EP1880577B1 - Dispositif et procede permettant de generer un signal de haut-parleur sur la base d'une source audio d'apparition aleatoire - Google Patents

Dispositif et procede permettant de generer un signal de haut-parleur sur la base d'une source audio d'apparition aleatoire Download PDF

Info

Publication number
EP1880577B1
EP1880577B1 EP06754040A EP06754040A EP1880577B1 EP 1880577 B1 EP1880577 B1 EP 1880577B1 EP 06754040 A EP06754040 A EP 06754040A EP 06754040 A EP06754040 A EP 06754040A EP 1880577 B1 EP1880577 B1 EP 1880577B1
Authority
EP
European Patent Office
Prior art keywords
occurrence
speaker
pulse response
audio
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP06754040A
Other languages
German (de)
English (en)
Other versions
EP1880577A1 (fr
Inventor
Michael Beckinger
René RODIGAST
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP1880577A1 publication Critical patent/EP1880577A1/fr
Application granted granted Critical
Publication of EP1880577B1 publication Critical patent/EP1880577B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/13Application of wave-field synthesis in stereophonic audio systems

Definitions

  • the present invention relates to audio signal processing, and more particularly to audio signal processing in systems having a plurality of loud speakers, such as wave field synthesis systems.
  • Fig. 4 shows a typical wave field synthesis scenario.
  • the heart of the wave field synthesis system is the wave field synthesis renderer 400, which generates its own loudspeaker signal for each of the individual loudspeakers 401, which group around a reproduction environment. More specifically, between the wave field synthesis renderer 400 and each speaker, there is thus a speaker channel on which the speaker signal for that speaker is transmitted from the wave field synthesis renderer 400.
  • the wave field synthesis renderer 400 is supplied with control data, which is typically arranged in a control file 402.
  • the control file may comprise a list of audio objects, each audio object having a virtual position and an audio signal associated therewith.
  • the virtual position is the location that a listener in the playback environment will locate.
  • a film screen is arranged, it is not only an optical spatial scenario but also a tonal spatial scenario generated for the viewer.
  • all speaker channels are supplied with loudspeaker signals that are from the same audio signal for a source, such as an actor or z. As an approaching train derived. All these speaker signals differ but more or less by their scaling and their delay of the input signal.
  • the scaling and delay for each loudspeaker signal is generated by the Wave Field Synthesis algorithm, which operates on the Hugyen principle. As is known, the principle is based on being able to generate any arbitrary waveform through a large number of spherical waves.
  • the wave-field synthesis renderer will perform the procedure described above for each individual audio object and then accumulate the individual before the loudspeaker signals are transmitted to the individual loudspeakers via the loudspeaker channels Perform component signals. For example, when viewing the speaker 403 located at a particular speaker position that is known, the wave field synthesis renderer will generate for each audio object a component signal to be played by the speaker 403. Then, when all the component signals are calculated for a timing for the speaker 403, the individual component signals are simply added up to obtain the combined component signal for the speaker channel going from the wave field synthesis renderer 400 to the speaker 403. If, on the other hand, only one source is active for the loudspeaker 403 at a time, the summation can of course be omitted.
  • the wave-field synthesis renderer 400 has practical limitations. So he is considering the fact that the whole wave field synthesis concept anyway is relatively compute-time-intensive, can process only a certain number of individual sources at the same time.
  • a typical maximum number of sources to be processed simultaneously is 32 sources. This number of 32 sources is sufficient for typical scenes, such as dialogues. However, this number is much too small when certain events occur, such as a rainy sound, which is composed of a very large number of individual different sound events.
  • a single sound event is the sound that a raindrop produces when it falls on a particular surface.
  • a drop markup is simulated by determining the sector of the markup. Thereupon, the sound pressure of the impact is distributed between the two adjacent loudspeakers and, based thereon, a sound signal is generated for these two loudspeakers.
  • a disadvantage of this concept is that even there particle positions can not be generated, but only directions with respect to a listener by a stereo panning between two of the impact position of the droplet adjacent speakers can be used. Again, no optimal rain sound is generated for the listener.
  • the object of the present invention is to provide a concept for generating a loudspeaker signal which enables a higher quality reproduction of an audio source to be presented at different positions at different times in an audio scene.
  • the present invention is based on the finding that both the position and the time at which an audio source should occur in an audio scene can be generated synthetically.
  • a single impulse response is generated for each position.
  • the single-pulse response represents the image of the audio source, which is located at a certain position, to a loudspeaker or a loudspeaker signal.
  • the individual generated individual impulse response information is combined in the correct time, that is, depending on the time of occurrence associated with the onset positions, to obtain combination impulse response information for a loudspeaker channel.
  • the audio signal describing the audio source is then filtered using the combination impulse response information to finally obtain the speaker signal for the speaker channel, this speaker signal representing the audio source.
