EP1896712B1 - Control and regulation method for an internal combustion engine provided with a common-railsystem - Google Patents

Control and regulation method for an internal combustion engine provided with a common-railsystem Download PDF

Info

Publication number
EP1896712B1
EP1896712B1 EP06754510A EP06754510A EP1896712B1 EP 1896712 B1 EP1896712 B1 EP 1896712B1 EP 06754510 A EP06754510 A EP 06754510A EP 06754510 A EP06754510 A EP 06754510A EP 1896712 B1 EP1896712 B1 EP 1896712B1
Authority
EP
European Patent Office
Prior art keywords
control
pwm
pressure
rail pressure
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06754510A
Other languages
German (de)
French (fr)
Other versions
EP1896712A1 (en
Inventor
Armin DÖLKER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Solutions GmbH
Original Assignee
MTU Friedrichshafen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Friedrichshafen GmbH filed Critical MTU Friedrichshafen GmbH
Publication of EP1896712A1 publication Critical patent/EP1896712A1/en
Application granted granted Critical
Publication of EP1896712B1 publication Critical patent/EP1896712B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/141Introducing closed-loop corrections characterised by the control or regulation method using a feed-forward control element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2024Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit the control switching a load after time-on and time-off pulses
    • F02D2041/2027Control of the current by pulse width modulation or duty cycle control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure

Definitions

  • the invention relates to a control and regulating method for an internal combustion engine having a common rail system, in which the rail pressure is regulated in normal operation.
  • a high pressure pump delivers fuel from a fuel tank into a rail.
  • the inlet cross section to the high pressure pump is determined by a variable suction throttle.
  • injectors via which the fuel is injected into the combustion chambers of the internal combustion engine. Since the quality of the combustion depends crucially on the pressure level in the rail, this is regulated.
  • the high-pressure control circuit includes a pressure regulator, the suction throttle with high-pressure pump and the rail as a controlled system and a filter in the feedback branch.
  • the pressure regulator is designed as a PID controller or PIDT1 controller, ie this comprises at least one proportional component (P component), one integral component (I component) and one differential component (D component).
  • the pressure level in the rail corresponds to the controlled variable.
  • the measured pressure values of the rail are converted via the filter into an actual rail pressure and compared with a desired rail pressure.
  • the resulting deviation is converted via the pressure regulator into a control signal for the suction throttle.
  • the actuating signal corresponds to z. B. a volume flow with the unit liters / minute.
  • the control signal is electrically designed as a PWM signal (pulse width modulated).
  • the high-pressure control circuit described above is from the DE 103 30 466 B3 known. In DE 19 731 995 the transmission behavior of the pressure regulator is dependent on the operating parameters of the internal combustion engine.
  • a passive pressure limiting valve is arranged on the rail. If the pressure level is too high, the pressure-limiting valve opens, causing the fuel to drain from the rail into the fuel tank.
  • German patent application with the official file number DE 10 2004 023 365.9 also describes a pressure control loop for a common rail system.
  • a second filter is arranged in addition to the first filter in the feedback branch.
  • the second filter has a smaller time constant and a lower phase delay than the first filter.
  • the actual rail pressure determined by the second filter is used, which results in an improved dynamics of the high-pressure control circuit during load shedding.
  • control signal calculated by the pressure regulator or the PWM signal is limited by the electrical characteristics of the electronic control unit, eg. B. maximum continuous current and power loss of the output transistor is severely limited. This means that in the case of a large control deviation, the pressure regulator calculates a maximum manipulated variable, but this ultimately results in a PWM signal with only approx. B. 22% pulse-pause ratio can be implemented. A permanently applied higher PWM value would cause deactivation of the final stage of the electronic control unit.
  • the object of the invention is to improve the safety of the pressure control in a load shedding.
  • the invention provides that a second actual rail pressure is determined via a second filter from the rail pressure and a Load shedding is detected when the second actual rail pressure exceeds a limit. Upon detection of a load shedding the rail pressure is then controlled by the PWM signal is set via a PWM default to a compared to the normal operation increased PWM value. This increased PWM value is set during a time period, e.g. B. as a staircase function.
  • the central idea of the invention is to substantially accelerate the closing process of the suction throttle by setting a high PWM value.
  • a suction throttle which works against a spring when closing, d. H. which is normally open. If the PWM signal is increased, the path of the suction throttle slide is increased and the opening cross section of the suction throttle is reduced. In practice, it is sufficient to use this PWM specification for a very short time, e.g. B. 20 milliseconds, to act. The short-term introduction of higher energy in the suction throttle a higher dynamics of the actuator is achieved. Unintentional opening of the pressure-limiting valve is thus suppressed.
  • Another advantage of the invention is that in a stuck suction throttle slide this is common again by the increased energy input.
  • the FIG. 1 shows a system diagram of an internal combustion engine 1 with common rail system.
  • the common rail system comprises the following components: a low-pressure pump 3 for conveying fuel from a fuel tank 2, a variable suction throttle 4 for influencing the fuel flow rate flowing through, a high-pressure pump 5 for conveying the fuel with pressure increase, a rail 6 and Single memory 7 for storing the fuel and injectors 8 for injecting the fuel into the combustion chambers of the internal combustion engine.
  • This common rail system is at a maximum stationary rail pressure of z. B. operated 1800 bar.
  • a passive pressure-limiting valve 10 is provided to protect against an inadmissibly high pressure level in the rail 6.
  • the fuel is removed from the rail 6 via the pressure-limiting valve 10 in the fuel tank 2.
  • the pressure level in the rail 6 drops to a value of z. B. 800 bar.
  • the operation of the internal combustion engine 1 is determined by an electronic control unit (ADEC) 11.
  • the electronic control unit 11 includes the usual components of a microcomputer system, such as a microprocessor, I / O devices, buffers and memory devices (EEPROM, RAM). In the memory modules relevant for the operation of the internal combustion engine 1 operating data in maps / curves are applied. About this calculates the electronic control unit 11 from the input variables, the output variables.
  • the following input variables are shown: the rail pressure pCR, which is measured by means of a rail pressure sensor 9, a motor speed nMOT, a signal FP for power input by the operator and an input value ON.
  • the input variable ON subsumes the charge air pressure of the exhaust gas turbocharger and the temperatures of the coolant / lubricant and of the fuel.
  • FIG. 1 are shown as output variables of the electronic control unit 11, a signal PWM for controlling the suction throttle 4, a signal ve for controlling the injectors 8 and an output variable OFF.
  • the output variable OFF is representative of the further control signals for controlling and regulating the internal combustion engine 1, for example a control signal for activating a second exhaust gas turbocharger in a register charging.
  • FIG. 2 a pressure control loop is shown.
  • the input quantity corresponds to a nominal rail pressure pCR (SL).
  • the output quantity corresponds to the raw value of the rail pressure pCR.
  • a first actual rail pressure pCR1 (IST) is determined by means of a first filter 17. This is compared with the set point pCR (SL) at a summation point, resulting in a control deviation ep.
  • a manipulated variable is calculated by means of a pressure regulator 12.
  • the manipulated variable corresponds to a volume flow qV1.
  • the physical unit of the volume flow is liters / minute.
  • the calculated nominal consumption is added to the volume flow qV1.
  • the volume flow qV1 corresponds to the input variable for a limit 13.
  • the limit 13 can be speed-dependent, input variable nMOT.
  • the output qV2 of the limit 13 is then converted in a calculation 14 into a PWM signal PWM1.
  • the PWM signal PWM1 represents the duty cycle and the frequency fPWM corresponds to the fundamental frequency.
  • the solenoid of the suction throttle is applied.
  • the high-pressure pump, the suction throttle, the rail and the individual memory correspond to a controlled system 16. From the rail 6, a desired consumption volume flow qV3 is discharged via the injectors 8. This closes the control loop.
  • the control loop described above is supplemented by a second filter 18, a function block 19, a PWM preset 20 and a switch 15.
  • the switch 15 is arranged in the signal path between the calculation 14 and the controlled system 16.
  • the switching state of the switch 15 is determined via a signal SZ, which is determined via the function block 19 as a function of a first limit value GW1, a second limit value GW2 and a second actual rail pressure pCR2 (IST).
  • the second actual rail pressure pCR2 (IST) in turn is calculated via the second filter 18 from the raw value of the rail pressure pCR.
  • the switch 15 is shown in position 1, ie the signal PWM1 determined by the calculation 14 is the input variable of the controlled system 16.
  • a signal PWM2 is the input signal for the controlled system 16.
  • the signal PWM2 is output by the PWM default 20 provided.
  • FIG. 3 consists of the FIGS. 3A to 3D , These show each over time: the logical switching state of a flag in FIG. 3A , a status in FIG. 3B , a course of the second actual rail pressure pCR2 (IST) in FIG. 3C and the course of the PWM signal as an input variable of the controlled system 16 in FIG. 3D.
  • percentages are plotted on the PWM ordinate, e.g. For example, 40% PWM signal means a corresponding duty cycle of 0.4 at constant PWM fundamental frequency fPWM.
  • the system is in normal operation, ie the rail pressure pCR is regulated by the pressure regulator 12.
  • the flag and the status have the value 0.
  • the PWM signal in Figure 3D has the exemplary value of 4%.
  • the rail pressure pCR and thus also the second actual rail pressure pCR2 (IST) begins to increase due to a load shedding.
  • a load shedding corresponds to shutting down a consumer during generator operation or the replacement of a marine propulsion system.
  • An increasing rail pressure pCR causes at a constant specification of the target rail pressure a likewise increasing in terms of absolute deviation ep.
  • This control deviation ep is converted by the pressure regulator 12 in an increasing PWM signal, whereby the cross section of the suction throttle is reduced.
  • the value of the PWM signal increases from the initial value 4%.
  • the PWM signal in control mode a maximum value of z. B. assume 22%. This maximum value is determined by the supply voltage and the maximum continuous suction throttle continuous current, eg. B. 24 volts and 2 amperes.
  • the second actual rail pressure pCR2 exceeds the first limit value GW1 of 1930 bar.
  • the flag is set to the value 1 ( FIG. 3A ) and the status changed from 0 to 1.
  • FIG. 3B is exemplified as a predetermined function a staircase function. Other mathematical functions, eg. As a parabola are possible.
  • the PWM signal is set to an increased PWM value. In FIG. 3 this corresponds to the point W1 with the associated ordinate value 80%.
  • a first time step dt1 has elapsed, ie the status changes from 1 to 2, whereby the PWM signal in Figure 3D from the value 80%, point W1, to the value 40%, point W2.
  • the PWM signal remains unchanged.
  • the I-part of the pressure regulator is initialized.
  • initialization values either zero or a value corresponding to the negative nominal consumption volume flow qV3 are specified.
  • the period dt is set to 20 msec. Due to the relatively short period of time, the maximum power loss of the output stage is not exceeded.
  • the control process is completed and the rail pressure is regulated again.
  • the pressure controller calculates the maximum possible PWM signal for the control operation, corresponding to 22% (FIG. Figure 3D ).
  • the second actual rail pressure pCR2 (IST) falls below a second limit value GW2 of 1900 bar.
  • the flag is set to the value 0.
  • the control method is enabled again, ie the function could be activated again.
  • the second actual rail pressure pCR2 (IST) decreases due to the closed suction throttle.
  • the pressure regulator reduces the PWM signal back to the original value of 4%, time t7.
  • FIG. 4 is a state transition diagram for the transitions from control mode in the control mode and shown vice versa. Also included are optional transitions if the user has activated only the first time step dt1 (dt1> 0) and / or the second time step dt2 (dt2> 0).
  • the reference numeral 21 characterizes an activated control of the rail pressure.
  • the status has the value 0 and the PWM signal as the input variable of the controlled system has the value PWM1, which is specified by the pressure controller. If the second actual rail pressure pCR2 (IST) exceeds the first limit value GW1, a load shedding is detected.
  • the control 1 state, reference 22 Upon detection of the load shedding and activated first time step dt1 (dt1> 0), the control 1 state, reference 22, is changed. In this state, the status has the value 1 and the PWM signal for acting on the controlled system is controlled via the PWM specification, output signal PWM2. The PWM signal is temporarily set to the value of the PWM signal via the PWM specification
  • the control 2 state, reference numeral 23 is changed.
  • the status has the value 2 and the PWM signal is set to the value of the point W2 via the PWM default.
  • FIG. 5 is a program flow chart for the state control shown.
  • S1 it is checked whether the flag has the value 0. If the test result is positive, the program part is run through with steps S2 to S14. If the result of the test is negative, the program part is run through with steps S7 to S9.
  • S2 checks whether there is load shedding. If the second actual rail pressure pCR2 (IST) is below the first limit value GW1, the control of the rail pressure is maintained at S10, ie the PWM signal represents a function of the control deviation ep. Thereafter, this program part is ended. If a load shedding is detected at S2, the flag is set to the value 1 at S3 and tested at S4 whether the user has activated the first time step dt1. If the timer is activated (result of the query: yes), the PWM signal is controlled via the PWM specification at S5, here the value PWM2 (W1). Afterwards, the status is set to the value 1 at S6 and this program part is ended.
  • FIG. 6 a program flow chart for the temporary PWM specification is displayed when the first time step dt1 is activated, state: control 1.
  • a time t is set to the value t plus sampling time.
  • the PWM signal is set to the value PWM2 (W1), for example, at S10. B. 80%, set and then leave this program part.
  • the time is set to the value 0 at S3 and checked at S4 whether the user has activated the second time step dt2. If no second time step dt2 has been activated, the program part is run through with steps S5 to S9. When the second time step dt2 is activated, the program part is run through with the steps S11 and S12.
  • the I-part of the pressure controller is initialized at S5.
  • the value 0 or a value corresponding to the negative nominal consumption volume flow can be used as initialization values.
  • the control of the rail pressure is then activated, ie the PWM signal is calculated via the pressure regulator as a function of the control deviation ep.
  • the status is set to 0 at S7.
  • the PWM signal is set to the value of the point W2 via the PWM specification, output signal PWM2, at S11. Then the status is set to the value 2 at S12 and the program part is exited.
  • FIG. 7 a program flow chart for the state control 2 is shown.
  • a sampling time is added at a time t.
  • the status is set to the value 0.
  • the flag is set to the value 0 in S8 and the program part is left. If the test at S7 shows that the second actual rail pressure pCR2 (IST) is above the second limit value GW2, the program part is immediately left.
  • the method was described with reference to a load shedding.
  • the illustrated method can generally also always be used when a very rapid reduction of the injection quantity causes a pressure increase in the rail. This takes place during load shedding, an engine stop as well as a sudden reduction of the desired torque or the desired injection quantity with detection of a supercharger overspeed in an exhaust gas turbocharger.

