EP1893803B1 - Procede de traitement d'un produit se presentant lors de la fabrication du papier, carton-pate ou carton - Google Patents

Procede de traitement d'un produit se presentant lors de la fabrication du papier, carton-pate ou carton Download PDF

Info

Publication number
EP1893803B1
EP1893803B1 EP06763585A EP06763585A EP1893803B1 EP 1893803 B1 EP1893803 B1 EP 1893803B1 EP 06763585 A EP06763585 A EP 06763585A EP 06763585 A EP06763585 A EP 06763585A EP 1893803 B1 EP1893803 B1 EP 1893803B1
Authority
EP
European Patent Office
Prior art keywords
plasma
radicals
high voltage
process material
produced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06763585A
Other languages
German (de)
English (en)
Other versions
EP1893803B9 (fr
EP1893803A1 (fr
Inventor
Helmut Figalist
Werner Hartmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1893803A1 publication Critical patent/EP1893803A1/fr
Application granted granted Critical
Publication of EP1893803B1 publication Critical patent/EP1893803B1/fr
Publication of EP1893803B9 publication Critical patent/EP1893803B9/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/001Modification of pulp properties
    • D21C9/007Modification of pulp properties by mechanical or physical means
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/10Bleaching ; Apparatus therefor
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H25/00After-treatment of paper not provided for in groups D21H17/00 - D21H23/00
    • D21H25/04Physical treatment, e.g. heating, irradiating

