.
  • HASTELLOY ® C-2000 or INCONEL ® Super alloys are resistant to strong acids such as sulfurous acid, hydrochloric acid or hydrofluoric acid.
  • a further advantageous development consists in a turbine component which is produced by the method according to the invention and comprises a material which has regions of different porosity.
  • the areas of different porosity may possibly serve for the passage of cooling air.
  • the material of the turbine component with the regions of different porosity can be coating material, ie the regions of different porosity are present in a coating. But it is also possible that the material is present with the areas of different porosity base material. In other words, the regions of different porosity are already present in the uncoated turbine component. Of course, also base materials with areas different porosity mut coatings, which have areas of different porosity combined.
  • FIG. 1 schematically shows the production of a turbine component 28 by a method according to the invention.
  • Base material 24 is sprayed onto a ceramic core 26 by a cold gas spray nozzle 22.
  • the spray parameters can be varied, in particular the mass flow, the particle velocity, the particle size and the particle composition.
  • the particle size determines the porosity properties of the sprayed base material.
  • the turbine component is formed by the relative movement between the ceramic core 26 and spray nozzle 22.
  • the base material is sprayed, for example, a Ni, Co or Fe based superalloy.
  • Suitable superalloys are e.g., those known under the designations HASTELLOY ® or INCONEL ® superalloys.
  • the composition of the spray powder is, for example, changed to a MCrAlX composition and a primer layer (not shown in Fig. 1) applied to the base material.
  • a further change in the composition of the spray powder for example to Y-stabilized zirconium oxide (ZrO 2 )
  • ZrO 2 Y-stabilized zirconium oxide
  • a thermal thermal barrier coating is finally sprayed onto the MCrAlX layer.
  • the ceramic core 26 is leached, for example by hydrofluoric acid (HF).
  • HF hydrofluoric acid
  • the leaching of the ceramic core 26 can be carried out either after the completion of the turbine component or after the spraying of the base material, but before completion of the entire turbine component 28, for example, before the application of a coating.
  • the advantage of premature leaching is that it can avoid possible damage to a ceramic coating (eg, ceramic thermal barrier coating, TBC) during the leaching process.
  • a ceramic material is sprayed as a base material for the turbine component 28 instead of a superalloy.
  • the core may, for example, consist of a burn-out material.
  • the material of the core should be chosen so that removal of the core is possible without attacking the ceramic base material.
  • FIG. 2 shows a perspective view of a blade 12 as an example of a component made by cold gas spraying on a core which is leached.
  • the rotor blade 12 has a fastening region 14, a blade platform 18 and an airfoil region 16.
  • a blade root 20 is formed, which is for fastening the blade 12 to a shaft of a turbomachine, also not shown, in particular a gas turbine.
  • the turbine blade 12, particularly in its airfoil region 16, has a complex geometry which can be produced by a method according to the invention, with a high degree of flexibility with respect to changes in the geometry of the rotor blade.
  • a section through the wall of a turbine component 28 according to a first embodiment variant is shown in highly schematic form in FIG.
  • a core 26 is a applied by cold gas spraying dense layer 2, which consists of a base material and forms the inside of the component wall.
  • the dense layer 2 may consist of a superalloy or of a ceramic material as the base material.
  • the core 26 may be made in a superalloy as a dense layer 2, for example. Made of ceramic.
  • the pores 7 of the porous layer 3 can be traversed by a cooling air flow 5, which serves to cool the turbine component 28.
  • the size of the pores can be adjusted by choosing the size of the spattered particles.
  • this dense layer 4 is also applied by cold gas spraying.
  • This dense layer 4 may be wholly or partly made of a thermally insulating or of a corrosion and / or oxidation-inhibiting material, such as e.g. MCrA1X exist.
  • a part of the dense layer 4 can also form the outer surface of the turbine component 28 as a thermal barrier coating (TBC). It is also possible to spray the thermal barrier coating directly onto the base material.
  • FIG. 4 shows a schematic cross section through a turbine component 28, for example a turbine blade, with a central one Air duct 6, which consists of a dense portion 8 and a porous portion 10 with pores 7.
  • the central air channel is created by leaching the ceramic core after spraying the base material.
  • a cooling air flow 5 flows in through the central air duct 6 and out through the pores 7 of the porous section 10, thus cooling the porous section 10.
  • the two sections are as well as the dense layers 2 and 4 and the porous layer 3 in FIG Cold gas spraying made.
  • Porous sections are preferably formed where the thermal loading of the turbine component 28 is greatest. By suitable position of the porous sections in the turbine component 28 and by suitable shaping and dimensioning of these sections, the generation of cooling air films over the outer surface of the turbine component 28 can also be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Es wird vorgeschlagen, Turbinenbauteile (28) wie etwa Schaufeln oder Übergangsstücke dadurch herzustellen, dass mittels eines Kaltgasspritzverfahrens Grundwerkstoff (24) (nickel- oder kobaltbasiert) auf einen Träger aufgespritzt wird, danach Pulver für eine korrosions- und/oder oxidationshemmende Beschichtung aufgespritzt wird und anschließend Material für eine wärmedämmende Beschichtung aufgespritzt wird. Der Träger kann beispielsweise ein Keramikkern (26) sein.