Abstract

The invention relates to a control and regulation method for an internal combustion engine (1) provided with a Common-Railsystem, wherein rail pressure (pCR) is regulated in normal operation. The invention is characterised in that a second actual rail pressure is determined by a second filter, load shedding is recognised when the second actual rail pressure exceeds a first threshold value and is controlled by recognising a load shedding of the rail pressure (pCR), wherein the PWM-signal (PWM) is set by a PWM-specification to a PWM value which is higher than in normal operation.

Description

Die Erfindung betrifft ein Steuer- und Regelverfahren für eine Brennkraftmaschine mit einem Common-Railsystem, bei dem im Normalbetrieb der Raildruck geregelt wird.The invention relates to a control and regulating method for an internal combustion engine having a common rail system, in which the rail pressure is regulated in normal operation.

Bei einem Common-Railsystem fördert eine Hochdruck-Pumpe den Kraftstoff aus einem Kraftstofftank in ein Rail. Der Zulaufquerschnitt zur Hochdruck-Pumpe wird über eine veränderliche Saugdrossel festgelegt. Am Rail angeschlossen sind Injektoren über welche der Kraftstoff in die Brennräume der Brennkraftmaschine eingespritzt wird. Da die Güte der Verbrennung entscheidend vom Druckniveau im Rail abhängt, wird dieses geregelt. Der Hochdruck-Regelkreis umfasst einen Druckregler, die Saugdrossel mit Hochdruck-Pumpe und das Rail als Regelstrecke sowie ein Filter im Rückkopplungszweig. Typischerweise ist der Druckregler als PID-Regler oder PIDT1-Regler ausgeführt, d. h. dieser umfasst zumindest einen Proportional-Anteil (P-Anteil), einen Integral-Anteil (I-Anteil) und einen Differential-Anteil (D-Anteil). In diesem Hochdruck-Regelkreis entspricht das Druckniveau im Rail der Regelgröße. Die gemessenen Druckwerte des Rails werden über das Filter in einen Ist-Raildruck gewandelt und mit einem Soll-Raildruck verglichen. Die sich hieraus ergebende Regelabweichung wird über den Druckregler in ein Stellsignal für die Saugdrossel gewandelt. Das Stellsignal entspricht z. B. einem Volumenstrom mit der Einheit Liter/Minute. Typischerweise ist das Stellsignal elektrisch als PWM-Signal (pulsweitenmoduliert) ausgeführt. Der zuvor beschriebene Hochdruck-Regelkreis ist aus der DE 103 30 466 B3 bekannt.
In DE 19 731 995 ist das übertragungsverhalten des Druckreglers abhängig von den Betriebparametern des Brennkraftmaschine.
Zum Schutz vor einem zu hohen Druckniveau ist am Rail ein passives Druck-Begrenzungsventil angeordnet. Bei einem zu hohen Druckniveau öffnet das Druck-Begrenzungsventil, wodurch der Kraftstoff aus dem Rail in den Kraftstofftank abgeleitet wird.
In a common rail system, a high pressure pump delivers fuel from a fuel tank into a rail. The inlet cross section to the high pressure pump is determined by a variable suction throttle. On the rail are injectors via which the fuel is injected into the combustion chambers of the internal combustion engine. Since the quality of the combustion depends crucially on the pressure level in the rail, this is regulated. The high-pressure control circuit includes a pressure regulator, the suction throttle with high-pressure pump and the rail as a controlled system and a filter in the feedback branch. Typically, the pressure regulator is designed as a PID controller or PIDT1 controller, ie this comprises at least one proportional component (P component), one integral component (I component) and one differential component (D component). In this high-pressure control circuit, the pressure level in the rail corresponds to the controlled variable. The measured pressure values of the rail are converted via the filter into an actual rail pressure and compared with a desired rail pressure. The resulting deviation is converted via the pressure regulator into a control signal for the suction throttle. The actuating signal corresponds to z. B. a volume flow with the unit liters / minute. typically, the control signal is electrically designed as a PWM signal (pulse width modulated). The high-pressure control circuit described above is from the DE 103 30 466 B3 known.
In DE 19 731 995 the transmission behavior of the pressure regulator is dependent on the operating parameters of the internal combustion engine.
To protect against too high a pressure level, a passive pressure limiting valve is arranged on the rail. If the pressure level is too high, the pressure-limiting valve opens, causing the fuel to drain from the rail into the fuel tank.

In der Praxis kann folgendes Problem auftreten: Bei einem Lastabwurf erhöht sich unmittelbar die Motordrehzahl. Eine sich erhöhende Motordrehzahl bewirkt bei einer konstanten Soll-Drehzahl eine sich betragsmäßig erhöhende Drehzahl-Regelabweichung. Hierauf reagiert ein Drehzahlregler, indem er die Einspritzmenge als Stellgröße reduziert. Eine geringere Einspritzmenge wiederum bewirkt, dass weniger Kraftstoff dem Rail entnommen wird und daher sich das Druckniveau im Rail rasch erhöht. Erschwerend kommt hinzu, dass die Förderleistung der Hochdruck-Pumpe drehzahlabhängig ist. Eine sich erhöhende Motordrehzahl bedeutet eine höhere Förderleistung und bewirkt damit eine zusätzliche Druckerhöhung im Rail. Da die Hochdruck-Regelung eine vergleichsweise lange Reaktionszeit besitzt, kann der Raildruck soweit ansteigen, dass das Druck-Begrenzungsventil öffnet, z. B. bei 1950 bar. Dadurch sinkt der Raildruck z. B. auf einen Wert von 800 bar ab. Bei diesem Druckniveau stellt sich ein Gleichgewichtszustand von gefördertem Kraftstoff zu abgeleitetem Kraftstoff ein. Dies bedeutet, dass trotz des geöffneten Druck-Begrenzungsventils der Raildruck nicht weiter absinkt. Das Druck-Begrenzungsventil schließt erst dann wieder, wenn die Drehzahl der Brennkraftmaschine reduziert wird. Problematisch ist daher das unerwartete Öffnen des Druck-Begrenzungsventils bei einem Lastabwurf.In practice, the following problem can occur: When a load shedding directly increases the engine speed. An increasing engine speed causes a magnitude-increasing speed control deviation at a constant setpoint speed. A speed controller reacts to this by reducing the injection quantity as a manipulated variable. A smaller injection quantity, in turn, causes less fuel to be taken from the rail and therefore the pressure level in the rail increases rapidly. To make matters worse, that the delivery rate of the high-pressure pump is speed-dependent. An increasing engine speed means a higher capacity and thus causes an additional pressure increase in the rail. Since the high-pressure control has a comparatively long reaction time, the rail pressure can rise so far that the pressure-limiting valve opens, z. At 1950 bar. As a result, the rail pressure drops z. B. from a value of 800 bar. At this pressure level, an equilibrium state of delivered fuel to derived fuel sets. This means that the rail pressure does not drop any further despite the open pressure-limiting valve. The pressure limiting valve only closes again when the speed of the internal combustion engine is reduced. The problem is therefore the unexpected opening of the pressure-limiting valve in a load shedding.

