EP1877206A1 - Vorrichtung und verfahren zur herstellung von befestigungselementen - Google Patents

Vorrichtung und verfahren zur herstellung von befestigungselementen

Info

Publication number
EP1877206A1
EP1877206A1 EP05745049A EP05745049A EP1877206A1 EP 1877206 A1 EP1877206 A1 EP 1877206A1 EP 05745049 A EP05745049 A EP 05745049A EP 05745049 A EP05745049 A EP 05745049A EP 1877206 A1 EP1877206 A1 EP 1877206A1
Authority
EP
European Patent Office
Prior art keywords
fasteners
fastener
set forth
wire
assembly line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05745049A
Other languages
English (en)
French (fr)
Other versions
EP1877206A4 (de
Inventor
John J. Vrana
Harold A. Ladouceur
Richard P. Ward
Jorge Gonzales
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Whitesell Formed Components Inc
Original Assignee
Whitesell Formed Components Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Whitesell Formed Components Inc filed Critical Whitesell Formed Components Inc
Publication of EP1877206A1 publication Critical patent/EP1877206A1/de
Publication of EP1877206A4 publication Critical patent/EP1877206A4/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/24Making other particular articles nuts or like thread-engaging members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H8/00Rolling metal of indefinite length in repetitive shapes specially designed for the manufacture of particular objects, e.g. checkered sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/64Making machine elements nuts
    • B21K1/66Making machine elements nuts from strip bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B27/00Bolts, screws, or nuts formed in integral series but easily separable, particularly for use in automatic machines

