JPH02223962A - Magnetite carrier particle and its production - Google Patents

Magnetite carrier particle and its production

Info

Publication number
JPH02223962A
JPH02223962A JP1044903A JP4490389A JPH02223962A JP H02223962 A JPH02223962 A JP H02223962A JP 1044903 A JP1044903 A JP 1044903A JP 4490389 A JP4490389 A JP 4490389A JP H02223962 A JPH02223962 A JP H02223962A
Authority
JP
Japan
Prior art keywords
flame
magnetite
saturation magnetization
particle size
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1044903A
Other languages
Japanese (ja)
Inventor
Kenji Kawahito
健二 川人
Kazumi Kurayoshi
和美 倉吉
Hideki Takeuchi
秀樹 竹内
Masataka Matsuo
正孝 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1044903A priority Critical patent/JPH02223962A/en
Publication of JPH02223962A publication Critical patent/JPH02223962A/en
Pending legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Compounds Of Iron (AREA)

Abstract

PURPOSE:To improve resolution, solid-black uniformity, etc., by forming the above carriers of spherical particles having >=95% spheroidization rate and <=65mum average particle size and allowing the control of saturation magnetization between 40 and 90emu/g. CONSTITUTION:Both iron oxide powder 3 and gaseous nitrogen for transportation are charged into a combustion flame gas and the iron powder is melted to a spheroidal shape in the flame 2. The concn. of the oxygen in the gas is controlled and the molten iron is dropped into water 12 in a cooling container 13, by which the molten iron is rapidly cooled. The surface thereof is coated with a resin at need. Since such production process is adopted, spherical particles having <=500e coercive force, >=40emu/g saturation magnetization, >=10<4>OMEGA.cm electric resistivity, <=3g/cm<3> bulk density, >=95% spheroidization rate, high surface smoothness and <=65mum average particle size are obtd. The control of the saturation magnetization is possible between 40 and 90emu/g. The resolution, solid-black uniformity, etc., are improved in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子写真法、静電記録法あるいは静電印刷法
等に使用される静電荷像現像剤用キャリアに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a carrier for an electrostatic image developer used in electrophotography, electrostatic recording, electrostatic printing, or the like.

〔従来の技術〕[Conventional technology]

電子複写の現像方法としては、湿式現像法と乾式現像法
に大別できるが、前者は有機溶媒をキャリアとし、て使
用するため、操作性・臭気公害等の問題が指摘され、現
在では米国特許Nα2786439号公明細書(195
a)に記載の乾式現像法である磁気ブラシ現像法が主流
となっている。この磁気ブラシ現像法では、可視像化す
るための現像剤として、磁性キャリアとトナーの混合粉
体である二成分系現像剤が使用され、キャリアとしては
現在、球形または不定形の鉄粉キャリア(例えば特公昭
47−19398号公報)、フェライトキャリア(例え
ば特公昭53−15040号公報)、複合キャリア(例
えば特開昭56−167150号公報)、マグネタイト
キャリア(例えば特公昭61−151551号公報)が
用いられ、さらにその表層を有機重合体で被覆すること
が行われている。
Development methods for electronic copying can be roughly divided into wet development methods and dry development methods, but since the former uses an organic solvent as a carrier, problems such as operability and odor pollution have been pointed out, and it is currently covered by a U.S. patent. Nα2786439 Publication (195
The magnetic brush development method, which is the dry development method described in a), is the mainstream. In this magnetic brush development method, a two-component developer, which is a mixed powder of magnetic carrier and toner, is used as a developer for visualizing images, and the carrier is currently a spherical or irregularly shaped iron powder carrier. (for example, Japanese Patent Publication No. 47-19398), ferrite carriers (for example, Japanese Patent Publication No. 53-15040), composite carriers (for example, Japanese Patent Publication No. 167150/1982), magnetite carriers (for example, Japanese Patent Publication No. 151551/1982) is used, and its surface layer is further coated with an organic polymer.