Description

    Hintergrund der Erfindung
  • Die Erfindung betrifft ein Verfahren zum Herstellen von Bauteilen, insbesondere Turbinenbauteilen.
  • Turbinenbauteile bestehen heutzutage typischerweise aus einem Grundkörper, auf dem häufig noch ein Schichtsystem aufgebracht ist. Ein Verfahren zum Herstellen eines Schichtsystems ist beispielsweise aus EP 1 382 707 A1 bekannt. Bei diesem Verfahren werden eine Zwischenschicht und eine Wärmedämmschicht durch atmosphärisches Plasmaspritzen oder durch Kaltgasspritzen auf ein Substrat aufgebracht. Das Substrat, das hier den Grundkörper bildet, ist bspw. eine nickel- oder kobaltbasierte Superlegierung. Die Zwischenschicht dient als Korrosions-, Oxidations-, oder Haftvermittlungsschicht und besteht bspw. aus MCrAlY, wobei M ein Element der Gruppe Eisen (Fe), Kobalt (Co) oder Nickel (Ni) ist. Die Wärmedämmschicht ist beispielsweise keramisch und besteht bspw. aus teil- oder vollstabilisiertem Zirkonoxid mit bis zu 8% Yttriumoxid oder anderen Seltenerdoxiden. Das beschriebene Schichtsystem kann insbesondere bei Turbinenschaufeln Verwendung finden.
  • Turbinenschaufeln und andere Turbinenkomponenten wie bspw. Übergangsstücke werden aus den nickel- oder kobaltbasierten Superlegierungen gegossen und anschließend beschichtet. Dies erfordert mehrere Verfahrensschritte und bietet nur einen geringen Grad an Flexibilität, da für eine Änderung der Komponentengeometrie die Gießformen zu ändern sind. Zusätzlich können auf Grund der hohen Temperaturen beim Gießen Oxidationsprozesse am Superlegierungsmaterial auftreten, so dass sich nicht immer das theoretisch mögliche optimale Ergebnis erzielen lässt.
  • Zugrundeliegende Aufgabe
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Herstellen von Bauteilen, insbesondere von Turbinenbauteilen, zur Verfügung zu stellen, bei dem die oben genannte Problematik nicht auftritt.
  • Eine weitere Aufgabe besteht darin, ein Turbinenbauteil mit verbesserten Bauteileigenschaften zur Verfügung zu stellen.
  • Erfindungsgemäße Lösung
  • Diese Aufgaben werden erfindungsgemäß durch ein Verfahren mit den Merkmalen des Anspruchs 1 bzw. durch ein Turbinenbauteil nach Anspruch 13 gelöst. Die abhängigen Ansprüche enthalten vorteilhafte Weiterbildungen der Erfindung.
  • Erfindungsgemäß besteht die Lösung der Aufgabe in einem Verfahren zum Herstellen von Bauteilen, welche aus einem Grundwerkstoff bestehen, in dem pulverförmiger Grundwerkstoff mittels eines Kaltgasspritzverfahrens auf einen Kern aufgespritzt wird und das Spritzen so erfolgt, dass während des Spritzens die Kontur des Bauteils herausgearbeitet wird.
  • Dadurch können aus einem Grundwerkstoff bestehende Bauteile, bspw. Turbinenbauteile wie etwa Schaufeln oder Übergangsstücke, mit komplexen Strukturen hergestellt werden, und es ist kein sonst zur Herstellung von Turbinenbauteilen eingesetzter aufwendiger Gussvorgang mehr nötig. Aufgrund der Verwendung von Inertgas (bspw. Helium oder Stickstoff) als Treibgas beim Kaltgasspritzen kann die Oxidation des Grundwerkstoffes vermieden werden.
  • Bei einer vorteilhaften Weiterbildung der Erfindung ist das Herausarbeiten der Kontur durch Verwendung eines konturierten Kerns vereinfacht.
  • Eine andere vorteilhafte Weiterbildung besteht darin, dass auch während des Spritzvorgangs die Spritzparameter wie z.B. Partikelgeschwindigkeit oder Massenstrom variiert werden können. Außerdem können die Pulverparameter, z.B. die Pulverzusammensetzung, variiert werden. Dadurch wird das Herstellen von geschichteten Bauteilen und von Bauteilen mit variierenden Materialeigenschaften (z.B. gradierte Werkstoffzusammensetzung) möglich.
  • Es kann auch die Partikelgröße im pulverförmigen Werkstoff variiert werden. Dies ermöglicht das Herstellen von Bauteilen, die Bereiche mit unterschiedlicher Porosität aufweisen. So können beispielsweise Turbinenschaufeln mit porösen Bereichen erzeugt werden. Insbesondere kann ein poröser Bereich als poröse Schicht ausgebildet sein. Diese kann die Oberfläche des Bauteils bilden, sie kann aber auch zwischen zwei dichten Schichten angeordnet werden.
  • Zusätzlich dazu kann nach dem Aufspritzen des Grundwerkstoffs auf den Kern ein wärmedämmender Werkstoff auf dem Grundwerkstoff aufgespritzt werden, um einen besseren Schutz gegen hohe Temperaturen zu gewährleisten. Der wärmedämmender Werkstoff kann entweder so ausgestaltet sein, dass er nach dem Aufspritzen eine poröse Schicht bildet, oder so, dass er nach dem Aufspritzen eine dichte Schicht bildet. Durch eine Porosität können die Wärmeisolationseigenschaften der Schicht verbessert werden.
