EP1885235B1 - Verbessertes verfahren für die spektrophotometrische überwachung der blutoxygenierung - Google Patents

Verbessertes verfahren für die spektrophotometrische überwachung der blutoxygenierung Download PDF

Info

Publication number
EP1885235B1
EP1885235B1 EP06770173.0A EP06770173A EP1885235B1 EP 1885235 B1 EP1885235 B1 EP 1885235B1 EP 06770173 A EP06770173 A EP 06770173A EP 1885235 B1 EP1885235 B1 EP 1885235B1
Authority
EP
European Patent Office
Prior art keywords
subject
tissue
light
oxygen saturation
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06770173.0A
Other languages
English (en)
French (fr)
Other versions
EP1885235A4 (de
EP1885235A1 (de
Inventor
Paul B. Benni
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CAS Medical Systems Inc
Original Assignee
CAS Medical Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CAS Medical Systems Inc filed Critical CAS Medical Systems Inc
Priority to EP13197260.6A priority Critical patent/EP2708180B1/de
Publication of EP1885235A1 publication Critical patent/EP1885235A1/de
Publication of EP1885235A4 publication Critical patent/EP1885235A4/de
Application granted granted Critical
Publication of EP1885235B1 publication Critical patent/EP1885235B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0261Measuring blood flow using optical means, e.g. infrared light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14546Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring analytes not otherwise provided for, e.g. ions, cytochromes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14552Details of sensors specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14553Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases specially adapted for cerebral tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1495Calibrating or testing of in-vivo probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3144Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths for oxymetry