しかし、鉄粉キャリアは嵩密度が大きく、また窒化鉄等
で表層を安定化しているため、長期間の使用に伴い、キ
ャリア表面の安定層が破壊したり、キャリア表面にトナ
ー被膜(俗に言うスペントトナー)が形成し、キャリア
粒子の抵抗が大幅に変化して摩擦帯電量が不安定となり
、その結果画像の濃度が低下したり、カブリが増大する
という欠点があった。
However, iron powder carriers have a large bulk density and the surface layer is stabilized with iron nitride, etc., so with long-term use, the stable layer on the carrier surface may be destroyed or a toner film (commonly called (spent toner) is formed, the resistance of the carrier particles changes significantly, and the amount of triboelectric charging becomes unstable, resulting in a disadvantage that the density of the image decreases and fog increases.

そこで、鉄粉キャリアの代わりに内部まで組成が均一で
、表面も実用環境下で化学変化を受けず安定である、別
名r鉄フェライト1と呼ばれるマグネタイトキャリアが
開発された。マグネタイトキャリアは、飽和磁化がフェ
ライトキャリアより大きく鉄粉キャリアより小さいため
、鉄粉とフェライトの中間をいくキャリアとして注目さ
れている。
Therefore, instead of the iron powder carrier, a magnetite carrier, also known as r-iron ferrite 1, was developed, which has a uniform composition even inside and whose surface is stable without undergoing chemical changes in a practical environment. Magnetite carriers have a saturation magnetization larger than that of ferrite carriers and smaller than that of iron powder carriers, so they are attracting attention as carriers that fall between iron powder and ferrite.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来のマグネタイトキャリアは、第一に
酸化鉄粉を原料とした混練・造粒・焼成・解砕等に代表
されるフェライト製造法によって製造されるため、原料
を混練するための混練機、所要の球形に造粒するための
造粒機、フェライト反応を進めるための焼成炉、焼成中
に粒子が焼結するために生成したクラスターを解砕する
解砕機が必要であり、しかもこれらの工程がバッチ処理
のため大量生産には不向きであり、結果的に鉄粉キャリ
アに比較して製造コストが割高となる欠点があった。第
二に従来の造粒・焼成法では、上述した如く焼成中に粒
子が焼結しクラスターを生成するが、この現象は50n
以下の小粒径はど顕著であり、さらに後工程の解砕工程
では、50−以下の粒径範囲では破砕された破片と健全
なキャリアを分離することが事実上不可能なため、従来
法では50μ以下のキャリア製造は困難であった。第三
に解砕工程ではキャリアの基本仕様である球形粒子を破
砕してしまうので、歩留り低下と球状化率が悪化すると
いう難点があった。また、第四に原料が酸化鉄Cpet
os) 100%であるためフェライトキャリアのよう
に飽和磁化を任意に変化させることかできないという欠
点があった。
However, since conventional magnetite carriers are first manufactured by a ferrite manufacturing method represented by kneading, granulation, firing, and crushing using iron oxide powder as a raw material, a kneader for kneading the raw materials, A granulator is required to granulate the particles into the desired spherical shape, a calcination furnace is required to advance the ferrite reaction, and a pulverizer is required to crush the clusters that are generated as the particles sinter during calcination. However, since it is a batch process, it is not suitable for mass production, and as a result, the production cost is higher than that of iron powder carriers. Second, in the conventional granulation and firing method, particles sinter and form clusters during firing as described above, but this phenomenon
In addition, in the subsequent crushing process, it is virtually impossible to separate crushed fragments from healthy carriers in the particle size range of 50- or less, so conventional methods Therefore, it was difficult to manufacture carriers with a thickness of 50 μm or less. Thirdly, in the crushing process, the spherical particles, which are the basic specifications of the carrier, are crushed, which has the disadvantage of lowering the yield and worsening the spheroidization rate. In addition, the fourth raw material is iron oxide Cpet.
os) 100%, so there was a drawback that the saturation magnetization could only be changed arbitrarily like a ferrite carrier.

従って、本発明の目的は、上述した問題点に対し、鉄鋼
製造工程の鋼材から発生するFeO−Fe、O。
Therefore, an object of the present invention is to solve the above-mentioned problems by reducing FeO-Fe, O generated from steel materials during the steel manufacturing process.

