EP1899502B1 - Method for the cathodic protection of the reinforcements of ferroconcrete edifices against corrosion - Google Patents

Method for the cathodic protection of the reinforcements of ferroconcrete edifices against corrosion Download PDF

Info

Publication number
EP1899502B1
EP1899502B1 EP06754658.0A EP06754658A EP1899502B1 EP 1899502 B1 EP1899502 B1 EP 1899502B1 EP 06754658 A EP06754658 A EP 06754658A EP 1899502 B1 EP1899502 B1 EP 1899502B1
Authority
EP
European Patent Office
Prior art keywords
anodes
joints
weight
ccp
construction joints
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06754658.0A
Other languages
German (de)
French (fr)
Other versions
EP1899502A2 (en
Inventor
Frits O. Gronvold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PCI Augsburg GmbH
Original Assignee
PCI Augsburg GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PCI Augsburg GmbH filed Critical PCI Augsburg GmbH
Publication of EP1899502A2 publication Critical patent/EP1899502A2/en
Application granted granted Critical
Publication of EP1899502B1 publication Critical patent/EP1899502B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F2201/00Type of materials to be protected by cathodic protection
    • C23F2201/02Concrete, e.g. reinforced
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F2213/00Aspects of inhibiting corrosion of metals by anodic or cathodic protection
    • C23F2213/20Constructional parts or assemblies of the anodic or cathodic protection apparatus
    • C23F2213/22Constructional parts or assemblies of the anodic or cathodic protection apparatus characterized by the ionic conductor, e.g. humectant, hydratant or backfill

Definitions

  • the present invention relates to a method for cathodic corrosion protection of the reinforcements of reinforced concrete structures, in the field of construction joints had expansion and expansion joints.
  • Stability and service life of reinforced concrete structures depend significantly on the corrosion protection of the reinforcing steel used. Normally, the natural alkalinity of the concrete leads to the passivation of steel surfaces, so that corrosion is usually excluded. However, due to the influence of carbon dioxide in the air, so-called carbonation can occur, with carbon dioxide being released from the atmosphere in the wet cementstone and forming carbonic acid. This reduces the alkalinity of the concrete because calcium hydroxide is converted into calcium carbonate.
  • the passivation layer of the reinforcing steel in concrete can also be destroyed by the presence of chlorides.
  • Chlorides, as z. B. be used as de-icing salts, can penetrate into concrete and corrosion of reinforcing steel even under cause highly alkaline conditions. The probability of corrosion increases with the amount of chloride. Chloride corrosion can only occur if there is sufficient water and oxygen in the vicinity of the reinforcing steel.
  • the so-called cathodic corrosion protection has been established for more than 30 years.
  • the presence of unfavorable parameters chloride loading, carbonation
  • the corrosion hearth forms the anode and the adjacent not yet corroded steel forms the cathode, that is, a corrosion current flows in the concrete.
  • the metal dissolution is the anodic and the oxygen reduction is the cathodic partial reaction.
  • the principle of the KKS is based on the fact that the anodic partial reaction, namely the dissolution of iron, is prevented by an oppositely directed direct current.
  • a protective current while the reinforcing steel is polarized, d. H. the steel / concrete potential is shifted in the negative direction. Therefore, this type of corrosion protection is also referred to as cathodic corrosion protection.
  • the necessary protection current can be implied by various systems at the KKS.
  • One possibility is the use of so-called discrete anodes. These are placed in the vicinity of the steel reinforcements in the concrete. By applying an external DC power source, the steel / concrete potential is shifted in the required negative direction.
  • the anodes are mounted in close proximity to all reinforcing bars. This is relatively easy to achieve in the areas in which the reinforcing steel is placed close to the concrete surface (eg on road surfaces).
  • the reinforcement itself acts as a cathode in the cathodic corrosion protection method and must therefore not come into direct contact with the rod anode. This process is very labor-intensive and thus expensive.
  • the present invention therefore an object of the invention to develop a method for cathodic corrosion protection of the reinforcements of reinforced concrete structures, which does not have the disadvantages of the prior art, but allows a cost-effective and reliable method for cathodic corrosion protection of steel reinforcements of concrete works.
  • the method according to the present invention thus comprises at least three stages.
  • the chemical-resistant sealants can be based on silicone, polyurethane, acrylate, silyl-modified polymers (SMP), bitumen, MS polymer, epoxy and polysulfide.
  • the joint tapes which are preferably used in the form of fabric tapes, may consist of the same materials as the sealants. However, preference is given to rubber mixtures, such as silicone rubber, acrylic rubber and bituminous rubber. In this way, the construction joints are sealed watertight on one side, so that a liquid-tight gap for receiving the anodes is formed.
  • the KKS anodes are then introduced into the construction joints.
  • the corresponding anodes can in this case consist of the usual materials, such as. B. so-called. MMO (Mixed Metal Oxide) anodes, activated titanium metal anodes, platinized niobium metal anodes or conductive ceramic anodes based on titanium oxide.
  • MMO Mated Metal Oxide
  • the shape of the corresponding KKS anodes is largely uncritical.
  • band-shaped anodes can readily be resorted to, but in the method according to the invention the PPS anodes are preferably used in the form of rod anodes.
  • stage c an ionically conductive gel is introduced into the gap closed on one side.
  • the ionic conductive gel here has the task to reliably ensure the necessary electrical conductivity over the entire period of use. This must u. a. have a high water retention capacity to prevent dehydration and thus loss of effectiveness.
  • the ionically conductive gel which can be used both in (semi) liquid and in pasty form, preferably consists of 10 to 90 wt .-% of a polyhydric alcohol, 0.1 to 20 wt .-% stabilizers, 0.01 to 5% by weight of electrolyte, 0 to 50% by weight of inert fillers and the remainder water and optionally further additives in the form of thickening and preservatives or defoamers.
  • the polyhydric alcohol used is preferably ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 2,3-butanediol or glycerol.
  • Particularly suitable stabilizers are water-soluble, ionic or nonionic cellulose derivatives, such as methylcellulose (MC), hydroxyethylcellulose (HEC), methylhydroxyethylcellulose (MHEC), methylhydroxypropylcellulose (MHPC), microbially produced polysaccharides, such as welan gum, naturally occurring extractively isolated polysaccharides ( Hydrocolloids) such as alginates, xanthans, carrageenans, galactomannans.
  • MC methylcellulose
  • HEC hydroxyethylcellulose
  • MHEC methylhydroxyethylcellulose
  • MHPC methylhydroxypropylcellulose
  • microbially produced polysaccharides such as welan gum, naturally occurring extractively isolated polysaccharides ( Hydrocolloids) such as alginates, xanthans, carrageenans, galactomannans.
  • one or more slightly water-soluble salts selected from the group of hydroxides, nitrites and nitrates of sodium, potassium, lithium, calcium and aluminum are preferably used.
  • the inert fillers having a preferred particle size of 0.1 to 3 mm consist in particular of calcium carbonate, quartz, aluminum oxide, barium sulfate and slate.
  • step d) After introduction of the ionic conductive gel in the joints closed at one end, the construction joints are possibly completely sealed in the last step d), wherein one can resort to the already described in step a) chemical resistant sealants, the specially adapted joint profiles or the glued joint tapes. According to this preferred embodiment is to be prevented that subsequently water can penetrate into the construction joints.
  • the method according to the invention has the advantage that both sides of the reinforced concrete structure can be protected in the joint area with only one anode and that the risk of a short circuit due to unintentional contact of the anode with the steel reinforcement of the concrete plants is ruled out from the outset.
  • the method according to the invention was carried out on a parking deck, consisting of precast concrete slab parts and precast concrete support parts with steel reinforcement.
  • a parking deck consisting of precast concrete slab parts and precast concrete support parts with steel reinforcement.
  • the absence of the necessary passivation layer and thus slight corrosion on the carrier parts was suspected on the steel reinforcement in the area of the structurally determined expansion joint, in particular due to penetrating de-icing salt.
  • the construction joint was bonded over a length of 15 m in the region of the underside of the support with a joint tape approximately 20 cm wide (Thoroflex 200 from Masterbuilders) using an epoxy resin adhesive (Thoroflex 2000 Adhesive from Masterbuilders) to form a liquid-tight gap. Then, an ionically conductive gel was introduced into the resulting gap up to approximately 3 ⁇ 4 of the gap height. MMO primary arrays (Duranode Fa. CPI-GK) were introduced into the gel at intervals of about 1 m along the construction joint in such a way that the Anodes in the lower third of the gel layer were.
  • the gel used had the following composition: 0.80% by weight Stabilizer based on xanthan gum 40.00% by weight ethylene glycol 0.03% by weight calcium nitrate 34.02% by weight water 0.15% by weight preservative 25.00% by weight filler