Definitions

  • This invention relates to methods for non-invasively determining biological tissue oxygenation in general, and to non-invasive methods utilizing near-infrared spectroscopy (NIRS) techniques for determining the same in particular.
  • NIRS near-infrared spectroscopy
  • a ⁇ ' represents the optical attenuation in tissue at a particular wavelength ⁇ (units: optical density or OD);
  • I represents the incident light intensity (units: W/cm 2 );
  • ⁇ ⁇ " represents the wavelength dependent absorption coefficient of the chromophore (units: OD* cm -1 * ⁇ M -1 );
  • C represents the concentration of chromophore (units: ⁇ M);
  • d represents the light source to detector (optode) separation distance (units: cm); and
  • B ⁇ " represents the wavelength dependent light scattering differential pathlength factor (unitless)
  • the absorption coefficients or optical densities for the tissue components that create background light absorption and scattering can be assumed to be relatively constant over a selected wavelength range.
  • the graph shown in FIG. 1 which includes tissue data plotted relative to a Y-axis of values representative of absorption coefficient values and an X-axis of wavelength values, illustrates such an instance.
  • the aforesaid constant value assumption is reasonable in a test population where all of the subjects have approximately the same tissue optical properties; e.g., skin pigmentation, muscle and bone density, etc.
  • a tissue interrogation method that relies upon such an assumption may be described as being wavelength independent within the selected wavelength range and subject independent.
  • Our findings indicate that the same assumption is not reasonable, however, in a population of subjects having a wide spectrum of tissue optical properties (e.g., a range of significantly different skin pigmentations from very light to very dark) unless consideration for the wide spectrum of tissue optical properties is provided otherwise.
  • a method and apparatus for non-invasively determining the blood oxygen saturation level within a subject's tissue includes the steps of: 1) providing a near infrared spectrophotometrio sensor operable to transmit light along a plurality of wavelengths into the subject's tissue; 2) sensing the light transmitted into the subject's tissue using the sensor, and producing signal data representative of the light sensed from the subject's tissue; 3) processing the signal data, including accounting for physical characteristics of the subject; and 4) determining the blood oxygen saturation level within the subject's tissue using a difference in attenuation between the wavelengths.
  • the apparatus includes at least one sensor having at least one light source and at least one light detector, wherein the sensor is operably connected to a processor.
  • the light source is operable to transmit light along a plurality of wavelengths into the subject's tissue, and to produce signal data representative of the light sensed from the subject's tissue.
  • the algorithm selectively produces calibration constants for use with the sensor that account for the specific physical characteristics of the particular subject being sensed. The calibration constants are produced using the signal data.
  • a method for calibrating a NIRS sensor includes the steps of: 1) transmitting light into a subject's tissue using the sensor; 2) sensing the light using the sensor along a plurality of wavelengths after the light travels through the subject's tissue, and producing signal data from the sensed light; and 3) calibrating the sensor using the signal data.
  • the present method and apparatus provides advantageous accuracy. All prior art non-invasive devices and methods for determining blood oxygen saturation level within a subject's tissue, of which we are aware, do not consider the specific physical characteristics of the particular subject being sensed.
  • the sensor is calibrated by use of assumed constants and /or relative to a source (e.g., a phantom sample, empirical data, etc.) other than the subject being sensed; i.e., calibrated in a "subject independent" manner.
  • the present device and method in contrast, considers the specific physical characteristics (e.g., tissue pigment, muscle and bone density and mass, etc.) of the particular subject by initially sensing the subject's tissue, creating signal data based on the sensing, and accounting for the specific physical characteristics of the subject using the signal data.
  • the sensor now calibrated in a "subject dependent" manner, can be used to determine the tissue blood oxygen saturation level of the subject tissue. As a result, the sensor is able to provide a more accurate assessment of the subject's blood oxygen saturation level within the tissue being sensed.
  • Another advantage of the present method and apparatus is that accurate blood oxygen saturation level information can be provided for a population of subjects having a wide range of physical characteristics.
  • Physical characteristics e.g., tissue pigmentation, thickness and density, etc.
  • the present method and apparatus considers the physical characteristics of the specific subject being tested, and calibrates the sensor with signal data generated from sensing the tissue of the specific subject. Consequently, the present method and device accounts for the differences in light attenuation specific to that subject and enables the tissue blood oxygenation saturation level of subjects having a wide range of physical characteristics to be accurately sensed.
  • FIG. 1 is a graph diagrammatically illustrating tissue data plotted relative to a Y-axis of values representative of absorption coefficient values, and an X-axis of wavelength values.
  • FIG. 2 is a diagrammatic representation of a NIRS sensor.
  • FIG. 3 is a diagrammatic representation of a NIRS sensor placed on a subject's head.
  • FIG. 4 is a diagrammatic view of a NIRS sensor.
  • FIG. 5 is a graph having values diagrammatically representative of subject-specific calibration coefficients plotted along a Y-axis, TOP index values plotted along an X-axis, and data representative of deoxyhemoglobin values and oxyhemoglobin values plotted therebetween with best-fit curves applied thereto.
  • FIG.6 is a flow chart illustrating steps according to one aspect of the present invention.
  • the present method of and apparatus for non-invasively determining the blood oxygen saturation level within a subject's tissue utilizes a near infrared spectrophotometric (NIRS) sensor that includes a transducer capable of transmitting a light signal into the tissue of a subject and sensing the light signal once it has passed through the tissue via transmittance or reflectance.
  • NIRS near infrared spectrophotometric
  • the present method and apparatus can be used with a variety of NIRS sensors, and is not therefore limited to any particular NIRS sensor.
  • an example of an acceptable NIRS sensor includes a transducer portion 10 and processor portion 12.
  • the transducer portion 10 includes an assembly housing 14 and a connector housing 16.
  • a disposable adhesive envelope or pad is preferably used for mounting the assembly housing 14 easily and securely to the subject's skin.
  • Light signals of known but different wavelengths from the light sources emit through a prism assembly.
  • the light sources 18 are preferably laser diodes that emit light at a narrow spectral bandwidth at predetermined wavelengths.
  • the laser diodes may be mounted remote from the assembly housing 14; e.g., in the connector housing 16 or within the processor portion 12.
  • a fiber optic light guide is optically interfaced with the laser diodes and the prism assembly that is disposed within the assembly housing 14.
  • the light sources 18 are mounted within the assembly housing 14.
  • a first connector cable 26 connects the assembly housing 14 to the connector housing 16 and a second connector cable 28 connects the connector housing 16 to the processor portion 12.
  • the light detectors 19, 20 each include one or more photodiodes. The photodiodes are also operably connected to the processor portion 12 via the first and second connector cables 26, 28.
  • Other examples of acceptable NIRS sensors are described in U.S. Patent Application No. 60/751,009 filed on December 16, 2005 , and U.S. Patent Application No. 60/729,339 filed on October 21, 2005 , both of which applications are commonly assigned to the assignee of the present application.
  • the processor portion 12 includes a processor for processing light intensity signals associated with the light sources 18 and the light detectors 19, 20 as described herein.
  • the processor may assume various forms (e.g., digital signal processor, analog device, etc.) capable of performing the functions described herein.
  • the processor utilizes an algorithm that characterizes a change in attenuation as a function of the difference in attenuation between different wavelengths.
  • the parameter "E” reflects energy losses not specific to the subject being tested with a calibrated sensor (i.e., "subject-independent”).
  • the absorption A b ⁇ detected from the deep light detector 20 includes attenuation and energy losses from both the deep and shallow tissue
  • the absorption A x ⁇ detected from the shallow light detector 19 includes attenuation and energy losses from shallow tissue.
  • Absorptions A b ⁇ and A x ⁇ can be expressed in the form of Equation 3 and Equation 4:
  • a single light detector may be used, in which case Equation 5 is used:
  • the empirically determined values for S ⁇ O 2 and SaO 2 are based on data developed by discrete sampling or continuous monitoring of the subject's blood performed at or about the same time as the sensing of the tissue with the sensor; e.g., blood samples discretely collected can be analyzed by blood gas analysis and blood samples continuously monitored can be analyzed using a fiber optic catheter inserted within a blood vessel.