  • the loudspeaker channel loudspeaker signal represents the total signal that exists due to the audio signal that has occurred multiple times at certain times the individual events of the occurrence of the raindrop in the reproduction room are uniquely located by determined virtual positions.
  • the invention is thus achieved that, especially for large spaces an enveloping effect by means of random particles, ie z. B. briefly occurring sound sources such as raindrops, is achieved.
  • z. B. only 32 channels can render at the same time, any frequency of the individual sound objects, such as raindrops can be generated according to the invention.
  • spatially distributed particles can be reproduced in a high repetition rate and in real time for large spaces.
  • sound sources can occur simultaneously at different points in the room and simulated simultaneously.
  • a high number of input channels is required according to the invention, since the signals are generated due to the individual sources within the wave field synthesis renderer.
  • a single audio object comprising the raindrop audio signal will suffice.
  • the number of more or less simultaneously occurring raindrops arranged at different virtual positions is expressed only by the fact that How much individual impulse responses are generated and combined.
  • the inventive concept leads to a considerable reduction of the computation time in comparison to the case in which for each audio object a separate virtual source exists at its own virtual position.
  • B. is provided via a control file a wave field synthesis renderer. Due to the summary of the individual impulse responses according to the invention, an arbitrarily high number of raindrops at different positions does not lead to a correspondingly large number of convolutions, but only results in a single convolution of a (large) impulse response with the audio signal representing the audio source (the raindrop) , This too is one reason why the concept according to the invention can be carried out very computationally efficiently.
  • any primary sound source is reproduced as often as desired virtually via wave field synthesis over an arbitrarily large listening surface.
  • the required computing power is much lower than with current wave field synthesis algorithms.
  • a generation of parameters such as mean particle density per time, two-dimensional position in space, three-dimensional position in space, individual filtering of each particle by means of impulse response is performed by means of a random number generator.
  • the concept according to the invention can also be used favorably for X.Y multichannel surround format.
  • the impulse response z. B. to change the sound of the particle, such as raindrops, or to simulate a physical property, such as the rain drops falling on a wood or on a sheet, which of course has different sounds result.
  • FIG. 3 shows an overview diagram of a loudspeaker signal generating device according to the invention at an output 10 for a loudspeaker channel assigned to a loudspeaker (such as 403) which is located in a loudspeaker channel Playback environment is attachable to a speaker position of a plurality of speaker positions.
  • a preferred embodiment of the device according to the invention has a device 12 for providing an audio signal for an audio source to occur at different positions and at different times in an audio scene.
  • the means for providing the audio signal is typically a storage medium on which an audio signal, e.g. As an incident raindrop or a sound of another particle, such as an approaching or departing spaceship z.
  • this audio signal for the audio source is once preferably within the wave field synthesis renderer, such as a renderer 400 of FIG Fig. 4 , permanently stored and therefore does not need to be fed through the control file.
  • the audio signal can also be fed to the renderer via the control file.
  • the means 12 for providing the audio signal would be a control file together with associated readout / transmission means.
  • the device according to the invention further comprises a position generator for providing a plurality of positions at which the audio source is to occur.
  • the position generator 14 is configured to, when Fig. 4 is considered to generate virtual positions that may be inside or outside the replay environment. If it is assumed that at the top of the playback environment in Fig. 4 z. For example, if there is a screen on which a movie is projected, the virtual positions may of course also be behind the screen or in front of the screen.
  • the position generator 14 may be configured to have any (x, y) positions within or outside the playback environment. Alternatively or additionally, depending on the design of the loudspeaker array, a z-position component can also be generated, that is to say whether the listener is to locate a source above him or possibly even below him. Further, depending on the implementation of a single impulse response generator 16 described below, the position generator is configured to provide any position in the rendering environment or outside the rendering environment, or only positions in a particular grid. The generation of positions only within a certain raster is advantageous when a look-up table is used in the individual impulse response generator 16 which will be described below in order to generate at least a part or the complete single-impulse response.
  • a position rounding to the raster can take place either at the output of the position generator 14 or at the input of the individual impulse response generator 16.
  • arbitrary finely resolved positions can be processed by the single impulse response generator to calculate the single impulse responses without further position rounding / quantization.
  • the position generator 14 obtains area information or volume information for the three-dimensional case, indicating in which area positions are to be generated. In other words, the surface information defines an area perpendicular to the canvas, within which rain should fall.