Description

Die vorliegende Erfindung betrifft ein Verfahren zum kathodischen Korrosionsschutz der Bewehrungen von Stahlbetonbauwerken, im Bereich von Konstruktionsfugen wies Dehn- und Bewegungsfugen.The present invention relates to a method for cathodic corrosion protection of the reinforcements of reinforced concrete structures, in the field of construction joints had expansion and expansion joints.

Standsicherheit und Nutzungsdauer von Stahlbetonbauwerken hängen wesentlich vom Korrosionsschutz des eingesetzten Bewehrungsstahls ab. Normalerweise führt die natürliche Alkalität des Betons zur Passivierung von Stahloberflächen, so dass eine Korrosion in der Regel ausgeschlossen ist. Durch den Einfluss des Kohlendioxids der Luft kann es aber zur sog. Carbonatisierung kommen, wobei sich Kohlendioxid aus der Atmosphäre im feuchten Zementstein löst und Kohlensäure bildet. Dadurch wird die Alkalität des Betons reduziert, weil Calciumhydroxid hierbei in Calciumcarbonat umgewandet wird.Stability and service life of reinforced concrete structures depend significantly on the corrosion protection of the reinforcing steel used. Normally, the natural alkalinity of the concrete leads to the passivation of steel surfaces, so that corrosion is usually excluded. However, due to the influence of carbon dioxide in the air, so-called carbonation can occur, with carbon dioxide being released from the atmosphere in the wet cementstone and forming carbonic acid. This reduces the alkalinity of the concrete because calcium hydroxide is converted into calcium carbonate.

Sobald dieser fortschreitende Prozess den Bewehrungsstahl erreicht (dies geschieht relativ schnell bei geringer Bewehrungsüberdeckung), wird der rostschützende korrosionsschützende Passivierungsfilm des Bewehrungsstahls zerstört. In Gegenwart von Wasser und Sauerstoff kommt es zur Bildung von Oxidationsprodukten des Bewehrungsstahls. Dadurch wird die Struktur des Stahls zerstört; aufgrund des größeren Volumens der Oxidationsprodukte kommt es darüber hinaus im Beton zur Rissbildungen und Abplatzungen.As soon as this advancing process reaches the reinforcing steel (this happens relatively quickly with low reinforcement coverage), the rust-protective corrosion-protective passivation film of the reinforcing steel is destroyed. In the presence of water and oxygen, oxidation products of the reinforcing steel are formed. This destroys the structure of the steel; due to the larger volume of the oxidation products, cracking and flaking also occur in the concrete.

