EP1901128B1 - Electrophotographic carrier, developer, developing method, image forming apparatus, and process cartridge - Google Patents

Electrophotographic carrier, developer, developing method, image forming apparatus, and process cartridge Download PDF

Info

Publication number
EP1901128B1
EP1901128B1 EP07115631A EP07115631A EP1901128B1 EP 1901128 B1 EP1901128 B1 EP 1901128B1 EP 07115631 A EP07115631 A EP 07115631A EP 07115631 A EP07115631 A EP 07115631A EP 1901128 B1 EP1901128 B1 EP 1901128B1
Authority
EP
European Patent Office
Prior art keywords
carrier
toner
core
particles
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07115631A
Other languages
German (de)
French (fr)
Other versions
EP1901128A1 (en
Inventor
Kimitoshi Yamaguchi
Naoki Imahashi
Masashi Nagayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Publication of EP1901128A1 publication Critical patent/EP1901128A1/en
Application granted granted Critical
Publication of EP1901128B1 publication Critical patent/EP1901128B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/113Developers with toner particles characterised by carrier particles having coatings applied thereto
    • G03G9/1131Coating methods; Structure of coatings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0819Developers with toner particles characterised by the dimensions of the particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/107Developers with toner particles characterised by carrier particles having magnetic components
    • G03G9/1075Structural characteristics of the carrier particles, e.g. shape or crystallographic structure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/107Developers with toner particles characterised by carrier particles having magnetic components
    • G03G9/108Ferrite carrier, e.g. magnetite
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/107Developers with toner particles characterised by carrier particles having magnetic components
    • G03G9/108Ferrite carrier, e.g. magnetite
    • G03G9/1085Ferrite carrier, e.g. magnetite with non-ferrous metal oxide, e.g. MgO-Fe2O3
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/113Developers with toner particles characterised by carrier particles having coatings applied thereto
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/113Developers with toner particles characterised by carrier particles having coatings applied thereto
    • G03G9/1132Macromolecular components of coatings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/113Developers with toner particles characterised by carrier particles having coatings applied thereto
    • G03G9/1132Macromolecular components of coatings
    • G03G9/1135Macromolecular components of coatings obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G9/1136Macromolecular components of coatings obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon atoms