  • the position generator would be able to generate positions throughout the replay environment as it rains throughout the replay environment.
  • the requirement is such that z. B.
  • the device further comprises a time generator 18 for providing times of occurrence at which the audio source should occur, wherein a time assigned to a position generated by the position generator 14.
  • a time generator 18 for providing times of occurrence at which the audio source should occur, wherein a time assigned to a position generated by the position generator 14.
  • the timing generator 18 is controlled by a density parameter which, like the area information for the position generator 14, is supplied by a parameter controller 19.
  • the time generator 18 thus receives as parameter the time density, ie the number of occurrence events of the audio source per time interval.
  • the time density for a time interval of, for example, 10 seconds controls how many raindrops, for example, 1,000 raindrops, should occur per second.
  • the time generator 18 is designed to deliver within such a time interval the time points Ti predetermined by the time density. As shown by a dashed line 17, it is also preferable to supply the temporal density information not only to the timing generator 18 but also to the position generator 14, so that the position generator always "ejects" the required amount of positions, which are then output by the timing generator 18 generated times can be assigned. However, it is not essential that the density information be supplied to the position generator. This is unnecessary if the position generator is fast enough Positions ejects and caches these positions so that they are supplied to the single impulse response generator 16 as needed, ie in association with time points or controlled by the temporal density information.
  • the single-pulse response generator 16 is configured to generate single-pulse response information for each position of the plurality of speaker channel locations.
  • the single-pulse response generator operates based on position and based on information about the loudspeaker channel in question. So it is clear that the speaker signal for the lower left speaker of the scenario in Fig. 4 unlike the top right speaker of the scenario in Fig. 4 will look like.
  • the single-pulse response generator 16 will also be configured to account for the position information generated by the position generator.
  • the single impulse response generator is thus the "share” that a particular speaker of the many speakers that the playback environment of Fig. 4 determine, calculate, and express as impulse response, such that when all loudspeakers "play" simultaneously, a user has the impression that a raindrop at position x, y, generated by the position generator, has hit a particular surface is.
  • the inventive apparatus further comprises an impulse response combiner for combining the single impulse response information according to the times of occurrence to obtain combination impulse response information for the loudspeaker channel.
  • the impulse response combiner is designed to ensure that many occurrence events of the audio source have occurred, and that they are combined with each other in real time, namely under the control of the time information.
  • the preferred type of combination is an addition. However, weighted additions / subtractions can also be performed if certain effects are to be achieved. However, a preferred simple addition of the individual impulse responses IAi, taking into account the times of occurrence generated by the time generator 18.
  • the combination impulse response information generated by impulse response combiner 20 is supplied to a filter (or filter device) 21 as well as the audio signal at the output of device 12.
  • the filter 21 is a filter with adjustable impulse response, so with adjustable filter characteristic. While the audio signal at the output of the device 12 will typically be short, the combined impulse response output by the impulse response combiner 20 will be relatively long and vary widely. In principle, the combined impulse response can be arbitrarily long, depending on how long the effect generator is running. For example, if it runs for 30 minutes for a rain that lasts 30 minutes, then the length of the combined impulse response will also be of this order of magnitude.
  • the loudspeaker signal is obtained which, depending on the audio scene, is already the actual loudspeaker signal played by the loudspeaker, or which, if additional audio objects are reproduced by this loudspeaker, is a loudspeaker signal which is another Speaker signal for this speaker is added up to produce a total loudspeaker signal, as it later with reference to Fig. 3 is explained.
  • the filter 21 is thus adapted to filter the audio signal using the combination impulse response information to obtain the loudspeaker channel loudspeaker signal representative of the appearance of the audio source at the various locations and times for a particular loudspeaker channel.
  • Fig. 2a to 2c the functionality of the impulse response combiner 20 is shown. Only are exemplary in Fig. 2a three single-pulse response information IA1, IA2, IA3 shown. Each of the three impulse responses additionally has a certain delay, ie a time delay or a "memory" which has the channel which is described by this impulse response.
  • the delay of the first impulse response IA1 is 1, while the delays of the second and third impulse responses IA2 and IA3 are equal to 2 and 3, respectively.
  • Fig. 2b It can be seen that the three impulse responses are temporally shifted, taking into account their individual delays.
  • the impulse response IA3 is shifted by two delay units with respect to the impulse response IA1.
  • the temporally correctly arranged single impulse responses are summed up in order to obtain the result, thus the combination impulse response information.