Zusätzlich zu Kohlendioxid kann die Passivierungsschicht des Bewehrungsstahls in Beton auch durch die Gegenwart von Chloriden zerstört werden. Chloride, wie sie z. B. als Auftausalze verwendet werden, können in Beton eindringen und die Korrosion von Bewehrungsstahl sogar unter hochalkalischen Bedingungen hervorrufen. Die Wahrscheinlichkeit der Korrosion steigt dabei mit der Chloridmenge. Auch die Chloridkorrosion kann nur stattfinden, wenn ausreichend Wasser und Sauerstoff in der Umgebung des Bewehrungsstahls vorhanden sind.In addition to carbon dioxide, the passivation layer of the reinforcing steel in concrete can also be destroyed by the presence of chlorides. Chlorides, as z. B. be used as de-icing salts, can penetrate into concrete and corrosion of reinforcing steel even under cause highly alkaline conditions. The probability of corrosion increases with the amount of chloride. Chloride corrosion can only occur if there is sufficient water and oxygen in the vicinity of the reinforcing steel.

Zur Korrosionsverhinderung von Stahlbetonbauwerken gibt es deshalb verschiedene Methoden, z. B. durch nachträgliche Beschichtung des Bewehrungsstahls mit korrosionsschützenden Anstrichen bzw. durch Imprägnierung mit ebenfalls rostverhindernden Chemikalien.For corrosion prevention of reinforced concrete structures, there are therefore various methods, eg. B. by subsequent coating of the reinforcing steel with corrosion-protective coatings or by impregnation with rust-inhibiting chemicals.

Eine weitere Möglichkeit Bewehrungskorrosion zu verhindern/minimieren, ist das Bauwerk selbst vor Feuchtigkeitseintritt zu schützen. Dies kann durch wasserdichte Anstriche oder Imprägnierungen geschehen. Insbesondere das Aufbringen von sog. Hydrophobierungsmitteln (Silan/Polysiloxan-Lösungen) auf die Betonoberfläche ist Stand der Technik. Nachteilig ist hier, dass diese nicht Wasserdampf-/CO2-dicht sind und somit die beschriebenen Vorgänge der Carbonatisierung nur verlangsamen, aber nicht vollkommen verhindern können. Auch müssen diese Anstriche/Imprägnierungen immer wieder erneuert werden, um die Wirksamkeit dauerhaft zu sichern.Another possibility to prevent / minimize reinforcement corrosion is to protect the structure from moisture ingress. This can be done by waterproof paints or impregnations. In particular, the application of so-called. Hydrophobierungsmitteln (silane / polysiloxane solutions) on the concrete surface is state of the art. The disadvantage here is that these are not -dicht steam / CO 2 and thus the described processes of carbonation only slow, but can not completely prevent. Also, these paints / impregnations must be renewed time and again to ensure the long-term effectiveness.

Als elektrochemische Methode ist der so genannte kathodische Korrosionsschutz (KKS) seit mehr als 30 Jahren etabliert. Wie bereits beschrieben, kommt es beim Vorliegen ungünstiger Parameter (Chloridbelastung, Carbonatisierung) zur partiellen Korrosion der Stahlbewehrungen. Dabei bildet der Korrosionsherd die Anode und der danebenliegende noch nicht korrodierte Stahl bildet die Kathode, das heißt ein Korrosionsstrom fließt im Beton. Dieser führt zu weiteren beschleunigten Korrosion des Bewehrungsstahls. Dabei ist die Metallauflösung die anodische und die Sauerstoffreduktion die kathodische Teilreaktion.As an electrochemical method, the so-called cathodic corrosion protection (PPS) has been established for more than 30 years. As already described, the presence of unfavorable parameters (chloride loading, carbonation) leads to partial corrosion of the steel reinforcement. Here, the corrosion hearth forms the anode and the adjacent not yet corroded steel forms the cathode, that is, a corrosion current flows in the concrete. This leads to further accelerated corrosion of the reinforcing steel. The metal dissolution is the anodic and the oxygen reduction is the cathodic partial reaction.

Das Prinzip des KKS beruht darauf, dass die anodische Teilreaktion, nämlich die Eisenauflösung, durch einen entgegengesetzt gerichteten Gleichstrom unterbunden wird. Durch das Anlegen eines Schutzstromes wird dabei der Bewehrungsstahl polarisiert, d. h. das Stahl/Betonpotential wird in die negative Richtung verschoben. Deshalb wird diese Art des Korrosionsschutzes auch als kathodischer Korrosionsschutz bezeichnet.The principle of the KKS is based on the fact that the anodic partial reaction, namely the dissolution of iron, is prevented by an oppositely directed direct current. By applying a protective current while the reinforcing steel is polarized, d. H. the steel / concrete potential is shifted in the negative direction. Therefore, this type of corrosion protection is also referred to as cathodic corrosion protection.

Der notwendige Schutzstrom kann beim KKS durch verschiedene Systeme impliziert werden. Eine Möglichkeit ist die Verwendung so genannter Diskretanoden. Diese werden in der Nähe der Stahlbewehrungen in den Beton eingebracht. Über diese wird durch Anlegen einer externen Gleichstromquelle das Stahl/Betonpotential in die benötigte negative Richtung verschoben.The necessary protection current can be implied by various systems at the KKS. One possibility is the use of so-called discrete anodes. These are placed in the vicinity of the steel reinforcements in the concrete. By applying an external DC power source, the steel / concrete potential is shifted in the required negative direction.

Für das Funktionieren der Methode ist es wichtig, dass die Anoden in unmittelbarer Nähe zu allen Bewehrungsstählen angebracht werden. Dies ist in den Bereichen relativ gut zu erreichen, in denen der Bewehrungsstahl nahe an der Betonoberfläche (z. B. an Fahrbahndecken) eingebracht ist.For the functioning of the method, it is important that the anodes are mounted in close proximity to all reinforcing bars. This is relatively easy to achieve in the areas in which the reinforcing steel is placed close to the concrete surface (eg on road surfaces).