を主組成とする酸化鉄を原料とした溶射火炎法を導入す
ることにより、従来の混練・造粒・焼成・解砕工程を必
要としない全く新しい連続製造方法を提供し、本製造方
法によって65n以下の粒径で、表面平滑度が高く高球
状化率で、磁気制御が可能なマグネタイトキャリア粒子
を提供することにある。
By introducing a thermal spray flame method using iron oxide as a raw material, we have provided a completely new continuous manufacturing method that does not require the conventional kneading, granulation, calcination, and crushing steps. The object of the present invention is to provide magnetite carrier particles having the following particle diameters, high surface smoothness, high sphericity, and magnetic control.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の前記課題は、第一に従来の酸化鉄粉原料に対し
て、鉄鋼製造工程、例えば加熱炉等で大量に発生するP
eOFe5Oaを主組成とする安価なミルスケールを原
料とすることで原料コストの低減を可能ならしめ、この
ミルスケール粉体の不純物を例えば酸洗処理等で除去し
た後乾燥し、所定粒度に粉砕後、輸送ガスと共に燃焼火
炎ガス中に投入・溶融し表面張力で球状粒子にするとい
う溶射火炎法を導入することにより、従来必要であった
混練・造粒・焼成・解砕工程を全く必要としない極めて
シンプルな工程で球形粒子を連続かつ大量・安価に生産
することを可能ならしめ、また第二に溶射火炎法を用い
ることにより小粒径範囲においても焼結クラスターが皆
無となることから、事前に原料を所定の粒径に粉砕する
ことによって65μm以下のキャリアを容易に製造なら
しめ、第三に解砕工程が不要であることから、表面平滑
度が高く高球状化率のキャリア粒子の製造を可能ならし
め、第四に溶射火炎処理中の火炎温度及び火炎中の酸素
濃度を制御することにより、飽和磁化の制御を可能なら
しめることによって解決することができる。
The above-mentioned problems of the present invention are as follows: Firstly, compared to conventional iron oxide powder raw materials, a large amount of P is generated in the steel manufacturing process, for example, in a heating furnace.
It is possible to reduce the raw material cost by using inexpensive mill scale, which has eOFe5Oa as the main composition, and remove impurities from this mill scale powder by, for example, pickling treatment, dry it, and grind it to a predetermined particle size. By introducing a thermal spray flame method in which particles are put into a combustion flame gas together with a transport gas and melted into spherical particles using surface tension, the kneading, granulation, calcination, and crushing processes that were previously required are completely unnecessary. This makes it possible to produce spherical particles continuously, in large quantities, and at low cost using an extremely simple process.Secondly, by using the thermal spray flame method, there are no sintered clusters even in the small particle size range, so it is possible to produce spherical particles in advance. Firstly, carrier particles of 65 μm or less can be easily manufactured by crushing the raw materials to a predetermined particle size. Thirdly, since a crushing process is not required, carrier particles with high surface smoothness and high sphericity can be manufactured. Fourthly, by controlling the flame temperature and oxygen concentration in the flame during thermal spray flame treatment, the problem can be solved by making it possible to control the saturation magnetization.

本発明のマグネタイトキャリアは、一般に以下の方法で
得ることができる。
The magnetite carrier of the present invention can generally be obtained by the following method.

第1図(a)は本発明に係わるマグネタイトキャリア粒
子の製造方法の実施装置を示す概略図、同図(b)は同
実施装置における溶射バーナーの正面図である。
FIG. 1(a) is a schematic diagram showing an apparatus for implementing the method for manufacturing magnetite carrier particles according to the present invention, and FIG. 1(b) is a front view of a thermal spray burner in the same implementing apparatus.

第1図(b)に示す如く、溶射バーナー1の正面には、
二つの同心円周上に配列された火炎孔10の列の間に、
同じく同心円周上に配列された粉体孔11の列がサンド
ウィッチ状に配列されている。
As shown in FIG. 1(b), on the front of the thermal spray burner 1,
Between the rows of flame holes 10 arranged on two concentric circles,
Similarly, rows of powder holes 11 arranged on concentric circles are arranged in a sandwich shape.