Die nicht vorveröffentlichte deutsche Patentanmeldung mit dem amtlichen Aktenzeichen DE 10 2004 023 365.9 beschreibt ebenfalls einen Druckregelkreis für ein Common-Railsystem. Bei diesem Druckregelkreis ist im Rückkopplungszweig zusätzlich zum ersten Filter ein zweites Filter angeordnet. Das zweite Filter besitzt eine kleinere Zeitkonstante und einen geringeren Phasenverzug als das erste Filter. Für die Berechnung der Regleranteile wird der vom zweiten Filter ermittelte Ist-Raildruck verwendet, woraus eine verbesserte Dynamik des Hochdruck-Regelkreises bei einem Lastabwurf resultiert.The not previously published German patent application with the official file number DE 10 2004 023 365.9 also describes a pressure control loop for a common rail system. In this pressure control loop, a second filter is arranged in addition to the first filter in the feedback branch. The second filter has a smaller time constant and a lower phase delay than the first filter. For the calculation of the controller components, the actual rail pressure determined by the second filter is used, which results in an improved dynamics of the high-pressure control circuit during load shedding.

Kritisch bleibt jedoch, dass das vom Druckregler berechnete Stellsignal bzw. das PWM-Signal durch die elektrischen Kenngrößen des elektronischen Steuergeräts, z. B. maximaler Dauerstrom sowie Verlustleistung des Ausgangstransistors, stark eingeschränkt ist. Dies bedeutet, dass bei einer großen Regelabweichung der Druckregler zwar eine maximale Stellgröße berechnet, diese aber letztendlich in ein PWM-Signal mit nur z. B. 22% Impuls-Pausen-Verhältnis umgesetzt werden kann. Ein dauerhaft anliegender höherer PWM-Wert würde die Deaktivierung der Endstufe des elektronischen Steuergeräts bewirken.However, it remains critical that the control signal calculated by the pressure regulator or the PWM signal is limited by the electrical characteristics of the electronic control unit, eg. B. maximum continuous current and power loss of the output transistor is severely limited. This means that in the case of a large control deviation, the pressure regulator calculates a maximum manipulated variable, but this ultimately results in a PWM signal with only approx. B. 22% pulse-pause ratio can be implemented. A permanently applied higher PWM value would cause deactivation of the final stage of the electronic control unit.

Aufgabe der Erfindung ist es, die Sicherheit der Druckregelung bei einem Lastabwurf zu verbessern.The object of the invention is to improve the safety of the pressure control in a load shedding.

Die Aufgabe wird durch die Merkmale von Patentanspruch 1 gelöst. Die Ausgestaltungen sind in den Unteransprüchen dargestellt.The object is solved by the features of claim 1. The embodiments are shown in the subclaims.

Die Erfindung sieht vor, dass ein zweiter Ist-Raildruck über ein zweites Filter aus dem Raildruck bestimmt wird und ein Lastabwurf erkannt wird, wenn der zweite Ist-Raildruck einen Grenzwert übersteigt. Mit Erkennen eines Lastabwurfs wird dann der Raildruck gesteuert, indem das PWM-Signal über eine PWM-Vorgabe auf einen gegenüber dem Normalbetrieb erhöhten PWM-Wert gesetzt wird. Dieser erhöhte PWM-Wert wird während eines Zeitraums vorgegeben, z. B. als Treppenfunktion.The invention provides that a second actual rail pressure is determined via a second filter from the rail pressure and a Load shedding is detected when the second actual rail pressure exceeds a limit. Upon detection of a load shedding the rail pressure is then controlled by the PWM signal is set via a PWM default to a compared to the normal operation increased PWM value. This increased PWM value is set during a time period, e.g. B. as a staircase function.

Zentraler Gedanke der Erfindung ist es den Schließvorgang der Saugdrossel durch die Vorgabe eines hohen PWM-Werts wesentlich zu beschleunigen. Verwendet wird eine Saugdrossel, welche beim Schließen gegen eine Feder arbeitet, d. h. welche stromlos offen ist. Wird das PWM-Signal vergrößert, so wird der Weg des Saugdrossel-Schiebers vergrößert und der Öffnungsquerschnitt der Saugdrossel verringert. In der Praxis ist es ausreichend, diese PWM-Vorgabe während einer sehr kurzen Zeit, z. B. 20 Millisekunden, wirken zu lassen. Durch das kurzzeitige Einbringen von höherer Energie in die Saugdrossel wird eine höhere Dynamik des Stellglieds erreicht. Ein unbeabsichtigtes Öffnen des Druck-Begrenzungsventils wird somit unterdrückt.The central idea of the invention is to substantially accelerate the closing process of the suction throttle by setting a high PWM value. Used is a suction throttle, which works against a spring when closing, d. H. which is normally open. If the PWM signal is increased, the path of the suction throttle slide is increased and the opening cross section of the suction throttle is reduced. In practice, it is sufficient to use this PWM specification for a very short time, e.g. B. 20 milliseconds, to act. The short-term introduction of higher energy in the suction throttle a higher dynamics of the actuator is achieved. Unintentional opening of the pressure-limiting valve is thus suppressed.

Ein weiterer Vorteil der Erfindung besteht darin, dass bei einem festsitzenden Saugdrossel-Schieber dieser durch die erhöhte Energievorgabe wieder gängig wird.Another advantage of the invention is that in a stuck suction throttle slide this is common again by the increased energy input.

In den Zeichnungen ist ein bevorzugtes Ausführungsbeispiel dargestellt. Es zeigen:

  • Fig. 1 ein Systemschaubild;
  • Fig. 2 einen Druck-Regelkreis;
  • Fig. 3 ein Zeitdiagramm;
  • Fig. 4 ein Zustandübergangsdiagramm;
  • Fig. 5 einen Programmablaufplan;
  • Fig. 6 einen Programmablaufplan;
  • Fig. 7 einen Programmablaufplan.
In the drawings, a preferred embodiment is shown. Show it:
  • Fig. 1 a system diagram;
  • Fig. 2 a pressure control loop;
  • Fig. 3 a timing diagram;
  • Fig. 4 a state transition diagram;
  • Fig. 5 a program schedule;
  • Fig. 6 a program schedule;
  • Fig. 7 a program schedule.

Die Figur 1 zeigt ein Systemschaubild einer Brennkraftmaschine 1 mit Common-Railsystem. Das Common-Railsystem umfasst folgende Komponenten: eine Niederdruck-Pumpe 3 zur Förderung von Kraftstoff aus einem Kraftstofftank 2, eine veränderbare Saugdrossel 4 zur Beeinflussung des durchströmenden Kraftstoff-Volumenstroms, eine Hochdruck-Pumpe 5 zur Förderung des Kraftstoffs unter Druckerhöhung, ein Rail 6 sowie Einzelspeicher 7 zum Speichern des Kraftstoffs und Injektoren 8 zum Einspritzen des Kraftstoffs in die Brennräume der Brennkraftmaschine 1.The FIG. 1 shows a system diagram of an internal combustion engine 1 with common rail system. The common rail system comprises the following components: a low-pressure pump 3 for conveying fuel from a fuel tank 2, a variable suction throttle 4 for influencing the fuel flow rate flowing through, a high-pressure pump 5 for conveying the fuel with pressure increase, a rail 6 and Single memory 7 for storing the fuel and injectors 8 for injecting the fuel into the combustion chambers of the internal combustion engine. 1

Dieses Common-Railsystem wird bei einem maximalen stationären Raildruck von z. B. 1800 bar betrieben. Zum Schutz vor einem unzulässig hohen Druckniveau im Rail 6 ist ein passives Druck-Begrenzungsventil 10 vorgesehen. Dieses öffnet bei einem Druckniveau von z. B. 1950 bar. Im geöffneten Zustand wird der Kraftstoff aus dem Rail 6 über das Druck-Begrenzungsventil 10 in den Kraftstofftank 2 abgesteuert. Hierdurch sinkt das Druckniveau im Rail 6 auf einen Wert von z. B. 800 bar.This common rail system is at a maximum stationary rail pressure of z. B. operated 1800 bar. To protect against an inadmissibly high pressure level in the rail 6, a passive pressure-limiting valve 10 is provided. This opens at a pressure level of z. B. 1950 bar. In the open state, the fuel is removed from the rail 6 via the pressure-limiting valve 10 in the fuel tank 2. As a result, the pressure level in the rail 6 drops to a value of z. B. 800 bar.