Definitions

  • the invention relates to a process for the treatment of a process material in the production of paper, cardboard or cardboard, wherein a, preferably non-thermal, large-area plasma or a gas discharge, in particular a corona discharge, is applied under at least atmospheric pressure and in the plasma generation and / or in the Gas discharge resulting radicals act on the process material.
  • bleaching chemicals are used to a high degree.
  • Typical bleaching chemicals are chlorine, chlorine dioxide, sulphurous acids, extraction with caustic soda, oxygen, hydrogen peroxide and ozone.
  • alkaline or acidic ambient conditions are required.
  • Modern bleaching processes often make use of various bleaching stages in which various bleaching chemicals are used, each bleaching stage typically consisting of a mixing unit and a subsequent reaction tower. In these processes, the sometimes highly toxic (chlorine dioxide) or highly corrosive acids, alkalis or reagents must be transported in large quantities, stored, and after completion of the process also reprocessed or disposed of.
  • WO 2004 101 891 A1 For example, a method of using non-thermal atmospheric plasma for paper treatment is known. A similar procedure is off FR 2711680 known. It is an object of the invention to further reduce the use of chemicals in the paper, board or board production or in the treatment of associated process goods.
  • the object is achieved by using radicals of different types or compositions for at least two different types of process goods or at at least two different process stages.
  • radicals of different types or compositions for at least two different types of process goods or at at least two different process stages.
  • simultaneous generation of a number of differently oxidizing and functionalizing radicals (O, OH, HO 2 , HO 2 - , O 2 , O 3 , ...) and the application of such various radicals to the process material at different points in the process can be beneficial in papermaking, the addition of solid and / or liquid chemicals can be reduced.
  • the aforementioned process items occur, e.g. as starting materials and / or intermediates, at different process stages within the papermaking process.
  • radicals are produced ozone, hydrogen peroxide, hydroxyl radicals, HO 2 and / or HO 2 - .
  • Radicals are preferably generated in gas discharges by high energy electrons colliding with and thereby dissociating or exciting molecules. In the dissociation, radicals are released immediately, while in the excitation by subsequent radiant transitions UV light is generated, which in turn reacts with air and / or water molecules and dissociates them.
  • the bleaching of the process material, the plasma or the gas discharge is applied in such a way that as radicals increasingly ozone and / or hydrogen peroxide are formed.
  • the plasma or the gas discharge is applied in such a way that the radicals OH, HO 2 and / or HO 2 - are formed during sieving and / or in distributed process material or in forming or formed, still unpressed sheet.
  • a generation rate of the radicals and / or the composition of the generated radicals is controlled and / or regulated by influencing an amplitude, a pulse duration and / or a pulse repetition rate of high-voltage pulses. Since the generation rate of the radicals generated by an electrical process and thus very well controlled in real time, such a method is very economical and can be readjusted within a very short time for different treatment outcomes, for example by a learning algorithm.
  • Another preferred embodiment of the invention is that for controlling and / or regulating the rate of production and / or the type of radicals generated a concentration of the generated radicals is measured.
  • control and / or regulation of the generation rate or the composition of the generated radicals for different types of process goods to have in each case a different property of the process material, preferably a quality property, in particular its opacity. Gloss, whiteness, fluorescence or color point, is measured.
  • the concentration or the property "online” is measured.
  • a measured value describing the quality characteristics can be evaluated virtually at the same time and reacted to it, for example, by influencing the generation rate.
  • the amplitude of the high voltage pulses at a constant repetition rate and / or the repetition rate of the high voltage pulses at a constant amplitude can be changed for regulation.
  • a further increase in the treatment result is achieved by enriching the process material with oxygen in the plasma-exposed area.
  • high-voltage pulses having a duration of less than 10 ⁇ s are generated between the electrodes to generate the plasma or the gas discharge.
  • the use of such short high voltage single pulses has been found to be particularly advantageous, whereas the use of radio frequency (RF) or microwave pulses or of high voltage single pulses of more than 10 ⁇ s in duration, is far less efficient.
  • RF radio frequency
  • high-voltage pulses having a duration of less than 3 ⁇ s, preferably less than 1 ⁇ s, preferably less than 500 ns, are used.
  • a high-voltage pulse duration of less than 100 ns is used.
  • a high-voltage pulse duration of 100 ns to 1 microseconds is used.