Definitions

  • the present invention relates to an electrophotographic carrier and a developer using the carrier.
  • the present invention relates to a developing method, an image forming apparatus, and a process cartridge using the developer.
  • Developing methods for use in electrophotography are classified into a one-component developing method using a one-component developer consisting essentially of a toner and a two-component developing method using a two-component developer including a toner and a carrier such as a glass bead, a magnetic carrier, and a coated carrier, the surface of which is coated with a resin, etc.
  • the two-component developing method uses a carrier, which typically has a wide surface area so as to triboelectrically charge a toner
  • the two-component developing method has advantages over the one-component developing method in view of providing stable charging ability and producing high quality images for a long period of the time.
  • the two-component developing method has a high ability to feed a toner to the developing area. Therefore, the two-component developingmethod is widely used for digital electrophotographic system in which an electrostatic latent image is formed on a photoreceptor by a laser beam and then visualized.
  • a minimum unit composing a latent image i.e., a dot
  • a developing system which can faithfully develop the latent image (i.e., dots)
  • various attempts have been made from aspects of improving both image forming process and developer (i.e., a toner and a carrier). From the aspect of image forming process, techniques of narrowing the developing gap, thinning layers of the photoreceptor, and making the diameter of the writing beam smaller are effective, but these techniques still have disadvantages of high cost and poor reliability.
  • Carriers having a small particle diameter have been also proposed.
  • JP-A 58-144839 discloses a magnetic carrier including a particulate ferrite having a spinel structure, and having an average particle diameter of less than 30 ⁇ m. Since this carrier is not covered by a resin and used for low electric field, the developed mass per area is poor and the life is short.
  • JP 3029180 discloses a carrier having a 50% average particle diameter (D50) of from 15 to 45 ⁇ m, and including carrier particles having a particle diameter of less than 22 ⁇ m in an amount of from 1 to 20%, carrier particles having a particle diameter of less than 16 ⁇ m in an amount of not greater than 3%, carrier particles having a particle diameter of not less than 62 ⁇ m in an amount of from 2 to 15%, and carrier particles having a particle diameter of not less than 88 ⁇ m in an amount of not greater than 2%, and further having a specific surface area.
  • D50 50% average particle diameter
  • Such a carrier having a small particle diameter has the following advantages.
  • JP 3078828 discloses a carrier including core particles which are spheroidized by a plasma treatment.
  • Published Japanese translation of PCT international patent application No. 2005-524249 discloses a method for forming spherical particles from irregular particles by a plasma treatment.
  • carrier depositian a carrier particle or a cut magnetic brush tends to deposit on a latent image (this phenomenon is hereinafter referred to as "carrier depositian"), and make scratches on a photoreceptor or a fixing roller.
  • an object of the present invention is to provide a carrier having a cover layer in which the cover layer is hardly abraded, resulting in providing stable charging ability.
  • Another object of the present invention is to provide a developer including a spherical carrier and a toner in which the toner is hardly adhered to the carrier owing to its spherical shape, resulting in decreasing the occurrence of fog in the background.
  • Yet another object of the present invention is to provide a developing method, an image forming apparatus, and a process cartridge capable of producing images having good uniformity (i.e., granularity) without causing the carrier deposition.
  • a carrier comprising:
  • the present invention contemplates the provision of a carrier having a small average particle diameter, a specific particle diameter distribution such that a small amount of particles having small particle diameters are included, a nearly spherical shape, and a smooth surface, with the control of the amount of hollows having a specific size present in the core of the carrier.
  • a method including melting a core material and spheroidizing the melted core material in a gas phase is very effective.
  • a gas burner method As an example of such a method, there can be mentioned a gas burner method, a flame spraying method (disclosed in JP-A 2-223962 ), a high-frequency plasma method and a hybrid plasma method (disclosed in JP 3078828 ), a gas burner method (disclosed in Canadian Patent No.
  • JP-A 51-107281 including fixing a wire rod to a gas burning gun, introducing and burning a high-pressure mixture gas of acetylene and oxygen, and melting and spraying the wire rod to prepare spherical particles, and a method (disclosed in JP-A 51-107281 ) including introducing raw ore particles to a carbon arc heating device providing a plasma flame, and melting and spraying the raw ore particles to form spherical particles.
  • the carrier deposition in that a carrier particle or a cut magnetic brush is deposited on an image or the background of the image occurs when the following relationship is satisfied: Fm ⁇ Fc wherein Fm represents the magnetic binding force and Fc represents the carrier deposition causing force.
  • the present inventors made analysis of carriers having a small particle diameter which is prepared by a method including melting a core material and spheroidizing the melted core material in a gas phase, and found out that carrier particles including a large hollow therein tend to cause the carrier deposition.
  • a carrier particle having a large hollow has a small weight for its volume, and therefore the magnetization per particle is small.
  • the surface area of the carrier particle is substantially same regardless of the presence or absence of the hollow. Therefore, the amount of the counter-charge of a toner given to the carrier particle and that of an induced charge are also same regardless of the presence or absence of the hollow. For the above reason, the above relationship is satisfied and the carrier deposition is caused.
  • the hollows present in carrier particles are formed by the following reasons.
  • the hollow present in core particles can be quantified by the following method, for example.
  • the diameter D ( ⁇ m) of a circle having the same area as that of a projected image of a core particle and the diameter d ( ⁇ m) of a circle having the same area as that of a projected image of a maximum hollow present in the core particle can be determined under the following conditions.
  • Measurement instrument X-ray microscope (TUX-3000W from Tohken Co., Ltd.)
  • FIG. 1 is an X-ray microscope photograph of core particles including hollows.
  • FIG. 2 is a magnification image of a X-ray microscope photograph of core particles including hollows.
  • FIG. 3 is a scanning electron microscope image of core particles including hollows, which is cracked by a physical force.
  • FIG. 4 is an X-ray microscope photograph of core particles including few hollows.
  • the ratio (d/D) has a relationship with the occurrence of fog in the background of the resultant image.
  • variations in magnetization between each of the core particles can be reduced.
  • the carrier of the present invention includes a core having magnetic properties and a resin layer located overlying the core.
  • the carrier of the present invention has a weight average particle diameter (Dw) of from 22 to 50 ⁇ m, and preferably from 22 to 45 ⁇ m.
  • Dw weight average particle diameter
  • the carrier deposition hardly occurs, but the latent image cannot be faithfully developed with a toner, and therefore each of the dot diameters varies. As a result, granularity of the resultant image deteriorates.
  • the toner concentration is high, fog easily occurs in the background.
  • the carrier deposition is a phenomenon in that carrier particles deposit on the image portion and the background portion of a latent image. A portion where the electric field is strong in an image, the carrier easily deposits thereon. In the image portion, the electric field strength is decreased when the latent image is developed with a toner. Therefore, the carrier deposition hardly occurs in the solid image compared to the background.
  • the carrier of the present invention has the ratio (Dw/Dp) of the weight average particle diameter (Dw) to the number average particle diameter (Dp) of from 1 to 1.30, and preferably from 1 to 1.25.
  • the ratio (Dw/Dp) is too large, the carrier includes too large an amount of ultrafine particles, and therefore the carrier deposition easily occurs,
  • the ratio (Dw/Dp) satisfies the above range, the carrier has a narrow particle diameter distribution and the occurrence of defect in the back end of an image can be prevented. This is because that magnetic brush can be uniformly formed.
  • the carrier When the SF-1 is too large, the carrier has an irregular shape far from a sphere. When the SF-2 is too large, the surface of the carrier is roughened and has large concavities and convexities . In these cases, the torque of the developing sleeve increases, a toner easily adheres to the carrier, and the toner charge per mass decreases. As a result, fog easily occurs in the background.
  • the core for use in the carrier of the present invention has a weight average particle diameter of from 22 to 50 ⁇ m and the ratio (Dw/Dp) of the weight average particle diameter (Dw) to the number average particle diameter (Dp) of from 1 to 1.30.
  • a method including melting a core material and spheroidizing the melted core material in a gas phase is very effective.
  • the core has a ratio (Dw/Dp) of the weight average particle diameter (Dw) to the number average particle diameter (Dp) of from 1 to 1.30, and more preferably from 1 to 1.25.
  • Dw/Dp weight average particle diameter
  • Dp number average particle diameter
  • the core When the SF-1 is too large, the core has an irregular shape far from a sphere. When the SF-2 is too large, the surface of the core is roughened and has large concavities and convexities. In these cases, the torque of the developing sleeve increases, a toner easily adheres to the carrier, and the toner charge per mass decreases. As a result, fog easily occurs in the background.
  • the carrier of the present invention includes core particles satisfying the following relationship (1) in an amount of from 0 to 10,000 ppm by number, and more preferably from 0 to 3,000 ppm by number: 0.52 ⁇ d / D ⁇ 1.0 wherein D ( ⁇ m) represents a diameter of a circle having the same area as that of a projected image of a core particle and d ( ⁇ m) represents a diameter of a circle having the same area as that of a projected image of a maximum hollow present in the core particle.
  • the carrier when the carrier includes core particles having a magnetization 14% or more smaller than that including no hollow (i.e., core particles satisfying 0.52 ⁇ (d/D) ⁇ 1.0) in an amount of greater than 10, 000 ppm by number, the carrier deposition easily occurs.
  • the resultant image has good granularity without the occurrence of fog in the background and the carrier deposition.
  • a "channel” is defined as a unit length (width) dividing the particle diameter range into a measurement unit, in a particle diameter distribution diagram.
  • the unit length is 2 ⁇ m.
  • the minimum diameter in the channel is adopted.
  • the particle diameter distribution of a carrier is measured using an instrument MICROTRAC HRA9320-X100 (from Honeywell International Inc.). The measurement conditions are as follows.
  • the carrier of the present invention has an SF-1 of from 100 to 120 and an SF-2 of from 100 to 120, It is more preferable that the carrier of the present invention has an SF-1 of from 100 to 110 and an SF-2 of from 100 to 110.
  • a uniform magnetic brush can be formed in the developing area, and therefore the carrier deposition hardly occurs.
  • a carrier has a rough surface (i.e., having large convexities and concavities), the thickness of the resin cover layer varies by location.
  • Such a carrier has nonuniform charging ability and resistance, and therefore durability of the carrier deteriorates with time and the carrier deposition easily occurs.
  • the shape factors SF-1 and SF-2 are determined by the following method, for example:
  • the shape factor SF-1 represents the degree of the roundness of a particle
  • the shape factor SF-2 represents the degree of the concavity and convexity of a particle.
  • the particle When the SF-1 is 100, the particle has a true spherical form. When the SF-1 is larger than 100, the particle has an irregular form. When the SF-2 approaches 100, the particle has a smooth surface (i.e., the particle has few concavity and convexity). When the SF-2 is large, the particle is roughened.
  • the present inventors have found out that when a core having a magnetization of not less than 40 emu/g, preferably not less than 70 emu/g, when 1,000 oersted (Oe) of a magnetic field is applied, is used, the occurrence of the carrier deposition can be decreased.
  • the upper limit of the magnetization is not particularly limited, but typically about 150 emu/g. When the magnetization of the core is too small the carrier deposition easily occurs.
  • Specific examples of the materials used for the core includes any known magnetic materials.
  • the magnetization can be measured as follows, for example:
  • the cores having a magnetization of not less than 40 emu/g when 1, 000 Oe of a magnetic field is applied include, but are not limited to, ferromagnets such as cobalt, magnetite, hematite, Li ferrite, Mn-Zn ferrite, Cu-Zn ferrite, Ni-Zn ferrite, Ba ferrite, and Mn ferrite.
  • ferromagnets such as cobalt, magnetite, hematite, Li ferrite, Mn-Zn ferrite, Cu-Zn ferrite, Ni-Zn ferrite, Ba ferrite, and Mn ferrite.
  • the ferrite is typically a sintered material having the following formula: (MO) x (NO) y (Fe 2 O 3 ) z wherein each of M and N independently represents Ni, Cu, Zn, Li, Mg, Mn, Fe, Sr, or Ca; and the sum of x, y, and z is 100 (% by mol).
  • the ferrite is a complete mixture of divalent metal oxides and a trivalent iron oxide.
  • the ferrite may optionally include an additive such as Si, Ti, Ta, Nb, and V; and an alkali earth metal such as Ca.
  • the cores having a magnetization of not less than 70 emu/gwhen 1,000 Oe of a magnetic field is applied include, but are not limited to, magnetite, Mn-Mg-Sr ferrite, and Mn ferrite.
  • the carrier of the present invention preferably includes a core obtained by melting a core material and spheroidizing the melted core material in a gas phase.
  • a method including introducing raw ore particles to a carbon arc heating device providing a plasma flame, melting the raw ore particles to form spheroidized droplets thereof, and allowing the spheroidized droplets to fall by gravity; a flame spraying method (disclosed in JP-A 02-223962 ) including melting a raw material in a burning flame of propane (serving as a fuel gas), oxygen (serving as an assistance gas), and nitrogen (serving as a raw material transport gas), and spraying the melted material into water to form spherical particles; a gas burner method; a burning flame gas method; a high-frequency plasma method and a hybrid plasma method (disclosed in JP 3078828 ) including charging an irregular-shaped iron powder into a plasma generated in a container under a reduced pressure of from 30 to 100 Torr to form spherical particles; a direct current
  • 01-21504 including passing a high current through a wire rod fixed to a gas burning gun so that the wire rod is discharge-melted, spraying the melted material by introducing a high-pressure nitrogen gas, and atomizing the material into water to form spherical particles; and a method (disclosed in published Japanese translation of PCT international patent application No. 2005-524249 ) including providing ferrite feed materials in a form of particles having different sizes and irregular shapes, and exposing the ferrite feed materials to a plasma to provide a more spherical shape to irregularly shaped particles to thereby make the ferrite powder.
  • the core can be prepared by ferritizing spheroidized particles, or spheroidizing ferritized particles.
  • hollows may be formed therein.
  • the reason why hollows are formed is considered as follows.
  • the core material i.e., rawmaterial
  • the core material is preferably previously pulverized into fine particles.
  • spheroidized core particles having a large hollow therein are removed by a combination of a classification using an ultrasonic vibration sieve and a magnetic separation method.
  • a core material such as a ferromagnet and a ferrite (ferrimagnet) develop a magnetization proportional to the mass thereof when a magnetic field is applied. Therefore, the core material is bound by the magnetic field.
  • particles having a small magnetization i.e., particles having a small mass due to the presence of hollows, can be separated using the difference of the binding force of the magnetic field. If the particles have a wide particle diameter distribution, a relatively large amount of particles having a small mass (without hollows) are present. Therefore, in order to efficiently remove particles having hollows, it is preferable that the particles are previously classified before subjected to the magnetic separation method.
  • the number of particles having a large hollow can be controlled by the combination of the classification and the magnetic separation method.
  • the following methods and combinations thereof for removing hollows can also be used to control the number of particles having a large hollow: melting and spheroidizing a core material under a reduced pressure; preliminarily dissolving and removing impurities causing a gas; and rapidly cooling a core material so as not to allow hollows present in the material to migrate in the inner region.
  • the developer of the present invention including a toner and the carrier of the present invention, preferably has an absolute value of the toner charge per mass of from 10 to 50 ⁇ C/g, and more preferably from 15 to 35 ⁇ C/g, when the developer includes the toner in an amount of 7% by weight. Such a developer hardly causes fog in the background and the carrier deposition.
  • the developer of the present invention including a toner and the carrier of the present invention, preferably includes the toner in an amount of from 2 to 20% by weight, and more preferably 3 to 15% by weight, based on total weight of the developer.
  • the absolute value of the toner charge per mass is less than 10 ⁇ C/g, fog in the background and toner scattering easily occur.
  • the absolute value of the toner charge per mass is greater than 50 ⁇ C/g, the carrier deposition easily occurs.
  • the absolute value of the toner charge per mass is less than 35 ⁇ C/g, the carrier deposition hardly occurs.
  • the toner charge per mass can be measured by the following method, for example.
  • FIG. 5 is a schematic view for explaining how to measure the toner charge per mass in the present invention.
  • a specific amount of a developer is contained in a conductive container (gauge), the both ends of which are equipped with a metallic mesh,
  • the mesh which is stainless
  • the mesh has openings (20 ⁇ m) larger than the particle diameter of a toner and smaller than that of a carrier so that the toner can pass through the mesh.
  • a compressed gas is blown from a nozzle at a pressure of 1kgf/cm 2 for 60 seconds so that the toner is blown off from the gauge.
  • the carrier having the opposite charge polarity from the toner remains in the gauge.
  • the charge Q of the carrier and the weight M of the blown-off toner are measured, and then the charge quantity per unit weight (Q/M) is calculated.
  • Q/M ⁇ C/g
  • the toner for use in the developer of the present invention preferably has a weight average particle diameter of from 3.0 to 9.0 ⁇ m, and more preferably from 3.0 to 5.0 ⁇ m.
  • a weight average particle diameter of from 3.0 to 9.0 ⁇ m, and more preferably from 3.0 to 5.0 ⁇ m.
  • the carrier of the present invention preferably has a resistivity (LogR ⁇ cm) of from 11.0 to 16.0, and more preferably from 12.0 to 14.0.
  • the resistivity When the resistivity is too small, a charge is induced to the carrier when the developing gap (i.e., the minimum distance between the photoreceptor and the developing sleeve) is small, resulting in the occurrence of the carrier deposition. Further, when the linear speeds of the photoreceptor and the developing sleeve are large, the carrier deposition easily occurs. Moreover, when an AC bias is applied, the carrier deposition notably occurs.
  • a carrier used for a full-color developer has a relatively low resistivity so that a sufficient amount of a toner can be developed.
  • a carrier having the above resistivity can produce images having a high image density when a toner has a proper toner charge per mass.
  • FIG. 6 is a schematic view for explaining how to measure the resistivity of a carrier in the present invention.
  • a pair of electrodes 12a and 12b having a distance of 2 mm and a surface area of 2 x 4 cm 2 is contained in a cell 11 made of a fluorocarbon resin.
  • the cell 11 is filled with a carrier 13, and then 100 V of a direct-current voltage is applied to the electrodes.
  • a direct-current resistance is measured with a high resistance meter 4329A + LJK 5HVLVWDQFH OHWHU (from Yokogawa-Hewlett-Packard Company), and then the electrical resistivity (LogR ⁇ cm) is calculated.
  • the cell 11 is filled with the carrier 13 as follows . At first, the carrier 13 is poured to the brim of the cell 11, and then the cell 11 is tapped for 20 times. The upper surface of the cell 11 is scraped once with a non-magnetic spatula so that brimming carriers are removed. There is no need to apply a pressure when the cell 11 is filled with the carrier 13.
  • the resistivity of a carrier can be controlled by varying the resistance and thickness of a resin cover layer located on a core.
  • a conductive powder can be added to the resin cover layer.
  • the conductive powders include, but are not limited to, metal and metal oxide powders (e.g., conductive ZnO, Al), SnO 2 which are prepared by various methods, SnO 2 which are doped with various elements, borides (e.g., TiB 2 , ZnB 2 , MoB 2 ), silicon carbide, conductive polymers (e.g., polyacetylene, polyparaphenylene, poly(paraphenylene sulfide), polypyrrole, polyaniline), and carbon blacks (e.g., furnace black, acetylene black, channel black).
  • metal and metal oxide powders e.g., conductive ZnO, Al
  • SnO 2 which are prepared by various methods
  • SnO 2 which are doped with various elements
  • borides e.g.
  • the conductive powder can be uniformly dispersed in a solvent used for coating or a resin layer coating liquid by using a dispersing machine such as a ball mill and a bead mill, or an agitating machine equipped with blade rotating at high speeds.
  • a dispersing machine such as a ball mill and a bead mill, or an agitating machine equipped with blade rotating at high speeds.
  • any known resins can be used for the cover layer of the carrier of the present invention, and are not particularly limited.
  • silicone resins including the following repeating units are preferably used: wherein R 1 represents a hydrogen atom, a halogen atom, a hydroxyl group, a methoxy group, a lower alkyl group having 1 to 4 carbon atoms, or an aryl group (e.g., phenyl group, tolyl group); and R 2 represents an alkylene group having 1 to 4 carbon atoms or an arylene group (e.g., phenylene group).
  • the aryl group preferably has 6 to 20, more preferably 6 to 14, carbon atoms.
  • Specific examples of the aryl groups include aryl groups derived from benzene (such as phenyl group) ; those derived from condensed polycyclic aromatic hydrocarbons such as naphthalene, phenanthrene, and anthracene; and those derived from chain polycyclic aromatic hydrocarbons such as biphenyl and terphenyl.
  • the aryl group may have a substituent group.
  • straight silicone resins can be used as the silicone resin
  • Specific examples of useable commercially available straight silicone resins include, but are not limited to, KR271, KR272, KR282, KR252, KR255, and KR152 (from Shin-Etsu Chemical Co., Ltd.); and SR2400 and SR2406 (from Dow Corning Toray Silicone Co., Ltd.).
  • modified silicone resins can be also used as the silicone resin.
  • modified silicone resins include, but are not limited to, epoxy-modified silicone resin, acryl-modified silicone resin, phenol-modified silicone resin, urethane-modified silicone resin, polyester-modified silicone resin, and alkyd-modified silicone resin.
  • modified silicone resins include, but are not limited to, ES1001N (epoxy-modified), KR5208 (acryl-modified), KR5203 (polyester-modified), KR206 (alkyd-modified), and KR305 (urethane-modified) (from Shin-Etsu Chemical Co., Ltd.); and SR2115 (epoxy-modified) and SR2110 (alkyd-modified) (from Dow Corning Toray Silicone Co., Ltd.).
  • styrene resins such as polystyrene, chloropolystyrene, poly( ⁇ -methylstyrene), styrene - chlorostyrene copolymer, styrene-propylene copolymer, styrene - butadiene copolymer, styrene - vinyl chloride copolymer, styrene - vinyl acetate copolymer, styrene - maleic acid copolymer, styrene - acrylate copolymers (e.g., styrene - methyl acrylate copolymer, styrene - ethyl acrylate copolymer, styrene - butyl acrylate copolymer, styrene - octyl acrylate copolymer,
  • the cover layer can be formed on a core by any known methods such as a spray dry method, a dipping method, and a powder coating method.
  • a fluidized bed coating device is effective for forming a uniform cover layer.
  • the cover layer typically has a thickness of from 0.02 to 1 ⁇ m, and preferably from 0.03 to 0.8 ⁇ m.
  • the cover layer including the silicone resin may include an aminosilane coupling agent. Thereby, the carrier has good durability.
  • the cover layer preferably includes the aminosilane coupling agent in an amount of from 0.001 to 30% by weight.
  • the toner for use in the present invention includes a binder resin mainly composed of a thermoplastic resin, and a colorant, a charge controlling agent, a release agent, etc. are dispersed therein.
  • a binder resin mainly composed of a thermoplastic resin
  • a colorant, a charge controlling agent, a release agent, etc. are dispersed therein.
  • Any known toners such as a polymerization toner and a pulverization toner, which may have a spherical or an irregular shape, can be used. Bothmagnetic toners andnon-magnetictoners can be used.
  • binder resins of the toner include, but are not limited to, styrene resins such as homopolymers of styrene and derivatives thereof (e.g., polystyrene, polyvinyl toluene) and styrene copolymers (e.g., styrene-p-chlorostyrene copolymer, styrene-propylenecopolymer, styrene-vinyltoluene copolymer, styrene - methyl acrylate copolymer, styrene - ethyl acrylate copolymer, styrene - butyl acrylate copolymer, styrene - methyl methacrylate copolymer, styrene - ethyl methacrylate copolymer, styrene - butyl methacrylate copolymer
  • the polyester resin has lower melt-viscosity compared to the styrene or acrylic resins while keeping preservation stability.
  • the polyester resin can be formed from a polycondensation reaction between an alcohol and a carboxylic acid.
  • the alcohol for preparing a polyester resin include, but are not limited to, diols (e.g., polyethylene glycol, diethylene glycol, triethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-propylene glycol, neopentyl glycol, 1,4-butenediol), 1,4-bis(hydroxymethyl)cyclohexane, bisphenol A, hydrogenated bisphenol A, etherified bisphenol A (e.g., polyoxyethylenated bisphenol A, polyoxypropylenated bisphenol A), these divalent alcohols substituted with a saturated or unsaturated hydrocarbon group having 3 to 22 carbon atoms, and other divalent alcohols; and polyols having 3 or more valences (e.g., sorbitol, 1,2,3,6-hexanetetrol, 1,4-sorbitan, pentaerythritol, dipentaerythritol, tripentaerythri