火炎孔10からは、酸素−プロパンによる火炎2が、粉
体孔11からは酸化鉄粉3が気体と共に噴出する。酸化
鉄粉は、ホッパー5に貯蔵されており、例えば窒素ガス
と共に粉体輸送管4を通じて溶射バーナー1に供給され
る。一方、支燃ガス及び燃料ガスとしては、酸素及びプ
ロパン(またはアセチレン)が、制御装置8を経由して
、酸素供給管6、プロパン供給管7を通じて溶射バーナ
ー1に供給される。酸素供給管6、プロパン供給管7は
溶射バーナー1の内部で合流しているので、酸素−プロ
パンの混合気体が生成し、この混合気体が火炎孔10よ
り噴出し、火炎2を形成する。
A flame 2 of oxygen-propane is ejected from the flame hole 10, and iron oxide powder 3 is ejected together with gas from the powder hole 11. The iron oxide powder is stored in a hopper 5, and is supplied to the thermal spray burner 1 through the powder transport pipe 4 together with, for example, nitrogen gas. On the other hand, as combustion supporting gas and fuel gas, oxygen and propane (or acetylene) are supplied to the thermal spray burner 1 through the oxygen supply pipe 6 and the propane supply pipe 7 via the control device 8 . Since the oxygen supply pipe 6 and the propane supply pipe 7 meet inside the thermal spray burner 1, a mixed gas of oxygen and propane is generated, and this mixed gas is ejected from the flame hole 10 to form the flame 2.

形成した火炎2の熱により、窒素ガスと共に噴出した酸
化鉄粉3が溶融し、火炎2中に残存している酸素と反応
し、Fe、04に変化すると同時に表面張力によって球
状化する0球状化した磁性粉は冷却容器13内の水12
中に落下して急冷凝固され、この凝固した磁性粉を回収
後、酸洗し規格外キャリアを除去することによって、大
量のマグネタイトキャリアを製造することができる。更
に本製造方法では、ミルスケールの選択及び酸素/プロ
パン比を調節することによりFe、 PeO+FezO
a+FezO+等の生成割合を自由に制御することが可
能となる。
Due to the heat of the formed flame 2, the iron oxide powder 3 ejected together with nitrogen gas melts, reacts with the oxygen remaining in the flame 2, changes to Fe, 04, and at the same time becomes spherical due to surface tension. The magnetic powder is poured into the water 12 in the cooling container 13.
A large quantity of magnetite carriers can be produced by collecting the solidified magnetic powder, which is then pickled to remove non-standard carriers. Furthermore, in this production method, by selecting the mill scale and adjusting the oxygen/propane ratio, Fe, PeO + FezO
It becomes possible to freely control the generation rate of a+FezO+, etc.

〔実施例〕〔Example〕

本発明を以下の実施例でさらに詳細に説明する。 The invention will be explained in further detail in the following examples.

実施例−1 鋳片加熱炉で発生したミルスケールを酸洗・乾燥後・乾
式粉砕機で100Al11以下の粒度に粉砕したものを
原料とし、燃料ガスにプロパン(15Nnf/hr) 
、支燃ガスに酸素(75Nrrr/hr) 。
Example-1 Mill scale generated in a slab heating furnace was pickled, dried, and ground to a particle size of 100Al11 or less using a dry grinder as a raw material, and propane (15Nnf/hr) was used as fuel gas.
, oxygen (75Nrrr/hr) as combustion supporting gas.

粉体輸送ガスに窒素(22N rd /hr)を使用し
、ミルスケール(304cg/hr)を第1図(a)に
示す装置で溶射火炎処理し、酸洗1分級1晶質検査を実
施し、所定のマグネタイトキャリアを製造した。
Using nitrogen (22 N rd / hr) as the powder transport gas, mill scale (304 cg / hr) was subjected to thermal spray flame treatment with the equipment shown in Figure 1 (a), and pickling and 1 classification and 1 crystal quality inspection were carried out. , produced a given magnetite carrier.

製造したマグネタイトキャリアの特性値を第1表に示す
。第2図にマグネタイトキャリアの表面電子顕微鏡写真
を、第3図に同断面写真を示す。第2図から表面が極め
て平滑であり球状化率95%以上の球形粒子であること
が判る。また第3図から内部まで緻密で均一な組織が形
成されていることが理解できる。また、市販の現像機に
キャリア400ccを充填し、マグネットロールを12
0rp■でコピ−2万枚相当時間回転させた結果、キャ
リアの破壊は全く認められなかった。
Table 1 shows the characteristic values of the produced magnetite carrier. FIG. 2 shows a surface electron micrograph of the magnetite carrier, and FIG. 3 shows a cross-sectional photograph of the same. From FIG. 2, it can be seen that the surface is extremely smooth and the particles are spherical with a sphericity of 95% or more. Furthermore, it can be seen from FIG. 3 that a dense and uniform structure is formed throughout the interior. In addition, a commercially available developing machine was filled with 400cc of carrier, and a magnetic roll of 12
As a result of rotating the carrier at 0 rpm for a time equivalent to 20,000 copies, no damage to the carrier was observed.