Definitions

  • the present invention is generally toward an approved method and apparatus of manufacturing fasteners. More specifically, the present invention is rated toward a method and apparatus of manufacturing fasteners in a continuous manner providing a strip of fasteners, which may be rolled into a coil for use at an installation site.
  • a coil of steel rod is provided to a nut manufacturing facility, and is preferably, formed to provide a cross-sectional geometric shape necessary to pierce, and/or clinch, sheet metal, and to provide a groove to receive the wire in a manner set forth above.
  • This rod is processed through a die that both cuts individual pierce nuts and pierces an aperture through the rod forming an inner annular surface in each individual fastener.
  • a tapping machine is positioned subsequent to the die press to provide a helical rib around the inner annular wall of the pierced aperture of each pierce fastener.
  • the nuts are transferred via a track to a wire insertion and knurling operation to attach the nuts in a continuous strip.
  • a second press or an equivalent roller inserts the wire into the aligned wire groove of each nut and a knurling machine deforms the nut over the wire for retaining the wire in the aligned groove thereby forming the continuous strip of fasteners.
  • the fasteners are rolled in a coil for shipment and for use at a production facility that installs pierce fasteners as is known to those of skill in the art.
  • a further problem associated with the prior art method is realized when an error occurs during the tapping or piercing process resulting in the defective formation of the aperture or helical rib disposed upon the inner surface of the aperture.
  • the present invention provides an assembly for continuously manufacturing fasteners from a rod defining a continuous groove by receiving a wire to retain the resultant fasteners in a continuous strip.
  • a receiver receives the rod and directs the rod into a die press that is arranged to receive the rod from the receiver.
  • the die press includes a piercing member for piercing an aperture of each resultant fastener and a cutting member for cutting each of these fasteners from the rod received by the die press.
  • a tapping member taps the aperture defined by each fastener providing a helical rib to an inner wall that defines the aperture.
  • An inspection station inspects the aperture and the helical rib formed in the inner wall of the aperture to verify the exactness of the aperture and the helical rib.
  • a wire insertion device inserts the wire into the groove of each fastener forming a continuous strip of fasteners.
  • the insertion device receives the fasteners from the inspection station after the exactness of the aperture and the helical rib of each fastener has been verified.
  • the inspection station is located prior to mating each individual fastener into a continuous fastener strip with the wire.
  • Pilot lines used to determine the effectiveness of, more specifically, the inspection station set forth above, have reduced the number of defective fasteners affixed to the continuous strip to nearly zero per thousand fasteners from upward of dozen per thousand fasteners.
  • a still further improvement over the prior art wire installation assemblies makes use of a re-groover to reform the continuous groove formed by adjacent nuts into which a carrier wire is inserted.
  • the continuous groove formed in the rod is known to be deformed by the die press resulting in an inconsistent installation of the wire by the wire insertion device.
  • This inconsistent installation of the wire along the continuous groove formed by adjacent fasteners is known to result in broken wire at the end user causing a manufacturing defect in the tooling used to affix the fasteners to a product.
  • a consistent, continuous groove is formed between adjacent fasteners enabling the uniform installation of the carrier wire further enabling a uniform knurling affixation of the wire eliminating defects associated with the inconsistent affixation set forth above.
  • Figure 1 shows a top view of a schematic of the present inventive assembly
  • Figure 2 shows a side view of a schematic of the present inventive assembly
  • Figure 2A shows an expanded side view of a partial schematic beginning with the transfer
  • Figure 3 shows a side sectional view of the inventive die press of the present invention in an actuated position
  • Figure 3A shows an alternate embodiment of the inventive assembly having a rapid tapper incorporated into the die press.
  • Figure 4 shows a side sectional view of the inventive die press of the present invention in a partial actuated position
  • Figure 5 shows a side sectional view of the inventive die press of the present invention in an open position
  • Figure 6 shows a side view of the tapper of present invention
  • Figure 6A shows an inspector used in the present inventive assembly
  • Figure 7 shows a side view of the transfer of the present invention
  • Figure 8 shows rear sectional view of the transfer
  • Figure 9 shows a front partial sectional view of the inventive regroover
  • Figure 10 shows a front view of the force producer in a closed position
  • Figure 11 shows a front view of the force producer in an open position
  • Figure 12 shows a top view of the inventive wire inserter;
  • Figure 13 is a side view of the inventive wire inserter;