In den Bereichen, wo die Stahlbewehrungen tiefer in die Betonteile eingebracht sind, ist dies jedoch mit einem erheblichen Aufwand verbunden. Besonders in Bereichen von Betonträgerteilen ist dies der Fall, da diese in der Regel durch sog. Konstruktionsfugen getrennt sind. Diese Konstruktionsfugen sind durch Dichtmaterialien oberflächlich verschlossen, um das Eindringen von Feuchtigkeit und Salzen (Streusalz bei Fahrbahnen) zu verhindern. Durch Undichtigkeiten dieser Abdichtungen kommt es in der Praxis jedoch sehr häufig zum Eindringen von Wasser und Salzen, die zur Korrosion der Bewehrung in den Trägern führt. Um hier mit Hilfe von KKS-Korrosionsschutz einen zuverlässigen Schutz zu erreichen, ist es Stand der Technik, auf beiden Seiten der Konstruktionsfugen tiefe Bohrlöcher anzubringen und hier die entsprechenden Anoden einzubringen. Zur Aufnahme der Anoden bzw. Stabanoden müssen beidseitig, in der Regel alle 20 bis 30 cm, Bohrlöcher angebracht werden. Dabei ist besonders darauf zu achten, dass das Bohrloch in unmittelbarer Nähe der Bewehrung angebracht wird und die Bewehrung dabei nicht verletzt wird, da es sonst zu einem Kurzschluss und zur Unwirksamkeit der Methode kommt.However, in the areas where the steel reinforcements are placed deeper into the concrete parts, this is associated with considerable effort. This is the case especially in areas of concrete support parts, since these are usually separated by so-called construction joints. These construction joints are closed by sealing materials on the surface to prevent the ingress of moisture and salts (road salt in road surfaces). Due to leaks in these seals, however, it is very common in practice for water and salts to penetrate, which leads to corrosion of the reinforcement in the supports. In order to achieve reliable protection with the help of KKS corrosion protection, it is state of the art to provide deep boreholes on both sides of the construction joints and to introduce the corresponding anodes here. To accommodate the anodes or rod anodes, drill holes must be made on both sides, usually every 20 to 30 cm. It is particularly important to note that the borehole is mounted in the immediate vicinity of the reinforcement and the reinforcement is not injured thereby, otherwise it comes to a short circuit and ineffectiveness of the method.

Die Bewehrung selbst wirkt bei der kathodischen Korrosionsschutzmethode als Kathode und darf deshalb nicht in direkten Kontakt mit der Stabanode kommen. Dieses Verfahren ist sehr Arbeits- und damit kostenintensiv.The reinforcement itself acts as a cathode in the cathodic corrosion protection method and must therefore not come into direct contact with the rod anode. This process is very labor-intensive and thus expensive.

Gemäß der GB 2 389 591 A wurde vorgeschlagen, die Anoden mit einem deformierbaren, vorzugsweise plastischen Polymermaterial (bspw. auf PU-Basis) zu verbinden und anschließend die Anoden mit dem deformierbaren Material in die Konstruktionsfuge von Betonbauwerksteilen einzupressen, um auf diese Weise einen elektrischen Kontakt mit der Betonoberfläche herzustellen.According to the GB 2 389 591 A It has been proposed to connect the anodes to a deformable, preferably plastic, polymeric material (eg, PU-based) and then to force the anodes with the deformable material into the structural joint of concrete structural parts to thereby make electrical contact with the concrete surface.

Auch dieses Verfahren ist relativ aufwendig und kostenintensiv. Außerdem ist die Zuverlässigkeit der entsprechenden Methode nicht über die gesamte Anwendungsdauer in zufriedenstellender Weise gegeben.This method is relatively complicated and expensive. In addition, the reliability of the corresponding method is not given satisfactorily over the entire period of use.

Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, ein Verfahren zum kathodischen Korrosionsschutz der Bewehrungen von Stahlbetonbauwerken zu entwickeln, welches die genannten Nachteile des Standes der Technik nicht aufweist, sondern eine kostengünstige und zuverlässige Methode zum kathodischen Korrosionsschutz der Stahlbewehrungen von Betonwerken ermöglicht.The present invention therefore an object of the invention to develop a method for cathodic corrosion protection of the reinforcements of reinforced concrete structures, which does not have the disadvantages of the prior art, but allows a cost-effective and reliable method for cathodic corrosion protection of steel reinforcements of concrete works.

Diese Aufgabe wurde erfindungsgemäß dadurch gelöst, dass man

  1. a) eine Seite der Konstruktionsfugen der Betonträgerteile abdichtet,
  2. b) die KKS-Anoden in die Konstruktionsfugen einbringt,
  3. c) in die einseitig verschlossenen Fugen ein ionisch leitfähiges Gel einbringt und
  4. d) ggf. die Konstruktionsfugen vollständig abdichtet.
This object has been achieved in that one
  1. a) one side of the construction joints of the concrete support members seals,
  2. b) introduce the KKS anodes into the construction joints,
  3. c) introduces an ionically conductive gel in the joints closed at one end and
  4. d) if necessary, completely seal the construction joints.

Es hat sich nämlich überraschenderweise gezeigt, dass man mit Hilfe des ionisch leitfähigen Gels die notwenige elektrische Leitfähigkeit über die gesamte Anwendungsdauer zuverlässig gewährleisten kann, welches eine Grundvoraussetzung für einen effektiven und zuverlässigen Korrosionsschutz der Stahlbewehrungen von Betonwerken darstellt.It has surprisingly been shown that it is possible with the help of the ionic conductive gel to reliably ensure the necessary electrical conductivity over the entire period of use, which is a prerequisite for effective and reliable corrosion protection of steel reinforcements of concrete works.

Das Verfahren entsprechend der vorliegenden Erfindung umfasst somit mindestens drei Stufen. Im ersten Schritt a) wird eine Seite der Konstruktionsfugen der Betonträgerteile abgedichtet, wobei man diese Abdichtung der Fugen vorzugsweise mit Hilfe von chemikalienbeständigen Dichtstoffen, eines speziell angepassten Fugenprofils oder eines aufgeklebten Fugenbandes vornimmt.The method according to the present invention thus comprises at least three stages. In the first step a) one side of the construction joints of the concrete support members is sealed, wherein this sealing of the joints is preferably carried out with the aid of chemical-resistant sealants, a specially adapted joint profile or a glued-on joint tape.