実施例−2 実施例−1と同様に作成した試料にシリコーンオイルを
転勤・流動コーティング装置を用いて1重量%表面被覆
した。本現像剤をセレン感光体を使用している複写機で
電子写真学会テストチャートを用いて画像評価を実施し
たところ、キャリア飛散もなく、解像度・べた黒・81
11性の良好な画像が得られた。
Example 2 A sample prepared in the same manner as in Example 1 was coated with 1% by weight of silicone oil using a transfer/fluid coating device. When this developer was used in a copying machine that uses a selenium photoreceptor, image evaluation was carried out using the electrophotographic society test chart, and there was no carrier scattering, and the resolution was 81.
A good image with 11 characteristics was obtained.

実施例−3 実施例−1の条件をベースに、酸素/プロパン比を4〜
5の範囲で調節し、マグネタイトキャリアを製造した。
Example-3 Based on the conditions of Example-1, the oxygen/propane ratio was changed from 4 to
A magnetite carrier was manufactured by adjusting the temperature within a range of 5.

結果を第2表に示す、この表から酸素/プロパン比の制
御によりマグネタイトキャリアの飽和磁化が制御可能で
あることが理解できる。
The results are shown in Table 2. From this table, it can be understood that the saturation magnetization of the magnetite carrier can be controlled by controlling the oxygen/propane ratio.

第   2   表 〔発明の効果〕 以上説明したように、本発明によるマグネタイトキャリ
ア粒子は、鉄鋼製造工程の鋼材から発生する酸化鉄を原
料とし、不純物を酸洗し、乾燥し、100n以下の粒度
に粉砕後、輸送用ガスと共に燃焼火炎ガス中に投入し、
火炎中で溶融球状化すると共にガス中の酸素濃度を制御
することによりFe3O4生成比率を制御し、急冷し、
必要に応じて表面を樹脂で′被膜するという特徴を有し
た製法をとるため、保磁力500e以下、飽和磁化40
emu/ g以上、電気抵抗率104Ω・1以上、嵩密
度3g/cd以下である物性を有したマグネタイト組成
からなる上に、尚且つ球状化率95%以上で、表面平滑
度が高く、平均粒径が65μm以下の球形粒子で、飽和
磁化が40emu/g〜90emu/gの間制御可能で
あるという特徴を有し、次のような効果が得ら本る。
Table 2 [Effects of the Invention] As explained above, the magnetite carrier particles according to the present invention are made from iron oxide generated from steel materials in the steel manufacturing process, pickled to remove impurities, dried, and reduced to a particle size of 100 nm or less. After crushing, it is put into combustion flame gas together with transportation gas,
The Fe3O4 production ratio is controlled by melting and spheroidizing in the flame and controlling the oxygen concentration in the gas, followed by rapid cooling.
Because the manufacturing method is characterized by coating the surface with resin as necessary, the coercive force is less than 500e and the saturation magnetization is 40.
It is composed of magnetite with physical properties of emu/g or more, electrical resistivity of 104 Ω・1 or more, and bulk density of 3 g/cd or less, and has a spheroidization rate of 95% or more, high surface smoothness, and an average grain size. It is a spherical particle with a diameter of 65 μm or less, and has the characteristics that the saturation magnetization can be controlled between 40 emu/g and 90 emu/g, and the following effects can be obtained.

(1)安価なミルスケールが使用でき、また混線・造粒
・焼成・解砕工程を全く必要としないシンプルな工程で
連続かつ大量に生産できるため、製造コストが安価とな
る。
(1) Manufacturing costs are low because inexpensive mill scales can be used and continuous, large-scale production can be achieved through a simple process that does not require any cross-wire, granulation, firing, or crushing steps.