  • Figure 14 is a front sectional view of the upper and lower inserter roller;
  • Figure 15 is a front sectional view of the upper and lower knurler roller
  • Figure 16 is a front partial sectional view of the cutter
  • Figure 17 is a side view of the cutter, counter, and flying bridge of the present invention.
  • Figure 18 is a side view of the flying bridge in lowered position for ejecting the test strip
  • Figure 19 is a rear view of the first and second spool
  • Figure 20 is a top view of the wire inserter, knurler, cutter, counter, flying bridge, and first and second spool;
  • Figure 21 is an alternative embodiment of the continuous track.
  • Figure 22 is a further alternative embodiment of the continuous tract.
  • FIG. 10 one preferred embodiment of the inventive assembly for manufacturing fasteners is generally shown at 10.
  • the assembly 10 provides a method of continuously manufacturing, for example, pierce nuts 12 (Figure 3) from a coiled rod 14 resulting in a continuous strip 16 of fasteners (fastener strip, see Figures 17 and 18) for use in a production facility where pierce nuts 12 are mechanically locked to sheet metal at a high rate of speed.
  • the rod 14 has been preformed with at least one, and more preferably two wire grooves 18 and at least one, and preferably opposing reentrant grooves 20 as is best represented by the cross-sectional view of the pierce nut 12 shown in Figure 8, the purpose of which will be more evident and explained further below.
  • a die press 22 receives the rod 14 to pierce and cut individual pierce nuts 12.
  • the individual pierce nuts 12 are transferred from the die press 22 through a continuous track 24 in an abutting relationship so that the wire groove 18 of each individual pierce nut 12 defines a "continuous" wire groove between adjacent pierce nuts 12, the purpose of which will be more evident further below.
  • the continuous track 24 transfers the pierce nuts 12 between the various manufacturing stations of the assembly 10 maintaining the pierce nuts 12 in a desired orientation to facilitate further processing through the assembly 10.
  • a first inspection station 26 is located immediately subsequent the die press 22 and includes a first light inspector 28 oriented in a generally vertical direction to verify the piercing operation as performed successfully.
  • a second light inspector 30 is also positioned immediately subsequent the die press 22 in the first inspection station 26 in an angular relationship to the first light inspector 28, the purpose of which will be explained in alternative embodiments set forth below.
  • a tapping member 32 is located immediately subsequent to the first inspection station 26 and includes, preferably, a plurality of tappers 34 used to form an internal or helical rib 36 upon an inner wall of an aperture 38 defined by each of the pierce nut 12 ( Figure 6A).
  • a plurality of tappers 34 used to form an internal or helical rib 36 upon an inner wall of an aperture 38 defined by each of the pierce nut 12 ( Figure 6A).
  • alternative pierce nuts 12 such as, for example, self tapping pierce nuts that have alternative ribbing are also contemplated by the inventors.
  • Each tapper 34 is mounted upon an actuator 40 that moves in a vertical direction while rotating each tapper 34 to form the helical rib 36 or thread on the inner wall of the aperture 38.
  • each tapper 34 floats in a horizontal direction independent from the other tappers 34 maintaining a constant vertical axis so that the aperture 38 of each pierce nut 12 guides the tapper's 34 movement in the vertical direction to consistently form the helical rib 36 in each of the pierce nuts 12.
  • the floating tapper 34 eliminates defects to the helical rib 36 that would otherwise be caused by an off center aperture 36 or a slight gap disposed between adjacent pierce nuts 12 in the continuous track 24.
  • the number of tappers 34 disposed in the tapping member 32 are correlated with the rate of production of pierce nuts 12 set forth by the die press 22. As is known to those of skill in the art, tapping is the slowest operation of the pierce nut manufacturing process and requires a plurality of tappers 34 to keep pace with the single die press 22.
  • a second inspection station 42 is located immediately subsequent the tapping member 32 and includes a first light inspector 28a and a second inspector 30a similar to that disposed in the first inspection station 26.
  • the first light inspector 28a is oriented in a generally vertical direction and inspects the centrality and existence of the aperture.
  • the second light inspector 30a is oriented in a generally angular relationship to the first light inspector 28a so that visible access is provided to both the major D and minor d diameters of the helical rib 36. Therefore, the quality of the helical rib 36 is also inspected.
  • the first light inspector 28, 28A and the second light inspector 30, 30a are cameras provided by Keyance, Model No.
  • CV-020 and interfaces with a controller 44 for interpreting the images generated by the first light inspector 28, 28a and the second light inspector 30, 30a to verify the quality of both the aperture 38 and the helical rib 36.
  • the controller 44 is a CV-2100P that is cooperable with the camera model as set forth above. It should be understood by those of skill in the art that infrared sensors and the like may also be used to detect the quality of both the aperture 38 and the helical rib 36 and are contemplated for use in an alternate embodiment.