  • the region exposed to plasma is surrounded by an atmosphere enriched with water vapor in process material which is distributed over a wide area or in which the sheet is still undpressed, in particular during sieving.
  • a DC corona discharge is generated to generate the plasma or the corona discharge and the DC voltage corona discharge, the high voltage pulses are superimposed.
  • the superimposition of the high-voltage pulses with a DC voltage has the particular advantage that the high-energy high-voltage pulses can already start from a very high energy level.
  • a pulse repetition rate between 10 Hz and 5 kHz, in particular from the range of 10 Hz to 10 kHz, is used.
  • the power coupling of electrical energy into the plasma is preferably controlled predominantly via the regulation of amplitude, pulse duration and pulse repetition rate of the superposed high-voltage pulses.
  • the DC voltage used is below the voltage for stable operation without high voltage pulse superposition.
  • the total amplitude used (DC voltage + pulse amplitude) is above the static breakdown voltage of the electrode arrangement.
  • the total amplitude used corresponds to two to five times the static breakdown voltage of the electrode arrangement.
  • the voltage is chosen so that the amplitude of the high voltage pulses is between 10% and 1000% of the DC voltage used.
  • the plasma is generated at a distance of less than 20 cm, preferably less than 10 cm, preferably less than 5 cm from the process material.
  • FIG. 1 shows a schematic representation of a complex papermaking plant 1, as used in today's paper mills. Their construction and the combination of different aggregates are determined by the type of paper, cardboard and paperboard types to be produced as well as the raw materials used.
  • the papermaking plant 1 has a spatial extent of about 10 m in width and about 120 m in length.
  • the papermaking plant produces up to 1400 m of paper per minute 27. It only takes a few seconds from the first impingement of the suspension or pulp 39 on the screening device 9 to the finished paper 27, which is finally rolled up in a reel 15. Diluted with water at a ratio of 1: 100, the fibers 30 (see FIG. 2 ) applied together with excipients on the sieve 9 with the sieve 10.
  • the fibers are deposited on the screen 10 side by side and on each other.
  • the white water 23 can drain or be sucked off by means of several suction chamber regions 24. In this way, a uniform fiber composite, which by mechanical pressure in a press device 11 and with the aid of steam heat on is drained.
  • the entire papermaking process is essentially subdivided into the areas of stock preparation, paper machine, finishing and equipment.
  • Waste paper and, as a rule, also pulp reach a paper mill in dry form, while pulp is normally produced in the same factory and pumped into the material center 3 as a fiber / water mixture, ie a suspension of unvarnished pulp.
  • Waste paper and pulp 30 (see FIG. 2 ) are also added with the addition of water in a fiber trough 35 (FIG. FIG. 2 ) dissolved.
  • Non-paper components are discharged via various sorting aggregates (not shown here). In the fabric center 3, depending on the desired type of paper, the mixture of different raw materials. Fillers and auxiliaries are also added here to improve paper quality and increase productivity.
  • the headbox 7 of the papermaking plant 1 distributes the pulp suspension uniformly over the entire wire width.
  • the paper web 27 still contains about 80% water.
  • Another dewatering process is carried out by mechanical pressure in the press device 11.
  • the paper web 27 is guided by means of an absorbent endless felt cloth between rolls of steel, granite or hard rubber and thereby dehydrated.
  • the white water 23 taken up by the suction chamber region 24 is fed to a sorter 5 in part and returned to another part to a fabric scavenger 17.
  • the press device 11 is followed by a drying system 13.
  • the remaining residual water is evaporated in the drying plant 13.
  • Slalom-like, the paper web 27 passes through several steam-heated drying cylinders. In the end, the paper 27 has a residual moisture of a few percent.
  • the water vapor formed in the drying plant 13 is sucked off and passed into a heat recovery system, not shown.
  • a first electrode 43 below the sieve device 9 and a second electrode 44 above the sieve device 9 are arranged according to the inventive method between the headbox 7 and the beginning region of the sieve device 9.
  • the electrodes 43 and 44 are arranged such that the surface-distributed fiber suspension 39 extends between them. So that a large-area plasma under atmospheric pressure in the immediate vicinity of the fiber suspension 39 can be produced for the treatment of the fiber suspension 39, the electrodes 43 and 44 are connected to a high-voltage pulse generator 46. With the aid of this high-voltage pulse generator 46, a large-volume plasma with a large cross section and with high power density is produced between the electrodes 43 and 44.
  • a plasma density is homogeneously distributed over the treatment area which is covered by the electrodes 43 and 44.
  • this large-volume plasma with high power density is produced by superimposing intensive, short-lasting high-voltage pulses having a high pulse repetition rate of typically 1 kHz on a DC corona discharge.