  • Optional kann zwischen dem Grundwerkstoff und dem wärmedämmenden Werkstoff ein korrosions- und/oder oxidationshemmender Werkstoff aufgespritzt werden, so dass ein zusätzlicher Schutz des Grundwerkstoffs gegen Korrosion und/oder Oxidation gewährleistet wird.
  • Als korrosions- und/oder oxidationshemmender Werkstoff kann z.B. ein MCrAlX-Werkstoff verwendet werden. In MCrAlX steht M für zumindest ein Element der Gruppe Eisen, Kobalt oder Nickel und X für ein Aktivelement wie Yttrium (Y) und/oder Silizium (Si) und/oder zumindest ein Element der Seltenen Erden bzw. Hafnium (Hf). Solche Legierungen sind bspw. aus EP 0 486 489 B1 , EP 0 786 017 B1 , EP 0 412 397 B1 oder EP 1 306 454 A1 bekannt. Dem korrosions- und/oder oxidationshemmenden Werkstoff können auch als Opferanoden fungierende Partikel zugesetzt werden.
  • Als Grundwerkstoff kann insbesondere eine Superlegierung auf Nickel-, Kobalt- oder Eisenbasis verspritzt werden, die einen hochwarmfesten Werkstoff darstellt. Alternativ kann aber auch ein Keramikwerkstoff als Grundwerkstoff verspritzt werden, der eine hohe Korrosions- und Temperaturfestigkeit bietet. Auf korrosionshemmende/oxidationshemmende Beschichtungen und auf Wärmedämmbeschichtungen kann dann eventuell ganz verzichtet werden.
  • Als Kern kann bspw. ein Keramikkern Verwendung finden, der nach dem Fertigstellen des Bauteils mittels einer starken Säure, etwa mittels Flusssäure, ausgespült werden kann. Bspw. die unter dem Namen HASTELLOY® C-2000 oder INCONEL® bekannte Superlegierungen sind gegenüber starken Säuren wie schwefelhaltige Säure, Salzsäure oder Flusssäure resistent.
  • Eine weitere vorteilhafte Weiterbildung besteht in einem Turbinenbauteil, welches nach dem erfindungsgemäßen Verfahren hergestellt ist und einen Werkstoff umfasst, welcher Bereiche unterschiedlicher Porosität besitzt. Die Bereiche unterschiedlicher Porosität können eventuell zur Durchleitung von Kühlluft dienen.
  • Der Werkstoff des Turbinenbauteils mit den Bereichen unterschiedlicher Porosität kann Beschichtungswerkstoff sein, d.h. die Bereiche unterschiedlicher Porosität liegen in einer Beschichtung vor. Es ist aber auch möglich, dass als Werkstoff mit den Bereichen unterschiedlicher Porosität Grundwerkstoff vorhanden ist. Mit anderen Worten, die Bereiche unterschiedlicher Porosität sind bereits im unbeschichteten Turbinenbauteil vorhanden. Natürlich können auch Grundwerkstoffe mit Bereichen unterschiedlicher Porosität mut Beschichtungen, welche Bereiche unterschiedlicher Porosität aufweisen, kombiniert werden.
  • Kurzbeschreibung der Zeichnungen
  • Weitere Merkmale, Eigenschaften und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen unter Bezugnahme auf die beiliegenden Figuren. Es zeigt:
  • Fig. 1
    einen Querschnitt durch ein Turbinenbauteil mit Kern während der Herstellung.
    Fig. 2
    ein Turbinenbauteil, das nach dem erfindungsgemäßen Verfahren hergestellt ist.
    Fig. 3
    eine Beschichtung eines Turbinenbauteils, das nach dem erfindungsgemäßen Verfahren hergestellt ist, und bei dem sich eine poröse Schicht zwischen zwei dichten Schichten befindet.
    Fig. 4
    ein Turbinenbauteil, das nach dem erfindungsgemäßen Verfahren hergestellt ist, und bei dem ein poröser Abschnitt an einen dichten Abschnitt angrenzt.
    Detaillierte Beschreibung des Ausführungsbeispiels
  • In Figur 1 ist die Herstellung eines Turbinenbauteiles 28 durch ein erfindungsgemäßes Verfahren schematisch dargestellt. Grundwerkstoff 24 wird durch eine Kaltgasspritzdüse 22 auf einen Keramikkern 26 aufgespritzt. Die Spritzparameter können variiert werden, insbesondere der Massenstrom, die Partikelgeschwindigkeit, die Partikelgröße und die Partikelzusammensetzung. Die Partikelgröße bestimmt dabei die Porositätseigenschaften des aufgespritzten Grundwerkstoffes.
  • Das Turbinenbauteil entsteht durch die Relativbewegung zwischen Keramikkern 26 und Spritzdüse 22. Zuerst wird das Grundwerkstoffmaterial verspritzt, bspw. eine Superlegierung auf Ni-, Co- oder Fe-Basis. Geeignete Superlegierungen sind bspw. die unter den Bezeichnungen HASTELLOY® oder INCONEL® bekannten Superlegierungen.