  • carboxylic acid for preparing a polyester resin include, but are not limited to, monocarboxylic acids (e.g., palmitic acid, stearic acid, oleic acid); maleic acid, fumaric acid, mesaconic acid, citraconic acid, itaconic acid, terephthalic acid, cyclohexane dicarboxylic acid, succinic acid, adipic acid, sebacic acid, malonic acid, these divalent organic acids substituted with a saturated or unsaturated hydrocarbon group having 3 to 22 carbon atoms, dimers of an acid anhydride or a lower alkyl ester thereof and linolenic acid, and other divalent organic acids; and polycarboxylic acid monomers having 3 or more valences such as 1,2,4-benzenetricarboxylic acid, 1,2,5-benzenetricarboxylic acid, 2,5,7-naphthalenetricarboxyl.ic acid, 1,2,4-naphthalene
  • the epoxy resin can be formed from a polycondensation reaction between bisphenol A and epichlorohydrin.
  • Specific examples of useable commercially available epoxy resins include, but are not limited to, EPOMIK® R362, R364, R365, R366, R367, andR369 (from Mitsui Chemicals, Inc.); EPOTOHTO®YD-011, YD-012, YD-014, YD-904, and YD-017 (from Tohto Kasei CO., Ltd.); and EPIKOTE® 1002, 1004, and 1007 (from Shell Kagaku K. K.).
  • colorant for use in the toner include, but are not limited to, carbon black, lamp black, iron black, ultramarine blue, Nigrosine dyes, Aniline Blue, Phthalocyanine Blue, HANSA YELLOW G, Rhodamine 6G Lake, chalco oil blue, chrome yellow, quinacridone, benzidine yellow, rose bengal, triarylmethane dyes, and monoazo and disazo dyes and pigments. These can be used alone or in combination.
  • the toner may optionally include a magnetic material.
  • the magnetic materials include, but are not limited to, powders of ferromagnets (e.g., iron, cobalt), magnetite, hematite, Li ferrite, Mn-Zn ferrite, Cu-Zn ferrite, Ni-Zn ferrite, and Ba ferrite.
  • the toner may include a charge controlling agent such as metal complex salts of monoazo dyes, nitrohumic acid and salts thereof, amino compounds of metal complexes of salicylic acid, naphthoic acid, and dicarboxylic acid with Co, Cr, Fe, etc., quaternary ammonium salts, and organic dyes.
  • a charge controlling agent such as metal complex salts of monoazo dyes, nitrohumic acid and salts thereof, amino compounds of metal complexes of salicylic acid, naphthoic acid, and dicarboxylic acid with Co, Cr, Fe, etc., quaternary ammonium salts, and organic dyes.
  • the toner may optionally include a release agent, if desired.
  • a release agent include, but are not limited to, low-molecular-weight polypropylene, low-molecular-weight polyethylene, carnauba wax, microcrystalline wax, jojoba wax, rice wax, and montanic acid wax. These can be used alone or in combination.
  • An external additive can be added to the toner so as to impart fluidity. It is important for a toner to have good fluidity so as to produce high quality images.
  • the toner preferably includes a hydrophobized particulate inorganic material having an average particle diameter of from 1 to 100 nm, preferably from 5 to 70 nm, and a specific surface area of from 200 to 500 m 2 /g determined by BET method.
  • the external additives include, but are not limited to, silica, hydrophobized silica, metal salts of fatty acids (e.g., zinc stearate, aluminum stearate), metal oxides (e.g., titania, alumina, tin oxide, antimony oxide), and fluoropolymers.
  • fatty acids e.g., zinc stearate, aluminum stearate
  • metal oxides e.g., titania, alumina, tin oxide, antimony oxide
  • fluoropolymers include, but are not limited to, silica, hydrophobized silica, metal salts of fatty acids (e.g., zinc stearate, aluminum stearate), metal oxides (e.g., titania, alumina, tin oxide, antimony oxide), and fluoropolymers.
  • particles of silica, titania (titanium oxide), and alumina, which are hydrophobized, are preferably used.
  • specific examples of useable commercially available hydrophobized silicas include, but are not limited to, HDK H 2000, HDK H 2000/4, HDK H 2050EP, HVK 21, and KDK H 1303 (from Clariant Japan K. K.); and R972, R974, RX200, RY200, R202, R805, and R812 (from Nippon Aerosil Co., Ltd.).
  • hydrophobized titanias include, but are not limited to, P-25 (from Nippon Aerosil Co., Ltd.); STT-30 and STT-65C-S (from Titan Kogyo K. K.); TAf-140 (from Fuji Titanium Industry Co., Ltd.); MT-150W, MT-500B, MT-600B, andMT-150A (fromTaycaCorporation) ; T-805 (from Nippon Aerosil Co., Ltd.); STT-30A, and STT-65S-S (from Titan Kogyo K.
  • TAF-500T and TAF-1500T from Fuji Titanium Industry Co., Ltd.
  • MT-100S and MT-100T from Tayca Corporation
  • IT-S from Ishihara Sangyo Kaisha, Ltd.
  • a hydrophilic inorganic material (such as silica, titania, alumina) can be hydrophobized by treating the hydrophilic inorganic material with a silane coupling agent such as methyl trimethoxysilane, methyl triethoxysilane, and octyl trimethoxysilane.
  • a silane coupling agent such as methyl trimethoxysilane, methyl triethoxysilane, and octyl trimethoxysilane.
  • the toner for use in the present invention preferably has a weight average particle diameter (Dt) of from 3,0 to 9.0 ⁇ m, and more preferably from 3.0 to 5. 0 ⁇ m.
  • the particle diameter is measured using COULTER COUNTER (from Beckman Coulter K. K.)
  • the developing method of the present invention comprises:
  • the developer includes the carrier of the present invention and a toner in an amount of 7% by weight.
  • the toner has an absolute value of the toner charge per mass of from 10 to 50 ⁇ C/g, and preferably from 15 to 35 ⁇ C/g; and a weight average particle diameter of from 3.0 to 9.0 ⁇ m, and preferably from 3.0 to 5.0 ⁇ m.
  • the distance between the photoreceptor and the developing sleeve is not greater than 0.4 mm, and the developing bias is at least one of an alternate current voltage and a direct current voltage.
  • the developing method of the present invention can provide high quality images with high image density and good granularity especially in highlight portions without causing the carrier deposition.
  • FIG. 7 is a schematic view illustrating an embodiment of a developing device for use in the image forming apparatus of the present invention.
  • a developing device 40 is arranged so as to face a photoreceptor 20, and includes a developing sleeve 41 serving as a developer bearing member, a developer containing member 42, a doctor blade 43 serving as a control member, and a casing 44.
  • the casing 44 has an opening on a side facing the photoreceptor 20, and is joined to a toner hopper 45 serving as a toner containing part containing a toner 21.
  • a developer containing part 46 arranged adjacent to the toner hopper 45, contains a developer including the toner 21 and a carrier 23.
  • a developer agitating mechanism 47 configured to give a triboelectric charge to the toner 21 is arranged in the developer containing part 46.
  • Atoner agitator 48 serving as a toner feeding means rotated by a driving means (not shown) and a toner supplying mechanism 49 are arranged in the toner hopper 45.
  • the toner agitator 48 and the toner supplying mechanism 49 supply the toner 21 from the toner hopper 45 to the developer containing part 46 while agitating the toner 21.
  • the developing sleeve 41 is arranged in a space formed between the photoreceptor 20 and the toner hopper 45, and is rotated by a driving means (not shown) in a direction indicated by an arrow.
  • the developing sleeve 40 internally includes a magnet (not shown) serving as a magnetic field generating means, which does not change the relative position to the developing device 40, so that the carrier 23 forms a magnetic brush thereon.
  • the doctor blade 43 is attached to the developer containing member 42 on the opposite side to which the casing 44 is attached. A gap is formed between the tip of the doctor blade 43 and the outer surface of the developing sleeve 41.
  • the developing method of the present invention can be performed by the above developing device as follows, but is not limited thereto.
  • the toner 21 is fed by the toner agitator 48 and the toner supplying mechanism 49 from the toner hopper 45 to the developer containing part 46, and then agitated by the developer agitating mechanism 47 so as to be triboelectrically-charged to a desired level .
  • the charged toner 21 and the carrier 23 form a developer, and then the developing sleeve 41 bears and transports the developer to a position facing the outer surface of the photoreceptor 20. Only the toner 21 is electrically bound to an electrostatic latent image formed on the photoreceptor 20. Thus, a toner image is formed on the photoreceptor 20.
  • FIG. 8 is a schematic view illustrating an embodiment of the image forming apparatus of the present invention.
  • an image bearing member 120 i.e., photoreceptor
  • a charging member 132 configured to charge the image bearing member 120
  • an irradiator 133 a developing device 140
  • a transfer device 150 a cleaning device 160
  • a discharging lamp 170 a discharging lamp 170
  • the charging member 132 forms a gap having a distance of about 0.2 mm between the outer surface of the photoreceptor 120.
  • the charging member 132 charges the photoreceptor 120 when an electrical field in which a direct current voltage is overlapped with an alternate current voltage is applied by a bias applying means. Thereby, unevenness of the charging can be reduced.
  • the image forming method including the developing method of the present invention is performed as follows.
  • the image bearing member 120 represented by a photoreceptor having an organic photoconductive layer (i.e., OPC), is discharged by the discharging lamp 170, and then uniformly negatively charged by the charging member 132 such as a charger and a charging roller.
  • the charging member 132 such as a charger and a charging roller.
  • a laser light beam emitted by an irradiator 133 irradiates the image bearing member 120 to form a latent image thereon.
  • the absolute value of the potential of the irradiated portion is lower than that of non-irradiated portion.
  • the laser light beam is emitted by a semiconductor laser, and scans the surface of the image bearing member 120 in a direction of the rotation axis of the image bearing member 120 by a polygon mirror rotating at a high speed, to form a latent image.
  • the thus formed latent image is developed with a developer including a toner and a carrier, which is supplied to the developing sleeve 141, to form a toner image.
  • a developing bias having a specific voltage or that overlapped with an alternate current voltage, is applied to the developing sleeve 141 and the irradiated and non-irradiated portion of the image bearing member 120 from a bias applying mechanism.
  • a transfer medium 180 (such as paper) is fed from a paper feeding mechanism (not shown), and then timely fed by a pair of registration rollers (not shown) to an area formed between the image bearing member 120 and the transfer device 150 so as to meet the tip of the toner image.
  • the toner image is transferred on the transfer medium 180.
  • a transfer bias having the opposite polarity to the toner charge is applied to the transfer device 150.
  • the transfer medium 180 is then separated from the image bearing member 120. Thus, a transfer image is formed.
  • Toner particles remaining on the image bearing member 120 are reclaimed by a cleaning blade 161 serving as a cleaning member and contained in a toner reclaim chamber 162.
  • the reclaimed toner particles may be reused by being transported to the developing part and/or the toner feeding part by a toner recycling means.
  • the image forming apparatus may include a plurality of the developing devices .
  • each of the toner images is transferred onto a transfer medium one by one.
  • the transfer medium is transported to the developing device, and then the toner image is fixed thereon by applying a heat thereto.
  • the toner images may be at once transferred onto an intermediate transfer member, and then transferred onto a transfer medium and fixed thereon.
  • FIG. 9 is a schematic view for explaining another example of the developing method of the present invention.
  • a photoreceptor 220 includes a conductive substrate and a photosensitive layer located overlying the conductive substrate, and is driven by driving rollers 224a and 224b.
  • the photoreceptor 220 is charged by a charging roller 232, and then irradiated by a light source 233 to form an electrostatic latent image thereon.
  • the electrostatic latent image is developed by a developing device 240, and then transferred by a charger 250.
  • the photoreceptor 220 is irradiated by a light source 226 before cleaned, cleaned by a brush cleaning means 264 and a cleaning blade 261, and discharged by a discharging lamp 270. These processes are repeatedly performed.
  • the light source 226 irradiates the photoreceptor 220 from the substrate side. In this case, the substrate is translucent.
  • the process cartridge of the present invention comprises:
  • FIG. 10 is a schematic view illustrating an embodiment of the process cartridge of the present invention.
  • a process cartridge 300 uses the carrier of the present invention and integrally supports a photoreceptor 320, a brush contact charging means 332, a developing means 340, and a cleaning blade 361 serving as a cleaning means.
  • the process cartridge 300 is detachably attachable to an image forming apparatus such as a copier and a printer.
  • Polyester resin 100 parts Quinacridone magenta pigment 4 parts Quaternary ammonium salt containing fluorine 4 parts
  • the mixture is melt-kneaded by a double-axis extruder, and then coarsely pulverized by a cutter mill and finely pulverized by a jet stream pulverizer.
  • the pulverized particles are classified using a windpower classifier.
  • mother toner particles (i) having a weight average particle diameter of 6.8 ⁇ m are prepared.
  • the procedure for preparing the mother toner particles (i) is repeated except that the pulverization conditions are changed so that the resultant mother toner particles (ii) has a weight average particle diameter of 4.5 ⁇ m.
  • the particles are introduced to a high-temperature mixed gas of acetylene and oxygen having a temperature of from 2, 000 to 3,000 °C so as to be spheroidized, and then ferritized by being sintered at 1,150°C.
  • the particles are further classified using a vibrating screen classifier equipped with an ultrasonic oscillator,
  • a developing device capable of driving alone is prepared by modifying the developing device of a digital full-colormultifunctionalprinter IMAGIO COLOR 4000 (fromRicoh Co., Ltd.).
  • the magnet of the main pole (having a magnetic force of about 1,000 gauss) thereof is replaced with a weak magnet having a magnetic force of 250 gauss.
  • the above-classified particles are contained in the above-modified developing device, and then the developing device drives for 10 minutes under the following conditions.
  • the remaining particles are classified again using the vibrating screen classifier equipped with an ultrasonic oscillator.
  • a core (a) which is a spherical CuZn ferrite, having a Dw of 37.7 ⁇ m, a Dw/Dp of 1.23, an SF-1 of 115, an SF-2 of 114, and a magnetization of 54 emu/g, and including core particles satisfying the relationship (1) (i,e., 0.52 ⁇ (d/D) ⁇ 1.0) in an amount of 8,000 ppm by number is prepared.
  • the procedure for preparation of the core (a) is repeated except that the conditions of the vibrating screen classifier equipped with an ultrasonic oscillator are changed.
  • a core (b) which is a spherical CuZn ferrite, having a Dw of 27.6 ⁇ m, a Dw/Dp of 1.17, an SF-1 of 115, an SF-2 of 113, and a magnetization of 55 emu/g, and including core particles satisfying the relationship (1) (i.e., 0.52 ⁇ (d/D) ⁇ 1.0) in an amount of 7,000 ppm by number is prepared.
  • These particles are pulverized by a dry method so that the particles have a weight average particle diameter Dw of not greater than 3 ⁇ m.
  • the pulverized particles are introduced to a high-temperature mixed gas of acetylene and oxygen having a temperature of from 2,000 to 3, 000 °C so as to be spheroidized, and then ferritized by being sintered at 1,150°C.
  • the particles are further classified using a vibrating screen classifier equipped with an ultrasonic oscillator.
  • the particles are classified with the developing device (i.e., magnetic classification).
  • the remaining particles are classified again using the vibrating screen classifier equipped with an ultrasonic oscillator.
  • a core (c) which is a spherical CuZn ferrite, having a Dw of 27.7 ⁇ m, a Dw/Dp of 1.17, an SF-1 of 116, an SF-2 of 113, and a magnetization of 55 emu/g, and including core particles satisfying the relationship (1) (i.e., 0.52 ⁇ (d/D) ⁇ 1.0) in an amount of 1,000 ppm by number is prepared.
  • the procedure for preparation of the core (b) is repeated except that the provisional sintering is performed for 3 hours at 800 °C.
  • the particles not yet being subjected to the spheroidization had a bulk density of 1.83 g/cm 3 , while these particles of the core (b) had a bulk density of 2.15 g/cm 3 .
  • a core (d) which is a spherical CuZn ferrite, having a Dw of 27.4 ⁇ m, a Dw/Dp of 1.18, an SF-1 of 117, an SF-2 of 115, and a magnetization of 55 emu/g, and including core particles satisfying the relationship (1) (i.e., 0.52 ⁇ (d/D) ⁇ 1.0) in an amount of 15,000 ppm by number is prepared.
  • the procedure for preparation of the core (b) is repeated except that the classification using the vibrating screen classifier equipped with an ultrasonic oscillator is not performed immediately after the particles are ferritized by being sintered at 1,150°C.
  • a core (e) which is a spherical CuZn ferrite, having a Dw of 27.5 ⁇ m, a Dw/Dp of 1.41, an SF-1 of 114, an SF-2 of 117, and a magnetization of 55 emu/g, and including core particles satisfying the relationship (1) (i.e., 0.52 ⁇ (d/D) ⁇ 1.0) in an amount of 7,000 ppm by number is prepared.
  • the procedure for preparation of the core (a) is repeated except that the conditions of the classification using the vibrating screen classifier equipped with an ultrasonic oscillator performed immediately after the particles are ferritized by being sintered at 1,150°C are changed.
  • a core (f) which is a spherical CuZn ferrite, having a Dw of 56.9 ⁇ m, a Dw/Dp of 1.28, an SF-1 of 115, an SF-2 of 114, and a magnetization of 54 emu/g, and including core particles satisfying the relationship (1) (i.e., 0.52 ⁇ (d/D) ⁇ 1.0) in an amount of 7,500 ppm by number is prepared.
  • the particles are classified using a vibrating screen classifier equipped with an ultrasonic oscillator.
  • the particles are classified with the developing device (i.e., magnetic classification).
  • the remaining particles are classified again using the vibrating screen classifier equipped with an ultrasonic oscillator.
  • a core (g) which is a CuZn ferrite, having a Dw of 27.3 ⁇ m, a Dw/Dp of 1.18, an SF-1 of 114, an SF-2 of 128, and a magnetization of 55 emu/g, and including core particles satisfying the relationship (1) (i.e., 0.52 ⁇ (d/D) ⁇ 1.0) in an amount of 6,500 ppm by number is prepared.
  • the procedure for preparation of the core (g) is repeated except that the particles are ferritized by being sintered for 5 hours at 1,250°C, and then pulverized.
  • a core (h) which is a CuZn ferrite, having a Dw of 27.7 ⁇ m, a Dw/Dp of 1.16, an SF-1 of 132, an SF-2 of 115, and a magnetization of 55 emu/g, and including core particles satisfying the relationship (1) (i.e., 0.52 ⁇ (d/D) ⁇ 1.0) in an amount of 6,000 ppm by number is prepared.
  • the procedure for preparation of the core (b) is repeated except that the amount of the particles introduced to the high-temperature mixed gas of acetylene and oxygen having a temperature of from 2,000 to 3,000 °C so as to be spheroidized is reduced to half.
  • a core (j) which is a spherical CuZn ferrite, having a Dw of 27.4 ⁇ m, a Dw/Dp of 1.14, an SF-1 of 105, an SF-2 of 106, and a magnetization of 55 emu/g, and including core particles satisfying the relationship (1) (i.e., 0.52 ⁇ (d/D) ⁇ 1.0) in an amount of 7,000 ppm by number is prepared.
  • the particles are introduced to a high-temperature mixed gas of acetylene and oxygen having a temperature of from 2,000 to 3,000 °C so as to be spheroidized, and then ferritized by being reduced under nitrogen atmosphere at 1,200°C.
  • the particles are further classified using a vibrating screen classifier equipped with an ultrasonic oscillator.
  • the particles are classified with the developing device (i.e., magnetic classification).
  • the remaining particles are classified again using the vibrating screen classifier equipped with an ultrasonic oscillator.
  • a core (k) which is a spherical MnMgSr ferrite, having a Dw of 27.4 ⁇ m, a Dw/Dp of 1.16, an SF-1 of 114, an SF-2 of 116, and a magnetization of 58 emu/g, and including core particles satisfying the relationship (1) (i.e., 0.52 ⁇ (d/D) ⁇ 1.0) in an amount of 6,500 ppm by number is prepared.
  • the particles are introduced to a high-temperature mixed gas of acetylene and oxygen having a temperature of from 2,000 to 3,000 °C so as to be spheroidized, and then ferritized by being reduced under nitrogen atmosphere at 1,250°C.
  • the particles are further classified using a vibrating screen classifier equipped with an ultrasonic oscillator.
  • the particles are classified with the developing device (i.e., magnetic classification).
  • the remaining particles are classified again using the vibrating screen classifier equipped with an ultrasonic oscillator.
  • a core (1) which is a spherical Mn ferrite, having a Dw of 27.3 ⁇ m, a Dw/Dp of 1.16, an SF-1 of 115, an SF-2 of 116, and a magnetization of 62 emu/g, and including core particles satisfying the relationship (1) (i.e., 0.52 ⁇ (d/D) ⁇ 1.0) in an amount of 7,000 ppm by number is prepared.
  • Fe 2 O 3 is added to water and subjected to a pulverization using a bead mill so that the pulverized particles have a particle diameter of not greater than 2 ⁇ m.
  • 0.5% by weight of polyvinyl alcohol is added to the slurry obtained above, and the viscosity of the slurry is controlled. Particles are formed from the slurry and dried, and then provisionally sintered for 5 hours at 950°C.
  • the particles are introduced to a high-temperature mixed gas of acetylene and oxygen having a temperature of from 2, 000 to 3,000 °C so as to be spheroidized, and then magnetized by being reduced under nitrogen atmosphere at 1,350°C.
  • the particles are further classified using a vibrating screen classifier equipped with an ultrasonic oscillator.
  • the particles are classified with the developing device (i.e., magnetic classification).
  • the remaining particles are classified again using the vibrating screen classifier equipped with an ultrasonic oscillator.
  • a core (m) which is a spherical magnetite, having a Dw of 27.7 ⁇ m, a Dw/Dp of 1.15, an SF-1 of 114, an SF-2 of 113, and a magnetization of 65 emu/g, and including core particles satisfying the relationship (1) (i.e., 0.52 ⁇ (d/D) ⁇ 1.0) in an amount of 6,500 ppm by number is prepared.
  • a solution of a silicone resin (SR2411 from Dow Corning Toray Co., Ltd.) including solid components in an amount of 5% is prepared.
  • the above-prepared silicone resin solution is coated on the surfaces of the particles of 5kg of the core (a) at a rate of 30 g/min in an atmosphere having a temperature of 90°C, and then the core particles are further heated to 230°C for 2 hours.
  • a carrier (A) having a Dw of 38.1 ⁇ m, a Dw/Dp of 1.22, a magnetization at 1 KOe of 53 emu/g, an SF-1 of 114, an SF-2 of 113, and a thickness of the cover layer of about 0.30 ⁇ m is prepared.
  • Randomly selected 2 000 particles of the carrier (A) are observed using an X-ray microscope (TUX-3000W) to measure the number and size of hollows present therein.
  • the number of hollows present in 2,000 particles is 16, and the number of particles satisfying the relationship (1) (i.e., 0.52 ⁇ (d/D) ⁇ 1.0) is 8,000 ppm.
  • Tables 1-1 and 1-2 The properties of the above-prepared cores are shown in Tables 1-1 and 1-2, and the properties of the above-prepared carriers are shown in Table 2.
  • Table 1-1 Core Manufacturing Example Core Dw ( ⁇ m) Dp ( ⁇ m) Dw/Dp Magnetization (emu/g) SF-1 SF-2 Composition 1 a 37.7 30.7 1.23 54 115 114 CuZn ferrite 2 b 27.6 23.6 1.17 55 115 113 CuZn ferrite 3 c 27.7 23.7 1.17 55 116 113 CuZn ferrite 4 d 27.4 23.2 1.18 55 117 115 CuZn ferrite 5 e 27.5 19.5 1.41 55 114 117 CuZn ferrite 6 f 56.9 44.4 1.28 54 115 114 CuZn ferrite 7 g 27.3 23.1 1.18 55 114 128 CuZn ferrite 8 h 27.7 23.9 1.16 55 132 115 CuZn ferrite 9 b 27
  • the carrier (A) 93 parts of the carrier (A) and 7 parts of the toner (I) are mixed using a ball mill for 20 minutes.
  • a developer (1) having a toner concentration of 7.0% by weight is prepared.
  • the toner (A) had a toner charge per mass of -23 ⁇ C/g.
  • the developer (1) is subjected to the following evaluations.
  • the evaluation results of the developer (1) are as follows. Image density: 1.68 Fog in Background: Rank 8 Granularity: Rank 7 Carrier deposition: Rank 7 Fog in background after 50K running test: Rank 8
  • Each of the developers is set in a multifunctional printer IMAGIO COLOR 4000 (from Ricoh Co., Ltd.), and images are produced under the following developing conditions.
  • a solid image having an area of 30 mm x 30 mm is produced.
  • Image densities of 5 randomly selected portions in the center of the image are measured using a spectrophotometer X-Rite 938, and the average value is calculated.
  • the number of toner particles adhered to the background (i.e., non-image portion) of an image formed on a transfer paper is counted, and converted into the number of toner particles adhered to 1 cm 2 of area.
  • the fog in the background is classified into the following 10 ranks based on the number of toner particles adhered to 1 cm 2 of area. The greater, the better, and a rank 10 is the best.
  • the granularity is classified into 10 ranks as follows. The greater, the better, and a rank 10 is the best.
  • FIG. 11 image examples having the above ranks at a lightness of 65 are illustrated.
  • FIG. 12 image obtained in Example 2 having a rank of 8 is illustrated.
  • An image pattern having 2 dot lines (100 lpi/inch) is formed in a sub-scanning direction, and then developed upon application of a direct current bias of 400 V.
  • Carrier particles deposited on the area between the 2 dot lines are transferred onto an adhesive tape. (This is because not all the carrier particles deposited on the photoreceptor are to be transferred onto a transfer paper (i.e., the resultant image).)
  • the number of carrier particles deposited on the area (having an area of 100 cm 2 ) are counted, and classified into 10 ranks as follows. The greater, the better, and a rank 10 is the best.
  • a running test in which 50,000 sheets of a character & image chart having an image proportion of 6% are continuously produced is performed while supplying the toner. After the running test, the image is evaluated according to the above paragraphs (1) to (4).
  • Tables 3-1 and 3-2 The evaluation results of the developer (1) to (8) and (C1) to (C7) are shown in Tables 3-1 and 3-2.
  • Table 3-1 Example Toner Carrier Initial properties Toner Charge per Mass (- ⁇ C/g) Image Density Fog in Background (Rank) Granularity (Rank) Carrier Deposition (Rank) Ex. 1 I A 23 1.68 8 7 7 Ex. 2 I B 28 1.62 8 8 8 Ex. 3 I C 28 1.61 9 9 9 9 9 Comp. Ex. 1 I D 28 1.60 5 7 4 Comp. Ex. 2 I E 30 1.58 6 7 5 Comp. Ex. 3 I F 18 1.71 6 8 6 Comp. Ex. 4 I G 29 1.60 8 8 8 Comp. Ex. 5 I H 29 1.61 8 8 8 Comp. Ex. 6 I I 65 1.32 5 4 5 Ex.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Dry Development In Electrophotography (AREA)