(2)65n以下の微細粒子であるため、解像度・緻密
性・べた黒均−性が向上した現像剤となる。
(2) Since the particles are fine particles of 65 nm or less, the developer has improved resolution, density, and solid black uniformity.

(3ン  溶射火炎法を用いることにより、従来品より
表面平滑度が高く高球状化率のキャリア粒子が得られる
ため、現像剤トルクが低減し、スペントトナーの発生量
が減少し、長期間の現像性及び画像濃度の安定性に優れ
た現像剤となる。
(3) By using the thermal spray flame method, carrier particles with higher surface smoothness and higher sphericity than conventional products can be obtained, which reduces developer torque, reduces the amount of spent toner, and reduces the amount of spent toner. It becomes a developer with excellent developability and stability of image density.

(4)飽和磁化の制御が可能なため、複写機現像エンジ
ンの設計自由度が大きくなる。
(4) Since the saturation magnetization can be controlled, the degree of freedom in designing the copying machine developing engine is increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の実施装置の概略図、第1図(b
)は本発明の実施装置における溶射バーナーの正面図、
第2図は本発明によって得られたマグネタイトキャリア
粒子構造の表面電子顕微鏡写真図、第3図は同断面写真
図である。 l・・・溶射バーナー、2・・・火炎、3・・・酸化鉄
粉、4・・・粉体輸送管、5・・・ホッパー、6・・・
酸素供給管、7・・・プロパン供給管、8・・・制御装
置、9・・・窒素ガス供給管、10・・・火炎孔、11
・・・粉体孔、12・・・水、13・・・冷却容器。
FIG. 1(a) is a schematic diagram of an implementation apparatus of the present invention, FIG. 1(b)
) is a front view of a thermal spray burner in an apparatus for implementing the present invention,
FIG. 2 is a surface electron micrograph of the magnetite carrier particle structure obtained by the present invention, and FIG. 3 is a cross-sectional photograph of the same. l... Thermal spray burner, 2... Flame, 3... Iron oxide powder, 4... Powder transport pipe, 5... Hopper, 6...
Oxygen supply pipe, 7... Propane supply pipe, 8... Control device, 9... Nitrogen gas supply pipe, 10... Flame hole, 11
...Powder hole, 12...Water, 13...Cooling container.

Claims (2)

【特許請求の範囲】[Claims] (1)保磁力500e以下、飽和磁化40emu/g以
上、電気抵抗率10^4Ω・cm以上、嵩密度3g/c
m^3以下のマグネタイト粒子において、球状化率が9
5%以上で、表面平滑度が高く、平均粒径が65μm以
下の球形粒子で、飽和磁化が40emu/g〜90em
u/gの間制御可能であることを特徴とするマグネタイ
トキャリア粒子。
(1) Coercive force 500e or less, saturation magnetization 40emu/g or more, electrical resistivity 10^4Ω・cm or more, bulk density 3g/c
For magnetite particles of m^3 or less, the spheroidization rate is 9
5% or more, spherical particles with high surface smoothness, average particle size of 65 μm or less, and saturation magnetization of 40 emu/g to 90 em
Magnetite carrier particles characterized in that they are controllable between u/g.
(2)鉄鋼製造工程の鋼材から発生するFeO−Fe_
3O_4を主組成とする酸化鉄原料を、輸送ガスと共に
燃焼火炎ガス中に投入し、火炎中で球状化すると共に、
急冷して製造するマグネタイトの製造方法において、原
料を事前に粉砕することで製品粒径を制御すること、火
炎温度及び火炎中の酸素濃度を制御することで生成する
Fe_3O_4比率を制御すること、酸洗または磁選に
よって不純物を除去すること、及び必要に応じて表面を
樹脂で被覆することを特徴とするマグネタイトキャリア
粒子の製造方法。
(2) FeO-Fe_ generated from steel materials during the steel manufacturing process
An iron oxide raw material whose main composition is 3O_4 is put into combustion flame gas together with a transport gas, and while it is spheroidized in the flame,
In the manufacturing method of magnetite produced by rapid cooling, the product particle size is controlled by crushing the raw material in advance, the Fe_3O_4 ratio produced by controlling the flame temperature and the oxygen concentration in the flame, and the acid A method for producing magnetite carrier particles, which comprises removing impurities by washing or magnetic separation, and coating the surface with a resin if necessary.
JP1044903A 1989-02-23 1989-02-23 Magnetite carrier particle and its production Pending JPH02223962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1044903A JPH02223962A (en) 1989-02-23 1989-02-23 Magnetite carrier particle and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1044903A JPH02223962A (en) 1989-02-23 1989-02-23 Magnetite carrier particle and its production