  • a very homogeneous, large-volume plasma with a high power density is produced without the plasma constrictions that are known in DC corona discharges.
  • oxygen with argon as the carrier gas can be introduced into the treatment space between the electrodes 43 and 44 by means of a gas distributor 81.
  • Hydroxyl radicals are particularly advantageously produced with the aid of the oxygen-argon mixture. Hydroxyl radicals are particularly aggressive and oxidizing, thereby a bleaching effect is achieved on the only a few seconds in the treatment area between the electrodes 43 and 44 lingering fiber suspension.
  • an electrode system 47, 48 in the press device 11 generates a large-area plasma for treating the paper web 27 as a second type of process material.
  • the first electrode 47 in the press apparatus 11 is designed as a semicircular grid electrode. Due to the semicircular configuration of the electrode 47, it can follow the course of the paper web over a transport roller 12.
  • the second electrode 48 in the press device 11 is configured as a plate electrode and arranged such that the transport roller 12 can be guided between the electrodes 47 and 48.
  • the plasma treatment area can also be flowed via the gas distributor 81 with the gas line 80 with an oxygen-argon mixture here.
  • the pressing process compacts the paper structure, a strength increases and a surface quality is decisively influenced.
  • the molecular structure of the paper surface is further altered.
  • the strength of the paper 27 is increased and printability improved.
  • a streamer is a special form of a linearly moving plasma cloud or a developing discharge channel that forms due to the excited high external field strength. An assembly of such streamer takes place within less than 10 ns and merges very quickly into a thermal breakdown channel.
  • the aforementioned arrangements of the electrode systems, with the paper web 27 between the electrodes used for the streamer discharge, are particularly advantageous, as the paper 27 thereby partially acts as a dielectric barrier, which can delay or suppress the transition from streamer breakdown.
  • FIG. 2 shows how in a bleaching device 38 of the same system 1, a raw material 30, in particular pulp, is conveyed as a third type of process material via a conveyor belt 33 in a fiber trough 35.
  • the raw material 30 is mixed with water and pumped via a pipeline 36 into a bleaching trough 37.
  • a first electrode 43 'and a second electrode 44' are each designed as a circular-area grid electrode.
  • the first electrode 43 ' is arranged in the gas space of the pulp fiber suspension 39 filled in the bleaching trough 37.
  • the second electrode 44 ' is arranged inside the bleaching trough 37 and is thus completely covered by the pulp fiber suspension 39.
  • a large-area cold plasma is generated by means of the high-voltage pulse generator 46.
  • the radical OH in the suspension 39 is preferably, O, O 3 produced. These radicals trigger a bleaching chemical reaction.
  • the high voltage pulse generator 46 is operated to generate high voltage pulses having a duration of typically 1 ⁇ s between the electrodes 43 'and 44'. A voltage necessary for the generation of radicals and ozone in the pulp fiber suspension is about 100 kV. The high voltage pulses are superimposed on the DC voltage to form a total amplitude of a few 10 kV to over 100 kV.
  • the radicals are generated in situ. Thus, large total amounts of radicals can be introduced into the suspension 39.
  • the radicals are also very finely distributed in the suspension produced, so that the hitherto necessary effort for mixing chemicals with the suspension can be reduced.
  • an oxygen-argon mixture in the bleaching trough 37 via a gas line 80, which has been processed in a gas distributor 81, to be initiated.
  • FIG. 3 shows a sectional view of - to FIG. 2 alternative - bleaching vessel.
  • a high voltage electrode 50 is arranged in the middle of the bleaching vessel.
  • the outer jacket of the bleaching vessel is prepared as a counterelectrode 51.
  • a pulp fiber suspension 39 is prepared between the electrodes 50 and 51.
  • Radicals are generated in streamers by high-energy electrons colliding with and dissociating or exciting molecules. Upon dissociation, radicals 59 are immediately released, while upon excitation by a subsequent radiant transition, UV light is generated. This generated UV light in turn reacts with water molecules and dissociates them.
  • a first pulse 66 and a second pulse 67 each having a pulse width 62, have a spacing of one pulse repetition time 63.
  • the abscissa shows the time in ms and the ordinate the voltage in kV. The units are chosen arbitrarily.
  • a level of some 10 kV of the DC voltage coincides with the abscissa shown.
  • the illustrated pulse voltage is thus superimposed on the DC voltage.
  • the pulses 66 and 67 have a pulse width 62 of less than 1 microseconds, wherein the individual pulses 66, 67 have a high rising edge with a rise time 64 and a Wen.iger steeply falling edge.
  • the pulse repetition time 63 is typically between 10 ⁇ s and 100 ms.
  • the individual pulses 66, 67 have such a total amplitude that a predefined energy density is achieved beyond the predetermined direct voltage.