Description

    BACKGROUND OF THE INVENTION FIELD OF THE INVENTION
  • The present invention relates to an electrophotographic carrier and a developer using the carrier. In addition, the present invention relates to a developing method, an image forming apparatus, and a process cartridge using the developer.
  • DISCUSSION OF THE RELATED ART
  • Developing methods for use in electrophotography are classified into a one-component developing method using a one-component developer consisting essentially of a toner and a two-component developing method using a two-component developer including a toner and a carrier such as a glass bead, a magnetic carrier, and a coated carrier, the surface of which is coated with a resin, etc.
  • Since the two-component developing method uses a carrier, which typically has a wide surface area so as to triboelectrically charge a toner, the two-component developing method has advantages over the one-component developing method in view of providing stable charging ability and producing high quality images for a long period of the time. In addition, the two-component developing method has a high ability to feed a toner to the developing area. Therefore, the two-component developingmethod is widely used for digital electrophotographic system in which an electrostatic latent image is formed on a photoreceptor by a laser beam and then visualized.
  • In order to respond to recent demands for improving resolution, highlight reproducibility and uniformity (granularity) of images, and colorization of images, a minimum unit composing a latent image, i.e., a dot, is modified to be much smaller and denser. There is a need for a developing system which can faithfully develop the latent image (i.e., dots), and various attempts have been made from aspects of improving both image forming process and developer (i.e., a toner and a carrier). From the aspect of image forming process, techniques of narrowing the developing gap, thinning layers of the photoreceptor, and making the diameter of the writing beam smaller are effective, but these techniques still have disadvantages of high cost and poor reliability.
  • On the other hand, from the aspect of developer, dot reproducibility is largely improved by using a toner having a small particle diameter. However, there is a problem that a developer including a toner having a small particle diameter tends to produce images with low image density and fog in that the background portion of an image is soiled with toner particles. When the toner is a full-color toner, a binder resin having a low softening point is typically used. Such a toner tends to adhere to the carrier, compared to a monochrome toner, and to deteriorate properties of the developer. As a result, toner scattering and fog in the background are easily caused.
  • Carriers having a small particle diameter have been also proposed.
  • For example, published unexamined Japanese Patent Application No. (hereinafter referred to as JP-A) 58-144839 discloses a magnetic carrier including a particulate ferrite having a spinel structure, and having an average particle diameter of less than 30 µm. Since this carrier is not covered by a resin and used for low electric field, the developed mass per area is poor and the life is short.
  • Japanese Patent No. (hereinafter referred to as JP) 3029180 discloses a carrier having a 50% average particle diameter (D50) of from 15 to 45 µm, and including carrier particles having a particle diameter of less than 22 µm in an amount of from 1 to 20%, carrier particles having a particle diameter of less than 16 µm in an amount of not greater than 3%, carrier particles having a particle diameter of not less than 62 µm in an amount of from 2 to 15%, and carrier particles having a particle diameter of not less than 88 µm in an amount of not greater than 2%, and further having a specific surface area.
  • Such a carrier having a small particle diameter has the following advantages.
    1. (1) The surface area per unit volume is large. Therefore, the carrier is able to satisfactorily give charge to toner particles by friction, and therefore insufficiently-charged toner particles and reversely-charged toner particles are hardly produced. As a result, fog hardly occurs in the background and toner particles hardly scatter and blur, resulting in producing images with good dot reproducibility.
    2. (2) For the above reason, the resultant image has high image density.
    3. (3) Dense magnetic brushes can be formed. Since such a magnetic brush has good fluidity, the resultant image hardly has a brush mark.
  • On the other hand, spherical carriers, which have stable charging ability and capable of producing uniform images, have been proposed. For example, JP 3078828 discloses a carrier including core particles which are spheroidized by a plasma treatment. Published Japanese translation of PCT international patent application No. 2005-524249 discloses a method for forming spherical particles from irregular particles by a plasma treatment.
  • However, as the particle diameter of a carrier decreases, the magnetic binding force thereof drastically decreases at a rate of cube of the particle diameter. As a result, a carrier particle or a cut magnetic brush tends to deposit on a latent image (this phenomenon is hereinafter referred to as "carrier depositian"), and make scratches on a photoreceptor or a fixing roller.
  • SUMMARY OF THE INVENTION
  • Accordingly, an object of the present invention is to provide a carrier having a cover layer in which the cover layer is hardly abraded, resulting in providing stable charging ability.
  • Another object of the present invention is to provide a developer including a spherical carrier and a toner in which the toner is hardly adhered to the carrier owing to its spherical shape, resulting in decreasing the occurrence of fog in the background.
  • Yet another object of the present invention is to provide a developing method, an image forming apparatus, and a process cartridge capable of producing images having good uniformity (i.e., granularity) without causing the carrier deposition.
  • These and other objects of the present invention, either individually or in combinations thereof, as hereinafter will become more readily apparent can be attained by a carrier, comprising:
    • a core; and
    • a resin layer located overlying the core,
      wherein the carrier has a weight average particle diameter (Dw) of from 22 to 50 µm, a ratio (Dw/Dp) of the weight average particle diameter (Dw) to a number average particle diameter (Dp) of from 1 to 1.30, a shape factor SF-1 of from 100 to 120, and a shape factor SF-2 of from 100 to 120, and
      wherein the carrier comprises core particles satisfying the following relationship (1) in an amount of from 0 to 10,000 ppm by number: 0.52 < d / D < 1.0
      Figure imgb0001

      wherein D (µm) represents a diameter of a circle having the same area as that of a projected image of a core particle and d (µm) represents a diameter of a circle having the same area as that of a projected image of a maximum hollow present in the core particle where Dw and Dp are determined based on the particle diameter distribution measured on a number basis using instrument Microtrac HRA 9320-X100 and a channel width of 2 µm;
    and a developer, a developing method, an image forming apparatus, and a process cartridge using the carrier. BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other objects, features and advantages of the present invention will become apparent upon consideration of the following description of the preferred embodiments of the present invention taken in conjunction with the accompanying drawings, wherein:
    • FIG. 1 is an X-ray microscope photograph of core particles including hollows;
    • FIG. 2 is a magnification image of a X-ray microscope photograph of core particles including hollows;
    • FIG. 3 is a scanning electron microscope image of core particles including hollows, which is cracked by a physical force;
    • FIG. 4 is an X-ray microscope photograph of core particles including few hollows;
    • FIG. 5 is a schematic view for explaining how to measure the toner charge per mass in the present invention;
    • FIG. 6 is a schematic view for explaining how to measure the resistivity of a carrier in the present invention;
    • FIG. 7 is a schematic view illustrating an embodiment of a developing device for use in the image forming apparatus of the present invention;
    • FIG. 8 is a schematic view illustrating an embodiment of the image forming apparatus of the present invention;
    • FIG. 9 is a schematic view for explaining the developing method of the present invention;
    • FIG. 10 is a schematic view illustrating an embodiment of the process cartridge of the present invention;
    • FIG. 11 an image examples for evaluating the level of granularity of the produced images; and
    • FIG. 12 is an image obtained in Example 2 having a granularity rank of 8.
    DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • To achieve the objects, the present invention contemplates the provision of a carrier having a small average particle diameter, a specific particle diameter distribution such that a small amount of particles having small particle diameters are included, a nearly spherical shape, and a smooth surface, with the control of the amount of hollows having a specific size present in the core of the carrier.
  • In order to prepare a core having a small average particle diameter, a nearly spherical shape, and a smooth surface, a method including melting a core material and spheroidizing the melted core material in a gas phase is very effective.
  • As an example of such a method, there can be mentioned a gas burner method, a flame spraying method (disclosed in JP-A 2-223962 ), a high-frequency plasma method and a hybrid plasma method (disclosed in JP 3078828 ), a gas burner method (disclosed in Canadian Patent No. 838061 ) including fixing a wire rod to a gas burning gun, introducing and burning a high-pressure mixture gas of acetylene and oxygen, and melting and spraying the wire rod to prepare spherical particles, and a method (disclosed in JP-A 51-107281 ) including introducing raw ore particles to a carbon arc heating device providing a plasma flame, and melting and spraying the raw ore particles to form spherical particles.
  • A carrier using a core prepared by the above methods has the following advantages:
    1. (1) capable of producing images having good granularity;
    2. (2) a torque of a developing sleeve, a transport screw, etc. can be reduced compared to a carrier having a rough surface;
    3. (3) a cover layer covering the core is hardly abraded; and
    4. (4) a toner is hardly adhered to the carrier.
  • However, there is a drawback that such a carrier tends to cause the carrier deposition even if the magnetization (emu/g) of the carrier is increased.
  • Generally, the carrier deposition in that a carrier particle or a cut magnetic brush is deposited on an image or the background of the image occurs when the following relationship is satisfied: Fm < Fc
    Figure imgb0002

    wherein Fm represents the magnetic binding force and Fc represents the carrier deposition causing force.
  • The present inventors made analysis of carriers having a small particle diameter which is prepared by a method including melting a core material and spheroidizing the melted core material in a gas phase, and found out that carrier particles including a large hollow therein tend to cause the carrier deposition.
  • A carrier particle having a large hollow has a small weight for its volume, and therefore the magnetization per particle is small. On the other hand, the surface area of the carrier particle is substantially same regardless of the presence or absence of the hollow. Therefore, the amount of the counter-charge of a toner given to the carrier particle and that of an induced charge are also same regardless of the presence or absence of the hollow. For the above reason, the above relationship is satisfied and the carrier deposition is caused.
  • It is considered that the hollows present in carrier particles are formed by the following reasons.
    1. (1) When a core is spheroidized, an inert gas or a fuel gas dissolves in a melted core metal and remains in the core when solidified.
    2. (2) When particles are united, hollows are formed.
  • The hollow present in core particles can be quantified by the following method, for example.
  • The diameter D (µm) of a circle having the same area as that of a projected image of a core particle and the diameter d (µm) of a circle having the same area as that of a projected image of a maximum hollow present in the core particle can be determined under the following conditions.
  • Measurement instrument: X-ray microscope (TUX-3000W from Tohken Co., Ltd.)
    • Tube voltage: 46 kV
    • Tube current: 200 µA
    • Focus size: 0.6 µm
  • Images of 2, 000 particles of a core are photographed using the above instrument, and then the diameters D (µm) and d (µm) are calculated with an image processing software Image-Pro PLUS Ver 4.0 (from Media Cybernetics, Inc.).
  • FIG. 1 is an X-ray microscope photograph of core particles including hollows.
  • FIG. 2 is a magnification image of a X-ray microscope photograph of core particles including hollows.
  • FIG. 3 is a scanning electron microscope image of core particles including hollows, which is cracked by a physical force.
  • FIG. 4 is an X-ray microscope photograph of core particles including few hollows.
  • The diameters D (µm) and d (µm) are defined by the following equations: D = 2 × A / π 1 / 2
    Figure imgb0003
    d = 2 × A / π 1 / 2
    Figure imgb0004

    wherein A (µm2) represents the area of a projected image of a core particle and a (µm2) represents the area of a projected image of a maximum hollow present in the core particle.
  • The present inventors found out that the ratio (d/D) has a relationship with the occurrence of fog in the background of the resultant image. In particular, by controlling the ratio (d/D) and the existential conditions of the hollows, variations in magnetization between each of the core particles can be reduced.
  • The carrier of the present invention includes a core having magnetic properties and a resin layer located overlying the core.
  • The carrier of the present invention has a weight average particle diameter (Dw) of from 22 to 50 µm, and preferably from 22 to 45 µm. When the Dw is too large, the carrier deposition hardly occurs, but the latent image cannot be faithfully developed with a toner, and therefore each of the dot diameters varies. As a result, granularity of the resultant image deteriorates. When the toner concentration is high, fog easily occurs in the background. As mentioned above, the carrier deposition is a phenomenon in that carrier particles deposit on the image portion and the background portion of a latent image. A portion where the electric field is strong in an image, the carrier easily deposits thereon. In the image portion, the electric field strength is decreased when the latent image is developed with a toner. Therefore, the carrier deposition hardly occurs in the solid image compared to the background.
  • The carrier of the present invention has the ratio (Dw/Dp) of the weight average particle diameter (Dw) to the number average particle diameter (Dp) of from 1 to 1.30, and preferably from 1 to 1.25. When the ratio (Dw/Dp) is too large, the carrier includes too large an amount of ultrafine particles, and therefore the carrier deposition easily occurs, When the ratio (Dw/Dp) satisfies the above range, the carrier has a narrow particle diameter distribution and the occurrence of defect in the back end of an image can be prevented. This is because that magnetic brush can be uniformly formed.
  • As the particle diameters of carrier particles decrease, the frictional force between each of the carrier particles increases, resulting in deterioration of fluidity of the carrier particles. As a result, the torque of the developing sleeve increases . When a carrier has a spherical shape and a smooth surface, in other words, when a carrier has an SF-1 of from 100 to 120 and an SF-2 of from 100 to 120, the developing torque decreases, the cover layer is hardly abraded, and the deterioration in toner charge per mass can be decreased. In addition, a toner hardly adheres to such a spherical carrier, resulting in decreasing the occurrence of fog in the background.
  • When the SF-1 is too large, the carrier has an irregular shape far from a sphere. When the SF-2 is too large, the surface of the carrier is roughened and has large concavities and convexities . In these cases, the torque of the developing sleeve increases, a toner easily adheres to the carrier, and the toner charge per mass decreases. As a result, fog easily occurs in the background.
  • The core for use in the carrier of the present invention has a weight average particle diameter of from 22 to 50 µm and the ratio (Dw/Dp) of the weight average particle diameter (Dw) to the number average particle diameter (Dp) of from 1 to 1.30. In order to obtain a core having an SF-1 of from 100 to 120 and an SF-2 of from 100 to 120, a method including melting a core material and spheroidizing the melted core material in a gas phase is very effective.
  • When the Dw is too large, the carrier deposition hardly occurs, but the latent image cannot be faithfully developed with a toner, and therefore each of the dot diameters varies. As a result, granularity of the resultant image deteriorates. When the toner concentration is high, fog easily occurs in the background.
  • The core has a ratio (Dw/Dp) of the weight average particle diameter (Dw) to the number average particle diameter (Dp) of from 1 to 1.30, and more preferably from 1 to 1.25. When the ratio (Dw/Dp) is too large, the core includes too large an amount of ultrafine particles, and therefore the carrier deposition easily occurs.
  • As the particle diameters of core particles decrease, the frictional force between each of the core particles increases. As a result, the torque of the developing sleeve increases. When a core has a spherical shape and the surface thereof is smoothened, in other words, when a core has an SF-1 of from 100 to 120 and an SF-2 of from 100 to 120, the developing torque decreases, the cover layer is hardly abraded, and the deterioration in toner charge per mass can be decreased. In addition, a toner hardly adheres to such a spherical carrier, resulting in decreasing the occurrence of fog in the background.
  • When the SF-1 is too large, the core has an irregular shape far from a sphere. When the SF-2 is too large, the surface of the core is roughened and has large concavities and convexities. In these cases, the torque of the developing sleeve increases, a toner easily adheres to the carrier, and the toner charge per mass decreases. As a result, fog easily occurs in the background.
  • Further, the carrier of the present invention includes core particles satisfying the following relationship (1) in an amount of from 0 to 10,000 ppm by number, and more preferably from 0 to 3,000 ppm by number: 0.52 < d / D < 1.0
    Figure imgb0005

    wherein D (µm) represents a diameter of a circle having the same area as that of a projected image of a core particle and d (µm) represents a diameter of a circle having the same area as that of a projected image of a maximum hollow present in the core particle.
  • When a core particle satisfies the relationship d/D = 0.52, the core particle has a weight about 14% smaller than that including no hollow. As a result, the magnetization per particle decreases in an amount of about 14%, and therefore the binding force to the developing sleeve decreases.
  • In other words, when the carrier includes core particles having a magnetization 14% or more smaller than that including no hollow (i.e., core particles satisfying 0.52 < (d/D) < 1.0) in an amount of greater than 10, 000 ppm by number, the carrier deposition easily occurs.
  • When the carrier includes such core particles in an amount of less than 3, 000 ppm by number, the resultant image has good granularity without the occurrence of fog in the background and the carrier deposition.
  • In the present invention, the weight average particle diameter (Dw) of a carrier, a core, a toner is determined based on the particle diameter distribution measured on the number basis, and is defined by the following equation: Dw = 1 / Σ nD 3 × Σ nD 4
    Figure imgb0006

    wherein D (µm) represents a representative diameter of a channel and n represents the number of particles present in the channel.
  • In this regard, a "channel" is defined as a unit length (width) dividing the particle diameter range into a measurement unit, in a particle diameter distribution diagram. In the present invention, the unit length is 2µm.
  • As the representative diameter of a channel, the minimum diameter in the channel is adopted.
  • In the present invention, the number average particle diameter (Dp) of a carrier and a core is determined based on the particle diameter distribution measured on the number basis, and is defined by the following equation: Dp = 1 / N × ΣnD
    Figure imgb0007

    wherein D (µm) represents a representative (i.e., the minimum) diameter of a channel, n represents the number of particles present in the channel, and N represents the total number of measured particles.
  • The particle diameter distribution of a carrier is measured using an instrument MICROTRAC HRA9320-X100 (from Honeywell International Inc.). The measurement conditions are as follows.
    • Particle diameter range: 100 to 8 µm
    • Channel length (width): 2 µm
    • Channel number: 46
    • Refractive index: 2.42
  • As mentioned above, the carrier of the present invention has an SF-1 of from 100 to 120 and an SF-2 of from 100 to 120, It is more preferable that the carrier of the present invention has an SF-1 of from 100 to 110 and an SF-2 of from 100 to 110.
  • When a carrier has a nearly spherical shape and a smooth surface (i.e., having small convexities and concavities), a uniform magnetic brush can be formed in the developing area, and therefore the carrier deposition hardly occurs.
  • If a carrier has a rough surface (i.e., having large convexities and concavities), the thickness of the resin cover layer varies by location. Such a carrier has nonuniform charging ability and resistance, and therefore durability of the carrier deteriorates with time and the carrier deposition easily occurs.
  • The shape factors SF-1 and SF-2 are determined by the following method, for example:
    1. (1) 100 randomly selected carrier particles are photographed using a scanning electron microscope (S-800, manufactured by Hitachi Ltd.) at a magnification of 300 times; and
    2. (2) photographed images of carrier particles are analyzed using an image analyzer (LUZEX AP manufactured by Nireco Corp.) via an interface to determine the SF-1 and SF-2.
  • The SF-1 and SF-2 are defined by the following equations: SF - 1 = L 2 / A × 1 / 4 × 100
    Figure imgb0008
    SF - 2 = P 2 / A × 1 / 4 π × 100
    Figure imgb0009

    wherein L represents the diameter of the circle circumscribing the image of a carrier particle, P represents the peripheral length of the image of a carrier particle, and A represents the area of the image of a carrier particle.
  • The shape factor SF-1 represents the degree of the roundness of a particle, and the shape factor SF-2 represents the degree of the concavity and convexity of a particle.
  • When the SF-1 is 100, the particle has a true spherical form. When the SF-1 is larger than 100, the particle has an irregular form. When the SF-2 approaches 100, the particle has a smooth surface (i.e., the particle has few concavity and convexity). When the SF-2 is large, the particle is roughened.
  • The present inventors have found out that when a core having a magnetization of not less than 40 emu/g, preferably not less than 70 emu/g, when 1,000 oersted (Oe) of a magnetic field is applied, is used, the occurrence of the carrier deposition can be decreased. The upper limit of the magnetization is not particularly limited, but typically about 150 emu/g. When the magnetization of the core is too small the carrier deposition easily occurs.
  • Specific examples of the materials used for the core includes any known magnetic materials.
  • The magnetization can be measured as follows, for example:
    1. (1) a cylindrical cell is charged with 1.0 g of a core, and then the cell is set in a B-H tracer (BHU-60 from Riken Denshi Co., Ltd.);
    2. (2) a magnetic field is gradually increased to 3,000 Oe, and then gradually decreased to 0;
    3. (3) a magnetic field having the reverse direction is gradually increased to 3,000 Oe, and then gradually decreased to 0; and
    4. (4) a magnetic field having the reverse direction (same as the first direction) is applied again.
  • Thus, a B-H curve is obtained. A magnetization observed when 1, 000 Oe of a magnetic field is applied is determined from the B-H curve.
  • Specific examples of the cores having a magnetization of not less than 40 emu/g when 1, 000 Oe of a magnetic field is applied include, but are not limited to, ferromagnets such as cobalt, magnetite, hematite, Li ferrite, Mn-Zn ferrite, Cu-Zn ferrite, Ni-Zn ferrite, Ba ferrite, and Mn ferrite.
  • The ferrite is typically a sintered material having the following formula:

            (MO)x(NO)y(Fe2O3)z

    wherein each of M and N independently represents Ni, Cu, Zn, Li, Mg, Mn, Fe, Sr, or Ca; and the sum of x, y, and z is 100 (% by mol).
  • Namely, the ferrite is a complete mixture of divalent metal oxides and a trivalent iron oxide.
  • The ferrite may optionally include an additive such as Si, Ti, Ta, Nb, and V; and an alkali earth metal such as Ca.
  • Specific examples of the cores having a magnetization of not less than 70 emu/gwhen 1,000 Oe of a magnetic field is applied include, but are not limited to, magnetite, Mn-Mg-Sr ferrite, and Mn ferrite.
  • The carrier of the present invention preferably includes a core obtained by melting a core material and spheroidizing the melted core material in a gas phase.
  • As an example of such a method, the following methods are preferably used: a method (disclosed in JP-A 51-107281 ) including introducing raw ore particles to a carbon arc heating device providing a plasma flame, melting the raw ore particles to form spheroidized droplets thereof, and allowing the spheroidized droplets to fall by gravity; a flame spraying method (disclosed in JP-A 02-223962 ) including melting a raw material in a burning flame of propane (serving as a fuel gas), oxygen (serving as an assistance gas), and nitrogen (serving as a raw material transport gas), and spraying the melted material into water to form spherical particles; a gas burner method; a burning flame gas method; a high-frequency plasma method and a hybrid plasma method (disclosed in JP 3078828 ) including charging an irregular-shaped iron powder into a plasma generated in a container under a reduced pressure of from 30 to 100 Torr to form spherical particles; a direct current arc plasma method; a method (disclosed in published examined Japanese Patent Application No. 01-21504 ) including passing a high current through a wire rod fixed to a gas burning gun so that the wire rod is discharge-melted, spraying the melted material by introducing a high-pressure nitrogen gas, and atomizing the material into water to form spherical particles; and a method (disclosed in published Japanese translation of PCT international patent application No. 2005-524249 ) including providing ferrite feed materials in a form of particles having different sizes and irregular shapes, and exposing the ferrite feed materials to a plasma to provide a more spherical shape to irregularly shaped particles to thereby make the ferrite powder.
  • The core can be prepared by ferritizing spheroidized particles, or spheroidizing ferritized particles.
  • When a spherical core having a smooth surface is prepared by the above methods, hollows may be formed therein. The reason why hollows are formed is considered as follows.
    1. (1) Raw material particles (which is not spheroidized) potentially have a lot of hollows. Once such raw material particles are melted, the particles tend to solidify from the outer region. Therefore, the hollows tend to migrate to the inner region and form large hollows in the resultant core particles.
    2. (2) A gas used in a thermal treatment is immersed in raw material particles. For the same reason mentioned above, large hollows are formed in the inner region of the resultant core particles.
    3. (3) A large hollow formed in the process of preparing ferrite particles or forming spherical particles remains or grows in the resultant core particles.
  • In order not to form a large hollow in the process of melting a core material and spheroidizing the melted core material in a gas phase, the core material (i.e., rawmaterial) is preferably previously pulverized into fine particles.
  • In the present invention, spheroidized core particles having a large hollow therein are removed by a combination of a classification using an ultrasonic vibration sieve and a magnetic separation method.
  • A core material such as a ferromagnet and a ferrite (ferrimagnet) develop a magnetization proportional to the mass thereof when a magnetic field is applied. Therefore, the core material is bound by the magnetic field. In the magnetic separationmethod, particles having a small magnetization, i.e., particles having a small mass due to the presence of hollows, can be separated using the difference of the binding force of the magnetic field. If the particles have a wide particle diameter distribution, a relatively large amount of particles having a small mass (without hollows) are present. Therefore, in order to efficiently remove particles having hollows, it is preferable that the particles are previously classified before subjected to the magnetic separation method.
  • The number of particles having a large hollow can be controlled by the combination of the classification and the magnetic separation method. As mentioned above, since a core particle satisfying the relationship d/D = 0.52 has a weight about 14% smaller than that including no hollow. Therefore, such core particles can also be classified using wind power, especially when the core particles have a uniform shape and a narrow particle diameter distribution. In addition, since a core particle satisfying the relationship d/D = 0.52 has a magnetization (emu) about 14% smaller than that including no hollow. Therefore, such core particles can also be classified using magnetic force because of having small magnetic binding force.
  • Further, the following methods and combinations thereof for removing hollows can also be used to control the number of particles having a large hollow: melting and spheroidizing a core material under a reduced pressure; preliminarily dissolving and removing impurities causing a gas; and rapidly cooling a core material so as not to allow hollows present in the material to migrate in the inner region.
  • The developer of the present invention, including a toner and the carrier of the present invention, preferably has an absolute value of the toner charge per mass of from 10 to 50 µC/g, and more preferably from 15 to 35 µC/g, when the developer includes the toner in an amount of 7% by weight. Such a developer hardly causes fog in the background and the carrier deposition.
  • The developer of the present invention, including a toner and the carrier of the present invention, preferably includes the toner in an amount of from 2 to 20% by weight, and more preferably 3 to 15% by weight, based on total weight of the developer.
  • When the absolute value of the toner charge per mass is less than 10 µC/g, fog in the background and toner scattering easily occur. When the absolute value of the toner charge per mass is greater than 50 µC/g, the carrier deposition easily occurs. When the absolute value of the toner charge per mass is less than 35 µC/g, the carrier deposition hardly occurs.
  • The toner charge per mass can be measured by the following method, for example.
  • FIG. 5 is a schematic view for explaining how to measure the toner charge per mass in the present invention.
  • A specific amount of a developer is contained in a conductive container (gauge), the both ends of which are equipped with a metallic mesh, The mesh (which is stainless) has openings (20 µm) larger than the particle diameter of a toner and smaller than that of a carrier so that the toner can pass through the mesh. A compressed gas is blown from a nozzle at a pressure of 1kgf/cm2 for 60 seconds so that the toner is blown off from the gauge. As a result, the carrier having the opposite charge polarity from the toner remains in the gauge. The charge Q of the carrier and the weight M of the blown-off toner are measured, and then the charge quantity per unit weight (Q/M) is calculated. The value of Q/M (µC/g) is treated as the toner charge per mass.
  • The toner for use in the developer of the present invention preferably has a weight average particle diameter of from 3.0 to 9.0 µm, and more preferably from 3.0 to 5.0 µm. When such a toner is used in combination with the carrier of the present invention, high quality images having good granularity can be produced.
  • The carrier of the present invention preferably has a resistivity (LogR·Ωcm) of from 11.0 to 16.0, and more preferably from 12.0 to 14.0.
  • When the resistivity is too small, a charge is induced to the carrier when the developing gap (i.e., the minimum distance between the photoreceptor and the developing sleeve) is small, resulting in the occurrence of the carrier deposition. Further, when the linear speeds of the photoreceptor and the developing sleeve are large, the carrier deposition easily occurs. Moreover, when an AC bias is applied, the carrier deposition notably occurs. Typically, a carrier used for a full-color developer has a relatively low resistivity so that a sufficient amount of a toner can be developed.
  • A carrier having the above resistivity can produce images having a high image density when a toner has a proper toner charge per mass.
  • When the resistivity is too large, the charge having the opposite polarity from the toner tends to accumulate on the carrier. As a result, the carrier deposition easily occurs.
  • FIG. 6 is a schematic view for explaining how to measure the resistivity of a carrier in the present invention.
  • A pair of electrodes 12a and 12b having a distance of 2 mm and a surface area of 2 x 4 cm2 is contained in a cell 11 made of a fluorocarbon resin. The cell 11 is filled with a carrier 13, and then 100 V of a direct-current voltage is applied to the electrodes. A direct-current resistance is measured with a high resistance meter 4329A + LJK 5HVLVWDQFH OHWHU (from Yokogawa-Hewlett-Packard Company), and then the electrical resistivity (LogR·Ωcm) is calculated.
  • The cell 11 is filled with the carrier 13 as follows . At first, the carrier 13 is poured to the brim of the cell 11, and then the cell 11 is tapped for 20 times. The upper surface of the cell 11 is scraped once with a non-magnetic spatula so that brimming carriers are removed. There is no need to apply a pressure when the cell 11 is filled with the carrier 13.
  • The resistivity of a carrier can be controlled by varying the resistance and thickness of a resin cover layer located on a core. In addition, a conductive powder can be added to the resin cover layer. Specific examples of the conductive powders include, but are not limited to, metal and metal oxide powders (e.g., conductive ZnO, Al), SnO2 which are prepared by various methods, SnO2 which are doped with various elements, borides (e.g., TiB2, ZnB2, MoB2), silicon carbide, conductive polymers (e.g., polyacetylene, polyparaphenylene, poly(paraphenylene sulfide), polypyrrole, polyaniline), and carbon blacks (e.g., furnace black, acetylene black, channel black).
  • The conductive powder can be uniformly dispersed in a solvent used for coating or a resin layer coating liquid by using a dispersing machine such as a ball mill and a bead mill, or an agitating machine equipped with blade rotating at high speeds.
  • Any known resins can be used for the cover layer of the carrier of the present invention, and are not particularly limited. In particular, silicone resins including the following repeating units are preferably used:
    Figure imgb0010
    wherein R1 represents a hydrogen atom, a halogen atom, a hydroxyl group, a methoxy group, a lower alkyl group having 1 to 4 carbon atoms, or an aryl group (e.g., phenyl group, tolyl group); and R2 represents an alkylene group having 1 to 4 carbon atoms or an arylene group (e.g., phenylene group).
  • The aryl group preferably has 6 to 20, more preferably 6 to 14, carbon atoms. Specific examples of the aryl groups include aryl groups derived from benzene (such as phenyl group) ; those derived from condensed polycyclic aromatic hydrocarbons such as naphthalene, phenanthrene, and anthracene; and those derived from chain polycyclic aromatic hydrocarbons such as biphenyl and terphenyl.
  • The aryl group may have a substituent group.
  • In the present invention, straight silicone resins can be used as the silicone resin, Specific examples of useable commercially available straight silicone resins include, but are not limited to, KR271, KR272, KR282, KR252, KR255, and KR152 (from Shin-Etsu Chemical Co., Ltd.); and SR2400 and SR2406 (from Dow Corning Toray Silicone Co., Ltd.).
  • In the present invention, modified silicone resins can be also used as the silicone resin. Specific examples of the modified silicone resins include, but are not limited to, epoxy-modified silicone resin, acryl-modified silicone resin, phenol-modified silicone resin, urethane-modified silicone resin, polyester-modified silicone resin, and alkyd-modified silicone resin.
  • Specific examples of useable commercially available modified silicone resins include, but are not limited to, ES1001N (epoxy-modified), KR5208 (acryl-modified), KR5203 (polyester-modified), KR206 (alkyd-modified), and KR305 (urethane-modified) (from Shin-Etsu Chemical Co., Ltd.); and SR2115 (epoxy-modified) and SR2110 (alkyd-modified) (from Dow Corning Toray Silicone Co., Ltd.).
  • Further, the following resins can be used in combination with the silicone resin: styrene resins such as polystyrene, chloropolystyrene, poly(α-methylstyrene), styrene - chlorostyrene copolymer, styrene-propylene copolymer, styrene - butadiene copolymer, styrene - vinyl chloride copolymer, styrene - vinyl acetate copolymer, styrene - maleic acid copolymer, styrene - acrylate copolymers (e.g., styrene - methyl acrylate copolymer, styrene - ethyl acrylate copolymer, styrene - butyl acrylate copolymer, styrene - octyl acrylate copolymer, styrene - phenyl acrylate copolymer), styrene - methacrylate copolymers (e.g., styrene - methyl methacrylate copolymer, styrene - ethyl methacrylate copolymer, styrene - butyl methacrylate copolymer, styrene - phenyl methacrylate copolymer), styrene - methyl α-chloroacrylate copolymer, and styrene - acrylonitrile - acrylate copolymer; and other resins such as epoxy resin, polyester resin, polyethylene resin, polypropylene resin, ionomer resin, polyurethane resin, ketone resin, ethylene - ethyl acrylate resin, xylene resin, polyamide resin, phenol resin, polycarbonate resin, melamine resin, and fluorocarbon resin.
  • The cover layer can be formed on a core by any known methods such as a spray dry method, a dipping method, and a powder coating method.
  • A fluidized bed coating device is effective for forming a uniform cover layer.
  • The cover layer typically has a thickness of from 0.02 to 1 µm, and preferably from 0.03 to 0.8 µm.
  • The cover layer including the silicone resin may include an aminosilane coupling agent. Thereby, the carrier has good durability.
  • The cover layer preferably includes the aminosilane coupling agent in an amount of from 0.001 to 30% by weight.
  • Specific examples of the aminosilane coupling agents include the following compounds, but are not limited thereto:
    H2N(CH2)3Si(OCH3)3 (Mw = 179.3)
    H2N(CH2)3Si(OCH2H5)3 (Mw = 221.4)
    H2NCH2CH2CH2Si(CH3)2(OCH2H5) (Mw = 161.3)
    H2NCH2CH2CH2Si(CH3)(OCH2H5)2 (Mw = 191.3)
    H2NCH2CH2NHCH2Si(OCH3)3 (Mw = 194.3)
    H2NCH2CH2NHCH2CH2CH2Si(CH3)(OCH3) 2 (Mw = 206.4)
    H2NCH2CH2NHCH2CH2CH2Si(OCH3) 3 (Mw = 224.4)
    (CH3)2NCH2CH2CH2Si(CH3)(OCH2H5)2 (Mw = 219.4)
    (C4H9)2NC3H6Si(OCH3)3 (Mw = 291.6)
  • (Toner)
  • The toner for use in the present invention includes a binder resin mainly composed of a thermoplastic resin, and a colorant, a charge controlling agent, a release agent, etc. are dispersed therein. Any known toners such as a polymerization toner and a pulverization toner, which may have a spherical or an irregular shape, can be used. Bothmagnetic toners andnon-magnetictoners can be used.
  • Specific examples of the binder resins of the toner include, but are not limited to, styrene resins such as homopolymers of styrene and derivatives thereof (e.g., polystyrene, polyvinyl toluene) and styrene copolymers (e.g., styrene-p-chlorostyrene copolymer, styrene-propylenecopolymer, styrene-vinyltoluene copolymer, styrene - methyl acrylate copolymer, styrene - ethyl acrylate copolymer, styrene - butyl acrylate copolymer, styrene - methyl methacrylate copolymer, styrene - ethyl methacrylate copolymer, styrene - butyl methacrylate copolymer, styrene - methyl α-chloromethacrylate copolymer, styrene - acrylonitrile copolymer, styrene - vinyl methyl ether copolymer, styrene - vinyl methyl ketone copolymer, styrene - butadiene copolymer, styrene - isoprene copolymer, styrene - maleic acid copolymer, styrene - maleate copolymer); acrylic resins (e.g., polymethyl methacrylate, polybutyl methacrylate); and other resins such as polyvinyl chloride, polyvinyl acetate, polyethylene, polypropylene, polyester, polyurethane, epoxy resin, polyvinyl butyral, polyacrylic acid resin, rosin, modified rosin, terpene resin, phenol resin, aliphatic hydrocarbon resin, aromatic petroleum resin, chlorinated paraffin, and paraffin wax. These can be used alone or in combination.
  • The polyester resin has lower melt-viscosity compared to the styrene or acrylic resins while keeping preservation stability. The polyester resin can be formed from a polycondensation reaction between an alcohol and a carboxylic acid.
  • Specific examples of the alcohol for preparing a polyester resin include, but are not limited to, diols (e.g., polyethylene glycol, diethylene glycol, triethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-propylene glycol, neopentyl glycol, 1,4-butenediol), 1,4-bis(hydroxymethyl)cyclohexane, bisphenol A, hydrogenated bisphenol A, etherified bisphenol A (e.g., polyoxyethylenated bisphenol A, polyoxypropylenated bisphenol A), these divalent alcohols substituted with a saturated or unsaturated hydrocarbon group having 3 to 22 carbon atoms, and other divalent alcohols; and polyols having 3 or more valences (e.g., sorbitol, 1,2,3,6-hexanetetrol, 1,4-sorbitan, pentaerythritol, dipentaerythritol, tripentaerythritol, sucrose, 1,2,4-butanetriol, 1,2,5-pentanetriol, glycerol, 2-methylpropanetriol, 2-methyl-1,2,4-butanetriol, trimethylolethane, trimethylolpropane, and 1,3,5-trihydroxymethylbenzene.
  • Specific examples of the carboxylic acid for preparing a polyester resin include, but are not limited to, monocarboxylic acids (e.g., palmitic acid, stearic acid, oleic acid); maleic acid, fumaric acid, mesaconic acid, citraconic acid, itaconic acid, terephthalic acid, cyclohexane dicarboxylic acid, succinic acid, adipic acid, sebacic acid, malonic acid, these divalent organic acids substituted with a saturated or unsaturated hydrocarbon group having 3 to 22 carbon atoms, dimers of an acid anhydride or a lower alkyl ester thereof and linolenic acid, and other divalent organic acids; and polycarboxylic acid monomers having 3 or more valences such as 1,2,4-benzenetricarboxylic acid, 1,2,5-benzenetricarboxylic acid, 2,5,7-naphthalenetricarboxyl.ic acid, 1,2,4-naphthalenetricarboxylic acid, 1,2,4-butanetricarboxylic acid, 1,2,5-hexanetricarboxylic acid, 1,3-dicarboxyl-2-methyl-2-methylenecarboxypropane, tetra(methylenecarboxyl)methane, 1,2,7,8-octanetetracarboxylic acid, and acid anhydrides thereof.
  • The epoxy resin can be formed from a polycondensation reaction between bisphenol A and epichlorohydrin. Specific examples of useable commercially available epoxy resins include, but are not limited to, EPOMIK® R362, R364, R365, R366, R367, andR369 (from Mitsui Chemicals, Inc.); EPOTOHTO®YD-011, YD-012, YD-014, YD-904, and YD-017 (from Tohto Kasei CO., Ltd.); and EPIKOTE® 1002, 1004, and 1007 (from Shell Kagaku K. K.).
  • Specific examples of the colorant for use in the toner include, but are not limited to, carbon black, lamp black, iron black, ultramarine blue, Nigrosine dyes, Aniline Blue, Phthalocyanine Blue, HANSA YELLOW G, Rhodamine 6G Lake, chalco oil blue, chrome yellow, quinacridone, benzidine yellow, rose bengal, triarylmethane dyes, and monoazo and disazo dyes and pigments. These can be used alone or in combination.
  • The toner may optionally include a magnetic material. Specific examples of the magnetic materials include, but are not limited to, powders of ferromagnets (e.g., iron, cobalt), magnetite, hematite, Li ferrite, Mn-Zn ferrite, Cu-Zn ferrite, Ni-Zn ferrite, and Ba ferrite.
  • In order to sufficiently control the triboelectric chargeability of the toner, the toner may include a charge controlling agent such as metal complex salts of monoazo dyes, nitrohumic acid and salts thereof, amino compounds of metal complexes of salicylic acid, naphthoic acid, and dicarboxylic acid with Co, Cr, Fe, etc., quaternary ammonium salts, and organic dyes.
  • The toner may optionally include a release agent, if desired. Specific examples of the release agents include, but are not limited to, low-molecular-weight polypropylene, low-molecular-weight polyethylene, carnauba wax, microcrystalline wax, jojoba wax, rice wax, and montanic acid wax. These can be used alone or in combination.
  • An external additive can be added to the toner so as to impart fluidity. It is important for a toner to have good fluidity so as to produce high quality images.
  • As the external additive, particulate inorganic materials and hydrophobized particulate inorganic materials can be used. The toner preferably includes a hydrophobized particulate inorganic material having an average particle diameter of from 1 to 100 nm, preferably from 5 to 70 nm, and a specific surface area of from 200 to 500 m2/g determined by BET method.
  • Specific examples of the external additives include, but are not limited to, silica, hydrophobized silica, metal salts of fatty acids (e.g., zinc stearate, aluminum stearate), metal oxides (e.g., titania, alumina, tin oxide, antimony oxide), and fluoropolymers.
  • Among these, particles of silica, titania (titanium oxide), and alumina, which are hydrophobized, are preferably used. Specific examples of useable commercially available hydrophobized silicas include, but are not limited to, HDK H 2000, HDK H 2000/4, HDK H 2050EP, HVK 21, and KDK H 1303 (from Clariant Japan K. K.); and R972, R974, RX200, RY200, R202, R805, and R812 (from Nippon Aerosil Co., Ltd.). Specific examples of useable commercially available hydrophobized titanias include, but are not limited to, P-25 (from Nippon Aerosil Co., Ltd.); STT-30 and STT-65C-S (from Titan Kogyo K. K.); TAf-140 (from Fuji Titanium Industry Co., Ltd.); MT-150W, MT-500B, MT-600B, andMT-150A (fromTaycaCorporation) ; T-805 (from Nippon Aerosil Co., Ltd.); STT-30A, and STT-65S-S (from Titan Kogyo K. K.); TAF-500T and TAF-1500T (from Fuji Titanium Industry Co., Ltd.); MT-100S and MT-100T (from Tayca Corporation) ; and IT-S (from Ishihara Sangyo Kaisha, Ltd.).
  • A hydrophilic inorganic material (such as silica, titania, alumina) can be hydrophobized by treating the hydrophilic inorganic material with a silane coupling agent such as methyl trimethoxysilane, methyl triethoxysilane, and octyl trimethoxysilane.
  • The toner for use in the present invention preferably has a weight average particle diameter (Dt) of from 3,0 to 9.0 µm, and more preferably from 3.0 to 5. 0 µm. The particle diameter is measured using COULTER COUNTER (from Beckman Coulter K. K.)
  • (Developing Method)
  • The developing method of the present invention comprises:
    • forming an electrostatic latent image on a photoreceptor; and
    • applying a developing bias to a developing sleeve to develop the electrostatic latent image with the developer of the present invention.
  • The developer includes the carrier of the present invention and a toner in an amount of 7% by weight. In this case, the toner has an absolute value of the toner charge per mass of from 10 to 50 µC/g, and preferably from 15 to 35 µC/g; and a weight average particle diameter of from 3.0 to 9.0 µm, and preferably from 3.0 to 5.0 µm. The distance between the photoreceptor and the developing sleeve is not greater than 0.4 mm, and the developing bias is at least one of an alternate current voltage and a direct current voltage.
  • The developing method of the present invention can provide high quality images with high image density and good granularity especially in highlight portions without causing the carrier deposition.
  • When only a direct current voltage is applied as a developing bias, the carrier deposition, edge effect (in that the edge portion of an image has higher image density while the center portion has lower image density), and fog hardly occur in the background. Therefore, the coverage of a toner to a carrier can be increased, and the toner charge per mass and the developing bias can be decreased, resulting in increasing the image density.
  • The developing method of the present invention and the developing device for use in the image forming apparatus of the present invention will be explained in detail.
  • FIG. 7 is a schematic view illustrating an embodiment of a developing device for use in the image forming apparatus of the present invention.
  • A developing device 40 is arranged so as to face a photoreceptor 20, and includes a developing sleeve 41 serving as a developer bearing member, a developer containing member 42, a doctor blade 43 serving as a control member, and a casing 44.
  • The casing 44 has an opening on a side facing the photoreceptor 20, and is joined to a toner hopper 45 serving as a toner containing part containing a toner 21. A developer containing part 46, arranged adjacent to the toner hopper 45, contains a developer including the toner 21 and a carrier 23. A developer agitating mechanism 47 configured to give a triboelectric charge to the toner 21 is arranged in the developer containing part 46.
  • Atoner agitator 48 serving as a toner feeding means rotated by a driving means (not shown) and a toner supplying mechanism 49 are arranged in the toner hopper 45. The toner agitator 48 and the toner supplying mechanism 49 supply the toner 21 from the toner hopper 45 to the developer containing part 46 while agitating the toner 21.
  • The developing sleeve 41 is arranged in a space formed between the photoreceptor 20 and the toner hopper 45, and is rotated by a driving means (not shown) in a direction indicated by an arrow. The developing sleeve 40 internally includes a magnet (not shown) serving as a magnetic field generating means, which does not change the relative position to the developing device 40, so that the carrier 23 forms a magnetic brush thereon.