  • a feeder 46 makes use of contact pads 48 preferably formed from a polymer selected to achieve frictional engagement with the fasteners 12.
  • a plurality of contact pads 48 form a continuous loop encircling a driving sprocket 50 and a dummy sprocket 52 much like a cat track.
  • the driving sprocket 50 and the dummy sprocket 52 are spaced so that a plurality of contact pads 48 contact the upper surface of a plurality of adjacent pierce nuts 12 advancing along the continuous track 24.
  • a compressor 54 provides downward force upon the contact pads 48 to ensure sufficient frictional contact between the contact pads 48 and the pierce nuts 12 to advance the pierce nuts 12 along the continuous track 24.
  • each pierce nut 12 Supporting each pierce nut 12 in this manner reduces the potential for distorting the pierce nuts 12 due to the pressure exerted upon the pierce nuts 12 by the feeder 46, and more specifically the contact pads 48 when force is exerted downwardly by the compressor 54.
  • one known defect associated with cutting individual pierce nuts 12 from a preformed rod 14 is the distortion of at least the wire groove 18 disposed in each of the individual fasteners, and which a continuous wire groove 18 is formed by adjacent fasteners.
  • a regroover 56 is located in the assembly 10 subsequent the feeder 46.
  • each pierce nut 12 is supported upon its panel support surface 56 by the continuous track 24 as is best shown in Figure 8.
  • FIGS 2A and 9 which best represent the regroover 56, an upper regroover roller 58 and a lower regroover roller 60 contact opposing sides of the pierce nuts 12 advancing along the continuous track 24 as driven by the feeder 46.
  • the upper regroover roller 58 provides downward pressure upon each of the pierce nuts 12 while the lower regroover roller 60 supports the pierce nuts 12 from the bottom.
  • the upper regroover roller 58 includes a diameter that is less than an opening 62 defined by the lower regroover roller so that the upper regroover roller 58 is received by the lower regroover roller 60 for preventing either of the regroover rollers 58, 60 from moving in a generally horizontal direction resulting in defective fasteners.
  • the lower regroover roller 60 includes contact pads support 64 to support the contact pads 48 of each of the pierce nuts 12 during the regrooving operation.
  • a secondary support 66 includes support rims 68 that are received by the re-entrant groove 20 of each of the fasteners providing additional support to the pierce nuts 12 for reducing the potential of distortion during the regrooving operation.
  • the upper regroover roller 58 includes opposing regroover rims 70 that are received by each of the wire grooves 18 for reforming the wire grooves 18.
  • the reformation of the wire groove 18 forms a uniform continuous wire groove 18 defined by adjacent pierce nuts 12 eliminating distortions caused by the die press 22 when cutting the individual pierce nuts 12 from the rod 14.
  • the regroover rims 70 contain the annular shape of the wire groove 18 as originally formed in the rod 14, which is adapted to receive carrier wire 72 ( Figures 1, 2).
  • each regroover rim 70 is scored or chafed to provide an abrasive surface in the base of the wire groove 18 to prevent the carrier wire 72 from slipping after installation.
  • FIGS. 10 and 11 show a force producer 74 preferably operated by an air cylinder 76 or other fluid actuation device.
  • a lever arm 78 is pivotally supported by fulcrum 80.
  • the lever arm 78 includes a first contact 82 that is cooperable with the air cylinder 76 and a second contact 84 that is cooperable with the upper regroover roller 58.
  • the air cylinder 76 provides an upward force to the first contact 82, which by virtue of the lever arm 78 transfers downward force to the second contact 84 providing the necessary downward force to the upper regroover roller 58 to reform the wire groove 18.
  • An upper roller support 86 receives the downward force from the second contact 84 while pivotally supporting the upper regroover roller 58.
  • the roller support 86 is necessarily lifted from the continuous track 24 to provide access to the pierce nuts 12 disposed beneath the upper regroover roller 58.
  • a slot 88 is disposed in the lever arm 78 allowing the lever arm 78 to disengage the air cylinder 76 and the roller support 86 as is best represented in Figure 11. This allows the roller support 86 to be pivoted upward in direction of arrow 90 and shown in phantom in Figure 2A providing access to the pierce nuts disposed beneath the upper regroover roller 58.
  • a grip 92 is disposed upon the lever arm 78 to provide leverage to disengage the lever arm 78.
  • the novel force producer 74 set forth above provides the benefit of leveraged force to the upper regroover roller 58 and ease of maintenance without having to disassemble the regroover 56.
  • a wire inserter 94 is located subsequent to the regroover 56 for inserting the carrier wire 72 into the now uniform, continuous groove 18 defined by adjacent pierce nuts 12. To reduce the number of bends in the carrier wire 72 that is common with prior art wire inserters, the carrier wire 72 is disposed upon opposing wire spools 96 located on opposite sides of the continuous track 24.