  • the temporal and physical proximity of the NIRS sensing and the development of the empirical data helps assure accuracy.
  • the initial values for Kv and Ka within Equation 14 are clinically reasonable values for the circumstances at hand.
  • the values for A HbO2 and A Hb are determined mathematically using the values for I b ⁇ , and I x ⁇ for each wavelength sensed with the NIRS sensor (e.g., using Equation 3 & 4 for deep and shallow detectors or Equation 5 for a single detector).
  • the calibration parameters ⁇ Hb and ⁇ HbO2 which account for energy losses due to scattering as well as other background absorption from biological compounds, are then determined using Equation 14 and non-linear regression techniques by correlation to different weighted values of S ⁇ O 2 and SaO 2 ; i.e., different values of Ka and K ⁇ .
  • Statistically acceptable values of K ⁇ and Ka and ⁇ Hb and ⁇ HbO2 are converged upon using the non-linear regression techniques.
  • Experimental findings show that with proper selection of Ka and K ⁇ , the calibration parameters ⁇ Hb and ⁇ HbO2 are constant within a statistically acceptable margin of error for an individual NIRS sensor used to monitor brain oxygenation on different human subjects.
  • the above-identified process produces a NIRS sensor calibrated relative to a particular subject using invasive techniques, or a NIRS sensor calibrated relative to an already calibrated sensor (or relative to a phantom sample).
  • these calibrated sensors are used thereafter on a different subject; they do not account for the specific physical characteristics of the particular subject being tested.
  • the present method and apparatus as described below permits a NIRS sensor to be calibrated in a non-invasive manner that accounts for specific physical characteristics of the particular subject being sensed.
  • Certain physical characteristics will vary from subject to subject; such as but not limited to, tissue pigmentation and thickness and density of muscle and/or bone.
  • the present method and apparatus accounts for background tissue's wavelength dependent light attenuation differences due to these subject-dependent physical characteristics by sensing the subject's tissue, creating signal data from the sensing, and using the signal data to create one or more "subject-specific" calibration constants that account for the specific characteristics of the subject. For example, during an initial phase of monitoring, light is transmitted into and sensed passing out of the subject's tissue. Signal data representative of the sensed light is analyzed to account for the physical characteristics of the subject, and one or more subject-specific calibration constants indicative of the specific physical characteristics are created. The subject-specific calibration constants are subsequently used to determine properties such as the blood oxygen saturation level, deoxyhemoglobin concentration, oxyhemoglobin concentration, etc.
  • the subject-specific calibration constants can be determined by using the sensed signal data to create a tissue optical property (TOP) index value.
  • TOP tissue optical property
  • the TOP index value is derived from wavelength dependent light attenuation attributable to physical characteristics such as tissue pigmentation, thickness and density of tissue, etc. These physical characteristics are collectively considered in determining the TOP index value because the characteristics have absorption coefficients that increase with decreasing wavelength from the near-infrared region to the red region (i.e., from about 900nm to about 400 nm) mainly due to the presence of melanin, the light absorbing pigmentation in skin and tissue. For example, it has been reported by S. L.
  • ⁇ a 1.70x10 12 (wavelength in nm) -3.48 [cm -1 ] in the wavelength range from about 400nm to about 850 nm.
  • the TOP index value one or more of the wavelengths in the near-infrared region to the red region (i.e., from about 900nm to about 600 nm; e.g., 690 nm, 780 nm, 805 nm, 850 nm) are sensed. Red wavelengths are favored because red light is more sensitive to the tissue optical properties than infrared light. Lower wavelengths of light could also be used, but suffer from increased attenuation from the higher tissue and hemoglobin absorption coefficients, resulting in reduced tissue penetration, reduced detected light signal strength, and resultant poor signal to noise ratio.
  • Equation 17 shown below could be used.
  • the TOP index value determinable from Equations 16 or 17 accounts for subject tissue optical properties variability and can be converted to a "corrective" factor used to determine accurate tissue blood oxygen saturation SnO 2 .
  • the TOP index value can be used with a database to determine subject-specific calibration constants (e.g., Z Hb and Z HbO2 ).
  • the database contains data, at least some of which is empirically collected, pertaining to oxyhemoglobin and deoxyhemoglobin concentrations for a plurality of subjects.
  • the concentration data is organized relative to a range of TOP index values in a manner that enables the determination of the subject-specific calibration constants.
  • the organization of the information within the database can be accomplished in a variety of different ways.
  • the empirical database may be organized in the form of a graph having subject-specific calibration coefficients plotted along the y-axis versus TOP index values plotted along the x-axis.
  • An example of such a graph is shown in FIG. 5 , which contains data 30 representing the differences between calculated deoxyhemoglobin values (Hb) values and empirically derived deoxyhemoglobin values (the differences referred to in FIG.5 as "Hb-offset2 data"), and a best fit curve 32 applied to a portion of that data 30.
  • the graph also contains data 34 representing the differences between calculated oxyhemoglobin values (HbO2) values and empirically derived oxyhemoglobin values (the differences referred to in FIG.5 as "Hb02-offset2 data"), and another best-fit curve 36 applied to a portion of that data 34.
  • HbO2 calculated oxyhemoglobin values
  • Hb02-offset2 data empirically derived oxyhemoglobin values
  • another best-fit curve 36 applied to a portion of that data 34.
  • a statistically significant number of the data 30, 34 for each curve lies within the sloped portion 32a, 36a (i.e., the portion that does not have a constant calibration constant value).
  • the curves 32, 36 are depicted as having constant calibration values 32b, 32c, 36b, 36c for convenience sake.
  • the values for the subject-specific calibration coefficients Z Hb and Z Hbo2 are determined by drawing a line (e.g., see phantom line 38) perpendicular to the TOP index value axis at the determined TOP index value.
  • the subject-specific calibration constant (Z Hb ) for deoxyhemoglobin is equal to the value on the calibration constant axis aligned with the intersection point between the perpendicular line and the "Hb-offset2" curve
  • the subject-specific calibration constant (Z HbO2 ) for oxyhemoglobin is equal to the value on the calibrationconstant axis aligned with the intersection point with the "HbO2-offset2" curve.
  • the subject-specific calibration constant values may be determined using an empirical database in a form other than a graph.
  • a mathematical solution can be implemented rather than the above-described graph.
  • the mathematical solution may use linear equations representing the "Hb-offset2" and the "HbO2-offset2" curves.
  • the above-described process for determining the subject-specific calibration constants can be performed one or more times in the initial period of sensing the subject to calibrate the sensor to that particular subject, preferably right after the sensor is attached to the subject.
  • the subject-dependent calibration constants can then be used with an algorithm for measurement of a subject's blood oxygen saturation level using the same or different signal data.
  • the algorithm in which the subject-dependent calibration constants are utilized may be the same algorithm as used to determine the constants, or a different algorithm for determining the tissue oxygen saturation level.
  • calibration constants can be used with the three wavelength method disclosed above in Equations 2 - 14, and in U.S. Patent No. 6,456,862 .
  • FIG. 6 illustrates the above described steps within a flow chart.
  • the TOP index methodology disclosed above can be used within an algorithm in a subject-independent manner. This approach does not provide all of the advantages of the above described subject-dependent methodology and apparatus, but does provide improved accuracy by specifically accounting for subject skin pigmentation.
  • the TOP absorption coefficients can be determined as described above and utilized within Equation 16 or Equation 17. Regardless of the equation used, the determined values for deoxyhemoglobin (Hb) and oxyhemoglobin (HbO 2 ) can subsequently be used to determine the tissue oxygen saturation level. For example, the Hb and HbO 2 values can be utilized within Equations 11 through 13.
  • the present method and apparatus are described above in terms of sensing blood oxygenation within cerebral tissue, the present method and apparatus are not limited to cerebral applications and can be used to determine tissue blood oxygenation saturation within tissue found elsewhere within the subject's body. If the present invention is utilized to determine the tissue blood oxygenation saturation percentage is typically symbolized as StO 2 or rSO 2 .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Neurology (AREA)
  • Hematology (AREA)
  • Pulmonology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Claims (17)