  • the pulse rise time 64 is short compared to the pulse fall time.
  • FIG. 5 to FIG. 10 show examples of other electrode systems for generating corona discharges in preferably aqueous media.
  • a plate-and-plate arrangement of a first plate 70a as an electrode and a second plate 70b as an electrode is illustrated.
  • the first plate 70a and the second plate 70b are arranged parallel to each other.
  • the first plate 70a forms the high voltage electrode and is connected to the high voltage pulse generator 46 via a high voltage cable.
  • the second plate 70b forms the counter electrode and is connected as a grounded electrode to the high voltage pulse generator 46 in connection.
  • FIG. 6 A corresponding arrangement with specially flat plate electrodes is in FIG. 6 shown. Again there are two solid plate electrodes 70a and 70c at a fixed distance with a high voltage electrode 71 in the middle.
  • the high voltage electrode 71 is made of a solid wire and connected to the high voltage output of the high voltage pulse generator 46.
  • the grounded plates 70a, 70c are also in communication with the high voltage pulse generator.
  • FIG. 7 shows a wire-tube arrangement as an electrode system.
  • a high-voltage electrode 71 projects centrally into a cylindrical electrode 72.
  • the high voltage electrode 71 is made as a solid wire and connected to the high voltage pulse generator 46.
  • the cylindrical electrode 72 which is preferably configured as a wire mesh, is grounded and communicates with the high voltage pulse generator 46.
  • FIG. 8 shows a tip-plate assembly as an electrode system.
  • three tips 73 are connected to the high voltage pulse generator 46 via a high voltage line.
  • the tips 73 are perpendicular to a grounded one Plate electrode 74 is arranged.
  • the distance of the tip electrodes 73 to the plate electrode 74 is adjustable and thus can be adapted for different process conditions.
  • FIG. 9 shows an electrode system assembly comprising 3 plates 70a, 70d and 70e.
  • the first plate 70a which is connected as a high voltage electrode to the high voltage pulse generator 46, is disposed centrally between two solid plates 70d and 70e.
  • the plates 70a and 70b are connected via a plate connector 70f. Since the plate 70d as a grounded counter electrode is in communication with the high voltage pulse generator 46, the plate 70e above the plate connector 70f also functions as a grounded counter electrode.
  • FIG. 10 shows an electrode system as a grid-grid arrangement. Analogous to FIG. 5 Here, a first grid 75a and a second grid 75b are parallel to each other.
  • the first grid 75a forms the high voltage electrode and is connected to the high voltage pulse generator 46.
  • the second grid 75b forms the grounded counter electrode and communicates with the high voltage pulse generator 46.
  • FIG. 11 A hybrid discharge in which an electrode 75a is entirely outside a pulp 39 to be bleached and a second electrode 76b is wholly or partially immersed in the pulp 39 is shown in FIG. 11 generated.
  • the electrode 76a is implemented as a grid electrode and forms the high voltage electrode which is in communication with the high voltage pulse generator 46.
  • the grounded Counter electrode 76b is implemented as a grid electrode and communicates with the high voltage pulse generator 46.
  • a bleaching tub is shown with a vessel wall 77 in a plan view.
  • a plate or grid arrangement with curved surfaces for adaptation to the vessel walls or use of the vessel walls is used as the electrode.
  • a multiple wire electrode 79 is arranged as a concentric electrode following the course of the vessel wall 77 and communicates with the high voltage pulse generator 46. It faces two counterelectrodes: on the one hand the vessel wall 77 and on the other hand a plate electrode 78.
  • the high voltage electrode 79 is arranged without contact between the vessel wall 77 and the plate electrode 78.
  • the vessel wall 77 and the plate electrode 78 are electrically connected to each other and thus form the grounded counter electrodes, which are in communication with the high voltage pulse generator 46.
  • a high-voltage electrode 50 comprises a plurality of electrically connected rod electrodes and is arranged in the near-surface gas space of the pulp 39 such that their rods are parallel to the surface.
  • a grounded counter electrode 51 is designed as a solid plate and arranged in distributed over the entire surface equidistant distances to the high voltage electrode 50.
  • FIG. 14 shows a pulsed corona discharge system in an aqueous solution or pulp 39.
  • the electrode system is analogous to FIG. 3 formed as a coaxial wire tube electrode system.
  • the high voltage electrode 50 is arranged coaxially with the counter electrode 51 forming the vessel wall.
  • the finest gas bubbles are introduced into the discharge area via a gas line 80 by means of a gas distributor 81.
  • the gas bubbles 82 and 83 are preferably formed to FIG. 3 mentioned streamer. Owing to the streamer discharges, oxidants 57 are formed. Thus, certain radicals are generated in the suspension.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Paper (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Claims (30)

