EP1870246B1 - Method for printing a print substrate - Google Patents

Method for printing a print substrate Download PDF

Info

Publication number
EP1870246B1
EP1870246B1 EP07012240A EP07012240A EP1870246B1 EP 1870246 B1 EP1870246 B1 EP 1870246B1 EP 07012240 A EP07012240 A EP 07012240A EP 07012240 A EP07012240 A EP 07012240A EP 1870246 B1 EP1870246 B1 EP 1870246B1
Authority
EP
European Patent Office
Prior art keywords
printing
ink
jet
print
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07012240A
Other languages
German (de)
French (fr)
Other versions
EP1870246A3 (en
EP1870246A2 (en
Inventor
Peter Schulmeister
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Manroland AG
Original Assignee
Manroland AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Manroland AG filed Critical Manroland AG
Publication of EP1870246A2 publication Critical patent/EP1870246A2/en
Publication of EP1870246A3 publication Critical patent/EP1870246A3/en
Application granted granted Critical
Publication of EP1870246B1 publication Critical patent/EP1870246B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/54Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed with two or more sets of type or printing elements
    • B41J3/546Combination of different types, e.g. using a thermal transfer head and an inkjet print head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J11/00Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
    • B41J11/008Controlling printhead for accurately positioning print image on printing material, e.g. with the intention to control the width of margins