  • Danach wird die Zusammensetzung des Spritzpulvers bspw. zu einer MCrAlX-Zusammensetzung geändert und eine Haftvermittlerschicht (in Fig. 1 nicht gezeigt) auf den Grundwerkstoff aufgebracht. Nach einer neuerlichen Änderung der Zusammensetzung des Spritzpulvers, bspw. zu mit Y stabilisiertemZirkonoxid (ZrO2) wird schließlich eine thermische Wärmedämmschicht auf die MCrA1X-Schicht aufgespritzt. Nach dem Spritzen des Turbinenbauteils 28 wird der Keramikkern 26 ausgelaugt, bspw. durch Flusssäure (HF). Das Auslaugen des Keramikkerns 26 kann entweder nach der Fertigstellung des Turbinenbauteils oder nach dem Aufspritzen des Grundwerkstoffs, aber vor Fertigstellen des gesamten Turbinenbauteils 28, z.B. vor dem Aufbringen einer Beschichtung, erfolgen. Der Vorteil des frühzeitigen Auslaugens besteht darin, dass dadurch eine eventuelle Beschädigung einer keramischen Beschichtung (z.B. keramische Wärmedämmschicht, TBC) während des Auslaugprozesses vermieden werden kann.
  • In einer alternativen Ausgestaltung des Verfahrens wird statt einer Superlegierung ein Keramikmaterial als Grundwerkstoff für das Turbinenbauteil 28 verspritzt. In diesem Fall kann der Kern bspw. aus einem ausbrennbaren Material bestehen. Auf jeden Fall sollte das Material des Kerns so gewählt sein, dass ein Entfernen des Kerns möglich ist, ohne den keramischen Grundwerkstoff anzugreifen.
  • Figur 2 zeigt eine perspektivische Ansicht einer Laufschaufel 12 als Beispiel für ein Bauteil, das durch Kaltgasspritzen auf einen Kern, der ausgelaugt wird, hergestellt ist. Die Laufschaufel 12 weist einen Befestigungsbereich 14, eine Schaufelplattform 18 sowie einen Schaufelblattbereich 16 auf.
  • Im Befestigungsbereich 14 ist ein Schaufelfuß 20 gebildet, der zur Befestigung der Laufschaufel 12 an einer Welle einer ebenfalls nicht dargestellten Strömungsmaschine, insbesondere einer Gasturbine, darstellt. Die Turbinenschaufel 12 weist besonders in ihrem Schaufelblattbereich 16 eine komplexe Geometrie auf, die durch ein erfindungsgemäßes Verfahren hergestellt werden kann, wobei eine hohe Flexibilität gegenüber Änderungen der Geometrie der Laufschaufel gegeben ist.
  • In Figur 3 ist, stark schematisiert, ein Schnitt durch die Wand eines Turbinenbauteils 28 gemäß einer ersten Ausführungsvariante dargestellt. Auf einem Kern 26 befindet sich eine durch Kaltgasspritzen aufgetragene dichte Schicht 2, die aus einem Grundwerkstoff besteht und die Innenseite der Bauteilwand bildet. Die dichte Schicht 2 kann aus einer Superlegierung oder aus einem Keramikwerkstoff als Grundwerkstoff bestehen. Der Kern 26 kann bei einer Superlegierung als dichter Schicht 2 bspw. aus Keramik hergestellt sein.
  • Auf der dichten Schicht 2 befindet sich eine poröse Schicht 3 mit Poren 7, die ebenfalls durch Kaltgasspritzen aufgebracht ist. Die Poren 7 der porösen Schicht 3 können von einem Kühlluftstrom 5 durchströmt werden, das zur Kühlung des Turbinenbauteils 28 dient. Die Größe der Poren kann durch Wahl der Größe der verspritzten Partikel eingestellt werden.
  • Auf der porösen Schicht 3 ist eine weitere dichte Schicht 4 ebenfalls durch Kaltgasspritzen aufgebracht. Diese dichte Schicht 4 kann vollständig oder teilweise aus einem wärmedämmenden oder aus einem korrosions- und/oder oxidationshemmenden Werkstoff wie z.B. MCrA1X bestehen. Ein Teil der dichten Schicht 4 kann auch als Wärmedämmschicht (Thermal Barrier Coating, TBC) die Außenfläche des Turbinenbauteils 28 bilden. Es ist auch möglich, die Wärmedämmschicht direkt auf den Grundwerkstoff aufzuspritzen.
  • Fig. 4 zeigt einen schematischen Querschnitt durch ein Turbinenbauteil 28, bspw. eine Turbinenschaufel, mit einem zentralen Luftkanal 6, das aus einem dichten Abschnitt 8 und einem porösen Abschnitt 10 mit Poren 7 besteht. Der zentrale Luftkanal entsteht durch Auslaugen des Keramikkerns nach dem Aufspritzen des Grundwerkstoffs. Ein Kühlluftstrom 5 strömt durch den zentralen Luftkanal 6 ein und durch die Poren 7 des porösen Abschnitts 10 wieder aus und kühlt so den porösen Abschnitt 10. Die beiden Abschnitte sind ebenso wie die dichten Schichten 2 und 4 und die poröse Schicht 3 in Figur 3 durch Kaltgasspritzen hergestellt. Poröse Abschnitte sind vorzugsweise dort gebildet, wo die thermische Belastung des Turbinenbauteils 28 am größten ist. Durch geeignete Position der porösen Abschnitte im Turbinenbauteil 28 sowie durch geeignete Form und Dimensionierung dieser Abschnitte kann auch das Erzeugen von Kühlluftfilmen über der äußeren Oberfläche des Turbinenbauteils 28 erreicht werden.
  • Abschließend sei angemerkt, dass sämtlichen Merkmalen, die in den Anmeldungsunterlagen und insbesondere in den abhängigen Ansprüchen genannt sind, trotz des vorgenommenen formalen Rückbezugs auf einen oder mehrere bestimmte Ansprüche, auch einzeln oder in beliebiger Kombination eigenständiger Schutz zukommen soll.