Die Betriebsweise der Brennkraftmaschine 1 wird durch ein elektronisches Steuergerät (ADEC) 11 bestimmt. Das elektronische Steuergerät 11 beinhaltet die üblichen Bestandteile eines Mikrocomputersystems, beispielsweise einen Mikroprozessor, I/O-Bausteine, Puffer und Speicherbausteine (EEPROM, RAM). In den Speicherbausteinen sind die für den Betrieb der Brennkraftmaschine 1 relevanten Betriebsdaten in Kennfeldern/Kennlinien appliziert. Über diese berechnet das elektronische Steuergerät 11 aus den Eingangsgrößen die Ausgangsgrößen. In Figur 1 sind exemplarisch folgende Eingangsgrößen dargestellt: der Raildruck pCR, der mittels eines Rail-Drucksensors 9 gemessen wird, eine Motor-Drehzahl nMOT, ein Signal FP zur Leistungsvorgabe durch den Betreiber und eine Eingangsgröße EIN. Unter der Eingangsgröße EIN sind beispielsweise der Ladeluftdruck der Abgasturbolader und die Temperaturen der Kühl-/Schmiermittel sowie des Kraftstoffs subsumiert.The operation of the internal combustion engine 1 is determined by an electronic control unit (ADEC) 11. The electronic control unit 11 includes the usual components of a microcomputer system, such as a microprocessor, I / O devices, buffers and memory devices (EEPROM, RAM). In the memory modules relevant for the operation of the internal combustion engine 1 operating data in maps / curves are applied. About this calculates the electronic control unit 11 from the input variables, the output variables. In FIG. 1 For example, the following input variables are shown: the rail pressure pCR, which is measured by means of a rail pressure sensor 9, a motor speed nMOT, a signal FP for power input by the operator and an input value ON. For example, the input variable ON subsumes the charge air pressure of the exhaust gas turbocharger and the temperatures of the coolant / lubricant and of the fuel.

In Figur 1 sind als Ausgangsgrößen des elektronischen Steuergeräts 11 ein Signal PWM zur Ansteuerung der Saugdrossel 4, ein Signal ve zur Ansteuerung der Injektoren 8 und eine Ausgangsgröße AUS dargestellt. Die Ausgangsgröße AUS steht stellvertretend für die weiteren Stellsignale zur Steuerung und Regelung der Brennkraftmaschine 1, beispielsweise ein Stellsignal zur Aktivierung eines zweiten Abgasturboladers bei einer Registeraufladung.In FIG. 1 are shown as output variables of the electronic control unit 11, a signal PWM for controlling the suction throttle 4, a signal ve for controlling the injectors 8 and an output variable OFF. The output variable OFF is representative of the further control signals for controlling and regulating the internal combustion engine 1, for example a control signal for activating a second exhaust gas turbocharger in a register charging.

In Figur 2 ist ein Druck-Regelkreis dargestellt. Die Eingangsgröße entspricht einem Soll-Raildruck pCR(SL). Die Ausgangsgröße entspricht dem Rohwert des Raildrucks pCR. Aus dem Rohwert des Raildrucks pCR wird mittels eines ersten Filters 17 ein erster Ist-Raildruck pCR1(IST) bestimmt. Dieser wird mit dem Sollwert pCR(SL) an einem Summationspunkt verglichen, woraus eine Regelabweichung ep resultiert. Aus der Regelabweichung ep wird mittels eines Druckreglers 12 eine Stellgröße berechnet. Die Stellgröße entspricht einem Volumenstrom qV1. Die physikalische Einheit des Volumenstroms ist Liter/Minute. Optional ist vorgesehen, dass zum Volumenstrom qV1 der berechnete Sollverbrauch addiert wird. Der Volumenstrom qV1 entspricht der Eingangsgröße für eine Begrenzung 13. Die Begrenzung 13 kann drehzahlabhängig ausgeführt sein, Eingangsgröße nMOT. Die Ausgangsgröße qV2 der Begrenzung 13 wird danach in einer Berechnung 14 in ein PWM-Signal PWM1 umgerechnet. Das PWM-Signal PWM1 stellt hierbei die Einschaltdauer dar und die Frequenz fPWM entspricht der Grundfrequenz. Bei der Umrechnung werden Schwankungen der Betriebsspannung und des Kraftstoffvordrucks mitberücksichtigt. Mit dem PWM-Signal PWM1 wird dann die Magnetspule der Saugdrossel beaufschlagt. Dadurch wird der Weg des Magnetkerns verändert, wodurch der Förderstrom der Hochdruck-Pumpe frei beeinflusst wird. Die Hochdruck-Pumpe, die Saugdrossel, das Rail und die Einzelspeicher entsprechen einer Regelstrecke 16. Aus dem Rail 6 wird über die Injektoren 8 ein Soll-Verbrauchsvolumenstrom qV3 abgeführt. Damit ist der Regelkreis geschlossen.In FIG. 2 a pressure control loop is shown. The input quantity corresponds to a nominal rail pressure pCR (SL). The output quantity corresponds to the raw value of the rail pressure pCR. From the raw value of the rail pressure pCR, a first actual rail pressure pCR1 (IST) is determined by means of a first filter 17. This is compared with the set point pCR (SL) at a summation point, resulting in a control deviation ep. From the control deviation ep, a manipulated variable is calculated by means of a pressure regulator 12. The manipulated variable corresponds to a volume flow qV1. The physical unit of the volume flow is liters / minute. Optionally, it is provided that the calculated nominal consumption is added to the volume flow qV1. The volume flow qV1 corresponds to the input variable for a limit 13. The limit 13 can be speed-dependent, input variable nMOT. The output qV2 of the limit 13 is then converted in a calculation 14 into a PWM signal PWM1. The PWM signal PWM1 represents the duty cycle and the frequency fPWM corresponds to the fundamental frequency. When converting, fluctuations in the operating voltage and the pilot fuel pressure are taken into account. With the PWM signal PWM1 then the solenoid of the suction throttle is applied. As a result, the path of the magnetic core is changed, whereby the flow of the high-pressure pump is freely influenced. The high-pressure pump, the suction throttle, the rail and the individual memory correspond to a controlled system 16. From the rail 6, a desired consumption volume flow qV3 is discharged via the injectors 8. This closes the control loop.

Der zuvor beschriebene Regelkreis wird durch ein zweites Filter 18, einen Funktionsblock 19, eine PWM-Vorgabe 20 und einen Schalter 15 ergänzt. Der Schalter 15 ist im Signalpfad zwischen der Berechnung 14 und der Regelstrecke 16 angeordnet. Der Schaltzustand des Schalters 15 wird über ein Signal SZ festgelegt, welches über den Funktionsblock 19 in Abhängigkeit eines ersten Grenzwerts GW1, eines zweiten Grenzwerts GW2 und eines zweiten Ist-Raildrucks pCR2(IST) bestimmt wird. Der zweite Ist-Raildruck pCR2(IST) wiederum wird über das zweite Filter 18 aus dem Rohwert des Raildrucks pCR berechnet.The control loop described above is supplemented by a second filter 18, a function block 19, a PWM preset 20 and a switch 15. The switch 15 is arranged in the signal path between the calculation 14 and the controlled system 16. The switching state of the switch 15 is determined via a signal SZ, which is determined via the function block 19 as a function of a first limit value GW1, a second limit value GW2 and a second actual rail pressure pCR2 (IST). The second actual rail pressure pCR2 (IST) in turn is calculated via the second filter 18 from the raw value of the rail pressure pCR.

In Figur 2 ist der Schalter 15 in der Stellung 1 dargestellt, d. h. das von der Berechnung 14 festgelegte Signal PWM1 ist die Eingangsgröße der Regelstrecke 16. In einer Stellung 2 des Schalters 15 ist ein Signal PWM2 das Eingangssignal für die Regelstrecke 16. Das Signal PWM2 wird von der PWM-Vorgabe 20 bereitgestellt.In FIG. 2 the switch 15 is shown in position 1, ie the signal PWM1 determined by the calculation 14 is the input variable of the controlled system 16. In a position 2 of the switch 15, a signal PWM2 is the input signal for the controlled system 16. The signal PWM2 is output by the PWM default 20 provided.

Das Blockschaltbild der Figur 2 besitzt folgende Funktionalität:

  • Im Normalbetrieb ist der Schalter 15 in Stellung 1, d. h. die vom Druckregler 12 berechnete Stellgröße qV1 wird begrenzt, in ein PWM-Signal PWM1 umgesetzt und damit die Regelstrecke 16 beaufschlagt. Übersteigt der zweite Ist-Raildruck pCR2(IST) den ersten Grenzwert GW1, so ändert der Funktionsblock 19 den Signalpegel des Signals SZ, wodurch der Schalter 15 in die Stellung 2 wechselt. In dieser Stellung wird über die PWM-Vorgabe 20 temporär ein gegenüber dem Normalbetrieb erhöhter PWM-Wert PWM2 ausgegeben. Mit anderen Worten: Es wird vom Regelungsbetrieb in den Steuerungsbetrieb gewechselt. Nach Ablauf eines vorgebbaren Zeitraums wechselt dann der Schalter 15 wieder zurück in Stellung 1.
The block diagram of FIG. 2 has the following functionality:
  • In normal operation, the switch 15 is in position 1, that is, the manipulated variable qV1 calculated by the pressure regulator 12 is limited, converted into a PWM signal PWM1 and thus applied to the controlled system 16. If the second actual rail pressure pCR2 (IST) exceeds the first limit value GW1, the function block 19 changes the signal level of the signal SZ, whereby the switch 15 changes to position 2. In this position, a PWM value PWM2 which is increased over normal operation is temporarily output via the PWM preset 20. In other words, it is changed from the control mode to the control mode. After a predeterminable period, the switch 15 then switches back to position 1.