  • The doctor blade 43 is attached to the developer containing member 42 on the opposite side to which the casing 44 is attached. A gap is formed between the tip of the doctor blade 43 and the outer surface of the developing sleeve 41.
  • The developing method of the present invention can be performed by the above developing device as follows, but is not limited thereto.
  • The toner 21 is fed by the toner agitator 48 and the toner supplying mechanism 49 from the toner hopper 45 to the developer containing part 46, and then agitated by the developer agitating mechanism 47 so as to be triboelectrically-charged to a desired level . The charged toner 21 and the carrier 23 form a developer, and then the developing sleeve 41 bears and transports the developer to a position facing the outer surface of the photoreceptor 20. Only the toner 21 is electrically bound to an electrostatic latent image formed on the photoreceptor 20. Thus, a toner image is formed on the photoreceptor 20.
  • (Image Forming Apparatus)
  • FIG. 8 is a schematic view illustrating an embodiment of the image forming apparatus of the present invention.
  • Around an image bearing member (i.e., photoreceptor) 120, a charging member 132 configured to charge the image bearing member 120, an irradiator 133, a developing device 140, a transfer device 150, a cleaning device 160, and a discharging lamp 170 are arranged. The charging member 132 forms a gap having a distance of about 0.2 mm between the outer surface of the photoreceptor 120. The charging member 132 charges the photoreceptor 120 when an electrical field in which a direct current voltage is overlapped with an alternate current voltage is applied by a bias applying means. Thereby, unevenness of the charging can be reduced.
  • The image forming method including the developing method of the present invention is performed as follows.
  • The image bearing member 120, represented by a photoreceptor having an organic photoconductive layer (i.e., OPC), is discharged by the discharging lamp 170, and then uniformly negatively charged by the charging member 132 such as a charger and a charging roller. A laser light beam emitted by an irradiator 133 irradiates the image bearing member 120 to form a latent image thereon. In this case, the absolute value of the potential of the irradiated portion is lower than that of non-irradiated portion.
  • The laser light beam is emitted by a semiconductor laser, and scans the surface of the image bearing member 120 in a direction of the rotation axis of the image bearing member 120 by a polygon mirror rotating at a high speed, to form a latent image. The thus formed latent image is developed with a developer including a toner and a carrier, which is supplied to the developing sleeve 141, to form a toner image. When the latent image is developed, a developing bias, having a specific voltage or that overlapped with an alternate current voltage, is applied to the developing sleeve 141 and the irradiated and non-irradiated portion of the image bearing member 120 from a bias applying mechanism.
  • On the other hand, a transfer medium 180 (such as paper) is fed from a paper feeding mechanism (not shown), and then timely fed by a pair of registration rollers (not shown) to an area formed between the image bearing member 120 and the transfer device 150 so as to meet the tip of the toner image. Thus, the toner image is transferred on the transfer medium 180. It is preferable that a transfer bias having the opposite polarity to the toner charge is applied to the transfer device 150. The transfer medium 180 is then separated from the image bearing member 120. Thus, a transfer image is formed.
  • Toner particles remaining on the image bearing member 120 are reclaimed by a cleaning blade 161 serving as a cleaning member and contained in a toner reclaim chamber 162.
  • The reclaimed toner particles may be reused by being transported to the developing part and/or the toner feeding part by a toner recycling means.
  • The image forming apparatus may include a plurality of the developing devices . In this case, each of the toner images is transferred onto a transfer medium one by one. The transfer medium is transported to the developing device, and then the toner image is fixed thereon by applying a heat thereto.
  • Further, the toner images may be at once transferred onto an intermediate transfer member, and then transferred onto a transfer medium and fixed thereon.
  • FIG. 9 is a schematic view for explaining another example of the developing method of the present invention.
  • A photoreceptor 220 includes a conductive substrate and a photosensitive layer located overlying the conductive substrate, and is driven by driving rollers 224a and 224b. The photoreceptor 220 is charged by a charging roller 232, and then irradiated by a light source 233 to form an electrostatic latent image thereon. The electrostatic latent image is developed by a developing device 240, and then transferred by a charger 250. The photoreceptor 220 is irradiated by a light source 226 before cleaned, cleaned by a brush cleaning means 264 and a cleaning blade 261, and discharged by a discharging lamp 270. These processes are repeatedly performed. In FIG. 9, the light source 226 irradiates the photoreceptor 220 from the substrate side. In this case, the substrate is translucent.
  • (Process Cartridge)
  • The process cartridge of the present invention comprises:
    • a photoreceptor configured to bear an electrostatic latent image;
    • a charging brush configured to charge the photoreceptor;
    • a developing device configured to develop the electrostatic latent image with the developer of the present invention; and
    • a cleaning blade configured to remove toner particles remaining on the photoreceptor.
  • FIG. 10 is a schematic view illustrating an embodiment of the process cartridge of the present invention,
  • A process cartridge 300 uses the carrier of the present invention and integrally supports a photoreceptor 320, a brush contact charging means 332, a developing means 340, and a cleaning blade 361 serving as a cleaning means. The process cartridge 300 is detachably attachable to an image forming apparatus such as a copier and a printer.
  • Having generally described this invention, further understanding can be obtained by reference to certain specific examples which are provided herein for the purpose of illustration only and are not intended to be limiting. In the descriptions in the following examples, the numbers represent weight ratios in parts, unless otherwise specified.
  • EXAMPLES Toner Manufacturing Example 1
  • The following components are mixed using a blender.
    Polyester resin 100 parts
    Quinacridone magenta pigment 4 parts
    Quaternary ammonium salt containing fluorine 4 parts
  • The mixture is melt-kneaded by a double-axis extruder, and then coarsely pulverized by a cutter mill and finely pulverized by a jet stream pulverizer. The pulverized particles are classified using a windpower classifier. Thus, mother toner particles (i) having a weight average particle diameter of 6.8 µm are prepared.
  • Next, 100 parts of the mother toner particles are mixed with 0. 8 parts of a hydrophobized silica (R972 fromNipponAerosil Co., Ltd.) using HENSCHEL MIXER.
  • Thus, a toner (I) is prepared.
  • Toner Manufacturing Example 2
  • The procedure for preparing the mother toner particles (i) is repeated except that the pulverization conditions are changed so that the resultant mother toner particles (ii) has a weight average particle diameter of 4.5 µm.
  • Next, 100 parts of the mother toner particles (ii) are mixed with 1.2 parts of a hydrophobized silica (R972 from Nippon Aerosil Co., Ltd.) using HENSCHEL MIXER.
  • Thus, a toner (II) is prepared.
  • Core Manufacturing Example 1
  • At first, 50% by mol of Fe2O3, 25% by mol of CuO, and 25% by mol of ZnO are added to water and subjected to a pulverization using a bead mill so that the pulverized particles have a particle diameter of not greater than 2 µm. Polyvinyl alcohol is added to the slurry obtained above, and the viscosity of the slurry is controlled. Particles are formed from the slurry and dried, and then provisionally sintered for 5 hours at 900°C.
  • The particles are introduced to a high-temperature mixed gas of acetylene and oxygen having a temperature of from 2, 000 to 3,000 °C so as to be spheroidized, and then ferritized by being sintered at 1,150°C. The particles are further classified using a vibrating screen classifier equipped with an ultrasonic oscillator,
  • On the other hand, a developing device capable of driving alone is prepared by modifying the developing device of a digital full-colormultifunctionalprinter IMAGIO COLOR 4000 (fromRicoh Co., Ltd.). The magnet of the main pole (having a magnetic force of about 1,000 gauss) thereof is replaced with a weak magnet having a magnetic force of 250 gauss.
  • The above-classified particles are contained in the above-modified developing device, and then the developing device drives for 10 minutes under the following conditions.
    • Doctor gap: 0.30 mm
      (distance between developing sleeve and doctor blade)
    • Linear speed of developing sleeve: 150 mm/sec
  • As a result, a part of particles are scattered and separated from the position of the main pole having a magnetic force of 250 gauss. Most of these separated particles have large hollows therein.
  • The remaining particles are classified again using the vibrating screen classifier equipped with an ultrasonic oscillator.
  • Thus, a core (a), which is a spherical CuZn ferrite, having a Dw of 37.7 µm, a Dw/Dp of 1.23, an SF-1 of 115, an SF-2 of 114, and a magnetization of 54 emu/g, and including core particles satisfying the relationship (1) (i,e., 0.52 < (d/D) < 1.0) in an amount of 8,000 ppm by number is prepared.
  • Core Manufacturing Example 2
  • The procedure for preparation of the core (a) is repeated except that the conditions of the vibrating screen classifier equipped with an ultrasonic oscillator are changed.
  • Thus, a core (b), which is a spherical CuZn ferrite, having a Dw of 27.6 µm, a Dw/Dp of 1.17, an SF-1 of 115, an SF-2 of 113, and a magnetization of 55 emu/g, and including core particles satisfying the relationship (1) (i.e., 0.52 < (d/D) < 1.0) in an amount of 7,000 ppm by number is prepared.
  • Core Manufacturing Example 3
  • At first, 50% by mol of Fe2O3, 25% by mol of CuO, and 25% by mol of Zn0 are added to water and subj ected to a pulverization using a bead mill so that the pulverized particles have a particle diameter of not greater than 2 µm. Polyvinyl alcohol is added to the slurry obtained above, and the viscosity of the slurry is controlled. Particles are formed from the slurry and dried, and then provisionally sintered for 5 hours at 1,000°C.
  • These particles are pulverized by a dry method so that the particles have a weight average particle diameter Dw of not greater than 3 µm.
  • The pulverized particles are introduced to a high-temperature mixed gas of acetylene and oxygen having a temperature of from 2,000 to 3, 000 °C so as to be spheroidized, and then ferritized by being sintered at 1,150°C. The particles are further classified using a vibrating screen classifier equipped with an ultrasonic oscillator.
  • As the same manner in the Core Manufacturing Example 1, the particles are classified with the developing device (i.e., magnetic classification).
  • The remaining particles are classified again using the vibrating screen classifier equipped with an ultrasonic oscillator.
  • Thus, a core (c), which is a spherical CuZn ferrite, having a Dw of 27.7 µm, a Dw/Dp of 1.17, an SF-1 of 116, an SF-2 of 113, and a magnetization of 55 emu/g, and including core particles satisfying the relationship (1) (i.e., 0.52 < (d/D) < 1.0) in an amount of 1,000 ppm by number is prepared.
  • Core Manufacturing Example 4
  • The procedure for preparation of the core (b) is repeated except that the provisional sintering is performed for 3 hours at 800 °C. The particles not yet being subjected to the spheroidization had a bulk density of 1.83 g/cm3, while these particles of the core (b) had a bulk density of 2.15 g/cm3.
  • Thus, a core (d), which is a spherical CuZn ferrite, having a Dw of 27.4 µm, a Dw/Dp of 1.18, an SF-1 of 117, an SF-2 of 115, and a magnetization of 55 emu/g, and including core particles satisfying the relationship (1) (i.e., 0.52 < (d/D) < 1.0) in an amount of 15,000 ppm by number is prepared.
  • Core Manufacturing Example 5
  • The procedure for preparation of the core (b) is repeated except that the classification using the vibrating screen classifier equipped with an ultrasonic oscillator is not performed immediately after the particles are ferritized by being sintered at 1,150°C.
  • Thus, a core (e), which is a spherical CuZn ferrite, having a Dw of 27.5 µm, a Dw/Dp of 1.41, an SF-1 of 114, an SF-2 of 117, and a magnetization of 55 emu/g, and including core particles satisfying the relationship (1) (i.e., 0.52 < (d/D) < 1.0) in an amount of 7,000 ppm by number is prepared.
  • Core Manufacturing Example 6
  • The procedure for preparation of the core (a) is repeated except that the conditions of the classification using the vibrating screen classifier equipped with an ultrasonic oscillator performed immediately after the particles are ferritized by being sintered at 1,150°C are changed.
  • Thus, a core (f), which is a spherical CuZn ferrite, having a Dw of 56.9 µm, a Dw/Dp of 1.28, an SF-1 of 115, an SF-2 of 114, and a magnetization of 54 emu/g, and including core particles satisfying the relationship (1) (i.e., 0.52 < (d/D) < 1.0) in an amount of 7,500 ppm by number is prepared.
  • Core Manufacturing Example 7
  • At first, 50% by mol of Fe2O3, 25% by mol of CuO, and 25% by mol of ZnO are added to water and subjected to a pulverization using a bead mill so that the pulverized particles have a particle diameter of not greater than 2 µm. Polyvinyl alcohol is added to the slurry obtained above, and the viscosity of the slurry is controlled. Particles are formed from the slurry and dried, and then ferritized by being sintered for 5 hours at 1, 070°C.
  • The particles are classified using a vibrating screen classifier equipped with an ultrasonic oscillator.
  • As the same manner in the Core Manufacturing Example 1, the particles are classified with the developing device (i.e., magnetic classification).
  • The remaining particles are classified again using the vibrating screen classifier equipped with an ultrasonic oscillator.
  • Thus, a core (g), which is a CuZn ferrite, having a Dw of 27.3 µm, a Dw/Dp of 1.18, an SF-1 of 114, an SF-2 of 128, and a magnetization of 55 emu/g, and including core particles satisfying the relationship (1) (i.e., 0.52 < (d/D) < 1.0) in an amount of 6,500 ppm by number is prepared.
  • Core Manufacturing Example 8
  • The procedure for preparation of the core (g) is repeated except that the particles are ferritized by being sintered for 5 hours at 1,250°C, and then pulverized.
  • Thus, a core (h), which is a CuZn ferrite, having a Dw of 27.7 µm, a Dw/Dp of 1.16, an SF-1 of 132, an SF-2 of 115, and a magnetization of 55 emu/g, and including core particles satisfying the relationship (1) (i.e., 0.52 < (d/D) < 1.0) in an amount of 6,000 ppm by number is prepared.
  • Core Manufacturing Example 9
  • The procedure for preparation of the core (b) is repeated.
  • Core Manufacturing Example 10
  • The procedure for preparation of the core (b) is repeated except that the amount of the particles introduced to the high-temperature mixed gas of acetylene and oxygen having a temperature of from 2,000 to 3,000 °C so as to be spheroidized is reduced to half.
  • Thus, a core (j), which is a spherical CuZn ferrite, having a Dw of 27.4 µm, a Dw/Dp of 1.14, an SF-1 of 105, an SF-2 of 106, and a magnetization of 55 emu/g, and including core particles satisfying the relationship (1) (i.e., 0.52 < (d/D) < 1.0) in an amount of 7,000 ppm by number is prepared.
  • Core Manufacturing Example 11
  • At first, 50% by mol of Fe2O3, 35% by mol of MnO, 10% by mol of MgO, and 5% by mol of SrO are added to water and subjected to a pulverization using a bead mill so that the pulverized particles have a particle diameter of not greater than 2 µm. Polyvinyl alcohol is added to the slurry obtained above, and the viscosity of the slurry is controlled. Particles are formed from the slurry and dried, and then provisionally sintered for 5 hours at 900°C.
  • The particles are introduced to a high-temperature mixed gas of acetylene and oxygen having a temperature of from 2,000 to 3,000 °C so as to be spheroidized, and then ferritized by being reduced under nitrogen atmosphere at 1,200°C. The particles are further classified using a vibrating screen classifier equipped with an ultrasonic oscillator.
  • As the same manner in the Core Manufacturing Example 1, the particles are classified with the developing device (i.e., magnetic classification).
  • The remaining particles are classified again using the vibrating screen classifier equipped with an ultrasonic oscillator.
  • Thus, a core (k), which is a spherical MnMgSr ferrite, having a Dw of 27.4 µm, a Dw/Dp of 1.16, an SF-1 of 114, an SF-2 of 116, and a magnetization of 58 emu/g, and including core particles satisfying the relationship (1) (i.e., 0.52 < (d/D) < 1.0) in an amount of 6,500 ppm by number is prepared.
  • Core Manufacturing Example 12
  • At first, 55% by mol of Fe2O3 and 45% by mol of MnO are added to water and subjected to a pulverization using a bead mill so that the pulverized particles have a particle diameter of not greater than 2 µm. Polyvinyl alcohol is added to the slurry obtained above, and the viscosity of the slurry is controlled. Particles are formed from the slurry and dried, and then provisionally sintered for 5 hours at 900°C.
  • The particles are introduced to a high-temperature mixed gas of acetylene and oxygen having a temperature of from 2,000 to 3,000 °C so as to be spheroidized, and then ferritized by being reduced under nitrogen atmosphere at 1,250°C. The particles are further classified using a vibrating screen classifier equipped with an ultrasonic oscillator.
  • As the same manner in the Core Manufacturing Example 1, the particles are classified with the developing device (i.e., magnetic classification).
  • The remaining particles are classified again using the vibrating screen classifier equipped with an ultrasonic oscillator.
  • Thus, a core (1), which is a spherical Mn ferrite, having a Dw of 27.3 µm, a Dw/Dp of 1.16, an SF-1 of 115, an SF-2 of 116, and a magnetization of 62 emu/g, and including core particles satisfying the relationship (1) (i.e., 0.52 < (d/D) < 1.0) in an amount of 7,000 ppm by number is prepared.
  • Core Manufacturing Example 13
  • At first, Fe2O3 is added to water and subjected to a pulverization using a bead mill so that the pulverized particles have a particle diameter of not greater than 2 µm. Next, 0.5% by weight of polyvinyl alcohol is added to the slurry obtained above, and the viscosity of the slurry is controlled. Particles are formed from the slurry and dried, and then provisionally sintered for 5 hours at 950°C.
  • The particles are introduced to a high-temperature mixed gas of acetylene and oxygen having a temperature of from 2, 000 to 3,000 °C so as to be spheroidized, and then magnetized by being reduced under nitrogen atmosphere at 1,350°C. The particles are further classified using a vibrating screen classifier equipped with an ultrasonic oscillator.
  • As the same manner in the Core Manufacturing Example 1, the particles are classified with the developing device (i.e., magnetic classification).
  • The remaining particles are classified again using the vibrating screen classifier equipped with an ultrasonic oscillator.
  • Thus, a core (m), which is a spherical magnetite, having a Dw of 27.7 µm, a Dw/Dp of 1.15, an SF-1 of 114, an SF-2 of 113, and a magnetization of 65 emu/g, and including core particles satisfying the relationship (1) (i.e., 0.52 < (d/D) < 1.0) in an amount of 6,500 ppm by number is prepared.
  • Carrier Manufacturing Example 1
  • A solution of a silicone resin (SR2411 from Dow Corning Toray Co., Ltd.) including solid components in an amount of 5% is prepared.
  • The above-prepared silicone resin solution is coated on the surfaces of the particles of 5kg of the core (a) at a rate of 30 g/min in an atmosphere having a temperature of 90°C, and then the core particles are further heated to 230°C for 2 hours.
  • Thus, a carrier (A) having a Dw of 38.1 µm, a Dw/Dp of 1.22, a magnetization at 1 KOe of 53 emu/g, an SF-1 of 114, an SF-2 of 113, and a thickness of the cover layer of about 0.30 µm is prepared.
  • Randomly selected 2, 000 particles of the carrier (A) are observed using an X-ray microscope (TUX-3000W) to measure the number and size of hollows present therein.
  • The number of hollows present in 2,000 particles is 16, and the number of particles satisfying the relationship (1) (i.e., 0.52 < (d/D) < 1.0) is 8,000 ppm.
  • Carrier Manufacturing Examples 2 to 13
  • The procedure for preparation of the carrier (A) is repeated except that the core (a) is replaced with the core (b) to (m) . Thus, carriers (B) to (M) are prepared, respectively.
  • When the carrier (I) is prepared, 10 parts by weight of H2N(CH2)3Si(OC2H5)3 are added to the silicone resin solution so as to control the toner charge per mass.
  • The properties of the above-prepared cores are shown in Tables 1-1 and 1-2, and the properties of the above-prepared carriers are shown in Table 2. Table 1-1
    Core Manufacturing Example Core Dw
    (µm)
    Dp
    (µm)
    Dw/Dp Magnetization
    (emu/g)
    SF-1 SF-2 Composition
    1 a 37.7 30.7 1.23 54 115 114 CuZn ferrite
    2 b 27.6 23.6 1.17 55 115 113 CuZn ferrite
    3 c 27.7 23.7 1.17 55 116 113 CuZn ferrite
    4 d 27.4 23.2 1.18 55 117 115 CuZn ferrite
    5 e 27.5 19.5 1.41 55 114 117 CuZn ferrite
    6 f 56.9 44.4 1.28 54 115 114 CuZn ferrite
    7 g 27.3 23.1 1.18 55 114 128 CuZn ferrite
    8 h 27.7 23.9 1.16 55 132 115 CuZn ferrite
    9 b 27.6 23.6 1.17 55 115 113 CuZn ferrite
    10 j 27.4 24.0 1.14 55 105 106 CuZn ferrite
    11 k 27.4 23.6 1.16 58 114 116 MnMgSr ferrite
    12 l 27.3 23.5 1.16 62 115 116 Mn ferrite
    13 m 27.7 24.1 1.15 65 114 113 magnetite
    Table 1-2
    Core Manufacturing Example Core The Number of Hollows per 2000 Particles The Number of Particles Satisfying
    0.52 < (d/D) < 1.0
    (ppm by number)
    1 a 16 8,000
    2 b 14 7,000
    3 c 2 1,000
    4 d 30 15,000
    5 e 14 7,000
    6 f 15 7,500
    7 g 13 6,500
    8 h 12 6,000
    9 b 14 7,000
    10 j 14 7,000
    11 k 13 6,500
    12 l 14 7,000
    13 m 13 6,500
    Table 2
    Carrier Manufacturing Example Core Carrier Dw
    (µm)
    Dp
    (µm)
    Dw/Dp Magnetization
    (emu/g)
    SF-1 SF-2
    1 a A 38.1 31.2 1.22 53 114 113
    2 b B 27.9 24.1 1.16 54 116 114
    3 c C 28.0 24.2 1.16 54 115 114
    4 d D 27.7 23.7 1.17 54 116 115
    5 e E 27.8 21.1 1.40 54 113 116
    6 f F 57.3 45.1 1.27 53 114 115
    7 g G 27.6 23.6 1.17 54 113 129
    8 h H 27.9 23.9 1.17 54 131 113
    9 b I 27.9 24.0 1.16 54 116 114
    10 j J 27.7 24.5 1.13 54 104 105
    11 k K 27.8 24.1 1.15 57 116 115
    12 l L 27.6 24.1 1.15 61 114 114
    13 m M 28.1 24.2 1.16 64 113 114
  • Example 1
  • At first, 93 parts of the carrier (A) and 7 parts of the toner (I) are mixed using a ball mill for 20 minutes. Thus, a developer (1) having a toner concentration of 7.0% by weight is prepared. The toner (A) had a toner charge per mass of -23 µC/g.
  • The developer (1) is subjected to the following evaluations.
  • The evaluation results of the developer (1) are as follows.
    Image density: 1.68
    Fog in Background: Rank 8
    Granularity: Rank 7
    Carrier deposition: Rank 7
    Fog in background after 50K running test: Rank 8
  • Examples 2 to 8 and Comparative Examples 1 to 7
  • The procedure for preparation of the developer (1) is repeated except that the toner and carrier composition is changed to those described in Table 3.
  • Thus, developers (2) to (8) and comparative developers (C1) to (C7) are pared.
  • Evaluation
  • Each of the developers is set in a multifunctional printer IMAGIO COLOR 4000 (from Ricoh Co., Ltd.), and images are produced under the following developing conditions.
    • Developing gap: 0.35 mm
      (distance between photoreceptor and developing sleeve)
    • Doctor gap: 0.65 mm
      (distance between developing sleeve and doctor blade)
    • Linear speed of photoreceptor: 200 mm/sec
      (linear speed of developing sleeve / linear speed of photoreceptor = 1.80)
    • Imprinting density of dots (pixels): 600 dpi
    • Charged electric potential (Vd): -600 V
    • Electric potential (VI) in solid image area: -150 V
    • Developing bias potential: direct current voltage of -500 V / alternate current bias of 2 kHz, -100 to -900 V, and 50% duty
    (1) Image density
  • A solid image having an area of 30 mm x 30 mm is produced. Image densities of 5 randomly selected portions in the center of the image are measured using a spectrophotometer X-Rite 938, and the average value is calculated.
  • (2) Fog in background
  • The number of toner particles adhered to the background (i.e., non-image portion) of an image formed on a transfer paper is counted, and converted into the number of toner particles adhered to 1 cm2 of area.
  • The fog in the background is classified into the following 10 ranks based on the number of toner particles adhered to 1 cm2 of area. The greater, the better, and a rank 10 is the best.
    • Rank 10: 0 to 36 pcs/cm2
    • Rank 9: 37 to 72 pcs/cm2
    • Rank 8: 73 to 108 pcs/cm2
    • Rank 7: 109 to 144 pcs/cm2
    • Rank 6: 145 to 180 pcs/cm2
    • Rank 5: 181 to 216 pcs/cm2
    • Rank 4: 217 to 252 pcs/cm2
    • Rank 3: 253 to 288 pcs/cm2
    • Rank 2: 289 to 324 pcs/cm2
    • Rank 1: 325 or more pcs/cm2
    (3) Granularity
  • The granularity is defined as the following equation (at a range of lightness of from 50 to 80): G = exp aL + b WS f 1 / 2 VTF f df
    Figure imgb0011