  • values of the individual impulse responses located at the same time are added and, if appropriate, subjected to a weighting with a weighting factor before the addition or after the addition.
  • Fig. 2c finally, shows the operation performed by the adjustable impulse response filter 21.
  • the convolution can take place either directly in the time domain as convolution.
  • both the impulse response and the audio signal may be transformed into the frequency domain such that the convolution results in a multiplication of the frequency domain representation of the audio signal and the frequency domain representation of the combined impulse response, which is now the transfer function.
  • Fig. 3 preferred embodiments of the inventive concept, in particular on the generation of the speaker signals for not only one speaker channel, but for many speaker channels, it being noted that the generation of a speaker signal for one speaker channel is basically the same for all other speaker channels.
  • the parameter control 19 is designed to To provide area information as a concrete area preferably in rectangular form.
  • a length 1 and a width b of a surface and a center M of this surface are provided.
  • the area in the reproduction room to which the raindrops should fall may be indicated in such a way that either the entire reproduction space or only part of the reproduction environment is to be "rained” with rain.
  • a particle density is specified, ie the number of particles per one time window.
  • a particulate filter control signal F is supplied, which is used in the later described block of the position-dependent filtering to produce a decorrelation between the raindrops.
  • the overall impression does not become synthetic, but becomes realistic, especially since not all raindrops sound the same, however, and differ within certain limits with respect to their sound.
  • only one particle audio signal is provided for a certain period of time.
  • the particle filter ensures that differences in the sound occur under these same raindrops.
  • the parameter control 19 still surface properties E delivered, which are also used in the position-dependent filtering to z. B. to signal that a raindrop falls on a wooden surface, on a metal surface or on a water surface, so on matter with different properties.
  • the random number generator 14 corresponds to the position generator 14 of FIG Fig. 1 and preferably, like the timing controller 18, includes a true or pseudo-random generator to generate both the individual positions and the individual timings under the control of the area parameter and the density parameter.
  • a wave field synthesis parameter database an input value, namely the position x, y, is assigned a set of single-pulse response information, each single-pulse response information of that set of single-pulse response information being provided for a speaker channel.
  • This pair of scale and delay represents the simplest form of single-pulse response information provided by the single-pulse response generator 16.
  • the impulse response represented by scale and delay has only a single value, namely at the time given by delay, and with an amplitude given by scale.
  • a "correct" impulse response with more than one value is output, which can model the timbre of the drop.
  • a drop that falls on a tin roof get a different impulse response (IR) in block 16b as a drop, due to its position not on a tin roof but z. B. falls on a water surface.
  • the block "position-dependent filtering" 16b thus outputs a set of N filter impulse responses (filter IR), again for each of the individual loudspeakers.
  • filter IR filter impulse responses
  • the impulse response represented by scale and delay is multiplied by the filter impulse response generated for the same loudspeaker channel in block 16b.
  • this multiplication has been performed for each of the N loudspeaker channels, one obtains a set of N single-pulse responses for each particle position, so for each raindrop, as shown in a block 16d.
  • a further or combined impulse response may be provided by which the sound of a raindrop is always slightly modified depending on the position but randomly generated. This ensures that not all raindrops that fall on a tin roof sound exactly the same, but that each or at least some of the raindrops sound different, so as to be more just to nature, where all raindrops are not identical (but similar).
  • the wave field synthesis algorithm results in low-pass filtering that can be perceived by a listener. It is therefore preferred to perform a predistortion already in the filter impulse response in such a way that a preference of the high frequencies takes place such that, when the low-pass effect of the wave field synthesis algorithm occurs, the predistortion is compensated as precisely as possible.
  • the impulse response combiner 20 to be provided for each loudspeaker channel then calculates the combination impulse response for each loudspeaker channel and uses it for filtering in the filter 21 for each loudspeaker channel.
  • each speaker channel such as the speaker channel 1 (block 21 in FIG Fig. 3 ) is then the speaker signal for this speaker channel.
  • the in Fig. 3 shown representation of an adder 30 symbolically to understand.
  • N adders exist for each loudspeaker channel to compute the loudspeaker signal computed by a block 21 with a corresponding loudspeaker signal of another particulate generator 31 having different characteristics and of course also a loudspeaker signal for an audio object as represented by the control file 402 of FIG Fig. 4 is shown to combine.
  • Such a loudspeaker signal is generated by a conventional wave field synthesis device 32.
  • the conventional wave field synthesizer 32 could include a renderer 400 and a control file 402 as shown in FIG Fig. 4 have been shown.
  • the resulting loudspeaker signal for this loudspeaker channel is found (block 33), which then goes to a loudspeaker such as the loudspeaker 403 of FIG Fig. 4 , can be transmitted.