  1. Verfahren zur nicht-invasiven Bestimmung eines Blutsauerstoffsättigungsgrads in dem Gewebe einer Person, welches die Folgenden Schritte aufweist:
    Bereitstellen eines spektralphotometrischen Sensors, der zur Aussendung von Licht entlang einer Vielzahl von Wellenlinien in das Gewebe der Person und zum Erfassen des Lichts betreibbar ist; wobei der Sensor kalibriert wird durch:
    Aussenden von Licht in das Gewebe der Person unter Verwendung des Sensors;
    Erfassen des Lichts unter Verwendung des Sensors entlang einer Vielzahl von Wellenlängen, nachdem das Licht durch das Gewebe der Person gelaufen ist, und Erzeugen von Signaldaten von dem erfassten Licht; und
    Kalibrieren des Sensors unter Verwendung der Signaldaten zur Erzeugung von einer oder mehreren personenspezifischen Kalibrierungskonstanten, welche die spezifischen physikalischen Eigenschaften von dem jeweiligen Gewebe der Person, das erfasst wird, berücksichtigen; und
    Verwenden der personenabhängigen Kalibrierungskonstanten zum Bestimmen des Blutsauerstoffsättigungsgrads in dem Gewebe der Person.
  2. Verfahren nach Anspruch 1, wobei die physikalischen Eigenschaften von dem Gewebe der Person Pigmentierung umfassen.
  3. Verfahren nach Anspruch 2, wobei der Kalibrierungsschritt die Verwendung von Absorptionskoeffizienten für die Pigmentierung in dem Gewebe der Person umfasst.
  4. Verfahren nach Anspruch 3, wobei der Kalibrierungsschritt eine oder mehrere Kalibrierungskonstanten unter Verwendung der Absorptionskoeffizienten für die Pigmentierung bestimmt, wobei die Kalibrierungskonstanten in dem Schritt zur Bestimmung des Blutsauerstoffsättigungsgrads in dem Gewebe der Person verwendet werden.
  5. Verfahren nach Anspruch 4, wobei der Schritt der Bestimmung des Blutsauerstoffsättigungsgrads in dem Gewebe der Person die Weiterverarbeitung von anderen Signaldaten umfasst, als denjenigen, die zur Erzeugung von einer oder mehreren Kalibrierungskonstanten verwendet wurden.
  6. Verfahren nach Anspruch 1, wobei der Blutsauerstoffsättigungsgrad unter Verwendung eines Unterschiedes in der Abschwächung zwischen den Wellenlängen verwendet wird.
  7. Verfahren nach Anspruch 1, wobei der Blutsauerstoffsättigungsgrad in dem Gewebe der Person unter Verwendung eines Unterschiedes in der Abschwächung zwischen den Wellenlängen und den Kalibrierungskonstanten verwendet wird.
  8. Verfahren nach Anspruch 7, wobei der Schritt der Bestimmung des Blutsauerstoffsättigungsgrads in dem Gewebe der Person die Weiterverarbeitung von anderen Signaldaten umfasst, als denjenigen, die zur Erzeugung von einer oder mehreren Kalibrierungskonstanten verwendet wurden.
  9. Verfahren nach Anspruch 7 oder 8, wobei der Blutsauerstoffsättigungsgrad in dem Gewebe der Person unter Verwendung eines Unterschieds in der Abschwächung zwischen einer ersten der Wellenlängen und jeder der anderen Wellenlängen verwendet wird.
  10. Verfahren nach einem der Ansprüche 7-9, wobei die Erzeugung der einen oder mehreren Kalibrierungskonstanten die Verwendung von Absorptionskoeffizienten für die Pigmentierung in dem Gewebe der Person umfasst.
  11. Verfahren nach einem der vorangehenden Ansprüche, die ferner den Schritt umfasst von:
    dem Bestimmen der Konzentration von Oxyhämoglobin und/oder Deoxyhämoglobin in dem Gewebe der Person.
  12. Verfahren nach Anspruch 11, wobei die Signaldaten weiterverarbeitet werden, um zunächst die Konzentration von Oxyhämoglobin, Deoxyhämoglobin und Pigmentierung in dem Gewebe der Person zu bestimmen und daran anschließend den Blutsauerstoffsättigungsgrad in dem Gewebe der Person unter Verwendung der bestimmten Konzentrationen von Oxyhämoglobin und Deoxyhämoglobin zu bestimmen.
  13. Verfahren nach einem der vorhergehenden Ansprüche, wobei der spektralphotometrische Sensor zum Aussenden von Licht in einem vorgegebenen Bereich der Wellenlängen in das Gewebe der Person betreibbar ist und das Verfahren ferner den Schritt umfasst von:
    dem Weiterverarbeiten der Signaldaten, was die Bestimmung der Lichtabschwächung für eine oder mehrere Komponenten des Gewebes der Person mit Ausnahme von Oxyhämoglobin und Deoxyhämoglobin umfasst, wobei die Komponenten eine optische Eigenschaft aufweisen, die sich über den Bereich der Wellenlängen verändert, um den Blutsauerstoffsättigungsgrad in dem Gewebe der Person zu bestimmen.
  14. Vorrichtung zur nicht-invasiven Bestimmung eines Blutsauerstoffsättigungsgrads in dem Gewebe einer Person, die Folgendes aufweist:
    mindestens einen spektralphotometrischen Sensor (10) mit mindestens einer Lichtquelle (18) und mindestens einem Lichtdetektor (19, 20), wobei die Lichtquelle zum Aussenden von Licht entlang einer Vielzahl von Wellenlängen in das Gewebe der Person betreibbar ist und der Lichtdetektor zum Nachweisen von Licht aus der Lichtquelle betreibbar ist, nachdem das Licht durch das Gewebe der Person hindurchgelaufen ist, und der Sensor zur Erzeugung von anfänglichen Signaldaten, die für das nachgewiesene Licht kennzeichnend sind, betreibbar ist; und
    einen Prozessor (12), der funktionsmäßig mit dem mindestens einen Sensor verbunden ist, wobei der Prozessor einen Algorithmus aufweist, der zur Weiterverarbeitung der anfänglichen Signaldaten betreibbar ist, um die physikalischen Eigenschaften von dem Gewebe der Person zu berücksichtigen und den mindestens einen Sensor für die bestimmte Person unter Verwendung der anfänglichen Signaldaten zur Erzeugung von einer oder mehreren personenspezifischen Kalibrierungskonstanten zu kalibrieren, welche die spezifischen physikalischen Eigenschaften des jeweiligen Gewebes der Person, das erfasst wird, berücksichtigen.
  15. Vorrichtung nach Anspruch 14, wobei die physikalischen Eigenschaften von dem Gewebe der Person die Pigmentierung umfassen und wobei der Algorithmus die Absorptionskoeffizienten für die Pigmentierung in dem Gewebe der Person verwendet.
  16. Vorrichtung nach Anspruch 15, wobei der Algorithmus zur Weiterverarbeitung der anfänglichen Signaldaten betreibbar ist, um die eine oder mehreren Kalibrierungskonstanten unter Verwendung der Absorptionskoeffizienten für die Pigmentierung zu bestimmen und zur Bestimmung des Blutsauerstoffsättigungsgrads in dem Gewebe der Person unter Verwendung der Kalibrierungskonstante(n) betreibbar ist.
  17. Vorrichtung nach Anspruch 16, wobei der Algorithmus zur Bestimmung des Blutsauerstoffsättigungsgrads in dem Gewebe der Person unter Verwendung von anderen Signaldaten umfasst, als denjenigen, die zur Erzeugung von einer oder mehreren Kalibrierungskonstanten verwendet wurden.
EP06770173.0A 2005-05-12 2006-05-10 Verbessertes verfahren für die spektrophotometrische überwachung der blutoxygenierung Active EP1885235B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13197260.6A EP2708180B1 (de) 2005-05-12 2006-05-10 Verbessertes verfahren zur spektrofotometrischen überwachung der sauerstoffanreicherung im blut