Bei den chemikalienbeständigen Dichtstoffen können Produkte auf Basis von Silikon, Polyurethan, Acrylat, silylmodifizierte Polymere (SMP), Bitumen, MS-Polymer, Epoxid und Polysulfid zum Einsatz kommen. Die Fugenbänder, die vorzugsweise in Form von Gewebebändern eingesetzt werden, können aus denselben Materialien wie die Dichtstoffe bestehen. Als bevorzugt sind jedoch Kautschuk-Mischungen, wie Silikon-Kautschuk, Acryl-Kautschuk sowie Bitumen-Kautschuk anzusehen. Auf diese Weise werden die Konstruktionsfugen an einer Seite wasserdicht verschlossen, so dass ein flüssigkeitsdichter Spalt zur Aufnahme der Anoden entsteht.The chemical-resistant sealants can be based on silicone, polyurethane, acrylate, silyl-modified polymers (SMP), bitumen, MS polymer, epoxy and polysulfide. The joint tapes, which are preferably used in the form of fabric tapes, may consist of the same materials as the sealants. However, preference is given to rubber mixtures, such as silicone rubber, acrylic rubber and bituminous rubber. In this way, the construction joints are sealed watertight on one side, so that a liquid-tight gap for receiving the anodes is formed.

Im nachfolgenden Schritt b) werden die KKS-Anoden dann in die Konstruktionsfugen eingebracht. Die entsprechenden Anoden können hierbei aus den üblichen Materialien bestehen, wie z. B. sog. MMO (Mixed Metal Oxide)-Anoden, aktivierte Titanmetall-Anoden, platinierte Niobmetall-Anoden oder leitfähige keramische Anoden auf Basis von Titanoxid. Die Form der entsprechenden KKS-Anoden ist weitgehend unkritisch. So kann ohne weiteres auf bandförmige Anoden (ribbon-mesh) zurückgegriffen werden, doch werden beim erfindungsgemäßen Verfahren bevorzugt die KKS-Anoden in Form von Stabanoden verwendet.In the following step b) the KKS anodes are then introduced into the construction joints. The corresponding anodes can in this case consist of the usual materials, such as. B. so-called. MMO (Mixed Metal Oxide) anodes, activated titanium metal anodes, platinized niobium metal anodes or conductive ceramic anodes based on titanium oxide. The shape of the corresponding KKS anodes is largely uncritical. Thus, band-shaped anodes can readily be resorted to, but in the method according to the invention the PPS anodes are preferably used in the form of rod anodes.

Es ist als erfindungswesentlich anzusehen, dass in der Stufe c) in die einseitig verschlossene Fuge ein ionisch leitfähiges Gel eingebracht wird. Das ionisch leitfähige Gel hat hierbei die Aufgabe, die notwendige elektrische Leitfähigkeit über die gesamte Anwendungsdauer zuverlässig zu gewährleisten. Dazu muss dieses u. a. ein hohes Wasserrückhaltevermögen aufweisen, um ein Austrocknen und damit einen Verlust der Wirksamkeit zu verhindern.It is to be regarded as essential to the invention that in stage c) an ionically conductive gel is introduced into the gap closed on one side. The ionic conductive gel here has the task to reliably ensure the necessary electrical conductivity over the entire period of use. This must u. a. have a high water retention capacity to prevent dehydration and thus loss of effectiveness.

Das ionisch leitfähige Gel, welches sowohl in (halb-)flüssiger als auch in pastöser Form eingesetzt werden kann, besteht vorzugsweise aus 10 bis 90 Gew.-% eines mehrwertigen Alkohols, 0,1 bis 20 Gew.-% Stabilisatoren, 0,01 bis 5 Gew.-% Elektrolyt, 0 bis 50 Gew.-% inerte Füllstoffe sowie als Rest Wasser und ggf. weitere Additive in Form von Verdickungs- und Konservierungsmitteln oder Entschäumern.The ionically conductive gel, which can be used both in (semi) liquid and in pasty form, preferably consists of 10 to 90 wt .-% of a polyhydric alcohol, 0.1 to 20 wt .-% stabilizers, 0.01 to 5% by weight of electrolyte, 0 to 50% by weight of inert fillers and the remainder water and optionally further additives in the form of thickening and preservatives or defoamers.

Vorzugsweise wird als mehrwertiger Alkohol Ethylenglykol, Propylenglykol, 1,3-Propandiol, 1,2-Butandiol, 2,3-Butandiol oder Glycerin eingesetzt.The polyhydric alcohol used is preferably ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 2,3-butanediol or glycerol.

Als Stabilisatoren werden insbesondere wasserlösliche, ionische oder nicht-ionische Cellulose-Derivate, wie Methylcellulose (MC), Hydroxyethylcellulose (HEC), Methylhydroxyethylcellulose (MHEC), Methylhydroxypropylcellulose (MHPC), mikrobiell erzeugte Polysaccharide, wie Welan Gum, natürlich vorkommende extraktiv isolierte Polysaccharide (Hydrokolloide) wie Alginate, Xanthane, Carrageenane, Galactomannane verwendet.Particularly suitable stabilizers are water-soluble, ionic or nonionic cellulose derivatives, such as methylcellulose (MC), hydroxyethylcellulose (HEC), methylhydroxyethylcellulose (MHEC), methylhydroxypropylcellulose (MHPC), microbially produced polysaccharides, such as welan gum, naturally occurring extractively isolated polysaccharides ( Hydrocolloids) such as alginates, xanthans, carrageenans, galactomannans.

Bei den Elektrolyten kommen ein oder mehrere leicht wasserlösliche Salze ausgewählt aus der Gruppe Hydroxide, Nitrite und Nitrate von Natrium, Kalium, Lithium, Calcium und Aluminium bevorzugt zum Einsatz.In the case of the electrolytes, one or more slightly water-soluble salts selected from the group of hydroxides, nitrites and nitrates of sodium, potassium, lithium, calcium and aluminum are preferably used.