  • the random generator 14 With the help of the parameters from the parameter control, the random generator 14 thus generates positions at which particles are to occur. By the connected timer 18, the frequency of occurring particles is controlled.
  • the timing controller 18 serves as a time reference for the random number generator 14 and the impulse response generators 16a, 16b.
  • the wave field synthesis parameters scaling and delay are generated for each loudspeaker from a precalculated database (16a).
  • a filter impulse response corresponding to the position of the particle is generated, with the generation of the filter impulse response being optional in block 16b.
  • the filter impulse response (FIR filter) and scaling are vectorially multiplied in block 16c. Taking into account the delay, the multiplied, ie scaled filter impulse response is then to some extent "inserted" into the impulse response of the impulse response generator 20.
  • this insertion into the impulse response of the impulse response generator is based on both the delay generated by block 16a and the particle's onset time, such as the start time, mid time, or end time the z. B. a raindrop is "active".
  • the filter impulse response provided by block 16b may also be processed equally with respect to the delay. Since the impulse response provided by block 16a has only one value, this processing simply results in the impulse response output by block 16b being shifted by the value of the delay. This shifting can either take place before insertion in block 20, or the insertion in block 20 can take place in consideration of this delay, which is preferred for reasons of computing time.
  • the impulse response generator 20 is a time buffer configured to sum up the generated impulse responses of the particles along with delays.
  • the timing is further adapted to always pass blocks having a predetermined block length of this time buffer to the FFT convolution in block 21 for each speaker channel. It is preferred to use an FFT convolution, that is a fast convolution based on the Fast Fourier Transform, for the filtering by means of the filter 21.
  • the FFT convolution creases the ever-changing impulse responses with a non-time-varying particle, namely the audio signal provided by the particle audio signal block 12. For each pulse from the impulse response generator, a particle signal thus arises at the respective time in the FFT convolution. Since the FFT convolution is a block-oriented convolution, the particle audio signal can be switched with each block. Here it is preferred to compromise between the required computing power on the one hand and the rate of change of the particle audio signal on the other hand. The computing power of the FFT convolution decreases with larger block sizes, on the other hand, the particle audio signal can only be switched with a larger delay, namely a block. A switch between particle audio signals would be reasonable, for example, when switching from snow to rain, or when switching from rain to hail, or when, for example, switching from a light rain with "small” drops to a harder rain with "big” drops.
  • the output signals of the FFT convolutions for each loudspeaker channel can be compared with the standard loudspeaker signals as shown in Fig. 3 at 30, and of course also summed up with other particle generators for each individual loudspeaker channel, to finally obtain the resulting loudspeaker signal for a loudspeaker channel.
  • the concept according to the invention is advantageous in that a true-to-nature spatial reproduction of frequently occurring sound objects over large listening ranges can be achieved in real time with the aid of a comparatively less computation-intensive computation method.
  • a particle audio signal can be duplicated per algorithm described. Due to the built-in position-dependent filtering, it is further preferred to achieve an alienation of the particle. Furthermore, different algorithms can be used in parallel to generate different particles, thus creating an efficient and lifelike sound scenario.
  • the inventive concept can be used both as an effect device for wave field synthesis systems and for any surround reproduction systems.
  • the three-dimensional system replaces the area information with volume information. Positions are then three-dimensional space positions. The particle density then becomes a particle size / (time volume)
  • the inventive concept is further not limited to wavefield systems of two-dimensional nature.
  • Real three-dimensional systems such as Ambisonics can also be used with modified coefficients (scale, delay, filter impulse response) in the single impulse response generator 16 (FIG. Fig. 1 ).
  • "Half" two-dimensional systems such as all XY formats can also be controlled via modified coefficients.
  • the FFT convolution in the adjustable impulse response filter device 21 can be made computationally favorable with all existing optimization methods (half block length, blockwise decomposition of the impulse response). For example will be on William H. Press, et al., "Numerical Receipts in C", 1998, Cambridge University Press , referenced.
  • the method according to the invention can be implemented in hardware or in software.
  • the implementation may be on a digital storage medium, in particular a floppy disk or CD with electronically readable control signals, which may interact with a programmable computer system such that the method is performed.
  • the invention thus also consists in a computer program product with a program code stored on a machine-readable carrier for carrying out the method when the computer program product runs on a computer.
  • the invention can thus be realized as a computer program with a program code for carrying out the method when the computer program runs on a computer.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Stereophonic System (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