Publications (1)

Publication Number Publication Date
JPH02223962A true JPH02223962A (en) 1990-09-06

Family

ID=12704431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1044903A Pending JPH02223962A (en) 1989-02-23 1989-02-23 Magnetite carrier particle and its production

Country Status (1)

Country Link
JP (1) JPH02223962A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0580135A1 (en) * 1992-07-22 1994-01-26 Canon Kabushiki Kaisha Carrier for use in electrophotography, two component-type developer and image forming method
EP0584555A1 (en) * 1992-07-28 1994-03-02 Canon Kabushiki Kaisha Carrier for use in electrophotography, two component-type developer and image forming method
EP1349014A2 (en) * 2002-03-26 2003-10-01 Powdertech Co. Ltd. Carrier for electrophotographic developer and process of producing the same
WO2007063933A1 (en) * 2005-11-30 2007-06-07 Powdertech Co., Ltd. Resin coat ferrite carrier for electrophotography developer and its production method, and electrophotography developer employing that resin coat ferrite carrier
EP1901128A1 (en) * 2006-09-14 2008-03-19 Ricoh Company, Ltd. Electrophotographic carrier, developer, developing method, image forming apparatus, and process cartridge
JP2008216339A (en) * 2007-02-28 2008-09-18 Powdertech Co Ltd Core material of electrophotographic ferrite carrier and method of manufacturing resin coated ferrite carrier
JP2008249855A (en) * 2007-03-29 2008-10-16 Powdertech Co Ltd Resin-coated ferrite carrier for electrophotographic developer and electrophotographic developer using the resin-coated ferrite carrier
JP2009046384A (en) * 2007-07-23 2009-03-05 Hosokawa Funtai Gijutsu Kenkyusho:Kk Metal oxide production device
JP2009180941A (en) * 2008-01-31 2009-08-13 Powdertech Co Ltd Carrier core material for electrophotographic developer, carrier, and electrophotographic developer using the same (carrier)
EP2133750A1 (en) * 2007-03-30 2009-12-16 DOWA Electronics Materials Co., Ltd. Carrier core material for elctrophotographic developing agent, process for producing the core material, carrier for elctrophotographic developing agent, and electrophotographic developing agent.
JP2010083739A (en) * 2008-10-02 2010-04-15 Dowa Electronics Materials Co Ltd Magnetic particle, carrier core material and manufacturing method of the same, and carrier and developer
JP2012207817A (en) * 2011-03-29 2012-10-25 Taiyo Nippon Sanso Corp Combustion burner
WO2020104866A1 (en) * 2018-11-23 2020-05-28 Tata Steel Limited A method of producing spherical iron powder and products thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0580135A1 (en) * 1992-07-22 1994-01-26 Canon Kabushiki Kaisha Carrier for use in electrophotography, two component-type developer and image forming method
EP0584555A1 (en) * 1992-07-28 1994-03-02 Canon Kabushiki Kaisha Carrier for use in electrophotography, two component-type developer and image forming method
EP1349014A2 (en) * 2002-03-26 2003-10-01 Powdertech Co. Ltd. Carrier for electrophotographic developer and process of producing the same
EP1349014A3 (en) * 2002-03-26 2005-01-12 Powdertech Co. Ltd. Carrier for electrophotographic developer and process of producing the same
US7824833B2 (en) 2005-11-30 2010-11-02 Powdertech Co., Ltd. Resin-coated ferrite carrier for electrophotographic developer, its production method, and electrophotographic developer using the resin-coated ferrite carrier
WO2007063933A1 (en) * 2005-11-30 2007-06-07 Powdertech Co., Ltd. Resin coat ferrite carrier for electrophotography developer and its production method, and electrophotography developer employing that resin coat ferrite carrier
EP1901128A1 (en) * 2006-09-14 2008-03-19 Ricoh Company, Ltd. Electrophotographic carrier, developer, developing method, image forming apparatus, and process cartridge
US8067141B2 (en) 2006-09-14 2011-11-29 Ricoh Company, Ltd. Electrographic carrier, developer, developing method, image forming apparatus, and process cartridge
JP2008216339A (en) * 2007-02-28 2008-09-18 Powdertech Co Ltd Core material of electrophotographic ferrite carrier and method of manufacturing resin coated ferrite carrier
JP2008249855A (en) * 2007-03-29 2008-10-16 Powdertech Co Ltd Resin-coated ferrite carrier for electrophotographic developer and electrophotographic developer using the resin-coated ferrite carrier
US8247148B2 (en) * 2007-03-29 2012-08-21 Powdertech Co., Ltd. Resin-coated ferrite carrier for electrophotographic developer and electrophotographic developer using the resin-coated ferrite carrier
EP2133750A4 (en) * 2007-03-30 2011-04-20 Dowa Electronics Materials Co Carrier core material for elctrophotographic developing agent, process for producing the core material, carrier for elctrophotographic developing agent, and electrophotographic developing agent.
EP2133750A1 (en) * 2007-03-30 2009-12-16 DOWA Electronics Materials Co., Ltd. Carrier core material for elctrophotographic developing agent, process for producing the core material, carrier for elctrophotographic developing agent, and electrophotographic developing agent.
JP2009046384A (en) * 2007-07-23 2009-03-05 Hosokawa Funtai Gijutsu Kenkyusho:Kk Metal oxide production device
JP2009180941A (en) * 2008-01-31 2009-08-13 Powdertech Co Ltd Carrier core material for electrophotographic developer, carrier, and electrophotographic developer using the same (carrier)
JP2010083739A (en) * 2008-10-02 2010-04-15 Dowa Electronics Materials Co Ltd Magnetic particle, carrier core material and manufacturing method of the same, and carrier and developer
JP2012207817A (en) * 2011-03-29 2012-10-25 Taiyo Nippon Sanso Corp Combustion burner
WO2020104866A1 (en) * 2018-11-23 2020-05-28 Tata Steel Limited A method of producing spherical iron powder and products thereof