Die inerten Füllstoffe mit einer bevorzugten Teilchengröße von 0,1 bis 3 mm bestehen insbesondere aus Calciumcarbonat, Quarz, Aluminiumoxid, Bariumsulfat und Schiefer.The inert fillers having a preferred particle size of 0.1 to 3 mm consist in particular of calcium carbonate, quartz, aluminum oxide, barium sulfate and slate.

Nach dem Einbringen des ionisch leitfähigen Gels in die einseitig verschlossenen Fugen werden ggf. im letzen Schritt d) die Konstruktionsfugen vollständig abgedichtet, wobei man auf die bereits in Stufe a) beschriebenen chemikalienbeständigen Dichtstoffe, die speziell angepassten Fugenprofile oder der aufgeklebten Fugenbänder zurückgreifen kann. Gemäß dieser bevorzugten Ausführungsform soll verhindert werden, dass nachträglich Wasser in die Konstruktionsfugen eindringen kann.After introduction of the ionic conductive gel in the joints closed at one end, the construction joints are possibly completely sealed in the last step d), wherein one can resort to the already described in step a) chemical resistant sealants, the specially adapted joint profiles or the glued joint tapes. According to this preferred embodiment is to be prevented that subsequently water can penetrate into the construction joints.

Das erfindungsgemäße Verfahren bietet den Vorteil, dass mit nur einer Anode beide Seiten der Stahlbetonkonstruktion im Fugenbereich geschützt werden können und dass die Gefahr eines Kurzschlusses durch unbeabsichtigten Kontakt der Anode mit der Stahlbewehrung der Betonwerke von vorneherein ausgeschlossen wird.The method according to the invention has the advantage that both sides of the reinforced concrete structure can be protected in the joint area with only one anode and that the risk of a short circuit due to unintentional contact of the anode with the steel reinforcement of the concrete plants is ruled out from the outset.

Außerdem wird mit Hilfe des erfindungsgemäßen Verfahrens eine sehr kostengünstige und effektive Methode zum kathodischen Korrosionsschutz der Stahlbewehrungen von Betonwerken bereitgestellt, welches auch über eine längere Anwendungsdauer zuverlässig arbeitet.In addition, with the aid of the method according to the invention, a very cost-effective and effective method for cathodic corrosion protection of the steel reinforcements of concrete works is provided, which also works reliably over a longer period of use.

Das nachfolgende Beispiel soll die Erfindung näher veranschaulichen.The following example is intended to illustrate the invention in more detail.

Beispielexample

Das erfindungsgemäße Verfahren wurde an einem Parkdeck, bestehend aus Fertigbeton-Deckenteilen und Fertigbeton-Trägerteilen mit Stahlbewehrung, durchgeführt. Hier wurde an der Stahlbewehrung im Bereich der konstruktiv bedingten Bewegungsfuge, insbesondere durch eindringendes Tausalz, bereits das Fehlen der notwendigen Passivierungsschicht und damit leichte Korrosion an den Trägerteilen vermutet.The method according to the invention was carried out on a parking deck, consisting of precast concrete slab parts and precast concrete support parts with steel reinforcement. Here, the absence of the necessary passivation layer and thus slight corrosion on the carrier parts was suspected on the steel reinforcement in the area of the structurally determined expansion joint, in particular due to penetrating de-icing salt.

Die Konstruktionsfuge wurde in einer Länge von 15 m im Bereich der Trägerunterseite mit einem ca. 20 cm breiten Fugenband (Thoroflex 200 der Fa. Masterbuilders) mit Hilfe eines Epoxidharzklebers (Thoroflex 2000 Adhesive der Fa. Masterbuilders verklebt. Es entstand so ein flüssigkeitsdichter Spalt. Danach wurden der entstandenen Spalt bis zu ca. ¾ der Spalthöhe eine ionisch leitfähiges Gel eingebracht. In das Gel wurden in einem Abstandsintervall von ca. 1 m entlang der Konstruktionsfuge MMO-Primäranoden (Duranode Fa. CPI-GK) so eingebracht, dass sich die Anoden im unteren Drittel der Gelschicht befanden.The construction joint was bonded over a length of 15 m in the region of the underside of the support with a joint tape approximately 20 cm wide (Thoroflex 200 from Masterbuilders) using an epoxy resin adhesive (Thoroflex 2000 Adhesive from Masterbuilders) to form a liquid-tight gap. Then, an ionically conductive gel was introduced into the resulting gap up to approximately ¾ of the gap height. MMO primary arrays (Duranode Fa. CPI-GK) were introduced into the gel at intervals of about 1 m along the construction joint in such a way that the Anodes in the lower third of the gel layer were.

Das eingesetzte Gel hatte folgende Zusammensetzung: 0,80 Gew.-% Stabilisator auf Basis Xanthan Gum 40,00 Gew.-% Ethylenglykol 0,03 Gew.-% Calciumnitrat 34,02 Gew.-% Wasser 0,15 Gew.-% Konservierungsmittel 25,00 Gew.-% Füllstoff The gel used had the following composition: 0.80% by weight Stabilizer based on xanthan gum 40.00% by weight ethylene glycol 0.03% by weight calcium nitrate 34.02% by weight water 0.15% by weight preservative 25.00% by weight filler