  • a single wire redirector 98 orients the carrier wire 72 to be received by the wire groove 18 with merely a single redirection of the carrier wire 72.
  • the pierce nuts 12 are initially disposed below the carrier wire 72 and subsequently are driven in an upward direction on the continuous track 24 by the regroover 56 to meet a plane set by the carrier wire 72 after initial redirection so that the carrier wire 72 is not redirected a second time. This reduces the potential for defects in the carrier wire 72 resulting from over manipulation.
  • opposing wire guides 100 verify correct orientation of each of the carrier wires 72 to be received by the pierce nuts 12 that are being lifted by the continuous track 24 to mate the wire groove 18 with the carrier wire 72.
  • an upper inserter roller 102 is cooperable with a lower inserter roller 104 to guide the carrier wire 72 into the continuous wire groove 18 defined by the pierce nuts 12.
  • Opposing inserter rims 103 are disposed upon the upper inserter roller 102 and are received by the wire groove 18 for forcing the carrier wire 72 into the wire groove 18 as best shown in Figure 14.
  • the contact pad 48 is also supported by the contact pad support 68 disposed upon the lower regroover roller 104.
  • the upper inserter roller 102 and the lower inserter roller 104 cooperate in the same manner as the regroover rollers 58, 60 of the regroover 56, which is explained in detail above.
  • the associated lever arm 78 and other force producing apparatus will not be redescribed or renumbered for simplicity. It should be understood, however, that less force is required to insert the carrier wire 72 into the wire groove 18 than is required to reform the wire groove 18. It should be further understood that the inserter rollers 102, 104 is synchronized with the regroover rollers 58, 60 to avoid putting tension on the carrier wire 72 or otherwise damaging the fastener strip 16 being produced.
  • a knurler 106 is located subsequent to the wire inserter 94 for securing the carrier wire 72 to the adjacent pierce nuts 12 forming a continuous fastener strip 16.
  • the knurler 106 includes an upper knurler roller 108 and a lower knurler roller 110.
  • the knurler 106 operates in much the same manner as the regroover 56 and the wire inserter 94 described and set forth in Figures 10 and 11. Therefore, for simplicity, the force producer 74 will not be renumbered or described again.
  • the upper knurler roller 108 is shown having opposing knurling rims 112 defining a continuous loop of chevrons 114.
  • the chevrons 114 deform each pierce nut 12 over the carrier wire 72 securing the carrier wire 72 in the continuous wire groove 18.
  • Alternative patterns to a chevron 114 may also be used to deform the pierce nut 12 over the carrier wire 72.
  • the lower knurler roller 110 supports the bottom of the pierce nuts 12 in the same manner and in the re-entrant groove 20 as set forth and described with the lower regroover roller 60. Therefore, the various components that support the pierce nut 12 will not be renumbered or explained again for simplicity. It should be understood that the knurler rollers 108, 110 are synchronized with the regroover rollers 58, 60 and the inserter rollers 102, 104 to prevent damaging the fastener strip 16 and the various pierce nuts 12 as previously described.
  • a counting and cut-off station 116 is located subsequent the knurling station 106. As best seen in Figures 2A, 16 and 17, the counting and cut-off station 116 includes a primary counter 118 and a secondary counter 120 to verify the count made by the primary counter 118.
  • a cutter 122 is disposed between the primary counter 118 and the secondary counter 120 and operates like a punch driving in a downward direction to break the carrier wire 72 to both separate the end and beginning of a fastener spool and to separate a test strip 124 ( Figure 18). Therefore, the primary counter counts the number of pierce nuts 12 being directed toward the cutter 122 and the secondary counter 120 counts the number of pierce nuts 12 being delivered to a spooler 126.
  • the primary and secondary counters 118, 120 preferably operate from an infrared sensor, however, other light sources or visioning equipment may be used to count the number of pierce nuts 12 as desired.
  • a light emitter 128 transmits light through the aperture 38 disposed in each pierce nut 12 to a light sensor 130 signaling the controller 44 with the primary and secondary count.
  • a locator 132 disposed upon a leading edge of the cutter 122 is received by the aperture 38 defined by the pierce nut 12 being cut from the fastener strip 16 to ensure the cutter 122 does not otherwise damage any of the pierce nuts 12.
  • the cutter 122 drives the fastener 12 downwardly from the continuous track 24 as best shown in Figure 16 to an escape chute 134 to remove the fastener 12 that has been cut from the process.
  • the spooler 126 includes a first spool 136 and a second spool 138 as is most clearly seen in Figures 19 and 20.
  • the first spool and second spool are located in generally a common axis and articulate so that when one spool 136, 138 is receiving fasteners from the continuous track 24, the other spool may be removed for packaging and shipping.
  • the first spool 136 and the second spool 138 are fixed in a constant relationship upon a sliding surface 140 driven by motor 142 ( Figure 2A) in a direction generally perpendicular to the continuous track 24.