Die Figur 3 besteht aus den Figuren 3A bis 3D. Diese zeigen jeweils über der Zeit: den logischen Schaltzustand eines Merkers in Figur 3A, einen Status in Figur 3B, einen Verlauf des zweiten Ist-Raildrucks pCR2(IST) in Figur 3C und den Verlauf des PWM-Signals als Eingangsgröße der Regelstrecke 16 in Figur 3D. Als Werte sind auf der PWM-Ordinate Prozentzahlen aufgetragen, z. B. bedeuten 40% PWM-Signal ein entsprechendes Impuls-Pausen-Verhältnis von 0,4 bei konstanter PWM-Grundfrequenz fPWM. Zum Zeitpunkt t1 befindet sich das System im Normalbetrieb, d. h. der Raildruck pCR wird über den Druckregler 12 geregelt. Der Merker und der Status besitzen den Wert 0. Im Rail herrscht ein Druckniveau von 1800 bar. Das PWM-Signal in Figur 3D besitzt den exemplarischen Wert von 4%. Nach dem Zeitpunkt t1 beginnt sich der Raildruck pCR und damit auch der zweite Ist-Raildruck pCR2(IST) aufgrund eines Lastabwurfs zu vergrößern. In der Praxis entspricht ein Lastabwurf dem Abschalten eines Verbrauchers bei Generatorbetrieb oder dem Austauchen eines Schiffsantriebs. Ein sich erhöhender Raildruck pCR bewirkt bei einer konstanten Vorgabe des Soll-Raildrucks eine sich ebenfalls betragsmäßig erhöhende Regelabweichung ep. Diese Regelabweichung ep wird vom Druckregler 12 in ein sich erhöhendes PWM-Signal umgesetzt, wodurch der Querschnitt der Saugdrossel verringert wird. In Figur 3D erhöht sich daher der Wert des PWM-Signals vom Anfangswert 4%. In der Praxis kann das PWM-Signal im Regelbetrieb einen maximalen Wert von z. B. 22% annehmen. Dieser Maximalwert wird durch die Versorgungsspannung und den größtmöglichen Saugdrossel-Dauerstrom festgelegt, z. B. 24 Volt und 2 Ampere.The FIG. 3 consists of the FIGS. 3A to 3D , These show each over time: the logical switching state of a flag in FIG. 3A , a status in FIG. 3B , a course of the second actual rail pressure pCR2 (IST) in FIG. 3C and the course of the PWM signal as an input variable of the controlled system 16 in FIG. 3D. As values, percentages are plotted on the PWM ordinate, e.g. For example, 40% PWM signal means a corresponding duty cycle of 0.4 at constant PWM fundamental frequency fPWM. At time t1, the system is in normal operation, ie the rail pressure pCR is regulated by the pressure regulator 12. The flag and the status have the value 0. In the rail there is a pressure level of 1800 bar. The PWM signal in Figure 3D has the exemplary value of 4%. After the time t1, the rail pressure pCR and thus also the second actual rail pressure pCR2 (IST) begins to increase due to a load shedding. In practice, a load shedding corresponds to shutting down a consumer during generator operation or the replacement of a marine propulsion system. An increasing rail pressure pCR causes at a constant specification of the target rail pressure a likewise increasing in terms of absolute deviation ep. This control deviation ep is converted by the pressure regulator 12 in an increasing PWM signal, whereby the cross section of the suction throttle is reduced. In Figure 3D Therefore, the value of the PWM signal increases from the initial value 4%. In practice, the PWM signal in control mode, a maximum value of z. B. assume 22%. This maximum value is determined by the supply voltage and the maximum continuous suction throttle continuous current, eg. B. 24 volts and 2 amperes.

Zum Zeitpunkt t2 übersteigt der zweite Ist-Raildruck pCR2(IST) den ersten Grenzwert GW1 von 1930 bar. Mit Überschreiten dieses Grenzwerts wird der Merker auf den Wert 1 gesetzt (Figur 3A) und der Status von 0 nach 1 verändert. Dadurch wird die Regelung des Raildrucks deaktiviert und das PWM-Signal in Figur 3D über die PWM-Vorgabe 20 während eines Zeitraums dt gesteuert. In Figur 3B ist exemplarisch als vorgegebene Funktion eine Treppenfunktion dargestellt. Andere mathematische Funktionen, z. B. eine Parabel, sind möglich.
Zum Zeitpunkt t2 wird daher das PWM-Signal auf einen erhöhten PWM-Wert gesetzt. In Figur 3 entspricht dies dem Punkt W1 mit dem dazugehörigen Ordinatenwert 80%. Zum Zeitpunkt t3 ist eine erste Zeitstufe dt1 abgelaufen, d. h. der Status ändert sich von 1 nach 2, wodurch das PWM-Signal in Figur 3D vom Wert 80%, Punkt W1, auf den Wert 40%, Punkt W2, verringert wird. Während eines zweiten Zeitraums dt2 bleibt das PWM-Signal unverändert. Mit Ablauf der zweiten Zeitstufe dt2 und Ende des Zeitraums dt wird der I-Anteil des Druckreglers initialisiert. Als Initialisierungswerte werden entweder Null oder ein dem negativen Soll-Verbrauchsvolumenstrom qV3 entsprechender Wert vorgegeben. In der Praxis wird der Zeitraum dt auf 20 msec gesetzt. Auf Grund der relativ kurzen Zeitdauer wird die maximale Verlustleistung der Ausgangsstufe nicht überschritten.
At time t2, the second actual rail pressure pCR2 (IST) exceeds the first limit value GW1 of 1930 bar. When this limit value is exceeded, the flag is set to the value 1 ( FIG. 3A ) and the status changed from 0 to 1. This deactivates the control of the rail pressure and the PWM signal in Figure 3D controlled via the PWM default 20 during a period dt. In FIG. 3B is exemplified as a predetermined function a staircase function. Other mathematical functions, eg. As a parabola are possible.
At time t2, therefore, the PWM signal is set to an increased PWM value. In FIG. 3 this corresponds to the point W1 with the associated ordinate value 80%. At time t3, a first time step dt1 has elapsed, ie the status changes from 1 to 2, whereby the PWM signal in Figure 3D from the value 80%, point W1, to the value 40%, point W2. During a second period dt2, the PWM signal remains unchanged. With expiration of the second time step dt2 and end of the period dt, the I-part of the pressure regulator is initialized. As initialization values, either zero or a value corresponding to the negative nominal consumption volume flow qV3 are specified. In practice, the period dt is set to 20 msec. Due to the relatively short period of time, the maximum power loss of the output stage is not exceeded.

Nach Initialisierung des Druckreglers ist das Steuerungsverfahren beendet und der Raildruck wird wieder geregelt. Da zum Zeitpunkt t4 der Raildruck pCR bzw. der zweite Ist-Raildruck pCR2(IST) gegenüber dem Normalbetrieb ein erhöhtes Niveau aufweist, berechnet der Druckregler das maximal mögliche PWM-Signal für den Regelbetrieb, entsprechend 22% (Figur 3D). Zum Zeitpunkt t5 unterschreitet der zweite Ist-Raildruck pCR2(IST) einen zweiten Grenzwert GW2 von 1900 bar. Mit Unterschreiten des zweiten Grenzwerts GW2 wird der Merker auf den Wert 0 gesetzt. Hierdurch wird das Steuerungsverfahren wieder freigeschaltet, d. h. die Funktion könnte wieder aktiviert werden. Wie in Figur 3C dargestellt, verringert sich der zweite Ist-Raildruck pCR2(IST) aufgrund der geschlossenen Saugdrossel. Zum Zeitpunkt t6 wird davon ausgegangen, dass der zweite Ist-Raildruck pCR2(IST) das ursprüngliche Druckniveau von 1800 bar unterschreitet. Als Folgereaktion verringert der Druckregler das PWM-Signal wieder auf den ursprünglichen Wert von 4%, Zeitpunkt t7.After initialization of the pressure regulator, the control process is completed and the rail pressure is regulated again. There to When the rail pressure pCR or the second actual rail pressure pCR2 (IST) has increased at an elevated level compared to normal operation, the pressure controller calculates the maximum possible PWM signal for the control operation, corresponding to 22% (FIG. Figure 3D ). At time t5, the second actual rail pressure pCR2 (IST) falls below a second limit value GW2 of 1900 bar. When the second limit value GW2 is undershot, the flag is set to the value 0. As a result, the control method is enabled again, ie the function could be activated again. As in FIG. 3C shown, the second actual rail pressure pCR2 (IST) decreases due to the closed suction throttle. At time t6, it is assumed that the second actual rail pressure pCR2 (IST) falls below the original pressure level of 1800 bar. As a consequence, the pressure regulator reduces the PWM signal back to the original value of 4%, time t7.

In Figur 4 ist ein Zustandübergangsdiagramm für die Übergänge vom Regelungsbetrieb in den Steuerungsbetrieb und umgekehrt dargestellt. Enthalten sind auch optionale Übergänge, wenn vom Anwender nur die erste Zeitstufe dt1 (dt1 > 0) und/oder die zweite Zeitstufe dt2 (dt2 > 0) aktiviert wurden. Das Bezugszeichen 21 charakterisiert eine aktivierte Regelung des Raildrucks. Im Regelungsbetrieb besitzt der Status den Wert 0 und das PWM-Signal als Eingangsgröße der Regelstrecke besitzt den Wert PWM1, welcher vom Druckregler vorgegeben wird. Überschreitet der zweite Ist-Raildruck pCR2(IST) den ersten Grenzwert GW1, so wird ein Lastabwurf erkannt. Mit Erkennen des Lastabwurfs und aktivierter erster Zeitstufe dt1 (dt1 > 0) wird in den Zustand Steuerung 1, Bezugszeichen 22, gewechselt. In diesem Zustand besitzt der Status den Wert 1 und das PWM-Signal zur Beaufschlagung der Regelstrecke wird über die PWM-Vorgabe, Ausgangssignal PWM2, gesteuert. Über die PWM-Vorgabe wird das PWM-Signal temporär auf den Wert desIn FIG. 4 is a state transition diagram for the transitions from control mode in the control mode and shown vice versa. Also included are optional transitions if the user has activated only the first time step dt1 (dt1> 0) and / or the second time step dt2 (dt2> 0). The reference numeral 21 characterizes an activated control of the rail pressure. In control mode, the status has the value 0 and the PWM signal as the input variable of the controlled system has the value PWM1, which is specified by the pressure controller. If the second actual rail pressure pCR2 (IST) exceeds the first limit value GW1, a load shedding is detected. Upon detection of the load shedding and activated first time step dt1 (dt1> 0), the control 1 state, reference 22, is changed. In this state, the status has the value 1 and the PWM signal for acting on the controlled system is controlled via the PWM specification, output signal PWM2. The PWM signal is temporarily set to the value of the PWM signal via the PWM specification

Punkts W1 gesetzt. Mit Ablauf der ersten Zeitstufe dt1 und aktivierter zweiter Zeitstufe dt2 (dt2 > 0) wird in den Zustand Steuerung 2, Bezugszeichen 23, gewechselt. In diesem Zustand besitzt der Status den Wert 2 und das PWM-Signal wird über die PWM-Vorgabe auf den Wert des Punkts W2 gesetzt. Mit Ablauf der zweiten Zeitstufe dt2 und damit Ablauf des Zeitraums dt wird vom Zustand Steuerung 2 in den Zustand Regelung, Bezugszeichen 21, gewechselt. Die Steuerung des Raildrucks wird also deaktiviert und die Regelung wieder aktiviert.Point W1 set. With expiration of the first time step dt1 and activated second time step dt2 (dt2> 0), the control 2 state, reference numeral 23, is changed. In this state, the status has the value 2 and the PWM signal is set to the value of the point W2 via the PWM default. With expiration of the second time step dt2 and thus expiration of the period dt is the state control 2 in the state control, reference numeral 21, changed. The control of the rail pressure is thus deactivated and the control reactivated.