  1. Procédé de traitement d'un produit se présentant lors de la fabrication du papier ( 27 ), du carton-pâte ou du carton, dans lequel, on applique un plasma de grande surface, de préférence non thermique, ou une décharge dans un gaz, notamment une décharge à effet couronne, sous au moins la pression atmosphérique et des radicaux ( 59 ) créées lors de la production du plasma et/ou de la décharge dans un gaz agissent sur le produit,
    caractérisé en ce que l'on utilise pour au moins deux types différents de produit ou sur au moins deux stades différents du procédé, des radicaux ( 59 ) de type ou de composition différente.
  2. Procédé suivant la revendication 1,
    caractérisé en ce qu'on choisit les produits parmi les matières premières et/ou les produits intermédiaires suivants :
    - fibres sèches,
    - matières fibreuses non tissées,
    - pâte à papier ou suspension de fibres ou bouillie de fibres ( 39 ) volumineuses,
    - pâte à papier ou suspension de fibres ou bouillie de fibres ( 39 ) accumulées et/ou réparties à plat,
    - feuilles en formation ou formées, encore non pressées ayant de l'humidité résiduelle.
  3. Procédé suivant la revendication 1 ou 2,
    caractérisé en ce qu'on choisit les stades du procédé parmi les stades suivants :
    - lessivage,
    - raffinage,
    - blanchiment,
    - tamisage,
    - pressage.
  4. Procédé suivant l'une des revendications 1 à 3,
    caractérisé en ce qu'on produit comme radicaux ( 59 ), de l'ozone ( 03 ), du peroxyde d'hydrogène ( H2O2 ), des radicaux hydroxyles ( OH ), H02 et/ou H02-.
  5. Procédé suivant l'une des revendications 1 à 4,
    caractérisé en ce que, lors du blanchiment des produits, on applique le plasma ou la décharge dans un gaz, de manière à former, comme radicaux ( 59 ) de façon multipliée de l'ozone ( O3 ) et/ou du peroxyde d'hydrogène ( H2O2 ).
  6. Procédé suivant l'une des revendications 1 à 4,
    caractérisé en ce que, lors du tamisage et/ou dans une feuille en formation ou formée, mais qui n'est pas encore pressée, on applique le plasma ou la décharge dans un gaz, de manière à former comme radicaux ( 59 ) de façon multipliée OH, H02 et/ou H02-.
  7. Procédé suivant l'une des revendications 1 à 6,
    caractérisé en ce que l'on commande et/ou on règle un taux de production de radicaux ( 59 ) et/ou la composition des radicaux ( 59 ) produits en influant sur l'amplitude ( U ), sur la durée ( 62 ) des impulsions et/ou sur la fréquence ( 63 ) de répétition d'impulsions ( 66, 67 ) de haute tension.
  8. Procédé suivant la revendication 7,
    caractérisé en ce que, pour la commande et/ou la régulation du taux de production et/ou du type des radicaux ( 59 ) produits, on mesure une concentration des radicaux ( 59 ) produits.
  9. Procédé suivant la revendication 7 ou 8,
    caractérisé en ce que pour la commande et/ou pour la régulation du taux de production ou de la composition des radicaux ( 59 ) produits, pour des types différents de produits, on mesure respectivement une autre propriété du produit, de préférence une propriété qualitative, notamment son opacité, son brillant, sa blancheur, sa fluorescence ou son point de couleur.
  10. Procédé suivant l'une des revendications 8 ou 9, caractérisé en ce que l'on mesure la concentration ou la propriété « online ».
  11. Procédé suivant l'une des revendications 7 à 10, caractérisé en ce que, pour la régulation, on modifie l'amplitude ( U ) des impulsions ( 66, 67 ) de tension à une fréquence ( 63 ) de répétition constante.
  12. Procédé suivant l'une des revendications 7 à 11, caractérisé en ce que, pour la régulation, on modifie la fréquence ( 63 ) de répétition des impulsions ( 66, 67 ) de haute tension à amplitude ( U ) plus constante.
  13. Procédé suivant l'une des revendications 1 à 12, caractérisé en ce que l'on choisit le plasma ou la décharge dans un gaz entre les électrodes ( 43, 44 ).
  14. Procédé suivant l'une des revendications 1 à 13, caractérisé en ce que l'on enrichit en oxygène le produit dans la zone soumise au plasma.
  15. Procédé suivant l'une des revendications 7 à 14, caractérisé en ce que l'on produit des impulsions ( 66, 67 ) de haute tension entre les électrodes ( 43, 44 ) d'une durée ( 62 ) de moins de 10 µs.
  16. Procédé suivant la revendication 15,