Definitions

  • the invention relates to a method for printing a printing material according to the preamble of claim 1. Such a method is known from the document DE 197 45 136 A1 known.
  • inkjet printing devices In printing form-based, preferably operating on the offset printing principle printing machines, such. B. in web-fed rotary printing presses and sheetfed presses, find increasingly pressure-free inkjet printing devices use, in particular the customization of printed products produced by offset printing with z. As barcodes, numbering or other markings serve.
  • Such inkjet printing devices have at least one inkjet print head, the so-called continuous inkjet principle, the drop-on-demand inkjet principle, the thermal inkjet principle, the bubble inkjet principle or any other inkjet Principle can be formed.
  • the inkjet printheads usually have a nozzle row of several juxtaposed nozzles over which ink can be directed to a substrate to be printed.
  • inkjet printing devices Since the maximum printing speed of inkjet printing devices is significantly lower than the maximum printing speed of offset printing devices, it is difficult to print inline on a substrate after offset printing and after inkjet printing.
  • inkjet printing devices With a variety of inkjet printheads, namely on the one hand with multiple inkjet printheads transversely to the transport direction of the substrate or to the printing direction and on the other with a plurality of inkjet printheads in the transport direction of the printing material or in the printing direction, wherein the plurality of inkjet printheads are arranged in an array-like or matrix-like manner next to one another.
  • the required number of inkjet printheads transversely to the printing direction is defined primarily by the desired printing resolution in relation to the given printing resolution of the inkjet printhead used and by the desired total printing width based on the given printing width of an inkjet printhead.
  • the required number of inkjet printheads in the printing direction is determined primarily by two points, namely firstly that the desired printing speed is greater than the given printing speed of an inkjet printhead, and secondly that a plurality of printing inks via the inkjet printing device to be applied to a substrate.
  • the achievable printing speed can also be increased by the or each inkjet printhead of an inkjet printing device to the transport direction the printing material and thus obliquely aligned or inclined to the printing direction.
  • the inclination has the consequence that the effective distance of the nozzles transversely to the printing direction or transport direction of the printing material is reduced and thus the printing resolution can be increased transversely to the printing direction.
  • the printing speed remains unchanged, it can then be printed with a higher areal coverage or optical density. Equally, however, the areal coverage or optical density can be kept constant while increasing the printing speed.
  • this implementation takes place in the hardware of the inkjet printheads, but this has the disadvantage that this conversion is valid only for a defined inclination, only for a defined drop frequency and only for a defined printing speed. Changes z. As the printing speed, so it can not be reacted to, which ultimately results in the printing quality impairing distortions for the print image to be printed with the inkjet printing device.
  • output data, in particular an output data matrix, of a print image to be printed by the inkjet printing device depends on a current print speed, depending on a current drop frequency of the or each inkjet print head of the inkjet printer and depending on a current skew angle of the or each nozzle row of or each inkjet printhead with respect to the transport direction of the printing material before transmission of the data to the inkjet printing device in target data, in particular a target data matrix, converted to control the inkjet printing device in real time.
  • the conversion of the output data into the target data for controlling an inkjet printing device inclined in the printing direction be carried out independently of the hardware of the inkjet print heads of the inkjet printing device.
  • the inventive conversion of the output data in the target data is thus carried out before the transfer of image information from the prepress to the inkjet printing device and thus between the prepress and the inkjet printing device.
  • the conversion of the output data into the target data takes place in real time, wherein the current print speed, the current drop frequency and the current skew angle are variable variables in the conversion of the output data into the target data.
  • the conversion of the output data in the target data z. B. be adapted to a changing printing speed, so that even with changing printing speeds with the inkjet printing device, a high print quality can be guaranteed.
  • the conversion of the output data into the target data takes place via a transformation such that an output data matrix is scaled and sheared in the printing direction as well as transversely to the printing direction.
  • a scaling factor for scaling the output data matrix transversely printing direction is determined from the current skew angle, namely from the ratio of the expansion of the print image transversely to the printing direction with inclined inkjet printing device for extending the same transversely to the printing direction in non-inclined inkjet printing device.
  • a scaling factor for scaling the output data matrix in the printing direction is determined from the current print speed and the current drop frequency.
  • a shear angle to shear the output data matrix is determined from the current skew angle.
  • the conversion of the output data into the target data takes place in such a way that an output data matrix is scanned step by step depending on the current skew angle, the current print speed and the current drop frequency, wherein if one or more nozzle positions of the inkjet Printer to hit a pixel in an output data matrix, a corresponding pixel is set in a target data matrix.
  • FIG. 1 schematically an inkjet printhead comprising a nozzle row 10 of a plurality of juxtaposed nozzles 11, which are positioned along a row or line 12 equidistant from each other.