Claims (15)

  1. Verfahren zum Herstellen von Bauteilen (28), welche aus einem Grundwerkstoff (24) bestehen, in dem pulverförmiger Grundwerkstoff (24) mittels eines Kaltgasspritzverfahrens auf einen Kern (26) aufgespritzt wird und das Spritzen so erfolgt, dass während des Spritzens die Kontur des Bauteils (28) herausgearbeitet wird.
  2. Verfahren nach Anspruch 1, in dem als Kern (26) ein konturierter Kern (26) Verwendung findet, dessen Kontur der Kontur des Bauteils (28) nahe kommt.
  3. Verfahren nach Anspruch 1 oder 2, in dem die Spritzparameter im Laufe des Kaltgasspritzverfahrens variiert werden.
  4. Verfahren nach einem der vorangehenden Ansprüche, in dem die Pulverparameter im Laufe des Kaltgasspritzverfahrens variiert werden.
  5. Verfahren nach Anspruch 4, in dem als Pulverparameter die Partikelgröße im pulverförmigen Werkstoff variiert wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, in dem als Bauteil (28) ein Turbinenbauteil hergestellt wird, indem zuerst der Grundwerkstoff (24) auf den Kern (26) aufgespritzt wird und danach ein wärmedämmender Werkstoff auf den Grundwerkstoff (24) aufgespritzt wird.
  7. Verfahren nach einem der Ansprüche 1 bis 5, in dem als Bauteil (28) ein Turbinenbauteil hergestellt wird indem zuerst der Grundwerkstoff (24) auf den Kern (26) aufgespritzt wird, ein korrosions- und/oder oxidationshemmender Werkstoff auf den Grundwerkstoff (24) aufgespritzt wird und wärmedämmender Werkstoff auf den korrosions- und/oder oxidationshemmenden Werkstoff aufgespritzt wird.
  8. Verfahren nach Anspruch 7, in dem als korrosions- und/oder oxidationshemmender Werkstoff ein MCrA1X-Werkstoff auf den Grundwerkstoff (24) aufgespritzt wird.
  9. Verfahren nach Anspruch 7, in dem auf den Grundwerkstoff (24) weiterer Grundwerkstoff als korrosions- und/oder oxidationshemmender Werkstoff (24) aufgespritzt wird, wobei dem weiteren Grundwerkstoff (24) als Opferanoden fungierende Partikel zugesetzt sind.
  10. Verfahren nach einem der vorangehenden Ansprüche, in dem als Grundwerkstoff (24) eine Superlegierung auf Nickel-, Kobalt- oder Eisenbasis verspritzt wird.
  11. Verfahren nach einem der vorangehenden Ansprüche, in dem als Grundwerkstoff (24) ein Keramikwerkstoff verspritzt wird.
  12. Verfahren nach einem der vorangehenden Ansprüche, in dem als Kern (26) ein Keramikkern Verwendung findet.
  13. Turbinenbauteil (28), welches gemäß dem Verfahren nach einem der Ansprüche 1 bis 10 hergestellt ist und einen Werkstoff umfasst, welcher Bereiche unterschiedlicher Porosität (2, 3, 4, 8, 10) besitzt.
  14. Turbinenbauteil (28) nach Anspruch 13, in dem als Werkstoff mit den Bereichen unterschiedlicher Porosität (2, 3, 4) ein Beschichtungswerkstoff vorhanden ist.
  15. Turbinenbauteil nach Anspruch 13 oder 14, in dem als Werkstoff mit den Bereichen unterschiedlicher Porosität (2, 3, 4, 8, 10) Grundwerkstoff vorhanden ist.
EP06090174A 2006-09-21 2006-09-21 Verfahren zum Herstellen von Bauteilen durch Kaltgasspritzen und Turbinenbauteil Withdrawn EP1903127A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06090174A EP1903127A1 (de) 2006-09-21 2006-09-21 Verfahren zum Herstellen von Bauteilen durch Kaltgasspritzen und Turbinenbauteil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06090174A EP1903127A1 (de) 2006-09-21 2006-09-21 Verfahren zum Herstellen von Bauteilen durch Kaltgasspritzen und Turbinenbauteil