Similar Documents

Publication Publication Date Title
JPH02223962A (en) Magnetite carrier particle and its production
US3847604A (en) Electrostatic imaging process using nodular carriers
CN101641651B (en) Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer
EP2267550A1 (en) Carrier core for electrophotographic developer and method for producing the same, carrier and method for producing the same, and electrophotographic developer
JPS609265B2 (en) Method for producing moisture-insensitive ferrite electrophotographic carrier material
JPH0280A (en) Magnetic toner, negative chargeable one-component developer and image forming method
US5087546A (en) Device for continuously mixing powder and process for producing toner for developing electrostatic image
US5223365A (en) Magnetic toner
JP2003207950A (en) Electronic photograph developing carrier
US3767578A (en) Carrier material for electrostatographic developer
JP2008216339A (en) Core material of electrophotographic ferrite carrier and method of manufacturing resin coated ferrite carrier
JP5921801B2 (en) Carrier core material for electrophotographic developer and method for producing the same
JP2006053458A (en) Toner external additive and method for manufacturing the same
JPH0816795B2 (en) Toner manufacturing method and apparatus
CN104714378B (en) Carrier for electrostatic image developer core material and preparation method thereof and carrier
JP2010243783A (en) Magnetic particle, carrier core material, manufacturing method thereof, carrier, and electrophotographic developer
JPH0213969A (en) Electrostatic image developing carrier
JPH0355562A (en) Carrier for developing electrostatic image and production thereof
US5178460A (en) Device for continuously mixing powder and process for producing toner for developing electrostatic image
JP5300075B2 (en) Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer
JP6228330B1 (en) Resin-coated carrier and method for producing the same
JP2636234B2 (en) Powder toner for developing an electrostatic image and method for producing the same
CN104570636B (en) Carrier for electrostatic image developer core material and preparation method thereof and carrier
JP2011123435A (en) Ferrite particle, and carrier for electrophotographic development and electrophotographic developer using the same, and method for producing ferrite particle
JPH02240664A (en) Manufacture of toner