L'invention concerne un générateur de particules permettant de générer un signal de haut-parleur destiné à un canal de haut-parleur dans un environnement de restitution multicanal. Ce générateur de particules comprend un générateur de position (14) mettant à disposition une pluralité de positions auxquelles doit apparaître une source audio, et un générateur de temps (18) mettant à disposition des temps d'apparition auxquels la source audio doit apparaître. Un temps est associé à une position. De plus, un générateur de réponse d'impulsion individuelle (16) permet de générer des données réponses d'impulsions individuelles pour chaque position de la pluralité de positions. Une réponse d'impulsions combinées est formée par un combinateur de réponses d'impulsions (20) permettant de combiner des données de réponses d'impulsions individuelles selon les temps d'apparition. Cette réponse d'impulsion globale est finalement utilisée pour régler un filtre (21) qui permet de filtrer finalement le signal audio.

Claims (13)

  1. Dispositif pour générer un signal de haut-parleur pour un canal de haut-parleur associé à un haut-parleur qui peut être placé dans un environnement de reproduction à une position de reproduction parmi une pluralité de positions de haut-parleur, aux caractéristiques suivantes:
    un moyen (12) destiné à fournir un signal audio pour une source audio qui doit apparaître à différentes positions d'apparition et à différents moments dans une scène audio;
    un générateur de positions (14) destiné à mettre à disposition une pluralité de positions d'apparition auxquelles doit apparaître la source audio;
    un générateur de moments (18) destiné à mettre à disposition des moments d'apparition auxquels doit apparaître la source audio, à une position d'apparition étant associée un moment d'apparition;
    un générateur (16) destiné à mettre à disposition des informations sur des réponses impulsionnelles individuelles pour chaque position d'apparition parmi la pluralité de positions d'apparition pour un canal de haut-parleur sur base des positions d'apparition et des informations sur le canal de haut-parleur;
    un combineur de réponses impulsionnelles (20) destiné à combiner les informations sur les réponses impulsionnelles individuelles selon les moments d'apparition, pour obtenir des informations de réponse impulsionnelle de combinaison pour le canal de haut-parleur; et
    un filtre (21) destiné à filtrer le signal audio à l'aide des informations de réponse impulsionnelle de combinaison, pour obtenir un signal de haut-parleur pour le canal de haut-parleur qui représente la source audio qui apparaît à différentes positions d'apparition et à différents moments dans la scène audio.
  2. Dispositif selon la revendication 1, dans lequel le générateur de positions (14) comporte un générateur aléatoire pour fournir des positions d'apparition aléatoires parmi une réserve de positions d'apparition possibles.
  3. Dispositif selon la revendication 1 ou 2, dans lequel le générateur de moments (18) est réalisé de manière à régler les moments d'apparition en fonction d'une densité de particules prédéterminée, de sorte que dans une fenêtre de temps soit mise à disposition une quantité de moments d'apparition prédéterminée par la densité de particules.
  4. Dispositif selon la revendication 3, dans lequel le générateur (16) est réalisé de manière à accéder à un tableau prédéterminé et à déterminer, en fonction de la position d'apparition et du canal de haut-parleur, les informations sur les réponses impulsionnelles individuelles.
  5. Dispositif selon l'une des revendications précédentes, dans lequel le générateur (16) est réalisé de manière à fournir un facteur de modulation et une temporisation qui sont fonction de la position d'apparition.
  6. Dispositif selon l'une des revendications précédentes, dans lequel le générateur (16) réalisé de manière à déterminer un facteur de modulation et une temporisation sur base d'une position d'apparition,
    à déterminer une réponse impulsionnelle additionnelle qui est associée à une production de la source audio (16b), et
    à pondérer la réponse impulsionnelle additionnelle avec le facteur de modulation (16c), pour obtenir les informations sur les réponses impulsionnelles individuelles.
  7. Dispositif selon l'une des revendications précédentes,
    dans lequel le combineur de réponses impulsionnelles (20) est réalisé de manière à additionner de manière décalée dans le temps, en fonction des moments d'apparition, les informations sur les réponses impulsionnelles individuelles, pour obtenir les informations de réponses impulsionnelles de combinaison.
  8. Dispositif selon la revendication 6, dans lequel le combineur de réponses impulsionnelles est réalisé de manière à additionner de manière décalée dans le temps, en fonction des moments d'apparition et de la temporisation, les informations sur les réponses impulsionnelles individuelles, pour obtenir les informations de réponses impulsionnelles de combinaison.
  9. Dispositif selon la revendication 6,
    dans lequel le générateur (16) est réalisé de manière à sélectionner la réponse impulsionnelle additionnelle en fonction de la position d'apparition (16b).
  10. Dispositif selon l'une des revendications précédentes,
    dans lequel le moyen (12) destiné à fournir un signal audio est réalisé de manière à fournir un signal audio pour une source audio qui apparaît de manière aléatoire ou quasi aléatoire dans une scène audio.
  11. Dispositif selon l'une des revendications précédentes, présentant par ailleurs les caractéristiques suivantes:
    un moyen (32) destiné à générer un signal de composante pour un objet audio sur base d'une position virtuelle de l'objet audio, d'un signal audio associé à l'objet audio, et d'informations sur le canal de haut-parleur; et
    un superposeur (30) destiné à superposer le signal de composante et le signal de haut-parleur, pour obtenir un signal de haut-parleur total pour le canal de haut-parleur.
  12. Procédé pour générer un signal de haut-parleur pour un canal de haut-parleur associé à un haut-parleur qui peut être placé dans un environnement de reproduction à une position de reproduction parmi une pluralité de positions de haut-parleur, aux étapes suivantes consistant à:
    fournir (12) un signal audio pour une source audio qui doit apparaître à différentes positions d'apparition et à différents moments dans une scène audio;
    mettre à disposition (14) une pluralité de positions d'apparition auxquelles doit apparaître la source audio;
    mettre à disposition (18) des moments d'apparition auxquels doit apparaître la source audio, à une position d'apparition étant associée un moment d'apparition;
    générer (16) des informations sur des réponses impulsionnelles individuelles pour chaque position d'apparition parmi la pluralité de positions d'apparition pour un canal de haut-parleur sur base des positions d'apparition et des informations sur le canal de haut-parleur;
    combiner (20) les informations sur les réponses impulsionnelles individuelles selon les moments d'apparition, pour obtenir des informations de réponse impulsionnelle de combinaison pour le canal de haut-parleur; et
    filtrer (21) le signal audio à l'aide des informations de réponse impulsionnelle de combinaison, pour obtenir un signal de haut-parleur pour le canal de haut-parleur qui représente la source audio qui apparaît à différentes positions d'apparition et à différents moments dans la scène audio.
  13. Programme d'ordinateur avec un code de programme pour réaliser le procédé selon la revendication 12 lorsque le programme d'ordinateur est exécuté sur un ordinateur.
EP06754040A 2005-06-16 2006-06-01 Dispositif et procede permettant de generer un signal de haut-parleur sur la base d'une source audio d'apparition aleatoire Expired - Fee Related EP1880577B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005027978A DE102005027978A1 (de) 2005-06-16 2005-06-16 Vorrichtung und Verfahren zum Erzeugen eines Lautsprechersignals aufgrund einer zufällig auftretenden Audioquelle
PCT/EP2006/005233 WO2006133812A1 (fr) 2005-06-16 2006-06-01 Dispositif et procede permettant de generer un signal de haut-parleur sur la base d'une source audio d'apparition aleatoire