Publications (1)

Publication Number Publication Date
EP1903127A1 true EP1903127A1 (de) 2008-03-26

Family

ID=37775272

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06090174A Withdrawn EP1903127A1 (de) 2006-09-21 2006-09-21 Verfahren zum Herstellen von Bauteilen durch Kaltgasspritzen und Turbinenbauteil

Country Status (1)

Country Link
EP (1) EP1903127A1 (de)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008052030A1 (de) * 2008-10-16 2010-04-22 Mtu Aero Engines Gmbh Verfahren zum Verbinden wenigstens einer Turbinenschaufel mit einer Turbinenscheibe oder einem Turbinenring
DE102008057159A1 (de) * 2008-11-13 2010-05-20 Mtu Aero Engines Gmbh Gasturbine
WO2010094273A3 (de) * 2009-02-21 2011-01-20 Mtu Aero Engines Gmbh Herstellung einer turbinenblisk mit einer oxidations- bzw. korrosionsschutzschicht
DE102009036407A1 (de) * 2009-08-06 2011-02-10 Mtu Aero Engines Gmbh Abreibbarer Schaufelspitzenbelag
DE102009037894A1 (de) * 2009-08-18 2011-02-24 Mtu Aero Engines Gmbh Dünnwandiges Strukturbauteil und Verfahren zu seiner Herstellung
GB2474345A (en) * 2009-10-07 2011-04-13 Gen Electric Fabricating and repairing turbine rotors by cold spraying powder
WO2011044876A1 (de) 2009-10-17 2011-04-21 Mtu Aero Engines Gmbh Verfahren zur herstellung einer lauf- oder statorschaufel und eine derartige schaufel
DE102010022597A1 (de) * 2010-05-31 2011-12-01 Siemens Aktiengesellschaft Verfahren zum Herstellen einer Schicht mittels Kaltgasspritzen und Verwendung einer solchen Schicht
WO2012051978A3 (de) * 2010-10-13 2012-06-28 Mtu Aero Engines Gmbh Bauteil und verfahren zum ausbilden, reparieren und/oder aufbauen eines derartigen bauteils
EP2617869A2 (de) * 2012-01-20 2013-07-24 General Electric Company Verfahren zur Herstellung einer Wärmedämmschicht und Artikel mit einer kaltgasgespritzten Wärmedämmschicht
US8697184B2 (en) 2009-07-17 2014-04-15 Mtu Aero Engines Gmbh Gas dynamic cold spraying of oxide-containing protective layers
EP2725120A1 (de) * 2012-10-24 2014-04-30 Hitachi Ltd. Hochtemperaturbauteile mit Wärmedämmschichten für Gasturbine
WO2014197789A2 (en) * 2013-06-07 2014-12-11 General Electric Company Hollow metal objects and methods for making same
EP2845918A1 (de) * 2013-09-04 2015-03-11 Siemens Aktiengesellschaft Verfahren zur zumindest teilweisen Beschichtung einer Schaufel, eine Beschichtungsvorrichtung und eine Schaufel
WO2015150071A3 (de) * 2014-03-31 2015-11-26 Siemens Aktiengesellschaft Verfahren zum herstellen eines hohlkörpers mittels kaltgasspritzen und zur durchführung dieses verfahrens geeigneter formkern
US11662300B2 (en) 2019-09-19 2023-05-30 Westinghouse Electric Company Llc Apparatus for performing in-situ adhesion test of cold spray deposits and method of employing
US11898986B2 (en) 2012-10-10 2024-02-13 Westinghouse Electric Company Llc Systems and methods for steam generator tube analysis for detection of tube degradation
US11935662B2 (en) 2019-07-02 2024-03-19 Westinghouse Electric Company Llc Elongate SiC fuel elements

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3139219A1 (de) * 1980-10-06 1982-05-27 General Electric Co., Schenectady, N.Y. "plasmaspritzgussteile"
EP0747151A1 (de) * 1995-06-07 1996-12-11 Howmet Corporation Verfahren und Vorrichtung zum Entkernen von Gussstücken
EP1083013A2 (de) * 1999-09-08 2001-03-14 Linde Gas Aktiengesellschaft Herstellen von aufschäumbaren Metallkörpern und Metallschäumen
WO2002061177A2 (en) * 2001-01-30 2002-08-08 Siemens Westinghouse Power Corporation Thermal barrier coating applied with cold spray technique
EP1659195A2 (de) * 2004-11-23 2006-05-24 United Technologies Corporation Kaltes, gasdynamisches Spritzverfahren von hochfestem Kupfer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3139219A1 (de) * 1980-10-06 1982-05-27 General Electric Co., Schenectady, N.Y. "plasmaspritzgussteile"
EP0747151A1 (de) * 1995-06-07 1996-12-11 Howmet Corporation Verfahren und Vorrichtung zum Entkernen von Gussstücken
EP1083013A2 (de) * 1999-09-08 2001-03-14 Linde Gas Aktiengesellschaft Herstellen von aufschäumbaren Metallkörpern und Metallschäumen
WO2002061177A2 (en) * 2001-01-30 2002-08-08 Siemens Westinghouse Power Corporation Thermal barrier coating applied with cold spray technique
EP1659195A2 (de) * 2004-11-23 2006-05-24 United Technologies Corporation Kaltes, gasdynamisches Spritzverfahren von hochfestem Kupfer