  • the spacing of the nozzles 11 of such a nozzle row 10 is predetermined by the technology used in the inkjet printing head.
  • the printing material to be printed is preferably moved in the direction of the arrow 13 relative to the preferably stationary ink-jet printing head, wherein in the case of a constant drop frequency of ink and a constant printing speed, the in Fig. 1 illustrated Raster of possible positions 14 for drops of ink results.
  • the droplet frequency, printing speed and the distance of the nozzles are chosen such that four adjacent positions 14 of ink droplets describe a square 15 with a defined surface area.
  • a distance X of the positions 14 in the printing direction determines the resolution in the printing direction
  • a distance Y of the positions 14 transverse to the printing directions determines the resolution transverse to the printing direction, wherein Fig. 1 these two resolutions are the same size.
  • the resolution in the printing direction can be different in size than the resolution transverse to the printing direction.
  • the nozzle row 10 of nozzles 11 with the pressure direction 13 forms an angle ⁇ of approximately 90 °.
  • the area of the square 15 of the Fig. 1 is a measure of the area coverage or optical density that can be used to print.
  • Fig. 2 illustrates the pressure conditions, which then set when the nozzle row 10 is tilted from the nozzles 11 by an angle ⁇ to the printing direction 13, wherein in Fig. 2 the angle ⁇ is for example 30 °. It follows immediately that the distance Y of the ink droplet positions 14 decreases transversely to the printing direction, whereby the resolution can be increased transversely to the printing direction. Should be compared to Fig. 1 are printed with unchanged area coverage or unchanged optical density, the distance X between the positions for ink droplets in the printing direction can be increased by increasing the printing speed.
  • Fig. 2 the achievable area coverage or achievable optical density is visualized by a parallelogram 16 spanned by four adjacent positions 14, the area of the parallelogram 16 of FIG Fig. 2 the area of the square 15 of the Fig. 1 equivalent.
  • inkjet printheads or nozzle rows thereof are inclined relative to the transport direction of the printing material and thus the printing direction, there is a need to provide output data of a print image to be printed with the inkjet printing device in target data for controlling the inkjet printing device in a prepress stage to change.
  • the conversion of the output data in the target data is done in real time, so that during printing z.
  • B. changing printing speed the target data for controlling the inkjet printing device can be changed so as to always provide an optimal print image with the inkjet printing device under changing printing conditions.
  • the current print speed, the current drop frequency and the current skew angle are therefore variable Sizes in the conversion of the output data of the prepress stage in the target data for controlling the inkjet printing device.
  • the skew angle of the or each nozzle row of the or each inkjet printhead of the inkjet printing device is a variable size of the method of the invention, but the skew angle is ideally chosen so that at a given maximum printing speed and a given maximum printing speed maximum drop frequency just a geometric area coverage or optical density of 100% is given.
  • the maximum printing speed is then only by physical parameters such. B. limits the drop speed itself and the associated placement accuracy of the ink droplets on the substrate.
  • the skew angle can also be selected to provide areal coverage of less than 100%.
  • the actual drop frequency is either the same or variable for all the nozzles of an inkjet printhead, and when a continuous inkjet printer is used, the drop frequency is the same for all nozzles, and then, if a drop-on-demand inkjet Pressure device is used, the drop frequency is variable.
  • the current printing speed is detected by measurement via a sensor and represents a variable input variable for the conversion of the output data of the prepress for the inkjet printing device to be printed image in the target data for controlling the inkjet printing device.
  • the output data is transformed into the target data via a transformation, namely such that output data in the printing direction and transversely to the output data are present in the form of an output data matrix, in particular an output bitmap print direction are scaled and further sheared to provide a target data matrix, in particular a target bitmap, for driving the inkjet printing device.
  • a transformation namely such that output data in the printing direction and transversely to the output data are present in the form of an output data matrix, in particular an output bitmap print direction are scaled and further sheared to provide a target data matrix, in particular a target bitmap, for driving the inkjet printing device.
  • the reference numeral 17 indicates an output data matrix provided in a prepress stage for a print image to be printed with an inkjet printer device, this output data matrix 17 being an orthogonal output bitmap which has been screened using known methods.
  • this output data matrix 17 being an orthogonal output bitmap which has been screened using known methods.
  • there are purely binary data per pixel which means that one pixel of the output data matrix 17 is either set and thus black or unset and thus white.
  • the printed image to be printed is an A, wherein in Fig. 3 an unoccupied and thus white pixel with the reference numeral 18 and a set and thus black pixel is designated by the reference numeral 19.
  • a scaling of the output data matrix is performed transversely to the printing direction 13, whereby a scaling factor for the scaling transversely to the printing direction results from the current skew angle.
  • the scaling factor for the scaling transversely to the printing direction results from a ratio of the printing width of the inclined inkjet printhead in relation to the printing width of the non-inclined inkjet printhead.
  • the scaling factor for the scaling transversely to the printing direction results from the ratio of the extent of the printed image transversely to the printing direction with an inclined inkjet printing device for extending the printed image transversely to the printing direction with non-inclined inkjet printing device.