  • the first spool 136 includes a first rotary motor 144 and the second spool 138 includes a second rotary motor 146.
  • each spool 136, 138 includes a catch 147 that receives the continuous fastener strip 16 from the continuous track 24 upon which rotation of the spool 136, 138 by the rotary motor 144, 146 is initiated.
  • the regroover 56 no longer drives the detached fastener strip 16 as the cutter 122 has separated the fastener strip 16 and the spooling is completed by rotary motors 144, 146.
  • a release 148 affixes each spool 136, 138 to its pivot member 150 and allows rapid removal of the spool 136, 138 once the desired number of pierced nuts 12 have been received.
  • FIGs 17 and 18 show a preferred method of directing the fastener strip 16 to the spooler 126 and into the catch 147 of either the first 136 or second 138 spool that makes use of a flying bridge 152.
  • the flying bridge 152 includes an upper bridge member 154 and a lower bridge member 156, each of which actuate to direct the fastener strip 16 in the preferred direction.
  • the upper bridge member 154 is supported by an upper support strut 158 and is actuated pneumatic, hydraulic or equivalent pressure to pivot on a horizontal axis 160 providing a downward directing force to the fastener strip 16.
  • the lower bridge member 156 includes a lower support strut 162 and is actuated on a horizontal axis 164 by pneumatic, hydraulic, or equivalent pressure providing an upward directing force to the fastener strip 16.
  • a narrow slot 166 is defined therebetween providing a direction of travel for the fastener strip 16 into the catch 147 disposed on one of the first spool 136 or second spool 138.
  • the lower bridge member 156 retracts allowing this test strip 124 to drop into receptor 168 ( Figure 2A).
  • the die press 22 includes novel features enabling rapid production of the pierce nuts 12 and will be further described with respect to Figures 3-5. Actuation of the die press in a downward direction causes piercing members 170 to be driven downwardly into the rod 14 received by the die press 22 forming spaced apertures 38 into the rod 14. Each piercing member 170 includes an offset 172 to form a counter sink around the aperture 38. In one preferred embodiment, two piercing members 170 are disposed in each die press 22 so that two apertures 38 are manufactured with each actuation of the die press 22.
  • a rapid tapper 173 is operably connected to the die press 22 so that upon each actuation of the die press, the helical rib 36 is formed on an inner surface of at least one of the apertures 38 formed in the rod 14.
  • first and second inspectors 28, 30 are positioned immediately subsequent to the die press 22 and the pierce nuts 12 are transferred directly to the wire inserter 94.
  • the rod 14 is advanced the width of two pierce nuts 12 to abut stop 178.
  • Stop 178 is spaced from a cutting member 180 a distance equal to the width of a single pierce nut 12.
  • the cutting member 180 separates two pierce nuts 12 from the rod 14 by driving a section of rod 14 downwardly from the continuous track 24 forming a rearward pierce nut 12a.
  • the forward pierce nut 12b remains in the continuous track 24 in an advanced position.
  • the rod 14 is positioned in a rod plane 82 slightly above the cut fasteners, which are disposed in a fastener plane 184.
  • the forward pierce nut 12a having been separated from the rod 14 is driven downwardly along ramp 186 toward the fastener plane 184 by vertical ejector 188 which derives downward force from spring 190. This drops the leading edge of forward pierce nut 12a below stop 178 allowing advancement of the forward pierce nut 12a resultant from advancement of the rod 14 toward the stop 178.
  • rear pierce nut 12b is driven downwardly by cutting member 180 separating both the forward pierce nut 12a from the pierce nut 12b which has been separated from the rod 14.
  • a return member 192 is biased in an upward direction by a spring 194 returning the rear pierce nut 12b to the rod plane 182 allowing the forward pierce nut 12a and the rearward pierce nut 12b to be ejected from the die press in a generally common plane upon advancement of the rod 14 into the die press 22.
  • the return member 192 may be used to eject the rear pierce nut 12B from the die press in a horizontal direction as well as in a vertical direction and in any angle therebetween.
  • Figures 21 and 22 show one method of addressing a bottleneck caused by, for example, the tapping member 32.
  • the forward pierce nut 12a and a rearward pierce nut 12b are ejected from the die press 22 in a generally common plane.
  • parallel tapping members 32a and 32b accelerate the process of tapping each pierce nut 12 to twice the single rate.
  • different size tappers 34 may be used in each of the tapping members 32a, 32b enabling two different pierce nuts 12 to be manufactured from a single die press 22.
  • parallel operations are contemplated for any bottleneck determined to slow down the assembly and resultant pierce nut 12 production set forth in the application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wire Processing (AREA)
EP05745049A 2005-05-05 2005-05-05 Vorrichtung und verfahren zur herstellung von befestigungselementen Withdrawn EP1877206A4 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2005/015680 WO2006121427A1 (en) 2005-05-05 2005-05-05 Fastener manufacturing apparatus and method