Anschließend wurden die Konstruktionsfugen mit den bereits beschriebenen Dichtbändern Thoroflex 200 (der Firma Masterbuilders) von oben her vollständig abgedichtet. Die Potentialmessung wurde mit Ag/AgCI-Referenz-Elektroden durchgeführt. Die Messpunkte hierfür wurden so gewählt, dass diese an den der Bewegungsfuge angrenzenden Betonträgeroberflächen in einem Abstand 250 und 500 mm zueinander und entlang der 15 m langen Bewegungsfuge einen netzartigen Messbereich bildeten. Eine Potentialmessung vor Inbetriebnahme des Anodensystemes ergab, dass über den gesamten Messbereich Werte von < -300 mV gemessen wurden und somit bereits Bewehrungsstahlkorrosion vorhanden war. An die MMO-Anoden wurde ein Gleichstrom mit einer Spannung von 3 V und einem Stromfluss von 100 mA angelegt, was ungefähr der erforderlichen Stromdichte von 10 bis 15 mA/m2 Bewehrungsstahl entspricht. Der Strom wurde an die Anoden über einen Zeitraum von 2 ½ Monaten angelegt. Nach Anschalten des Anodensystems wurde sofort eine langsame Verschiebung des Potentials in den negativen Bereich festgestellt.Subsequently, the construction joints were completely sealed from above with the previously described sealing tapes Thoroflex 200 (from Masterbuilders). The potential measurement was carried out with Ag / AgCl reference electrodes. The measuring points for this were chosen so that these formed a mesh-like measuring area at a distance of 250 and 500 mm from one another and along the 15 m long movement gap at the concrete support surfaces adjacent to the movement joint. A potential measurement prior to commissioning of the anode system showed that values of <-300 mV were measured over the entire measuring range and thus already reinforcement steel corrosion was present. To the MMO anodes was applied a DC voltage with a voltage of 3 V and a current flow of 100 mA, which corresponds approximately to the required current density of 10 to 15 mA / m 2 reinforcing steel. The current was applied to the anodes over a period of 2½ months. After switching on the anode system, a slow shift of the potential into the negative region was immediately detected.

Schließlich wurde das Potential bei eingeschaltetem Strom ("ON-Potential") und nach 4,5 h nach Abschalten des Stromes ("Off-Potential") mit Hilfe der Ag/AgCI-Referenz-Elektroden über den gesamten Messbereich ermittelt. Der Nachweis der Wirksamkeit ist nach EN 12 696 gegeben, wenn die Differenz zwischen ON-Potential und OFF-Potential mindestens 100 mV beträgt. Die geforderte Potentialdifferenz wurde an ca. 75 % der 52 Messstellen erreicht, so dass ein zufrieden stellender Korrosionsschutz gegeben ist.Finally, the potential was determined with the current switched on ("ON potential") and after 4.5 h after switching off the current ("off potential") with the aid of the Ag / AgCI reference electrodes over the entire measuring range. The proof of effectiveness is given in accordance with EN 12 696, if the difference between ON potential and OFF potential is at least 100 mV. The required potential difference was reached at approx. 75% of the 52 measuring points, so that a satisfactory corrosion protection is given.

Claims (12)

  1. A method for the cathodic corrosion protection (CCP) of reinforcements of ferroconcrete edifices in the region of construction joints, wherein
    a) one side of the construction joints between two concrete supporting elements is sealed,
    b) the CCP anodes are introduced into the construction joints,
    c) an ionically conductive gel is introduced into the joints closed on one side, and
    d) optionally the construction joints are sealed completely.
  2. The method according to claim 1, wherein the sealing of the joints in steps a) and d) is carried out by means of chemical-resistant sealing materials, a specially adapted joint profile, or an adhered bonding tape.
  3. The method according to claim 1 or 2, wherein there are used as the CCP anodes so-called MMO (mixed metal oxide) anodes, activated titanium metal anodes, platinized niobium metal anodes, or conductive ceramics anodes based on titanium oxide.
  4. The method according to one of claims 1 to 3, wherein the CCP anodes are used in the form of rod anodes.
  5. The method according to one of claims 1 to 4, wherein the conductive gel has a high water retention capacity.
  6. The method according to one of claims 1 to 5, wherein the gel is used in liquid, semi-liquid or pasty form.
  7. The method according to one of claims 1 to 6, wherein the gel comprises from 10 to 90% by weight of a polyhydric alcohol, from 0.1 to 20% by weight stabilizers, from 0.01 to 5% by weight electrolyte, from 0 to 50% by weight inert fillers and, as the remainder, water and optionally further additives in the form of thickeners and preservatives or antifoams.
  8. The method according to claim 7, wherein there is used as the polyhydric alcohol ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 2,3-butanediol or glycerol.
  9. The method according to either claim 7 or 8, wherein there are used as stabilizers water-soluble, ionic or non-ionic cellulose derivatives, such as methylcellulose (MC), hydroxyethylcellulose (HEC), methylhydroxyethylcellulose (MHEC), methylhydroxypropylcellulose (MHPC), microbially produced polysaccharides, such as welan gum, naturally occurring polysaccharides (hydrocolloids) produced by extraction, such as alginates, xanthans, carrageenans, galactomannans.
  10. The method according to claim 7, wherein there are used as the electrolyte one or more readily water-soluble salts selected from the group comprising hydroxides, nitrites and nitrates of sodium, potassium, lithium, calcium and aluminum.
  11. The method according to claim 7, wherein the inert fillers consist of calcium carbonate, quartz, aluminum oxide, barium sulfate and shale.
  12. The method according to claim 11, wherein the inert fillers have a particle size of from 0.1 to 3 mm.
EP06754658.0A 2005-07-05 2006-07-03 Method for the cathodic protection of the reinforcements of ferroconcrete edifices against corrosion Not-in-force EP1899502B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005031350A DE102005031350A1 (en) 2005-07-05 2005-07-05 Process for the cathodic corrosion protection of reinforcements of reinforced concrete plants
PCT/EP2006/006457 WO2007003396A2 (en) 2005-07-05 2006-07-03 Method for the cathodic protection of the reinforcements of ferroconcrete edifices against corrosion

Publications (2)

Publication Number Publication Date
EP1899502A2 EP1899502A2 (en) 2008-03-19
EP1899502B1 true EP1899502B1 (en) 2017-10-25

Family

ID=37547595

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06754658.0A Not-in-force EP1899502B1 (en) 2005-07-05 2006-07-03 Method for the cathodic protection of the reinforcements of ferroconcrete edifices against corrosion