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US68019205P 2005-05-12 2005-05-12
PCT/US2006/018082 WO2006124455A1 (en) 2005-05-12 2006-05-10 Improved method for spectrophotometric blood oxygenation monitoring

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP13197260.6A Division EP2708180B1 (de) 2005-05-12 2006-05-10 Verbessertes verfahren zur spektrofotometrischen überwachung der sauerstoffanreicherung im blut

Publications (3)

Publication Number Publication Date
EP1885235A1 EP1885235A1 (de) 2008-02-13
EP1885235A4 EP1885235A4 (de) 2011-04-27
EP1885235B1 true EP1885235B1 (de) 2013-12-18

Family

ID=37431552

Family Applications (2)

Application Number Title Priority Date Filing Date
EP06770173.0A Active EP1885235B1 (de) 2005-05-12 2006-05-10 Verbessertes verfahren für die spektrophotometrische überwachung der blutoxygenierung
EP13197260.6A Active EP2708180B1 (de) 2005-05-12 2006-05-10 Verbessertes verfahren zur spektrofotometrischen überwachung der sauerstoffanreicherung im blut

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP13197260.6A Active EP2708180B1 (de) 2005-05-12 2006-05-10 Verbessertes verfahren zur spektrofotometrischen überwachung der sauerstoffanreicherung im blut

Country Status (6)

Country Link
US (4) US8396526B2 (de)
EP (2) EP1885235B1 (de)
JP (1) JP5175179B2 (de)
AU (2) AU2006247746B2 (de)
CA (1) CA2608426C (de)
WO (1) WO2006124455A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9591999B2 (en) 2010-11-03 2017-03-14 University Of Washington Through Its Center For Commercialization Determination of tissue oxygenation in vivo