    caractérisé en ce que l'on utilise des impulsions ( 66, 67 ) de haute tension ayant une durée ( 62 ) des impulsions de moins de 3 µs, de préférence d'au moins de 1 µs, de préférence de moins de 500 ns.
  17. Procédé suivant la revendication 15 ou 16,
    caractérisé en ce que, pour une pâte à papier ( 39 ), une suspension de fibres ou une bouillie de fibres comme produit, on utilise de préférence, lors du blanchiment, une durée ( 62 ) des impulsions de haute tension de moins de 100 ns.
  18. Procédé suivant l'une des revendications 13 à 15, caractérisé en ce que, pour du produit réparti à plat ou pour une feuille en formation ou formée, mais encore non pressée, notamment lors du tamisage, on utilise une durée ( 62 ) des impulsions de haute tension de 100 ns à 1 µs.
  19. Procédé suivant l'une des revendications 1 à 18, caractérisé en ce que, pour un produit réparti à plat ou pour une feuille en formation ou formée, mais qui n'est pas encore pressée, notamment lors du tamisage, on entoure la partie soumise au plasma d'une atmosphère enrichie en vapeur d'eau.
  20. Procédé suivant l'une des revendications 7 à 19, caractérisé en ce que, pour un produit réparti à plat ou pour une feuille en formation ou formée, mais qui n'est pas encore pressée, notamment lors du tamisage, on applique aux électrodes une amplitude ( U ) correspond à au moins le double, de préférence à au moins le triple, d'une tension de coupure d'effet couronne.
  21. Procédé suivant l'une des revendications 7 à 20, caractérisé en ce que, pour la production du plasma ou la décharge à effet couronne, on produit une décharge à effet couronne en tension continue et on superpose des impulsions ( 66, 67 ) de haute tension à la décharge à effet couronne à tension continue.
  22. Procédé suivant l'une des revendications 7 à 21, caractérisé en ce qu'on utilise une fréquence ( 63 ) de répétition des impulsions, comprise entre 10Hz et 5kHz, notamment dans la plage allant de 10Hz à 10kHz.
  23. Procédé suivant l'une des revendications 7 à 22, caractérisé en ce que l'on commande l'injection de puissance d'énergie électrique dans le plasma, principalement en régulant l'amplitude ( U ), la durée ( 62 ) des impulsions et la fréquence ( 63 ) de répétition des impulsions de haute tension superposées.
  24. Procédé suivant l'une des revendications 1 à 23, caractérisé en ce que l'on produit un plasma homogène de grand volume ayant une grande densité de puissance, sans qu'il se produise des resserrements de plasma ou des disruptions.
  25. Procédé suivant l'une des revendications 1 à 24, caractérisé en ce que l'on utilise une tension en courant continu d'un niveau tel qu'il se forme dans le plasma, en liaison avec des impulsions de haute tension superposée, une décharge à effet couronne en courant continu qui est stable.
  26. Procédé suivant l'une des revendications 7 à 25, caractérisé en ce que la tension en courant continu utilisée est inférieure à celle pour un fonctionnement stable, sans superposition d'impulsions de haute tension.
  27. Procédé suivant l'une des revendications 13 à 26, caractérisé en ce que l'amplitude totale utilisée ( tension en courant continu + amplitude des impulsions ) est supérieure à la tension de claquage statique du dispositif d'électrode.
  28. Procédé suivant la revendication 27,
    caractérisé en ce que l'amplitude totale utilisée représente du double au quintuple de la tension de claquage statique du dispositif d'électrode.
  29. Procédé suivant l'une des revendications 26 à 28, caractérisé en ce que l'amplitude ( U ) de l'impulsion de haute tension est comprise entre 10% et 1000% de la tension en courant continu utilisé.
  30. Procédé suivant l'une des revendications 1 à 29, caractérisé en ce que l'on produit le plasma à une distance du produit plus petite que 20 cm, de préférence plus petite que 10 cm, de préférence plus petite que 5 cm.
EP06763585A 2005-06-16 2006-06-08 Procede de traitement d'un produit se presentant lors de la fabrication du papier, carton-pate ou carton Not-in-force EP1893803B9 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102005028046 2005-06-16
DE102005049231A DE102005049231A1 (de) 2005-06-16 2005-10-14 Verfahren zur Behandlung eines Prozessgutes bei der Herstellung von Papier, Karton oder Pappe
PCT/EP2006/063011 WO2006134064A1 (fr) 2005-06-16 2006-06-08 Procede de traitement d'un produit se presentant lors de la fabrication du papier, carton-pate ou carton