Wird im Regelungsbetrieb, Zustand Regelung, ein Lastabwurf erkannt und wurde vom Anwender keine erste Zeitstufe dt1 aktiviert (dt1 = 0), so wird unmittelbar in den Zustand Steuerung 2 gewechselt. Die Rückkehr vom Zustand Steuerung 2 in den Regelungsbetrieb erfolgt mit Ablauf des Zeitraums dt.If a first time step dt1 is activated by the user in control mode, state control, load shedding (dt1 = 0), then control 2 is switched directly. The return from the state control 2 in the control mode takes place with the expiration of the period dt.

Im Zustand Steuerung 1, Bezugszeichen 22, erfolgt der Übergang zur Regelung oder zum Zustand Steuerung 2 in Abhängigkeit der zweiten Zeitstufe dt2. Wurde vom Anwender keine zweite Zeitstufe dt2 aktiviert (dt2 = 0), so wird mit Ablauf der ersten Zeitstufe dt1 unmittelbar in den Regelungsbetrieb zurückgekehrt. Wurde vom Anwender eine zweite Zeitstufe dt2 aktiviert, so wird, wie zuvor beschrieben, in den Zustand Steuerung 2 gewechselt.In the state control 1, reference numeral 22, the transition to the control or to the state control 2 takes place as a function of the second time step dt2. If no second time step dt2 has been activated by the user (dt2 = 0), then the first time step dt1 is immediately returned to the control mode. If the user has activated a second time step dt2, the system changes to the state control 2, as described above.

In Figur 5 ist ein Programmablaufplan für den Zustand Regelung dargestellt. Bei S1 wird geprüft, ob der Merker den Wert 0 besitzt. Bei positivem Prüfergebnis wird der Programmteil mit den Schritten S2 bis S14 durchlaufen. Bei negativem Prüfergebnis wird der Programmteil mit den Schritten S7 bis S9 durchlaufen.In FIG. 5 is a program flow chart for the state control shown. At S1 it is checked whether the flag has the value 0. If the test result is positive, the program part is run through with steps S2 to S14. If the result of the test is negative, the program part is run through with steps S7 to S9.

Ergibt die Prüfung bei S1, dass der Merker den Wert 0 besitzt, so wird bei S2 geprüft, ob ein Lastabwurf vorliegt. Liegt der zweite Ist-Raildruck pCR2(IST) unterhalb des ersten Grenzwerts GW1, so wird bei S10 die Regelung des Raildrucks beibehalten, d. h. das PWM-Signal stellt eine Funktion der Regelabweichung ep dar. Danach ist dieser Programmteil beendet. Wird bei S2 ein Lastabwurf festgestellt, so wird bei S3 der Merker auf den Wert 1 gesetzt und bei S4 geprüft, ob vom Anwender die erste Zeitstufe dt1 aktiviert wurde. Bei aktivierter Zeitstufe (Ergebnis der Abfrage: ja) wird bei S5 das PWM-Signal über die PWM-Vorgabe gesteuert, hier auf den Wert PWM2(W1). Danach wird bei S6 der Status auf den Wert 1 gesetzt und dieser Programmteil beendet.If the test at S1 indicates that the flag has the value 0, then S2 checks whether there is load shedding. If the second actual rail pressure pCR2 (IST) is below the first limit value GW1, the control of the rail pressure is maintained at S10, ie the PWM signal represents a function of the control deviation ep. Thereafter, this program part is ended. If a load shedding is detected at S2, the flag is set to the value 1 at S3 and tested at S4 whether the user has activated the first time step dt1. If the timer is activated (result of the query: yes), the PWM signal is controlled via the PWM specification at S5, here the value PWM2 (W1). Afterwards, the status is set to the value 1 at S6 and this program part is ended.

Wurde keine erste Zeitstufe dt1 aktiviert, d. h. die Abfrage bei S4 ist negativ, so wird bei S11 geprüft, ob vom Anwender die zweite Zeitstufe dt2 aktiviert wurde. Ist keine zweite Zeitstufe dt2 aktiviert (Ergebnis der Abfrage S11: nein), bleibt bei S13 die Regelung des Raildrucks aktiviert. Der Programmablauf-Pfad S4, S11 und S13 berücksichtigt also den Fall, dass vom Anwender die Funktion nicht aktiviert wurde. Ergibt die Prüfung bei S11, dass die zweite Zeitstufe dt2 aktiviert wurde, so wird bei S12 das PWM-Signal auf den Wert PWM2(W2) gesetzt. Danach wird bei S14 der Status auf den Wert 2 gesetzt und dieser Programmpfad beendet.If no first time step dt1 was activated, ie. H. If the query at S4 is negative, it is checked at S11 whether the user has activated the second time step dt2. If no second time step dt2 is activated (result of query S11: no), control of the rail pressure remains activated in S13. The program flow path S4, S11 and S13 thus takes into account the case that the function was not activated by the user. If the check at S11 indicates that the second time step dt2 has been activated, the PWM signal is set to the value PWM2 (W2) at S12. Then the status is set to the value 2 at S14 and this program path is ended.

Wurde bei S1 erkannt, dass der Merker nicht dem Wert 0 entspricht, so wird bei S7 geprüft, ob der zweite Ist-Raildruck pCR2(IST) kleiner/gleich dem zweiten Grenzwert GW2 ist. Ist dies der Fall, so wird bei S8 der Merker auf den Wert 0 gesetzt und der Programmablauf bei S9 fortgesetzt. Ergibt die Prüfung bei S7, dass der zweite Ist-Raildruck oberhalb des zweiten Grenzwerts liegt, wird der Programmablauf bei S9 fortgesetzt und die Regelung des Raildrucks pCR bleibt weiterhin aktiviert. Danach ist dieser Programmteil beendet.If it was detected at S1 that the flag does not correspond to the value 0, then it is checked at S7 whether the second actual rail pressure pCR2 (IST) is less than or equal to the second limit value GW2. If this is the case, the flag is set to the value 0 at S8 and the program sequence continues at S9. If the test at S7 shows that the second actual rail pressure is above the second limit value, the program sequence continues at S9 and the regulation of the rail pressure pCR remains activated. Afterwards this program part is finished.

In Figur 6 ist ein Programmablaufplan für die temporäre PWM-Vorgabe bei aktivierter erster Zeitstufe dt1 dargestellt, Zustand: Steuerung 1. Bei S1 wird eine Zeit t auf den Wert t plus Abtastzeit gesetzt. Bei S2 wird geprüft, ob diese Zeit größer/gleich der ersten Zeitstufe dt1 ist, d. h. ob die erste Zeitstufe bereits abgelaufen ist. Bei noch nicht abgelaufener ersten Zeitstufe dt1 (Ergebnis der Abfrage: nein) wird bei S10 das PWM-Signal auf den Wert PWM2(W1), z. B. 80%, gesetzt und dieser Programmteil dann verlassen. Ergibt die Prüfung bei S2, dass die erste Zeitstufe dt1 abgelaufen ist, so wird bei S3 die Zeit auf den Wert 0 gesetzt und bei S4 geprüft, ob vom Anwender die zweite Zeitstufe dt2 aktiviert wurde. Wurde keine zweite Zeitstufe dt2 aktiviert, wird der Programmteil mit den Schritten S5 bis S9 durchlaufen. Bei aktivierter zweiter Zeitstufe dt2 wird der Programmteil mit den Schritten S11 und S12 durchlaufen.In FIG. 6 a program flow chart for the temporary PWM specification is displayed when the first time step dt1 is activated, state: control 1. At S1, a time t is set to the value t plus sampling time. At S2 it is checked whether this time is greater than / equal to the first time step dt1, ie whether the first time step has already expired. If the first time step dt1 has not yet elapsed (result of the query: no), the PWM signal is set to the value PWM2 (W1), for example, at S10. B. 80%, set and then leave this program part. If the check at S2 reveals that the first time step dt1 has elapsed, the time is set to the value 0 at S3 and checked at S4 whether the user has activated the second time step dt2. If no second time step dt2 has been activated, the program part is run through with steps S5 to S9. When the second time step dt2 is activated, the program part is run through with the steps S11 and S12.

Bei nicht aktivierter zweiter Zeitstufe dt2 (Ergebnis der Abfrage S4: nein) wird bei S5 der I-Anteil des Druckreglers initialisiert. Als Initialisierungswerte können der Wert 0 oder ein dem negativen Soll-Verbrauchsvolumenstrom entsprechender Wert verwendet werden. Bei S6 wird danach die Regelung des Raildrucks aktiviert, d. h. das PWM-Signal wird über den Druckregler in Abhängigkeit der Regelabweichung ep berechnet. Danach wird bei S7 der Status auf den Wert 0 gesetzt. Bei S8 wird geprüft, ob der zweite Ist-Raildruck pCR2(IST) kleiner/gleich dem zweiten Grenzwert GW2 ist. Ist dies der Fall, so wird bei S9 der Merker auf den Wert 0 gesetzt und der Programmteil verlassen. Ergibt die Prüfung bei S8, dass der zweite Ist-Raildruck pCR2(IST) oberhalb des zweiten Grenzwerts GW2 liegt, so wird unmittelbar dieser Programmteil verlassen.If second time step dt2 is not activated (result of query S4: no), the I-part of the pressure controller is initialized at S5. The value 0 or a value corresponding to the negative nominal consumption volume flow can be used as initialization values. At S6, the control of the rail pressure is then activated, ie the PWM signal is calculated via the pressure regulator as a function of the control deviation ep. Then the status is set to 0 at S7. At S8, it is checked whether the second actual rail pressure pCR2 (IST) is less than or equal to the second limit value GW2. If this is the case, the flag is set to the value 0 in S9 and the program part is left. If the test at S8 reveals that the second actual rail pressure pCR2 (IST) is above the second limit value GW2, then this program part is immediately left.