    wherein G represents a granularity, L represents an average lightness, f represents a spatial frequency (cycle/mm), WS (f) represents a power spectrum of a lightness variation, VTF(f) represents visual spatial modulation transfer function, and a and b each represent a coefficient.
  • The granularity is classified into 10 ranks as follows. The greater, the better, and a rank 10 is the best.
    • Rank 10: -0.10 to 0
    • Rank 9: 0 to 0.05
    • Rank 8: 0.05 to 0.10
    • Rank 7: 0.10 to 0.15
    • Rank 6: 0.15 to 0.20
    • Rank 5: 0.20 to 0.25
    • Rank 4: 0.25 to 0.30
    • Rank 3: 0.30 to 0.40
    • Rank 2: 0.40 to 0.50
    • Rank 1: 0.05 or more
  • In FIG. 11, image examples having the above ranks at a lightness of 65 are illustrated. In FIG. 12, and image obtained in Example 2 having a rank of 8 is illustrated.
  • (4) Carrier deposition
  • An image pattern having 2 dot lines (100 lpi/inch) is formed in a sub-scanning direction, and then developed upon application of a direct current bias of 400 V.
  • Carrier particles deposited on the area between the 2 dot lines are transferred onto an adhesive tape. (This is because not all the carrier particles deposited on the photoreceptor are to be transferred onto a transfer paper (i.e., the resultant image).)
  • The number of carrier particles deposited on the area (having an area of 100 cm2) are counted, and classified into 10 ranks as follows. The greater, the better, and a rank 10 is the best.
    • Rank 10: 0 pcs
    • Rank 9: 1 to 10 pcs
    • Rank 8: 11 to 20 pcs
    • Rank 7: 21 to 30 pcs
    • Rank 6: 31 to 50 pcs
    • Rank 5: 51 to 100 pcs
    • Rank 4: 101 to 300 pcs
    • Rank 3: 301 to 600 pcs
    • Rank 2: 601 to 1000 pcs
    • Rank 1: 1000 or more pcs
    (5) 50K Running test
  • A running test in which 50,000 sheets of a character & image chart having an image proportion of 6% are continuously produced is performed while supplying the toner. After the running test, the image is evaluated according to the above paragraphs (1) to (4).
  • The evaluation results of the developer (1) to (8) and (C1) to (C7) are shown in Tables 3-1 and 3-2. Table 3-1
    Example Toner Carrier Initial properties
    Toner Charge per Mass
    (-µC/g)
    Image Density Fog in Background
    (Rank)
    Granularity
    (Rank)
    Carrier Deposition
    (Rank)
    Ex. 1 I A 23 1.68 8 7 7
    Ex. 2 I B 28 1.62 8 8 8
    Ex. 3 I C 28 1.61 9 9 9
    Comp. Ex. 1 I D 28 1.60 5 7 4
    Comp. Ex. 2 I E 30 1.58 6 7 5
    Comp. Ex. 3 I F 18 1.71 6 8 6
    Comp. Ex. 4 I G 29 1.60 8 8 8
    Comp. Ex. 5 I H 29 1.61 8 8 8
    Comp. Ex. 6 I I 65 1.32 5 4 5
    Ex. 4 I J 26 1.65 9 9 8
    Ex. 5 I K 27 1.63 8 8 8
    Ex. 6 I L 28 1.62 9 8 9
    Ex. 7 I M 30 1.59 9 8 9
    Ex. 8 II B 32 1.56 8 9 8
    Table 3-2
    Example Toner Carrier Properties after 50K running test
    Toner Charge per Mass
    (-µC/g)
    Image Density Fog in Background
    (Rank)
    Granularity
    (Rank)
    Carrier Deposition
    (Rank)
    Ex. 1 I A 22 1.66 8 6 7
    Ex. 2 I B 29 1.62 8 7 8
    Ex. 3 I C 29 1.63 9 8 9
    Comp. Ex. 1 I D 19 1.69 2 2 2
    Comp. Ex. 2 I E 22 1.68 3 4 4
    Comp. Ex. 3 I F 16 1.76 4 6 7
    Comp. Ex. 4 I G 21 1.68 4 6 5
    Comp. Ex. 5 I H 20 1.71 4 6 5
    Comp. Ex. 6 I I 55 1.36 4 3 4
    Ex. 4 I J 27 1.65 9 9 9
    Ex. 5 I K 26 1.65 9 8 8
    Ex. 6 I L 26 1.63 8 9 8
    Ex. 7 I M 28 1.61 8 9 8
    Ex. 8 II B 28 1.60 8 9 8
  • Additional modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims the invention may be practiced other than as specifically described herein.
  • This document claims priority and contains subj ect matter related to Japanese Patent Applications No. 2006-248969 and 2007-215384 , filed on September 14, 2006 and August 22, 2007, respectively.