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8135448B2 (en) 2001-03-16 2012-03-13 Nellcor Puritan Bennett Llc Systems and methods to assess one or more body fluid metrics
US7865223B1 (en) 2005-03-14 2011-01-04 Peter Bernreuter In vivo blood spectrometry
US8055321B2 (en) * 2005-03-14 2011-11-08 Peter Bernreuter Tissue oximetry apparatus and method
EP1885235B1 (de) * 2005-05-12 2013-12-18 Cas Medical Systems, Inc. Verbessertes verfahren für die spektrophotometrische überwachung der blutoxygenierung
US8346327B2 (en) 2007-03-09 2013-01-01 Covidien Lp Method for identification of sensor site by local skin spectrum data
US8690864B2 (en) 2007-03-09 2014-04-08 Covidien Lp System and method for controlling tissue treatment
US8280469B2 (en) 2007-03-09 2012-10-02 Nellcor Puritan Bennett Llc Method for detection of aberrant tissue spectra
US8175665B2 (en) 2007-03-09 2012-05-08 Nellcor Puritan Bennett Llc Method and apparatus for spectroscopic tissue analyte measurement
WO2009100423A1 (en) * 2008-02-08 2009-08-13 Cas Medical Systems, Inc. Improved method for spectrophotometric blood oxygenation monitoring
US8364224B2 (en) 2008-03-31 2013-01-29 Covidien Lp System and method for facilitating sensor and monitor communication
WO2009126885A1 (en) * 2008-04-11 2009-10-15 Somanetics Corporation System and method for differentiating between tissue-specific and systemic causes of changes in oxygen saturation in tissue and organs
WO2010056973A1 (en) * 2008-11-14 2010-05-20 Nonin Medical, Inc. Optical sensor path selection
EP2451344B1 (de) 2009-07-10 2019-02-20 Cas Medical Systems, Inc. Verfahren zur spektrofotometrischen überwachung der sauerstoffanreicherung im blut des unteren magen-darm-trakts
KR101628218B1 (ko) * 2009-07-13 2016-06-08 고쿠리쯔 다이가쿠 호징 츠쿠바 다이가쿠 혈류계측장치 및 혈류계측장치를 이용한 뇌활동 계측장치
US9066660B2 (en) 2009-09-29 2015-06-30 Nellcor Puritan Bennett Ireland Systems and methods for high-pass filtering a photoplethysmograph signal
US20110190613A1 (en) * 2010-01-11 2011-08-04 O2 Medtech, Inc., Hybrid spectrophotometric monitoring of biological constituents
CA2787471C (en) 2010-02-03 2016-02-02 Nellcor Puritan Bennett Llc Combined physiological sensor systems and methods
US8391943B2 (en) 2010-03-31 2013-03-05 Covidien Lp Multi-wavelength photon density wave system using an optical switch
EP2621333B1 (de) 2010-09-28 2015-07-29 Masimo Corporation Bewusstseinstiefenmonitor mit oximeter
US9775545B2 (en) 2010-09-28 2017-10-03 Masimo Corporation Magnetic electrical connector for patient monitors
EP2768392A2 (de) * 2011-10-21 2014-08-27 Nonin Medical, Inc Alterskalibrierung für die gewebeoximetrie
US9913601B2 (en) 2012-02-03 2018-03-13 Cas Medical Systems, Inc. Method and apparatus for monitoring a blood oxygen saturation level relative to a saturation threshold value
US9907494B2 (en) 2012-04-18 2018-03-06 Hutchinson Technology Incorporated NIRS device with optical wavelength and path length correction
JP5794388B2 (ja) * 2012-04-25 2015-10-14 株式会社島津製作所 光生体計測装置
EP2844983A2 (de) * 2012-04-30 2015-03-11 Mayo Foundation For Medical Education And Research Spektrometrische systeme und verfahren für verbesserte fokuslokalisierung von zeitlich und räumlich variierenden messungen
EP2928371B1 (de) 2012-12-10 2021-06-02 Edwards Lifesciences Corporation Verfahren zur spektrofotometrischen bestimmung eines blutsauerstoffparameters
JP6062793B2 (ja) * 2013-04-23 2017-01-18 ソフトケア有限会社 血流画像診断装置
US9907006B2 (en) 2013-06-03 2018-02-27 Avago Technologies General Ip (Singapore) Pte. Ltd. Cross radio access technology access with handoff and interference management using communication performance data
US9888422B2 (en) 2013-06-03 2018-02-06 Avago Technologies General Ip (Singapore) Pte. Ltd. System and method for adaptive access and handover configuration based on prior history in a multi-RAT environment
US9848808B2 (en) 2013-07-18 2017-12-26 Cas Medical Systems, Inc. Method for spectrophotometric blood oxygenation monitoring
FR3011170B1 (fr) * 2013-09-30 2017-03-31 Apd Advanced Perfusion Diagnostics Dispositif et procede de mesure non invasive pour l'estimation de parametres metaboliques locaux
USD763938S1 (en) 2014-04-02 2016-08-16 Cephalogics, LLC Optical sensor array
USD763939S1 (en) 2014-04-02 2016-08-16 Cephalogics, LLC Optical sensor array liner with optical sensor array pad
WO2016057553A1 (en) 2014-10-07 2016-04-14 Masimo Corporation Modular physiological sensors
EP3217877B1 (de) * 2014-11-14 2021-01-13 MacKay Memorial Hospital Vorrichtung zur messung des sauerstoffgehalts in blut und/oder zur erkennung von gehirnblutergüssen
EP3023056B1 (de) 2014-11-20 2021-03-24 Edwards Lifesciences Corporation Spektrophotometrischer sensor
CN105628481B (zh) * 2015-12-03 2018-05-29 浙江大学 一种组织氧检测仪校准标准液配置装置及校准方法
JP2019509774A (ja) 2016-01-15 2019-04-11 シーエーエス・メディカル・システムズ・インコーポレイテッド シールドされ折り曲げられたセンサ用コネクタ
US10791981B2 (en) * 2016-06-06 2020-10-06 S Square Detect Medical Devices Neuro attack prevention system, method, and apparatus
US10506926B2 (en) 2017-02-18 2019-12-17 Arc Devices Limited Multi-vital sign detector in an electronic medical records system
US10492684B2 (en) 2017-02-21 2019-12-03 Arc Devices Limited Multi-vital-sign smartphone system in an electronic medical records system
EP3606428A4 (de) 2017-04-04 2020-04-22 Cas Medical Systems, Inc. Verfahren und vorrichtung zur nichtinvasiven messung von zirkulierendem hämoglobin
US10602987B2 (en) 2017-08-10 2020-03-31 Arc Devices Limited Multi-vital-sign smartphone system in an electronic medical records system
CN117297599A (zh) 2017-12-20 2023-12-29 爱德华兹生命科学公司 使用组织血氧饱和度和血压的自动调节系统及方法
US10485431B1 (en) 2018-05-21 2019-11-26 ARC Devices Ltd. Glucose multi-vital-sign system in an electronic medical records system
JP7550585B2 (ja) 2019-10-28 2024-09-13 東京エレクトロン株式会社 バッチ形成機構および基板処理装置
WO2021247300A1 (en) 2020-06-01 2021-12-09 Arc Devices Limited Apparatus and methods for measuring blood pressure and other vital signs via a finger
US20220202325A1 (en) * 2020-12-31 2022-06-30 Bioxytech Retina, Inc. Methods and devices for measuring structural and functional properties of tissue
EP4304455A1 (de) 2021-04-22 2024-01-17 Edwards Lifesciences Corporation Nirs/gewebeoximetriebasiertes verfahren zur messung der arteriellen blutsauerstoffsättigung aus pulsierenden hämoglobinwellenformen
EP4304462A1 (de) 2021-04-28 2024-01-17 Edwards Lifesciences Corporation System und verfahren zur autoregulationsdatenbestimmung
WO2022245530A1 (en) 2021-05-18 2022-11-24 Edwards Lifesciences Corporation Autoregulation system and method using tissue oximetry and blood pressure
EP4337095A1 (de) 2021-07-06 2024-03-20 Edwards Lifesciences Corporation Verfahren und vorrichtung zur nichtinvasiven messung des blutkreislaufhämoglobins unter berücksichtigung hämodynamischer konunterrichter
WO2024030547A1 (en) 2022-08-05 2024-02-08 Edwards Lifesciences Corporation Method and system for predicting a limit to a subject's autoregulation range
WO2024030548A1 (en) 2022-08-05 2024-02-08 Edwards Lifesciences Corporation System and method for accounting for a confounding factor in the determination of a physiologic parameter or condition
WO2024072871A1 (en) 2022-09-27 2024-04-04 Edwards Lifesciences Corporation Method and apparatus for non-invasively measuring blood circulatory hemoglobin
WO2024129934A1 (en) 2022-12-16 2024-06-20 Edwards Lifesciences Corporation Method and apparatus for non-invasively measuring blood circulatory hemoglobin
WO2024137662A1 (en) 2022-12-22 2024-06-27 Edwards Lifesciences Corporation Sensor assembly with spectrophotometric sensor portion and electrode sensor portion