Ergibt die Prüfung bei S4, dass die zweite Zeitstufe dt2 gesetzt wurde, so wird bei S11 das PWM-Signal über die PWM-Vorgabe, Ausgangssignal PWM2, auf den Wert des Punkts W2 gesetzt. Danach wird bei S12 der Status auf den Wert 2 gesetzt und der Programmteil verlassen.If the test at S4 indicates that the second time step dt2 has been set, the PWM signal is set to the value of the point W2 via the PWM specification, output signal PWM2, at S11. Then the status is set to the value 2 at S12 and the program part is exited.

In Figur 7 ist ein Programmablaufplan für den Zustand Steuerung 2 dargestellt. Bei S1 wird zu einer Zeit t eine Abtastzeit addiert. Danach wird bei S2 geprüft, ob die zweite Zeitstufe dt2 abgelaufen ist. Ist dies nicht der Fall (Ergebnis der Abfrage S2: nein), so wird bei S9 über die PWM-Vorgabe das PWM-Signal auf den Wert PWM2(W2) gesetzt und der Programmteil verlassen. Ergibt die Prüfung bei S2, dass die zweite Zeitstufe dt2 abgelaufen ist, so wird bei S3 die Zeit t auf den Wert 0 gesetzt und bei S4 der I-Anteil des Druckreglers wie zuvor beschrieben initialisiert. Danach wird bei S5 die Regelung aktiviert, d. h. das PWM-Signal wird in Abhängigkeit der Regelabweichung ep bestimmt. Bei S6 wird der Status auf den Wert 0 gesetzt. Bei S7 wird geprüft, ob der zweite Ist-Raildruck pCR2(IST) kleiner/gleich dem zweiten Grenzwert GW2 ist. Ist dies der Fall, so wird bei S8 der Merker auf den Wert 0 gesetzt und der Programmteil verlassen. Ergibt die Prüfung bei S7, dass der zweite Ist-Raildruck pCR2(IST) oberhalb des zweiten Grenzwerts GW2 liegt, so wird der Programmteil unmittelbar verlassen.In FIG. 7 a program flow chart for the state control 2 is shown. At S1, a sampling time is added at a time t. After that, it is checked at S2 whether the second time step dt2 has expired. If this is not the case (result of query S2: no), the PWM signal is set to the value PWM2 (W2) and the program part is left at S9 via the PWM specification. If the test at S2 shows that the second time step dt2 has elapsed, the time t is set to the value 0 at S3 and the I-part of the pressure regulator is initialized at S4 as described above. Thereafter, the control is activated at S5, ie the PWM signal is determined as a function of the control deviation ep. At S6, the status is set to the value 0. At S7 it is checked whether the second actual rail pressure pCR2 (IST) is less than or equal to the second limit value GW2. If this is the case, the flag is set to the value 0 in S8 and the program part is left. If the test at S7 shows that the second actual rail pressure pCR2 (IST) is above the second limit value GW2, the program part is immediately left.

Das Verfahren wurde an Hand eines Lastabwurfs beschrieben. In der Praxis kann das dargestellte Verfahren ganz allgemein immer auch dann verwendet werden, wenn eine sehr schnelle Reduktion der Einspritzmenge eine Drucküberhöhung im Rail bewirkt. Dies erfolgt beim Lastabwurf, einem Motorstop sowie bei einer schlagartigen Reduktion des Sollmoments bzw. der Soll-Einspritzmenge mit Erkennen einer Laderüberdrehzahl bei einem Abgasturbolader.The method was described with reference to a load shedding. In practice, the illustrated method can generally also always be used when a very rapid reduction of the injection quantity causes a pressure increase in the rail. This takes place during load shedding, an engine stop as well as a sudden reduction of the desired torque or the desired injection quantity with detection of a supercharger overspeed in an exhaust gas turbocharger.

Die Erfindung bietet folgende Vorteile:

  • durch das temporär erhöhte PWM-Signal wird eine höhere Dynamik des Stellglieds erreicht, wodurch ein unbeabsichtigtes Öffnen des Druck-Begrenzungsventils bei einem Lastabwurf verhindert wird;
  • durch die Deaktivierung der Regelung und das erhöhte PWM-Signal kann ein festsitzender Saugdrossel-Schieber wieder gängig gemacht werden;
  • das zweite Filter, der Schalter und die PWM-Vorgabe können in der Software des elektronischen Steuergeräts abgebildet werden, wodurch das Steuerungsverfahren nachträglich applizierbar ist;
  • die temporäre PWM-Vorgabe kann das in der DE 10 2004 023 365.9 dargestellte Verfahren ergänzen.
The invention offers the following advantages:
  • by the temporarily increased PWM signal, a higher dynamics of the actuator is achieved, whereby unintentional opening of the pressure-limiting valve is prevented in a load shedding;
  • by deactivating the control and the increased PWM signal, a stuck suction throttle slide can be made common again;
  • the second filter, the switch and the PWM specification can be mapped in the software of the electronic control unit, whereby the control method can be subsequently applied;
  • the temporary PWM default can do this in the DE 10 2004 023 365.9 complement the procedure described.

Bezugszeichenreference numeral

11
BrennkraftmaschineInternal combustion engine
22
KraftstofftankFuel tank
33
Niederdruck-PumpeLow pressure pump
44
Saugdrosselinterphase
55
Hochdruck-PumpeHigh pressure pump
66
RailRail
77
EinzelspeicherSingle memory
88th
Injektorinjector
99
Rail-DrucksensorRail pressure sensor
1010
Druck-BegrenzungsventilPressure relief valve
1111
elektronisches Steuergerät (ADEC)electronic control unit (ADEC)
1212
Druckreglerpressure regulator
1313
Begrenzunglimit
1414
Berechnungcalculation
1515
Schalterswitch
1616
Regelstreckecontrolled system
1717
erstes Filterfirst filter
1818
zweites Filtersecond filter
1919
Funktionsblockfunction block
2020
PWM-VorgabePWM assignment
2121
Regelungregulation
2222
Steuerung 1Control 1
2323
Steuerung 2Control 2

Claims (6)

  1. Control and regulation method for an internal combustion engine (1) having a common rail system, in which method, in normal operation, a rail pressure (pCR) is regulated by virtue of a first actual rail pressure (pCR1(IST)) being determined from the rail pressure (pCR) by means of a first filter (17), a regulating error (ep) being calculated from a setpoint rail pressure (pCR(SL)) and the first actual rail pressure (pCR1(IST)), an actuating variable (qV1) being calculated from the regulating error (ep) by means of a pressure regulator (12), and a PWM signal (PWM) for driving a regulating system (16) being defined as a function of the actuating variable (qV1), characterized
    in that a second actual rail pressure (pCR2(IST)) is determined by means of a second filter (18) with a smaller time constant and smaller phase lag than the first filter (17), load dumping is detected if the second actual rail pressure (pCR2(IST)) exceeds a first limit value (GW1), and upon the detection of load dumping, the rail pressure (pCR) is controlled by virtue of the PWM signal (PWM) being set by means of a PWM preset selection (20) to an increased PWM value (PWM2) in relation to normal operation, as a result of which the fuel volume flow fed into the rail (6) is reduced.
  2. Control and regulation method according to Claim 1,
    characterized
    in that the increased PWM value (PWM2) is preset during a time period (dt).
  3. Control and regulation method according to Claim 2,
    characterized
    in that, within the time period (dt), the increased PWM value (PWM2) is preset according to a step function.
  4. Control and regulation method according to Claim 2 or 3,
    characterized
    in that, upon the expiry of the time period (dt), an I component of the pressure regulator (12) is initialized with the value zero or with a value corresponding to the negative setpoint consumption volume flow (qV3).
  5. Control and regulation method according to Claim 4,
    characterized
    in that, after the initialization of the pressure regulator (12), the rail pressure (pCR) is regulated again corresponding to the normal mode.
  6. Control and regulation method according to one of the preceding claims,
    characterized
    in that the control method is enabled to preset an increased PWM value again when the second actual rail pressure (pCR2(IST)) falls below a second limit value (GW2).
EP06754510A 2005-06-23 2006-06-22 Control and regulation method for an internal combustion engine provided with a common-railsystem Active EP1896712B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005029138A DE102005029138B3 (en) 2005-06-23 2005-06-23 Control and regulating process for engine with common rail system has second actual rail pressure determined by second filter
PCT/EP2006/006016 WO2006136414A1 (en) 2005-06-23 2006-06-22 Control and regulation method for an internal combustion engine provided with a common-railsystem

Publications (2)

Publication Number Publication Date
EP1896712A1 EP1896712A1 (en) 2008-03-12
EP1896712B1 true EP1896712B1 (en) 2010-11-24

Family

ID=36808599

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06754510A Active EP1896712B1 (en) 2005-06-23 2006-06-22 Control and regulation method for an internal combustion engine provided with a common-railsystem

Country Status (4)

Country Link
US (1) US7779816B2 (en)
EP (1) EP1896712B1 (en)
DE (1) DE102005029138B3 (en)
WO (1) WO2006136414A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102425503A (en) * 2011-09-22 2012-04-25 中国汽车技术研究中心 Rail pressure pre-control system based on hardware constant-current control and control method