  • a data matrix scaled by this scaling factor is identified by the reference numeral 20.
  • a scaling in the printing direction wherein a scaling factor for scaling in the printing direction from the current print speed and the current drop frequency is determined.
  • the scale factor in the print direction corresponds to the ratio of the print speed of the inkjet print head in non-skewed mode to the print speed thereof in the skewed mode.
  • Fig. 3 numbers a data matrix, which is scaled both transversely to the printing direction and in the printing direction, with the reference numeral 21.
  • a shear of the output data matrix takes place, wherein a shear angle is determined from the current skew angle.
  • a scaled by both scaling factors and the shear angle transformed data matrix corresponding to the target data matrix for driving the inkjet printing device is in Fig. 3 designated by the reference numeral 22.
  • Fig. 4 Visualizes the effects on the transformation of the output data matrix when the print speed is higher than in the embodiment of Fig. 3 , Otherwise, in the embodiment of Fig. 4 all parameters compared to the embodiment of Fig. 3 unchanged. By increasing the printing speed results in a different scaling in the printing direction, so that the data matrix 21 and thus ultimately the target matrix 22 against Fig. 3 is changed. Because opposite Fig. 3 However, only the printing speed has changed, the scaling factor across the printing direction and the shear angle remains unchanged.
  • Fig. 5 Visualizes the relationships in the transformation of the output data matrix 17 in a target data matrix 22 for the case in which the inkjet printing device relative to a curved guide element, such. B. a cylinder, is tilted for printing material to be printed.
  • a transformation is carried out to compensate for or compensate for differences in the transit time caused by the different distances of the nozzles of the or each inkjet printhead of the inkjet printing device to the printing substrate.
  • This transformation is done to compensate for the different distances of the nozzle to the substrate between the scaling in the printing direction and the shear, but here too the order is arbitrary.
  • Fig. 5 is a scaled in both directions and transformed to compensate for the different nozzle distances data matrix with the reference numeral 23, wherein the target data matrix 22 is additionally sheared by the shear angle.
  • the procedure is preferably such that the output data of the print image to be printed is adjusted so that such print image information associated with the nozzles at a greater distance from the substrate to be printed, compared with such print image information, the nozzles with a smaller distance are assigned by printing material to be printed, be moved to a position earlier in the printing direction.
  • a second variant of the method according to the invention for converting the output data of the prepress stage into the target data for controlling the inkjet printing device is described below with reference to FIG Fig. 6 to 8 described, wherein this conversion of the output data in the target data according to the second variant of the present invention takes place in that an output data matrix depending on the current skew angle, the current print speed and the current drop frequency is scanned stepwise, wherein if one or more nozzle positions of the inkjet -Druck worn hit a pixel in the output data matrix, a corresponding pixel in the target data matrix is set.
  • Fig. 6 shows an example of an L to be printed by means of an inkjet printing device an output data matrix 24 of 8x12 pixels, wherein set for printing pixels in Fig. 6 are shown as rounded squares 25.
  • the resolution for the output data matrix 24 in both directions of the same 200 dpi so that a screen width 26 of 127 ⁇ m results in both directions.
  • This output data matrix 24 of the Fig. 6 is according to Fig. 7 assuming a skew angle ⁇ of a nozzle row 10 of nozzles 11 is virtually sampled relative to the printing direction 13, wherein when one or more nozzle positions 11 strike a set pixel 25 in the output data matrix 24, a corresponding pixel 27 is set in the target data matrix.
  • a step size 28 of this sample which corresponds to the raster width of the target data matrix, depends on the current print speed and the current drop frequency. The step size of the scan and thus the raster width of the target data matrix is greater, the greater the print speed.
  • pixels 27 set in the target data matrix are represented as circles which are shown somewhat smaller than they could cover in terms of area.
  • Fig. 8 is compared to Fig. 7 increases the step size of the scan or the raster width 28 of the target data matrix by increasing the printing speed at a constant drop frequency, wherein Fig. 8 the pixels 27 of the target data matrix have approximately the same point density as the pixels 25 of the output data matrix. As a result, printing speed can be increased with almost unchanged optical density.
  • the setting of the pixels in the target data matrix can be done in binary form or via gray scale modulation. Then, when the inkjet printing device uses binary inkjet printheads, pixels in the target data matrix, all of which have the same drop size, are set or not, depending on whether nozzle positions hit pixels in the output data matrix during the scan. If, on the other hand, an inkjet printing device is used whose inkjet printheads can modulate gray values, then when a nozzle position encounters a pixel in the output data matrix, the gray value in the target data matrix is set, which is the ratio of the areal coverage of an ink drop and the imaginary pixel area closest to this position.
  • the conversion of output data into target data described above is performed in real time, so that a speed change of the printing speed in the inkjet printing device can be taken into account.
  • a side effect of the method described is that at a lower printing speed than the maximum printing speed, a higher optical density can be achieved. Especially when printing black and white graphics or when printing texts, this side effect has a positive effect on the print quality. However, if this side effect is perceived as disturbing, then the target data matrix can be thinned out by deleting pixels, in such a way that if only one pixel of the target data matrix has multiple pixels, only the best placed pixels are selected.