Claims (14)

  1. An electrophotographic carrier, comprising:
    a core; and
    a resin layer located overlying the core,
    wherein the carrier has a weight average particle diameter (Dw) of from 22 to 50 µm, a ratio (Dw/Dp) of the weight average particle diameter (Dw) to the number average particle diameter (Dp) of from 1 to 1.30, a shape factor SF-1 of from 100 to 120, and a shape factor SF-2 of from 100 to 120, and
    wherein the carrier comprises core particles satisfying the following relationship (1) in an amount of from 0 to 10,000 ppm by number: 0.52 < d / D < 1.0
    Figure imgb0012

    wherein D (µm) represents the diameter of a circle having the same area as that of a projected image of a core particle and d (µm) represents the diameter of a circle having the same area as that of a projected image of a maximum hollow present in the core particle,
    wherein Dw and Dp of the carrier are determined based on the particle diameter distribution measured on a number basis using instrument MICROTRAC HRA9320-XlOO and a channel width of 2 µm.
  2. The carrier according to Claim 1, wherein the carrier has a shape factor SF-1 of from 100 to 110 and a shape factor SF-2 of from 100 to 110.
  3. The carrier according to Claim 1 or 2, wherein the carrier comprises core particles satisfying the relationship (1) in an amount of from 0 to 3,000 ppm by number.
  4. The carrier according to any one of Claims 1 to 3, wherein the core comprises a Mn-Mg-Sr ferrite.
  5. The carrier according to any one of Claims 1 to 4, wherein the core comprises a Mn ferrite.
  6. The carrier according to any one of Claims 1 to 4, wherein the core comprises a magnetite.
  7. The carrier according to any one of Claims 1 to 6, wherein the core is prepared by a method comprising:
    melting a core material; and
    spheroidizing the melted core material in a gas phase.
  8. The carrier according to Claim 7, wherein the method is selected from a plasma method, a gas burner method, a burning flame gas method, a flame spraying method, a high-frequency plasma method, a hybrid plasma method, and a direct current arc plasma method.
  9. A developer, comprising a toner and a carrier according to any one of Claims 1 to 8.
  10. The developer according to Claim 9, wherein the toner has an absolute value of the toner charge per mass of from 10 to 50 µC/g when the developer includes the toner in an amount of 7% by weight.
  11. The developer according to Claim 9 or 10, wherein the toner has a weight average particle diameter of from 3.0 to 9.0 µm.
  12. A developing method, comprising:
    forming an electrostatic latent image on a photoreceptor; and
    applying a developing bias to a developing sleeve to develop the electrostatic latent image with a developer according to any one of Claims 9 to 11,
    wherein the distance between the photoreceptor and the developing sleeve is not greater than 0.4 mm, and
    wherein the developing bias is at least one of an alternate current voltage and a direct current voltage.
  13. An image forming apparatus, comprising:
    a photoreceptor (20; 120; 220) configured to bear an electrostatic latent image;
    a charger (132; 232) configured to charge the photoreceptor;
    an irradiator (133; 233) configured to irradiate the charged photoreceptor with a light beam to form the electrostatic latent image thereon;
    a developing device (140; 240) configured to develop the electrostatic latent image with a developer according to any one of Claims 9 to 11 to form a toner image on the photoreceptor;
    a transfer device (150; 250) configured to transfer the toner image on a recording medium (180); and
    a fixing device configure to fix the toner image on the recording medium,
    wherein the developing device comprises a developing sleeve (41), and the distance between the photoreceptor and the developing sleeve is not greater than 0.4 mm, and
    wherein at least one of an alternate current voltage and a direct current voltage is applied as a developing bias to the developing sleeve.
  14. A process cartridge (300), comprising:
    a photoreceptor (320) configured to bear an electrostatic latent image;
    a charging brush (332) configured to charge the photoreceptor;
    a developing device (340) configured to develop the electrostatic latent image with a developer according any one of Claims 9 to 11 to form a toner image on the photoreceptor; and
    acleaningblade (361) configured to remove toner particles remaining on the photoreceptor.
EP07115631A 2006-09-14 2007-09-04 Electrophotographic carrier, developer, developing method, image forming apparatus, and process cartridge Active EP1901128B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006248969 2006-09-14
JP2007215384A JP5333882B2 (en) 2006-09-14 2007-08-22 Electrophotographic developer

Publications (2)

Publication Number Publication Date
EP1901128A1 EP1901128A1 (en) 2008-03-19
EP1901128B1 true EP1901128B1 (en) 2009-06-03

Family

ID=38925682

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07115631A Active EP1901128B1 (en) 2006-09-14 2007-09-04 Electrophotographic carrier, developer, developing method, image forming apparatus, and process cartridge

Country Status (5)

Country Link
US (1) US8067141B2 (en)
EP (1) EP1901128B1 (en)
JP (1) JP5333882B2 (en)
DE (1) DE602007001217D1 (en)
HK (1) HK1109935A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5429594B2 (en) 2007-09-13 2014-02-26 株式会社リコー Image forming method, image forming apparatus, process cartridge, electrophotographic developer therefor, and carrier for developer
JP5152649B2 (en) * 2008-03-31 2013-02-27 パウダーテック株式会社 Carrier core material for electrophotographic developer and method for producing the same, carrier and method for producing the same, and electrophotographic developer using the carrier
JP5322263B2 (en) * 2008-03-31 2013-10-23 パウダーテック株式会社 Wiring circuit forming developer
JP5434412B2 (en) * 2008-09-17 2014-03-05 株式会社リコー Electrostatic latent image developing carrier, two-component developer, replenishing developer, process cartridge, and image forming method
JP5454081B2 (en) 2008-11-12 2014-03-26 株式会社リコー Career
US8211610B2 (en) 2009-03-18 2012-07-03 Ricoh Company Limited Carrier for use in developer developing electrostatic image, developer using the carrier, and image forming method and apparatus and process cartridge using the developer
JP5553229B2 (en) * 2009-09-14 2014-07-16 株式会社リコー Electrostatic latent image carrier and electrostatic latent image developer
JP2011209678A (en) * 2009-10-15 2011-10-20 Ricoh Co Ltd Electrostatic latent image developing carrier, method for manufacturing the carrier, developer, container containing developer, image forming method, and process cartridge
JP5534409B2 (en) * 2010-01-13 2014-07-02 株式会社リコー Electrostatic charge image developing carrier, developer, developing device, image forming apparatus, image forming method, and process cartridge
JP5598184B2 (en) * 2010-03-17 2014-10-01 株式会社リコー Carrier for electrostatic latent image developer
JP5729170B2 (en) 2010-08-02 2015-06-03 株式会社リコー Development method and image forming method
JP5522468B2 (en) * 2010-09-07 2014-06-18 株式会社リコー Electrostatic latent image development method
JP5729210B2 (en) * 2010-09-14 2015-06-03 株式会社リコー Two-component developer carrier, electrostatic latent image developer, color toner developer, replenishment developer, image forming method, process cartridge including electrostatic latent image developer, and image forming apparatus using the same
WO2012046863A1 (en) * 2010-10-08 2012-04-12 キヤノン株式会社 Charging member, process cartridge, and electrophotographic device
JP2012177873A (en) * 2011-02-28 2012-09-13 Ricoh Co Ltd Carrier for electrophotography, developer, process cartridge, and image forming method
JP5915040B2 (en) 2011-09-08 2016-05-11 株式会社リコー Electrostatic latent image developing carrier, process cartridge, and image forming apparatus
JP5915044B2 (en) * 2011-09-14 2016-05-11 株式会社リコー Carrier for electrostatic latent image development, developer
JP5895528B2 (en) * 2011-12-28 2016-03-30 パウダーテック株式会社 Ferrite carrier core material for electrophotographic developer, ferrite carrier, production method thereof, and electrophotographic developer using the ferrite carrier
JP5870448B2 (en) * 2011-12-28 2016-03-01 パウダーテック株式会社 Ferrite carrier core material for electrophotographic developer, ferrite carrier, production method thereof, and electrophotographic developer using the ferrite carrier
JP2015190995A (en) * 2014-03-27 2015-11-02 パウダーテック株式会社 Ferrite carrier core material for electrophotographic developer, ferrite carrier, and electrophotographic developer using the ferrite carrier
JP6627965B2 (en) 2016-03-17 2020-01-08 株式会社リコー Electrostatic latent image developer carrier, two-component developer, supply developer, image forming apparatus, and toner storage unit
JP6658284B2 (en) * 2016-05-10 2020-03-04 コニカミノルタ株式会社 Carrier for developing electrostatic images, two-component developer for developing electrostatic images

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4076640A (en) 1975-02-24 1978-02-28 Xerox Corporation Preparation of spheroidized particles
JPS58144839A (en) 1982-02-13 1983-08-29 Tdk Corp Magnetic carrier particles
JPH07106327B2 (en) * 1986-03-07 1995-11-15 富士電気化学株式会社 Method for classifying magnetic carrier for electronic copying machine
JPS63135973A (en) * 1986-11-27 1988-06-08 Konica Corp Developing device
JPS6421504A (en) 1987-07-17 1989-01-24 Fuji Electric Co Ltd Batch process control device
JPH02223962A (en) 1989-02-23 1990-09-06 Nippon Steel Corp Magnetite carrier particle and its production
JPH0339180A (en) 1989-07-06 1991-02-20 Nogami Boring Service:Kk Bowling pin bucket device
JPH0378828A (en) 1989-08-22 1991-04-04 Fujitsu Ltd Division device
DE69026914T2 (en) 1989-12-18 1996-10-10 Powdertech Co Ltd Carrier for electrophotographic developer, process for its production and developer based on this carrier
US5419994A (en) * 1989-12-18 1995-05-30 Powdertech Co., Ltd. Carrier for electrophotographic developer, process for preparing the same and developer prepared by using said carrier
JP3078828B2 (en) * 1989-12-18 2000-08-21 パウダーテック株式会社 Electrophotographic developer carrier, method for producing the same, and developer using the carrier
JPH04271359A (en) * 1991-02-27 1992-09-28 Ricoh Co Ltd Developer for dry processing
JP3273162B2 (en) * 1996-06-28 2002-04-08 シャープ株式会社 Electrophotographic carrier
JP4041563B2 (en) 1997-11-05 2008-01-30 大陽日酸株式会社 Method and apparatus for dry production of spherical magnetite powder
JP3927693B2 (en) * 1998-07-22 2007-06-13 キヤノン株式会社 Magnetic fine particle dispersed resin carrier, two-component developer, and image forming method
JP2000172019A (en) * 1998-09-30 2000-06-23 Canon Inc Resin coated carrier for two-component type developer, two-component type developer and development method
JP4394263B2 (en) * 2000-07-24 2010-01-06 関東電化工業株式会社 Electrophotographic carrier
JP3925911B2 (en) * 2001-05-01 2007-06-06 株式会社リコー Carrier for electrophotographic developer
US6735409B2 (en) * 2002-01-11 2004-05-11 Ricoh Company, Ltd. Process for developing, image-forming apparatus, and image-forming process cartridge
JP3891480B2 (en) * 2002-03-22 2007-03-14 株式会社リコー Electrostatic latent image developing carrier, electrostatic latent image developer using the same, and electrostatic latent image developing method
US7118728B2 (en) 2002-05-08 2006-10-10 Steward Advanced Materials, Inc. Method and apparatus for making ferrite material products and products produced thereby
US7192679B2 (en) * 2003-03-19 2007-03-20 Ricoh Company, Ltd. Carrier for electrophotographic developer
US7763410B2 (en) * 2003-11-18 2010-07-27 Ricoh Company, Ltd. Electrophotographic developing carrier, associated apparatus and methodology of classification and application
JP4620953B2 (en) * 2004-01-30 2011-01-26 キヤノン株式会社 Electrophotographic carrier
JP2006039445A (en) * 2004-07-30 2006-02-09 Ricoh Co Ltd Carrier for electrophotographic developer, and development method
JP4608393B2 (en) * 2004-09-10 2011-01-12 株式会社リコー Electrophotographic developer, electrophotographic developing method, and process cartridge
JP2006248969A (en) 2005-03-10 2006-09-21 Sumitomo Chemical Co Ltd Method for producing propylene oxide
JP2006293266A (en) * 2005-03-16 2006-10-26 Ricoh Co Ltd Carrier for electrostatic latent image development, electrostatic latent image developer using the same, image forming method, and process cartridge
JP4728903B2 (en) * 2005-08-25 2011-07-20 株式会社リコー Carrier and developer, and image forming method, image forming apparatus, and process cartridge
JP4939814B2 (en) 2006-02-13 2012-05-30 株式会社東芝 Railway vehicle system

Also Published As

Publication number Publication date
DE602007001217D1 (en) 2009-07-16
JP2008096975A (en) 2008-04-24
EP1901128A1 (en) 2008-03-19
JP5333882B2 (en) 2013-11-06
HK1109935A1 (en) 2008-06-27
US8067141B2 (en) 2011-11-29
US20080063969A1 (en) 2008-03-13

Similar Documents

Publication Publication Date Title
EP1901128B1 (en) Electrophotographic carrier, developer, developing method, image forming apparatus, and process cartridge
JP3925911B2 (en) Carrier for electrophotographic developer
US8039189B2 (en) Electrophotographic developer and carrier therefor, core material particle for carrier for electrophotographic developer and production method thereof and image forming method
US8728698B2 (en) Carrier, developer, image forming method and process cartridge
JP2006293266A (en) Carrier for electrostatic latent image development, electrostatic latent image developer using the same, image forming method, and process cartridge
JP4700523B2 (en) Electrophotographic developer carrier, developer, image forming method and process cartridge
JP2006259179A (en) Carrier for electrostatic latent image developer, method for manufacturing the same, developer containing the same, image forming method using the developer, and process cartridge
JP4621639B2 (en) Electrophotographic developer carrier, developer, image forming method and process cartridge
JP2009064003A (en) Image forming apparatus
JP3883379B2 (en) Electrophotographic developer
JP2004077568A (en) Electrophotographic developer, carrier for electrophotographic developer and manufacture method for carrier
JP2006039445A (en) Carrier for electrophotographic developer, and development method
JP4410711B2 (en) Electrophotographic developer carrier and developer
JP2007011045A (en) Carrier, developer, image forming method, and process cartridge
JP5354245B2 (en) Electrostatic latent image development method
JP2006251354A (en) Carrier for electrophotographic developer, electrophotographic developer, method for manufacturing carrier for electrophotographic developer, electrophotographic developing method, image forming apparatus, and process cartridge
JP4700535B2 (en) Electrophotographic carrier, electrophotographic developer, electrophotographic carrier, and manufacturing method of carrier core material
JP2007171499A (en) Electrophotograph developer carrier and its manufacturing method, electrophotograph developer, electrophotograph developing method and processing cartridge
JP2008287044A (en) Carrier for electrophotographic developer, developer, image forming method and process cartridge
JP4700582B2 (en) Electrophotographic developer carrier and developer
JP2005195728A (en) Method for manufacturing electrostatic latent image developing carrier, electrostatic latent image developing carrier, electrostatic latent image developer, and process cartridge
JP2007163850A (en) Method for manufacturing electrostatic latent image developing carrier, manufacture apparatus, and the carrier
JP2008185662A (en) Carrier, developer, method for forming image and process cartridge
JP2006064713A (en) Carrier for electrostatic latent image development, method for manufacturing the same and developer
JP5106148B2 (en) Electrophotographic developer carrier, developer, and image forming method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080417

17Q First examination report despatched

Effective date: 20080528

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1109935

Country of ref document: HK

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602007001217

Country of ref document: DE

Date of ref document: 20090716

Kind code of ref document: P

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1109935

Country of ref document: HK

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100304

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007001217

Country of ref document: DE

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007001217

Country of ref document: DE

Representative=s name: MEISSNER, BOLTE & PARTNER GBR, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007001217

Country of ref document: DE

Representative=s name: MEISSNER, BOLTE & PARTNER GBR, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220920

Year of fee payment: 16

Ref country code: DE

Payment date: 20220920

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220922

Year of fee payment: 16

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007001217

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230904