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4483824B2 (en) * 2006-04-06 2010-06-16 株式会社デンソー Fuel injection control device
DE102006034514B4 (en) * 2006-07-26 2014-01-16 Mtu Friedrichshafen Gmbh Method for controlling an internal combustion engine
DE102006040441B3 (en) * 2006-08-29 2008-02-21 Mtu Friedrichshafen Gmbh Method for identifying opening of passive pressure limiting valve, involves supplying fuel from common-rail system in fuel tank, where load shedding is identified
DE102007018310B3 (en) * 2007-04-18 2008-11-13 Continental Automotive Gmbh Method and device for controlling a high-pressure accumulator pressure of an injection system of an internal combustion engine
DE102007045606B3 (en) * 2007-09-25 2009-02-26 Mtu Friedrichshafen Gmbh Method for controlling and regulating internal combustion engine with common rail system, involves filtering individual accumulator pressure within time frame in measuring interval after end of injection of main injection
JP4900287B2 (en) 2008-03-05 2012-03-21 株式会社デンソー Fuel supply control device and fuel supply system using the same
DE102008036300B3 (en) * 2008-08-04 2010-01-28 Mtu Friedrichshafen Gmbh Method for controlling an internal combustion engine in V-arrangement
DE102008036299B3 (en) 2008-08-04 2009-12-03 Mtu Friedrichshafen Gmbh Method for regulating pressure of common-rail system on both sides of V-type internal combustion engine, involves correcting variables of both sided pressure controllers based on disturbance variable
DE102008058721B4 (en) 2008-11-24 2011-01-05 Mtu Friedrichshafen Gmbh Control method for an internal combustion engine with a common rail system
DE102008058720A1 (en) 2008-11-24 2010-05-27 Mtu Friedrichshafen Gmbh Control method for an internal combustion engine with a common rail system
DE102009014072B4 (en) * 2009-03-20 2014-09-25 Continental Automotive Gmbh Common rail injection system and method for pressure relief of a common rail injection system
DE102009031529B3 (en) * 2009-07-02 2010-11-11 Mtu Friedrichshafen Gmbh Method for controlling and regulating an internal combustion engine
DE102009031527B3 (en) * 2009-07-02 2010-11-18 Mtu Friedrichshafen Gmbh Method for controlling and regulating an internal combustion engine
DE102009050469B4 (en) * 2009-10-23 2015-11-05 Mtu Friedrichshafen Gmbh Method for controlling and regulating an internal combustion engine
DE102009050467B4 (en) * 2009-10-23 2017-04-06 Mtu Friedrichshafen Gmbh Method for controlling and regulating an internal combustion engine
GB2489463A (en) * 2011-03-29 2012-10-03 Gm Global Tech Operations Inc Method of controlling fuel injection in a common rail engine
WO2012142744A1 (en) * 2011-04-19 2012-10-26 潍柴动力股份有限公司 Device and method for controlling high-pressure common-rail system of diesel engine
DE102011100187B3 (en) * 2011-05-02 2012-11-08 Mtu Friedrichshafen Gmbh Method for controlling and regulating an internal combustion engine
DE102013000060B3 (en) * 2013-01-02 2014-05-22 Mtu Friedrichshafen Gmbh Method of operating internal combustion engine, involves dividing high pressure pump associated with suction throttle into units, and controlling each unit by separate control loop
US9903306B2 (en) 2013-02-08 2018-02-27 Cummins Inc. System and method for acquiring pressure data from a fuel accumulator of an internal combustion engine
US9551631B2 (en) 2013-02-08 2017-01-24 Cummins Inc. System and method for adapting to a variable fuel delivery cutout delay in a fuel system of an internal combustion engine
US9267460B2 (en) 2013-07-19 2016-02-23 Cummins Inc. System and method for estimating high-pressure fuel leakage in a common rail fuel system
DE102017211770B4 (en) * 2017-07-10 2019-06-13 Mtu Friedrichshafen Gmbh Method for regulating pressure in a high-pressure injection system of an internal combustion engine, and internal combustion engine for carrying out such a method
DE102019202004A1 (en) * 2019-02-14 2020-08-20 Mtu Friedrichshafen Gmbh Method for operating an injection system of an internal combustion engine, an injection system for an internal combustion engine and an internal combustion engine with such an injection system
DE102019112754B4 (en) * 2019-05-15 2021-06-24 Man Energy Solutions Se Method and control device for operating a common rail fuel supply system
CN113623107B (en) * 2020-05-06 2022-11-08 联合汽车电子有限公司 Air exhausting method, starting system and readable storage medium of fuel injection system

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3704963A (en) * 1971-02-03 1972-12-05 Stanadyne Inc Fuel pump
US4079719A (en) * 1976-03-26 1978-03-21 Stanadyne, Inc. Timing control for fuel pump
DE2633617C2 (en) * 1976-07-27 1986-09-25 Robert Bosch Gmbh, 7000 Stuttgart Method and device for determining setting variables in an internal combustion engine, in particular the duration of fuel injection pulses, the ignition angle, the exhaust gas recirculation rate
US4214307A (en) * 1978-06-22 1980-07-22 The Bendix Corporation Deceleration lean out feature for electronic fuel management systems
CH674243A5 (en) * 1987-07-08 1990-05-15 Dereco Dieselmotoren Forschung
DE19548278B4 (en) * 1995-12-22 2007-09-13 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
DE19612412B4 (en) * 1996-03-28 2006-07-06 Siemens Ag Control for a pressurized fluid supply system, in particular for the high pressure in a fuel injection system
JP3612175B2 (en) * 1997-07-15 2005-01-19 株式会社日立製作所 Fuel pressure control device for in-cylinder injection engine
DE19731995B4 (en) * 1997-07-25 2008-02-21 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
US6138504A (en) * 1998-06-04 2000-10-31 Ford Global Technologies, Inc. Air/fuel ratio control system
JP4206563B2 (en) * 1999-06-18 2009-01-14 株式会社デンソー Fuel injection device
JP3714099B2 (en) 2000-03-23 2005-11-09 トヨタ自動車株式会社 Fuel pressure control device for internal combustion engine
US6497223B1 (en) * 2000-05-04 2002-12-24 Cummins, Inc. Fuel injection pressure control system for an internal combustion engine
JP3851140B2 (en) * 2001-10-30 2006-11-29 ボッシュ株式会社 Driving method of electromagnetic proportional control valve for flow control
DE10156637C1 (en) * 2001-11-17 2003-05-28 Mtu Friedrichshafen Gmbh Method for controlling and regulating the starting operation of an internal combustion engine
DE10160311C2 (en) * 2001-12-07 2003-11-20 Bosch Gmbh Robert Method, computer program, control and regulating device for operating an internal combustion engine and internal combustion engine
JP2004190628A (en) * 2002-12-13 2004-07-08 Isuzu Motors Ltd Common rail type fuel injection control device
DE10261446A1 (en) 2002-12-31 2004-07-08 Robert Bosch Gmbh Method for actuating a pressure control valve in a fuel injection system of an internal combustion engine
DE10315881B4 (en) * 2003-04-08 2005-07-21 Mtu Friedrichshafen Gmbh Method for speed control
DE10330466B3 (en) * 2003-07-05 2004-10-21 Mtu Friedrichshafen Gmbh Regulation method for IC engine with common-rail fuel injection system has pulse width modulation signal frequency switched between 2 values dependent on engine speed
DE102004023365B4 (en) 2004-05-12 2007-07-19 Mtu Friedrichshafen Gmbh Method for pressure control of a storage injection system
DE102004023993B4 (en) * 2004-05-14 2007-04-12 Mtu Friedrichshafen Gmbh Method for speed control of an internal combustion engine-generator unit
DE102006040441B3 (en) * 2006-08-29 2008-02-21 Mtu Friedrichshafen Gmbh Method for identifying opening of passive pressure limiting valve, involves supplying fuel from common-rail system in fuel tank, where load shedding is identified
DE102006049266B3 (en) * 2006-10-19 2008-03-06 Mtu Friedrichshafen Gmbh Method for recognizing opened passive pressure-relief-valve, which deviates fuel from common-railsystem into fuel tank, involves regulating the rail pressure, in which actuating variable is computed from rail-pressure offset
DE102007027943B3 (en) * 2007-06-18 2008-10-16 Mtu Friedrichshafen Gmbh Method for regulating the rail pressure during a start-up procedure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102425503A (en) * 2011-09-22 2012-04-25 中国汽车技术研究中心 Rail pressure pre-control system based on hardware constant-current control and control method
CN102425503B (en) * 2011-09-22 2013-10-09 中国汽车技术研究中心 Rail pressure pre-control system based on hardware constant-current control and control method

Also Published As

Publication number Publication date
WO2006136414A1 (en) 2006-12-28
US20090223488A1 (en) 2009-09-10
DE102005029138B3 (en) 2006-12-07
EP1896712A1 (en) 2008-03-12
US7779816B2 (en) 2010-08-24

Similar Documents

Publication Publication Date Title
EP1896712B1 (en) Control and regulation method for an internal combustion engine provided with a common-railsystem
DE102006040441B3 (en) Method for identifying opening of passive pressure limiting valve, involves supplying fuel from common-rail system in fuel tank, where load shedding is identified
DE102006049266B3 (en) Method for recognizing opened passive pressure-relief-valve, which deviates fuel from common-railsystem into fuel tank, involves regulating the rail pressure, in which actuating variable is computed from rail-pressure offset
WO2005111402A1 (en) Method for pressure regulation of an accumulator injection system
DE102009050468B4 (en) Method for controlling and regulating an internal combustion engine
DE10162989C1 (en) Circuit for regulating injection system fuel pump, derives adaptive component of desired delivery volume from integral component if integral component above threshold for defined time
EP2006521B1 (en) Method for controlling rail pressure during a starting process
WO2009016044A1 (en) Method for controlling a solenoid valve of a quantity controller in an internal combustion engine
WO2011000479A1 (en) Method for regulating the rail pressure in a common rail injection system of an internal combustion engine
EP2449242A1 (en) Method for controlling and regulating the fuel pressure in the common rail of an internal combustion engine
EP2494175A1 (en) Method for the control and regulation of an internal combustion engine
EP2358988B1 (en) Control and regulation method for an internal combustion engine having a common rail system
EP2491236A1 (en) Method for the open-loop control and closed-loop control of an internal combustion engine
EP2449240A1 (en) Method for the closed-loop control of the rail pressure in a common-rail injectiom system of an internal combustion engine
DE102007060006B3 (en) Fuel pressure control system
WO2003042523A1 (en) Method for controlling and adjusting the starting mode of an internal combustion engine
EP2358987B1 (en) Control and regulation method for an internal combustion engine having a common rail system
DE102007060018B3 (en) Method and control unit for the electrical control of an actuator of an injection valve
DE10058959B4 (en) Method for monitoring a control circuit
DE10257134A1 (en) Automatic pressure control system for high-pressure fuel reservoir for common rail injection system for internal combustion engine, incorporates pressure sensor and fuel metering device
DE102006004766B4 (en) Electric circuit for operating a piezoelectric actuator of a fuel injector of an internal combustion engine
DE10046570C2 (en) Control circuit for an electrically controllable valve
WO2019011839A1 (en) Method for regulating pressure in a high-pressure injection system of an internal combustion engine, and internal combustion engine for carrying out such a method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080115

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): FR GB

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: DOELKER, ARMIN

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): FR GB

17Q First examination report despatched

Effective date: 20091211

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110825

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230627

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230620

Year of fee payment: 18