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KIM G E ET AL: "Near net-shape forming of thermal barrier coated components for gas turbine engine applications", PROCEEDINGS OF THE INTERNATIONAL THERMAL SPRAY CONFERENCE 1998, vol. 2, 1998, pages 1229 - 1232, XP009080178 *
PATTISON J ET AL: "Cold gas dynamic manufacturing: A non-thermal approach to freeform fabrication", NTERNATIONAL JOURNAL OF MACHINE TOOLS AND MANUFACTURE, vol. 47, no. 3-4, 12 June 2006 (2006-06-12), pages 627 - 634, XP002423531 *
SCHMITT-THOMAS KH G ET AL: "Korrosionsuntersuchungen an Aluminium-Korrosionsschutzüberzügen für Verdichterschaufeln", WERKSTOFFE UND KORROSION, vol. 41, no. 9, September 1990 (1990-09-01), pages 523 - 536, XP002423622 *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008052030B4 (de) * 2008-10-16 2011-06-16 Mtu Aero Engines Gmbh Verfahren zum Verbinden wenigstens einer Turbinenschaufel mit einer Turbinenscheibe oder einem Turbinenring
DE102008052030A1 (de) * 2008-10-16 2010-04-22 Mtu Aero Engines Gmbh Verfahren zum Verbinden wenigstens einer Turbinenschaufel mit einer Turbinenscheibe oder einem Turbinenring
DE102008057159A1 (de) * 2008-11-13 2010-05-20 Mtu Aero Engines Gmbh Gasturbine
WO2010094273A3 (de) * 2009-02-21 2011-01-20 Mtu Aero Engines Gmbh Herstellung einer turbinenblisk mit einer oxidations- bzw. korrosionsschutzschicht
US8697184B2 (en) 2009-07-17 2014-04-15 Mtu Aero Engines Gmbh Gas dynamic cold spraying of oxide-containing protective layers
DE102009036407A1 (de) * 2009-08-06 2011-02-10 Mtu Aero Engines Gmbh Abreibbarer Schaufelspitzenbelag
US9260784B2 (en) 2009-08-06 2016-02-16 Mtu Aero Engines Gmbh Blade tip coating that can be rubbed off
US9393622B2 (en) 2009-08-18 2016-07-19 Mtu Aero Engines Gmbh Thin-walled structural component, and method for the production thereof
DE102009037894A1 (de) * 2009-08-18 2011-02-24 Mtu Aero Engines Gmbh Dünnwandiges Strukturbauteil und Verfahren zu seiner Herstellung
US8261444B2 (en) 2009-10-07 2012-09-11 General Electric Company Turbine rotor fabrication using cold spraying
US9138838B2 (en) 2009-10-07 2015-09-22 General Electric Company Method of repairing a turbine rotor using cold spraying
GB2474345A (en) * 2009-10-07 2011-04-13 Gen Electric Fabricating and repairing turbine rotors by cold spraying powder
GB2474345B (en) * 2009-10-07 2015-06-03 Gen Electric Turbine rotor fabrication using cold spraying
US9132508B2 (en) * 2009-10-17 2015-09-15 Mtu Aero Engines Gmbh Method for producing a rotor or stator blade and such a blade
US20120201691A1 (en) * 2009-10-17 2012-08-09 Mtu Aero Engines Gmbh Method for producing a rotor or stator blade and such a blade
WO2011044876A1 (de) 2009-10-17 2011-04-21 Mtu Aero Engines Gmbh Verfahren zur herstellung einer lauf- oder statorschaufel und eine derartige schaufel
DE102009049707A1 (de) 2009-10-17 2011-07-28 MTU Aero Engines GmbH, 80995 Verfahren zur Herstellung einer Lauf- oder Statorschaufel und eine derartige Schaufel
GB2487024B (en) * 2009-10-17 2015-08-12 MTU Aero Engines AG Method for producing a rotor blade or stator blade and such a blade
GB2487024A (en) * 2009-10-17 2012-07-04 Mtu Aero Engines Gmbh Method for producing a rotor or stator blade and such a blade
US8993048B2 (en) 2010-05-31 2015-03-31 Siemens Aktiengesellschaft Method for producing a layer by means of cold spraying and use of such a layer
DE102010022597A1 (de) * 2010-05-31 2011-12-01 Siemens Aktiengesellschaft Verfahren zum Herstellen einer Schicht mittels Kaltgasspritzen und Verwendung einer solchen Schicht
WO2012051978A3 (de) * 2010-10-13 2012-06-28 Mtu Aero Engines Gmbh Bauteil und verfahren zum ausbilden, reparieren und/oder aufbauen eines derartigen bauteils
EP2617869A3 (de) * 2012-01-20 2014-09-24 General Electric Company Verfahren zur Herstellung einer Wärmedämmschicht und Artikel mit einer kaltgasgespritzten Wärmedämmschicht
EP2617869A2 (de) * 2012-01-20 2013-07-24 General Electric Company Verfahren zur Herstellung einer Wärmedämmschicht und Artikel mit einer kaltgasgespritzten Wärmedämmschicht
US11898986B2 (en) 2012-10-10 2024-02-13 Westinghouse Electric Company Llc Systems and methods for steam generator tube analysis for detection of tube degradation
EP2725120A1 (de) * 2012-10-24 2014-04-30 Hitachi Ltd. Hochtemperaturbauteile mit Wärmedämmschichten für Gasturbine
CN105592961A (zh) * 2013-06-07 2016-05-18 通用电气公司 中空金属物体和用于制造其的方法
WO2014197789A2 (en) * 2013-06-07 2014-12-11 General Electric Company Hollow metal objects and methods for making same
CN105592961B (zh) * 2013-06-07 2019-08-13 通用电气公司 中空金属物体和用于制造其的方法
US10408083B2 (en) 2013-06-07 2019-09-10 General Electric Company Hollow metal objects and methods for making same
WO2014197789A3 (en) * 2013-06-07 2015-02-26 General Electric Company Hollow metal objects and methods for making same
EP2845918A1 (de) * 2013-09-04 2015-03-11 Siemens Aktiengesellschaft Verfahren zur zumindest teilweisen Beschichtung einer Schaufel, eine Beschichtungsvorrichtung und eine Schaufel
WO2015150071A3 (de) * 2014-03-31 2015-11-26 Siemens Aktiengesellschaft Verfahren zum herstellen eines hohlkörpers mittels kaltgasspritzen und zur durchführung dieses verfahrens geeigneter formkern
US11935662B2 (en) 2019-07-02 2024-03-19 Westinghouse Electric Company Llc Elongate SiC fuel elements
US11662300B2 (en) 2019-09-19 2023-05-30 Westinghouse Electric Company Llc Apparatus for performing in-situ adhesion test of cold spray deposits and method of employing