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3638640A (en) * 1967-11-01 1972-02-01 Robert F Shaw Oximeter and method for in vivo determination of oxygen saturation in blood using three or more different wavelengths
US4281645A (en) * 1977-06-28 1981-08-04 Duke University, Inc. Method and apparatus for monitoring metabolism in body organs
US4817623A (en) 1983-10-14 1989-04-04 Somanetics Corporation Method and apparatus for interpreting optical response data
US4570638A (en) * 1983-10-14 1986-02-18 Somanetics Corporation Method and apparatus for spectral transmissibility examination and analysis
US4768516A (en) * 1983-10-14 1988-09-06 Somanetics Corporation Method and apparatus for in vivo evaluation of tissue composition
US5139025A (en) 1983-10-14 1992-08-18 Somanetics Corporation Method and apparatus for in vivo optical spectroscopic examination
US4714341A (en) 1984-02-23 1987-12-22 Minolta Camera Kabushiki Kaisha Multi-wavelength oximeter having a means for disregarding a poor signal
US4725147A (en) * 1984-09-17 1988-02-16 Somanetics Corporation Calibration method and apparatus for optical-response tissue-examination instrument
US4907876A (en) * 1987-05-08 1990-03-13 Hamamatsu Photonics Kabushiki Kaisha Examination apparatus for measuring oxygenation in body organs
US4805623A (en) * 1987-09-04 1989-02-21 Vander Corporation Spectrophotometric method for quantitatively determining the concentration of a dilute component in a light- or other radiation-scattering environment
US5119815A (en) * 1988-12-21 1992-06-09 Nim, Incorporated Apparatus for determining the concentration of a tissue pigment of known absorbance, in vivo, using the decay characteristics of scintered electromagnetic radiation
US5902235A (en) * 1989-03-29 1999-05-11 Somanetics Corporation Optical cerebral oximeter
DE3912993C2 (de) * 1989-04-20 1998-01-29 Nicolay Gmbh Optoelektronischer Sensor zur Erzeugung elektrischer Signale aufgrund von physiologischen Werten
US5040539A (en) 1989-05-12 1991-08-20 The United States Of America Pulse oximeter for diagnosis of dental pulp pathology
SE465497B (sv) 1989-11-24 1991-09-23 Minco Ab Anordning foer studium av en persons lungfunktion
FR2658080A1 (fr) * 1990-02-09 1991-08-16 Hospal Ind Appareil a fibres creuses.
DE69123954T2 (de) * 1991-03-07 1997-04-30 Hamamatsu Photonics Kk Anordnung zur Messung des Sauerstoffgehaltes im Gewebe
US5153669A (en) 1991-03-27 1992-10-06 Hughes Danbury Optical Systems, Inc. Three wavelength optical measurement apparatus and method
US5218962A (en) 1991-04-15 1993-06-15 Nellcor Incorporated Multiple region pulse oximetry probe and oximeter
US5413100A (en) 1991-07-17 1995-05-09 Effets Biologiques Exercice Non-invasive method for the in vivo determination of the oxygen saturation rate of arterial blood, and device for carrying out the method
US5853370A (en) * 1996-09-13 1998-12-29 Non-Invasive Technology, Inc. Optical system and method for non-invasive imaging of biological tissue
US5348004A (en) 1993-03-31 1994-09-20 Nellcor Incorporated Electronic processor for pulse oximeter
AU7080594A (en) * 1993-05-28 1994-12-20 Somanetics Corporation Method and apparatus for spectrophotometric cerebral oximetry
JP3577335B2 (ja) * 1993-06-02 2004-10-13 浜松ホトニクス株式会社 散乱吸収体計測方法及び装置
JP3433498B2 (ja) * 1993-06-02 2003-08-04 浜松ホトニクス株式会社 散乱吸収体の内部情報計測方法及び装置
WO1995003807A1 (en) * 1993-07-27 1995-02-09 The University Of Sydney Treatment of age-related macular degeneration
US5632273A (en) * 1994-02-04 1997-05-27 Hamamatsu Photonics K.K. Method and means for measurement of biochemical components
US5421329A (en) 1994-04-01 1995-06-06 Nellcor, Inc. Pulse oximeter sensor optimized for low saturation
DE4417639A1 (de) 1994-05-19 1995-11-23 Boehringer Mannheim Gmbh Verfahren zur Bestimmung eines Analyten in einer biologischen Probe
DE19512478C2 (de) * 1994-08-10 2001-05-31 Bernreuter Peter Verfahren zur Bestimmung der arteriellen Sauerstoffsättigung
US5803909A (en) * 1994-10-06 1998-09-08 Hitachi, Ltd. Optical system for measuring metabolism in a body and imaging method
JP3433534B2 (ja) * 1994-11-07 2003-08-04 浜松ホトニクス株式会社 散乱吸収体内の散乱特性・吸収特性の測定方法及び装置
US5706821A (en) * 1994-12-30 1998-01-13 Hamamatsu Photonics K.K. Spectroscopic method for quantitatively determining the change of concentration of a light or other radiation absorbing compound in a medium which is interrogated through an intervening medium
US5524617A (en) 1995-03-14 1996-06-11 Nellcor, Incorporated Isolated layer pulse oximetry
US5782756A (en) 1996-09-19 1998-07-21 Nellcor Puritan Bennett Incorporated Method and apparatus for in vivo blood constituent analysis
CA2346971C (en) * 1998-10-13 2011-02-08 Somanetics Corporation Multi-channel non-invasive tissue oximeter
US6512936B1 (en) * 1999-07-22 2003-01-28 Sensys Medical, Inc. Multi-tier method of classifying sample spectra for non-invasive blood analyte prediction
US6895263B2 (en) * 2000-02-23 2005-05-17 Medtronic Minimed, Inc. Real time self-adjusting calibration algorithm
JP2003532107A (ja) * 2000-05-02 2003-10-28 シーエーエス・メディカル・システムズ・インコーポレイテッド 分光光度法により血液酸素添加を非観血的にモニターする方法
US6516209B2 (en) * 2000-08-04 2003-02-04 Photonify Technologies, Inc. Self-calibrating optical imaging system
US6882874B2 (en) * 2002-02-15 2005-04-19 Datex-Ohmeda, Inc. Compensation of human variability in pulse oximetry
AU2003254135B2 (en) * 2002-07-26 2006-11-16 Cas Medical Systems, Inc. Method for spectrophotometric blood oxygenation monitoring
EP1885235B1 (de) * 2005-05-12 2013-12-18 Cas Medical Systems, Inc. Verbessertes verfahren für die spektrophotometrische überwachung der blutoxygenierung
US8965472B2 (en) 2005-10-21 2015-02-24 Cas Medical Systems, Inc. Method and apparatus for spectrophotometric based oximetry