Publications (2)

Publication Number Publication Date
EP1880577A1 EP1880577A1 (fr) 2008-01-23
EP1880577B1 true EP1880577B1 (fr) 2009-10-21

Family

ID=36791607

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06754040A Expired - Fee Related EP1880577B1 (fr) 2005-06-16 2006-06-01 Dispositif et procede permettant de generer un signal de haut-parleur sur la base d'une source audio d'apparition aleatoire

Country Status (6)

Country Link
US (1) US8090126B2 (fr)
EP (1) EP1880577B1 (fr)
JP (1) JP4553963B2 (fr)
CN (1) CN100589656C (fr)
DE (2) DE102005027978A1 (fr)
WO (1) WO2006133812A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005033239A1 (de) * 2005-07-15 2007-01-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Steuern einer Mehrzahl von Lautsprechern mittels einer graphischen Benutzerschnittstelle
JP4736094B2 (ja) * 2007-01-18 2011-07-27 独立行政法人産業技術総合研究所 音データ生成装置およびプログラム
US8620003B2 (en) * 2008-01-07 2013-12-31 Robert Katz Embedded audio system in distributed acoustic sources
CN109040636B (zh) * 2010-03-23 2021-07-06 杜比实验室特许公司 音频再现方法和声音再现系统
CN103180897B (zh) * 2010-10-21 2016-11-09 3D声学控股有限公司 声音漫射发生器
DE102011082310A1 (de) 2011-09-07 2013-03-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung, Verfahren und elektroakustisches System zur Nachhallzeitverlängerung
JP6254864B2 (ja) * 2014-02-05 2017-12-27 日本放送協会 複数音源配置装置、複数音源配置方法
US11010409B1 (en) * 2016-03-29 2021-05-18 EMC IP Holding Company LLC Multi-streaming with synthetic replication
GB201719854D0 (en) * 2017-11-29 2018-01-10 Univ London Queen Mary Sound effect synthesis
US10764701B2 (en) 2018-07-30 2020-09-01 Plantronics, Inc. Spatial audio system for playing location-aware dynamic content