Similar Documents

Publication Publication Date Title
EP1903127A1 (de) Verfahren zum Herstellen von Bauteilen durch Kaltgasspritzen und Turbinenbauteil
DE102011055246B4 (de) Verfahren zur Herstellung und Beschichtung von Komponenten mit einspringend ausgebildeten Kühlkanälen
DE102011055612B4 (de) Turbinenkomponenten mit Kühleinrichtungen und Verfahren zur Herstellung derselben
DE102011055245B4 (de) Komponente und Verfahren zum Herstellen und Beschichten einer Komponente
EP3191244B1 (de) Verfahren zur herstellung einer laufschaufel und so erhaltene schaufel
DE102014104453A1 (de) Bauteil mit zweiseitigen Kühlstrukturen und Verfahren zur Herstellung
CH708915A2 (de) Bauteile mit mehrschichtigen Kühlstrukturen und Verfahren zur Herstellung derselben.
DE102011056905A1 (de) Kühlkanalsysteme für mit Beschichtungen überzogene Hochtemperaturkomponenten und zugehörige Verfahren
WO2011020462A1 (de) Dünnwandiges strukturbauteil und verfahren zu seiner herstellung
DE102014103000A1 (de) Bauteil mit mikrogekühlter laserabgeschiedener Materialschicht und Verfahren zur Herstellung
CH701998B1 (de) Verfahren zum Herstellen eines wenigstens endkonturnahen Rotors oder Reparieren eines Rotors unter Anwendung des Kaltspritzens.
WO2010121597A2 (de) Verfahren zur herstellung einer panzerung einer schaufelspitze sowie entsprechend hergestellte schaufeln und gasturbinen
WO2011015187A1 (de) Abreibbarer schaufelspitzenbelag
DE102014116215A1 (de) Verfahren zur Erzeugung von Kühlkanälen und entsprechende Erzeugnisse
WO2017174234A1 (de) Verfahren zur herstellung eines werkstücks durch beschichten und additives herstellen; entsprechendes werkstück
WO2011113831A1 (de) Reparatur von bauteilkanten mittels psp-streifen und bauteil
EP2547488A1 (de) Verfahren zum wiederaufarbeiten einer turbinenschaufel mit wenigstens einer plattform
EP0868253A2 (de) Verfahren zur rissbeseitigung bei einem metallischen bauteil, insbesondere einer turbinenschaufel, sowie turbinenschaufel
WO2013143631A1 (de) Verfahren zur herstellung und wiederherstellung von keramischen wärmedämmschichten in gasturbinen sowie dazugehörige gasturbine
EP2695964B1 (de) Bauteilangepasste Schutzschicht
EP1382707A1 (de) Schichtsystem
EP2213759A1 (de) Verfahren zum Beschichten eines Bauteils mit Filmkühllöchern, und Bauteil
DE102013109116A1 (de) Bauteil mit Kühlkanälen und Verfahren zur Herstellung
EP2589682A1 (de) Keramische Wärmedämmschicht auf strukturierter Oberfläche und Herstellungsverfahren
DE102013111874A1 (de) Bauteil mit hinterschnitten geformten Kühlkanälen und Herstellungsverfahren dazu

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

AKX Designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080927

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566