Publications (3)

Publication Number Publication Date
EP1893803A1 EP1893803A1 (fr) 2008-03-05
EP1893803B1 true EP1893803B1 (fr) 2010-11-10
EP1893803B9 EP1893803B9 (fr) 2012-02-15

Family

ID=37022848

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06763585A Not-in-force EP1893803B9 (fr) 2005-06-16 2006-06-08 Procede de traitement d'un produit se presentant lors de la fabrication du papier, carton-pate ou carton

Country Status (4)

Country Link
EP (1) EP1893803B9 (fr)
AT (1) ATE487823T1 (fr)
DE (2) DE102005049231A1 (fr)
WO (1) WO2006134064A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013226936A1 (de) * 2013-12-20 2015-06-25 Siemens Aktiengesellschaft Verfahren zum Behandeln von Papierfasern und Papierfaserbehandlungsvorrichtung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA973660A (en) * 1972-05-29 1975-09-02 Thomas Joachimides Treatment of cellulosic matter with active nitrogen
CZ281826B6 (cs) * 1993-10-27 1997-02-12 Masarykova Univerzita V Brně Katedra Fyzikální Elektroniky Přírod. Fakulty Způsob bělení a zvyšování adheze vlákenných materiálů k barvivům
JPH11247098A (ja) * 1998-03-03 1999-09-14 Toppan Printing Co Ltd 紫外線カット紙およびその製造方法
DE19836669A1 (de) * 1998-08-13 2000-02-24 Kuesters Eduard Maschf Verfahren zur Oberflächen-Vorbehandlung von Papier oder Karton
AU2003234058A1 (en) * 2003-05-13 2004-12-03 Stazione Sperimentale Carta Cartoni E Paste Per Carte Method for plasma treating paper and cardboards

Also Published As

Publication number Publication date
DE102005049231A1 (de) 2006-12-28
EP1893803B9 (fr) 2012-02-15
ATE487823T1 (de) 2010-11-15
EP1893803A1 (fr) 2008-03-05
WO2006134064A1 (fr) 2006-12-21
DE502006008282D1 (de) 2010-12-23

Similar Documents

Publication Publication Date Title
EP1891266B1 (fr) Procede pour traiter des matieres fibreuses non entrelacees et dispositif de blanchiment
EP1896654B1 (fr) Dispositif de tamisage pour la fabrication du papier, et procede de traitement de matiere fibreuse a fibres non entrecroisees
WO2007144252A1 (fr) Procédé pour réduire les impuretés dans un système d'eau lors de la fabrication de feuilles
EP1893803B1 (fr) Procede de traitement d'un produit se presentant lors de la fabrication du papier, carton-pate ou carton
EP2035621B1 (fr) Procédé de réduction des impuretés collantes dans la fabrication du papier
EP1893809B1 (fr) Procede et dispositif permettant d'ameliorer la qualite du papier
EP1891265B1 (fr) Procede pour traiter un produit au moyen d'un plasma a grande surface
EP1891267B1 (fr) Dispositif de pressage destine a comprimer le papier et/ou a eliminer le liquide entraine du papier, et procede correspondant
DE102005049287A1 (de) Siebvorrichtung für die Herstellung von Papier und Verfahren zur Behandlung unverwobener Faserstoffe
EP0695622B1 (fr) Procédé et installation pour la modification par plasma d'objets poreux plats
EP2021541B1 (fr) Procédé pour améliorer la qualité d'une suspension de fibres
EP2773813B1 (fr) Procédé pour modifier la formation d'une bande de papier et machine à papier
EP2886713B1 (fr) Procédé de traitement de fibres de papier et dispositif de traitement de fibres de papier
EP0588246B1 (fr) Procédé et dispositif pour le traitement des bandes sans fin
DD133975B1 (de) Verfahren und anlage zum praeparieren,insbesondere zum schlichten von faeden
DE3312432A1 (de) Vorrichtung zum kontinuierlichen behandeln eines textilguts
DD133974B1 (de) Verfahren und anlage zum praeparieren,insbesondere zum schlichten von faeden

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502006008282

Country of ref document: DE

Date of ref document: 20101223

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101110

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2356256

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110406

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20101110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110210

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110310

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110310

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110811

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006008282

Country of ref document: DE

Effective date: 20110811

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20110630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110608

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120626

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20130909

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130608

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20140708

Year of fee payment: 9

Ref country code: FR

Payment date: 20140617

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150609

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20200622

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20200604

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20200507

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200819

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006008282

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006008282

Country of ref document: DE

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210608

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 487823

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220101

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210609