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9591999B2 (en) 2010-11-03 2017-03-14 University Of Washington Through Its Center For Commercialization Determination of tissue oxygenation in vivo

Also Published As

Publication number Publication date
US20090281403A1 (en) 2009-11-12
AU2010227077B2 (en) 2011-11-03
US8396526B2 (en) 2013-03-12
EP2708180B1 (de) 2018-10-24
US8923943B2 (en) 2014-12-30
WO2006124455A1 (en) 2006-11-23
AU2010227077A1 (en) 2010-11-04
AU2006247746A1 (en) 2006-11-23
JP5175179B2 (ja) 2013-04-03
US20140094668A1 (en) 2014-04-03
AU2006247746B2 (en) 2010-07-08
EP1885235A4 (de) 2011-04-27
US20150201872A1 (en) 2015-07-23
CA2608426C (en) 2014-10-07
EP2708180A1 (de) 2014-03-19
WO2006124455B1 (en) 2007-01-11
JP2008539968A (ja) 2008-11-20
CA2608426A1 (en) 2006-11-23
US10117610B2 (en) 2018-11-06
US20170086721A1 (en) 2017-03-30
EP1885235A1 (de) 2008-02-13
US9456773B2 (en) 2016-10-04

Similar Documents

Publication Publication Date Title
EP1885235B1 (de) Verbessertes verfahren für die spektrophotometrische überwachung der blutoxygenierung
EP1259791B1 (de) Verfahren zur nicht-invasiven spektrophotometrischen überwachung der sauerstoffsättigung des blutes
EP1545298B1 (de) Verfahren und vorrichtung für die spektrophotometrische überwachung der oxygenierung von blut
US20110028812A1 (en) Method for spectrophotometric blood oxygenation monitoring
US5137023A (en) Method and apparatus for monitoring blood analytes noninvasively by pulsatile photoplethysmography
EP0352923A1 (de) Spektralfutumetrisches Gerät und Verfahren zur Anzeige der Sauerstoffsättigung
EP2012657A2 (de) Nicht-invasiver glukosesensor
EP3756545B1 (de) Verfahren zur messung der sauerstoffsättigung des blutes
EP0623308A1 (de) Unblutige Messung der Konzentration von Blut-Bestandteilen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071211

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20110325

RIC1 Information provided on ipc code assigned before grant

Ipc: A61B 5/00 20060101AFI20070109BHEP

Ipc: G01N 21/25 20060101ALI20110321BHEP

Ipc: A61B 5/1495 20060101ALI20110321BHEP

Ipc: A61B 5/1455 20060101ALI20110321BHEP

17Q First examination report despatched

Effective date: 20120105

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130605

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130717

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 645195

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006039693

Country of ref document: DE

Effective date: 20140213

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 645195

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131218

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140418

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006039693

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

26N No opposition filed

Effective date: 20140919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140510

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006039693

Country of ref document: DE

Effective date: 20140919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131218

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060510

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20170523

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006039693

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240321

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240313

Year of fee payment: 19