Landscapes

  • Ink Jet (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Bedrucken eines Bedruckstoffs nach dem Oberbegriff des Anspruchs 1. Ein solches Verfahren ist aus der Druckschrift DE 197 45 136 A1 bekannt.The invention relates to a method for printing a printing material according to the preamble of claim 1. Such a method is known from the document DE 197 45 136 A1 known.

In druckformbasierten, vorzugsweise nach dem Offset-Druckprinzip arbeitenden Druckmaschinen, wie z. B. in Rollenrotationsdruckmaschinen sowie Bogendruckmaschinen, finden zunehmend druckformlose Inkjet-Druckeinrichtungen Verwendung, die insbesondere der Individualisierung von über den Offsetdruck hergestellten Druckerzeugnissen mit z. B. Barcodes, Nummerierungen oder sonstigen Markierungen dienen. Derartige Inkjet-Druckeinrichtungen verfügen über mindestens einen Inkjet-Druckkopf, der nach dem sogenannten Continuous-Inkjet-Prinzip, dem Drop-on-demand-Inkjet-Prinzip, dem Thermal-Inkjet-Prinzip, dem Bubble-Inkjet-Prinzip oder jedem anderem Inkjet-Prinzip ausgebildet sein kann. Die Inkjet-Druckköpfe verfügen üblicherweise über eine Düsenreihe aus mehreren nebeneinander angeordneten Düsen, über die Druckfarbe auf einen zu bedruckenden Bedruckstoff gerichtet werden kann.In printing form-based, preferably operating on the offset printing principle printing machines, such. B. in web-fed rotary printing presses and sheetfed presses, find increasingly pressure-free inkjet printing devices use, in particular the customization of printed products produced by offset printing with z. As barcodes, numbering or other markings serve. Such inkjet printing devices have at least one inkjet print head, the so-called continuous inkjet principle, the drop-on-demand inkjet principle, the thermal inkjet principle, the bubble inkjet principle or any other inkjet Principle can be formed. The inkjet printheads usually have a nozzle row of several juxtaposed nozzles over which ink can be directed to a substrate to be printed.

Da die maximale Druckgeschwindigkeit von Inkjet-Druckeinrichtungen deutlich geringer als die maximale Druckgeschwindigkeit von Offset-Druckeinrichtungen ist, bereitet ein Inline-Bedrucken eines Bedruckstoffs nach dem Offset-Druck und nach dem Inkjet-Druck Schwierigkeiten. Um die erzielbare Druckgeschwindigkeit von Inkjet-Druckeinrichtungen zu erhöhen, ist es aus der Praxis bereits bekannt, Inkjet-Druckeinrichtungen mit einer Vielzahl an Inkjet-Druckköpfen zu verwenden, nämlich einerseits mit mehreren Inkjet-Druckköpfen quer zur Transportrichtung des Bedruckstoffs bzw. zur Druckrichtung und anderseits mit mehreren Inkjet-Druckköpfen in Transportrichtung des Bedruckstoffs bzw. in Druckrichtung, wobei die Vielzahl von Inkjet-Druckköpfen arrayartig bzw. matrixartig nebeneinander angeordnet sind.Since the maximum printing speed of inkjet printing devices is significantly lower than the maximum printing speed of offset printing devices, it is difficult to print inline on a substrate after offset printing and after inkjet printing. To increase the achievable printing speed of inkjet printing devices, it is already known from practice to use inkjet printing devices with a variety of inkjet printheads, namely on the one hand with multiple inkjet printheads transversely to the transport direction of the substrate or to the printing direction and on the other with a plurality of inkjet printheads in the transport direction of the printing material or in the printing direction, wherein the plurality of inkjet printheads are arranged in an array-like or matrix-like manner next to one another.

Die benötigte Anzahl von Inkjet-Druckköpfen quer zur Druckrichtung wird in erster Linie durch die gewünschte Druckauflösung in Relation zur gegebenen Druckauflösung des verwendeten Inkjet-Druckkopfs und durch die gewünschte Gesamtdruckbreite bezogen auf die gegebene Druckbreite eines Inkjet-Druckkopfs definiert. Die benötigte Anzahl von Inkjet-Druckköpfen in Druckrichtung wird in erster Linie durch zwei Punkte bestimmt, nämlich erstens dadurch, dass die gewünschte Druckgeschwindigkeit größer ist als die gegebene Druckgeschwindigkeit eines Inkjet-Druckkopfs, und zum anderen dadurch, dass mehrere Druckfarben über die Inkjet-Druckeinrichtung auf einen Bedruckstoff aufgetragen werden sollen.The required number of inkjet printheads transversely to the printing direction is defined primarily by the desired printing resolution in relation to the given printing resolution of the inkjet printhead used and by the desired total printing width based on the given printing width of an inkjet printhead. The required number of inkjet printheads in the printing direction is determined primarily by two points, namely firstly that the desired printing speed is greater than the given printing speed of an inkjet printhead, and secondly that a plurality of printing inks via the inkjet printing device to be applied to a substrate.