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6728664B1 (en) * 1999-12-22 2004-04-27 Hesham Fouad Synthesis of sonic environments
US7167571B2 (en) * 2002-03-04 2007-01-23 Lenovo Singapore Pte. Ltd Automatic audio adjustment system based upon a user's auditory profile
DE10321980B4 (de) 2003-05-15 2005-10-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Berechnen eines diskreten Werts einer Komponente in einem Lautsprechersignal
DE10328335B4 (de) * 2003-06-24 2005-07-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Wellenfeldsyntesevorrichtung und Verfahren zum Treiben eines Arrays von Lautsprechern
DE10344638A1 (de) * 2003-08-04 2005-03-10 Fraunhofer Ges Forschung Vorrichtung und Verfahren zum Erzeugen, Speichern oder Bearbeiten einer Audiodarstellung einer Audioszene

Also Published As

Publication number Publication date
JP2008547255A (ja) 2008-12-25
EP1880577A1 (fr) 2008-01-23
US8090126B2 (en) 2012-01-03
WO2006133812A1 (fr) 2006-12-21
CN101199235A (zh) 2008-06-11
US20080181438A1 (en) 2008-07-31
DE102005027978A1 (de) 2006-12-28
CN100589656C (zh) 2010-02-10
JP4553963B2 (ja) 2010-09-29
DE502006005193D1 (de) 2009-12-03

Similar Documents

Publication Publication Date Title
EP1880577B1 (fr) Dispositif et procede permettant de generer un signal de haut-parleur sur la base d'une source audio d'apparition aleatoire
EP2080411B1 (fr) Dispositif et procédé pour produire un certain nombre de signaux de haut-parleur pour un réseau de haut-parleurs définissant un espace de restitution
DE10328335B4 (de) Wellenfeldsyntesevorrichtung und Verfahren zum Treiben eines Arrays von Lautsprechern
DE10254404B4 (de) Audiowiedergabesystem und Verfahren zum Wiedergeben eines Audiosignals
EP3005732B1 (fr) Dispositif et procédé de restitution audio à sélectivité spatiale
WO2005060307A1 (fr) Procede et dispositif de production d'un canal a frequences basses
WO2004103024A1 (fr) Dispositif de correction de niveau dans un systeme de synthese de champ d'ondes
DE102012017296B4 (de) Erzeugung von Mehrkanalton aus Stereo-Audiosignalen
DE10321980B4 (de) Vorrichtung und Verfahren zum Berechnen eines diskreten Werts einer Komponente in einem Lautsprechersignal
EP2754151B1 (fr) Dispositif, procédé et système électroacoustique de prolongement d'un temps de réverbération
DE102005001395B4 (de) Verfahren und Vorrichtung zur Transformation des frühen Schallfeldes
WO2007101498A1 (fr) Dispositif et procédé de simulation de systèmes wfs et de compensation de propriétés wfs influençant le son
DE10254470A1 (de) Vorrichtung und Verfahren zum Bestimmen einer Impulsantwort und Vorrichtung und Verfahren zum Vorführen eines Audiostücks
EP2357854A1 (fr) Procédé et dispositif de production de signaux audio binauraux individuellement adaptables
DE102011108788A1 (de) Verfahren zur Verarbeitung eines Audiosignals, Audiowiedergabesystem und Verarbeitungseinheit zur Bearbeitung von Audiosignalen
EP1900250B1 (fr) Procede electro-acoustique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071212

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20080418

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RODIGAST, RENE

Inventor name: BECKINGER, MICHAEL

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502006005193

Country of ref document: DE

Date of ref document: 20091203

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100722

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190625

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190624

Year of fee payment: 14

Ref country code: DE

Payment date: 20190624

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006005193

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210101