Publications (2)

Publication Number Publication Date
EP1877206A1 true EP1877206A1 (de) 2008-01-16
EP1877206A4 EP1877206A4 (de) 2012-08-29

Family

ID=37396829

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05745049A Withdrawn EP1877206A4 (de) 2005-05-05 2005-05-05 Vorrichtung und verfahren zur herstellung von befestigungselementen

Country Status (2)

Country Link
EP (1) EP1877206A4 (de)
WO (1) WO2006121427A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7975522B2 (en) * 2005-05-05 2011-07-12 Whitesell International Corporation Fastener manufacturing assembly and method
US10302598B2 (en) 2016-10-24 2019-05-28 General Electric Company Corrosion and crack detection for fastener nuts

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3711931A (en) * 1971-04-01 1973-01-23 Multifastener Corp Method of forming fastener strip
US3775791A (en) * 1970-03-23 1973-12-04 Mac Lean Fogg Lock Nut Co Method of making pierce nuts in strip form
US3845860A (en) * 1971-04-01 1974-11-05 Multifastener Corp Fastener strip
US4315688A (en) * 1979-08-08 1982-02-16 Diffracto Ltd. Electro-optical sensor systems for thread and hole inspection
WO2003016728A1 (en) * 2001-08-15 2003-02-27 Fabristeel Products Incorporated Self-attaching fastener

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4306654A (en) * 1977-11-28 1981-12-22 Maclean-Fogg Company Flanged nut fastener strip
US4679690A (en) * 1980-05-20 1987-07-14 Multifastener Corporation Fastener orienting, tapping and collection system
US5016461A (en) * 1989-09-01 1991-05-21 Hydro-Craft, Inc. Method and apparatus for stamping weld adapters
US5348429A (en) * 1993-10-25 1994-09-20 Pfister William R Tapping apparatus with rapid tap advance/retraction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3775791A (en) * 1970-03-23 1973-12-04 Mac Lean Fogg Lock Nut Co Method of making pierce nuts in strip form
US3711931A (en) * 1971-04-01 1973-01-23 Multifastener Corp Method of forming fastener strip
US3845860A (en) * 1971-04-01 1974-11-05 Multifastener Corp Fastener strip
US4315688A (en) * 1979-08-08 1982-02-16 Diffracto Ltd. Electro-optical sensor systems for thread and hole inspection
WO2003016728A1 (en) * 2001-08-15 2003-02-27 Fabristeel Products Incorporated Self-attaching fastener

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LALIGANT O ET AL: "Wavelets transform in artificial vision inspection of threading", INDUSTRIAL ELECTRONICS, CONTROL, AND INSTRUMENTATION, 1993. PROCEEDING S OF THE IECON '93., INTERNATIONAL CONFERENCE ON MAUI, HI, USA 15-19 NOV. 1993, NEW YORK, NY, USA,IEEE, 15 November 1993 (1993-11-15), pages 513-518, XP010108996, DOI: 10.1109/IECON.1993.339023 ISBN: 978-0-7803-0891-6 *
See also references of WO2006121427A1 *

Also Published As

Publication number Publication date
WO2006121427A1 (en) 2006-11-16
EP1877206A4 (de) 2012-08-29

Similar Documents

Publication Publication Date Title
US7744475B2 (en) Fastener manufacturing apparatus and method
US6097427A (en) Method of and apparatus for detecting defects in a process for making sealed sterile packages
AU653301B2 (en) Method of and apparatus for attaching a spout to a planar portion of an article such as a container
JP2007525386A (ja) 包装装置
US7032774B2 (en) Web burster/inserter
CN108083216B (zh) 一种试剂管灌装封口贴标机
JPH0615393A (ja) 熱交換器組立装置のパイプ挿入装置
EP2095893B1 (de) Befestigerherstellungsanordnung und Verfahren
CN112719418A (zh) 化妆品管件切管设备
EP1877206A1 (de) Vorrichtung und verfahren zur herstellung von befestigungselementen
CN116598229B (zh) 一种产品缺料检测贴标方法
US4459884A (en) Method of and apparatus for processing a pair of slide fastener stringers
US6182419B1 (en) Method of and system for producing and packaging film
US4771535A (en) Disk insertion apparatus for inserting a disk into a rim element of a disk wheel
US4748741A (en) Pin insertion apparatus and method of inserting pins
WO2015072027A1 (ja) スライドファスナー排出装置
US4476599A (en) Fastener orienting, tapping and collection system
US4203583A (en) Radial lead component insertion machine
US6682286B1 (en) System and method for forming lift-tab can end assemblies
CN219818771U (zh) 一种鱼嘴勾自动装配装置
KR100421398B1 (ko) 리드와이어 테이핑장치
KR100380137B1 (ko) 저항의 리드선 성형 및 테이핑 머신
US20140287842A1 (en) Self-attaching fastener manufacturing apparatus and method
CN110067094B (zh) 一种选珠设备
US4373318A (en) Stacking device for hollow rivets

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20120801

RIC1 Information provided on ipc code assigned before grant

Ipc: B21D 53/24 20060101ALI20120726BHEP

Ipc: F16B 27/00 20060101ALI20120726BHEP

Ipc: B21H 3/02 20060101AFI20120726BHEP

17Q First examination report despatched

Effective date: 20121116

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130327