Country Status (5)

Country Link
US (1) US7967970B2 (en)
EP (1) EP1899502B1 (en)
DE (1) DE102005031350A1 (en)
ES (1) ES2656784T3 (en)
WO (1) WO2007003396A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1813347A1 (en) 2006-01-25 2007-08-01 Sulzer Chemtech AG Distributor for delivery in pairs of two liquids to a plurality of feed-in locations in a reactor or a column
DE102006037706A1 (en) * 2006-08-11 2008-02-14 Pci Augsburg Gmbh Cathodic corrosion protection of reinforcements of steel concrete plants, comprises generating perpendicular hollow spaces on upper surface of the concrete, and bringing KKS-anodes into the hollow spaces after the hardening of concrete
DE102016222538B3 (en) * 2016-11-16 2018-02-22 Fachhochschule Erfurt Method and arrangement for assessing the corrosion and passivation of the reinforcement taking into account the moisture in reinforced concrete

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8809230D0 (en) * 1988-04-19 1988-05-25 Raychem Ltd Inhibiting corrosion in reinforced concrete
US5292411A (en) * 1990-09-07 1994-03-08 Eltech Systems Corporation Method and apparatus for cathodically protecting reinforced concrete structures
US5650060A (en) * 1994-01-28 1997-07-22 Minnesota Mining And Manufacturing Company Ionically conductive agent, system for cathodic protection of galvanically active metals, and method and apparatus for using same
US6217742B1 (en) * 1996-10-11 2001-04-17 Jack E. Bennett Cathodic protection system
US7276144B2 (en) * 1999-02-05 2007-10-02 David Whitmore Cathodic protection
WO2003027356A1 (en) * 2001-09-26 2003-04-03 J.E. Bennett Consultants, Inc. Cathodic protection system
GB2389591B (en) * 2002-06-14 2005-11-16 Fosroc International Ltd Protection of reinforced concrete

Also Published As

Publication number Publication date
US7967970B2 (en) 2011-06-28
ES2656784T3 (en) 2018-02-28
US20090200179A1 (en) 2009-08-13
WO2007003396A2 (en) 2007-01-11
EP1899502A2 (en) 2008-03-19
WO2007003396A3 (en) 2007-09-13
DE102005031350A1 (en) 2007-01-11

Similar Documents

Publication Publication Date Title
EP1899502B1 (en) Method for the cathodic protection of the reinforcements of ferroconcrete edifices against corrosion
EP2665791B1 (en) Use of a sealing element for sealing constructions
DE2428497A1 (en) METHOD OF SEALING CRACKS AND CAVITIES IN VARIOUS TYPES OF STRUCTURES, E.G. BUILDINGS IN THE ROCK, MADE OF CONCRETE, BRICK WALLS AND WOOD
CN105464394A (en) Reinforced concrete structure durability repairing method and device capable of synchronously desalting and repairing cracks
WO2016135201A1 (en) Method of producing cathodic corrosion protection for protection of reinforcing steel in a ferroconcrete structure
DD146982A5 (en) METHOD FOR INCREASING THE STRENGTH AND WATER-IMPOSSIBLE MATERIALS
DE102006037706A1 (en) Cathodic corrosion protection of reinforcements of steel concrete plants, comprises generating perpendicular hollow spaces on upper surface of the concrete, and bringing KKS-anodes into the hollow spaces after the hardening of concrete
AT404270B (en) DEVICE AND METHOD FOR DEHUMIDIFYING CONSTRUCTIONS
DE2503670C2 (en) Process for accelerating or preventing and reversing the natural movement of liquids in solids with a porous and / or semi-permeable structure and electrodes for carrying out the process
KR100721215B1 (en) Method for repairing and reinforcing damage of reinforced concrete using gel-type sacrificial anode and waterproof material having exellent insulating properties
DE202011000107U1 (en) Sealant and sealing element for building sealing
DE102008025091C5 (en) Process for the treatment of rock surfaces
DE3430449A1 (en) ELECTRODE ARRANGEMENT FOR ELECTROCHEMICAL DESALINATION AND DRYING OF MASONRY
DE3690002C1 (en) Sacrificial anode protection of steel reinforced constructions
EP0228001B1 (en) Method for desalting, drying and keeping dry brickwork
EP2971505A2 (en) Method for producing a tubbing having a thermoplastic barrier layer
DE102012109220B4 (en) Uses of a composition and method for the formation of calcium hydroxide layers on surfaces
WO2011017728A2 (en) Method for removing corrosive anions from the pore solutions of porous solids using zinc
DE19710328C2 (en) Edge connection and method for producing a tight edge connection between a bottom layer and a structure in underwater or flooded areas of water
AT392501B (en) Method of increasing the stability of plastic, clayey- silty ground
EP0564546A1 (en) Method of repairing building constructions with metal parts embedded in them
EP0962432A1 (en) Method and apparatus for the removal of ionic impurities from reinforced concrete structures
WO1997044295A1 (en) Calcium hydroxide re-alkalization method
DE20317699U1 (en) Corrosion protection for reinforcing concrete comprises an electrically conducting layer applied on the surface of a concrete
AT8186U2 (en) TECHNICAL SEALING MEASURES OF BUILDINGS AGAINST HIGH WATER

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071126

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RAX Requested extension states of the european patent have changed

Extension state: RS

Extension state: BA

Extension state: MK

Extension state: AL

Extension state: HR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20121008

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170119

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 940031

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006015709

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2656784

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180228

Ref country code: NL

Ref legal event code: MP

Effective date: 20171025

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180225

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180125

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180126

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006015709

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180703

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 940031

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060703

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210610

Year of fee payment: 16

Ref country code: FR

Payment date: 20210527

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210609

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210608

Year of fee payment: 16

Ref country code: ES

Payment date: 20210803

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006015709

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220703

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220703

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220704