Unabhängig davon, ob eine Inkjet-Druckeinrichtung mit mehreren arrayartig angeordneten Inkjet-Druckköpfen oder einem einzigen Inkjet-Druckkopf zum Bedrucken eines Bedruckstoffs verwendet wird, kann die erzielbare Druckgeschwindigkeit auch dadurch erhöht werden, dass der oder jeder Inkjet-Druckkopf einer Inkjet-Druckeinrichtung zur Transportrichtung des Bedruckstoffs und damit zur Druckrichtung schräg ausgerichtet bzw. schräggestellt wird. Die Schrägstellung hat zur Folge, dass sich der effektive Abstand der Düsen quer zur Druckrichtung bzw. Transportrichtung des Bedruckstoffs verringert und somit die Druckauflösung quer zur Druckrichtung erhöht werden kann. Bleibt die Druckgeschwindigkeit unverändert, so kann dann mit einer höheren Flächendeckung bzw. optischen Dichte gedruckt werden. Genauso kann jedoch unter Erhöhung der Druckgeschwindigkeit die Flächendeckung bzw. optischen Dichte konstant gehalten werden.Regardless of whether an inkjet printing device with multiple arrayed inkjet printheads or a single inkjet printhead is used for printing a substrate, the achievable printing speed can also be increased by the or each inkjet printhead of an inkjet printing device to the transport direction the printing material and thus obliquely aligned or inclined to the printing direction. The inclination has the consequence that the effective distance of the nozzles transversely to the printing direction or transport direction of the printing material is reduced and thus the printing resolution can be increased transversely to the printing direction. If the printing speed remains unchanged, it can then be printed with a higher areal coverage or optical density. Equally, however, the areal coverage or optical density can be kept constant while increasing the printing speed.

Wird zur Erhöhung der Druckauflösung und/oder zur Erhöhung der Druckgeschwindigkeit an Inkjet-Druckeinrichtungen mit zur Druckrichtung bzw. zur Transportrichtung des Bedruckstoffs schräggestellten Inkjet-Druckköpfen gearbeitet, so müssen die in einer Druckvorstufe bereitgestellten Ausgangsdaten für ein mit der Inkjet-Druckeinrichtung zu druckendes Bild nach den gegebenen geometrischen Verhältnissen umgesetzt werden.If an increase in the printing resolution and / or increase in the printing speed of inkjet printing devices with the printing direction or to the transport direction of the substrate inclined inkjet printheads worked, so provided in a prepress output data for an image to be printed with the inkjet printing device after be implemented the given geometric conditions.

Bei aus der Praxis bekannten Druckverfahren erfolgt diese Umsetzung in der Hardware der Inkjet-Druckköpfe, was jedoch den Nachteil hat, dass diese Umsetzung nur für eine definierte Schrägstellung, nur für eine definierte Tropfenfrequenz und nur für eine definierte Druckgeschwindigkeit gültig ist. Ändert sich z. B. die Druckgeschwindigkeit, so kann hierauf nicht reagiert werden, wodurch sich letztendlich die Druckqualität beeinträchtigende Verzerrungen für das mit der Inkjet-Druckeinrichtung zu druckende Druckbild ergeben.In the printing process known from practice, this implementation takes place in the hardware of the inkjet printheads, but this has the disadvantage that this conversion is valid only for a defined inclination, only for a defined drop frequency and only for a defined printing speed. Changes z. As the printing speed, so it can not be reacted to, which ultimately results in the printing quality impairing distortions for the print image to be printed with the inkjet printing device.

Hiervon ausgehend liegt der vorliegenden Erfindung das Problem zugrunde, ein neuartiges Verfahren zum Bedrucken eines Bedruckstoffs schaffen. Dieses Problem wird durch ein Verfahren gemäß Anspruch 1 gelöst. Erfindungsgemäß werden Ausgangsdaten, insbesondere eine Ausgangsdatenmatrix, eines mit der Inkjet-Druckeinrichtung zu druckenden Druckbilds abhängig von einer aktuellen Druckgeschwindigkeit, abhängig von einer aktuellen Tropfenfrequenz des oder jedes Inkjet-Druckkopfs der Inkjet-Druckeinrichtung und abhängig von einem aktuellen Schrägstellungswinkel der oder jeder Düsenreihe des oder jedes Inkjet-Druckkopfs gegenüber der Transportrichtung des Bedruckstoffs vor Übermittlung der Daten an die Inkjet-Druckeinrichtung in Zieldaten, insbesondere eine Zieldatenmatrix, zur Ansteuerung der Inkjet-Druckeinrichtung in Echtzeit umgewandelt.On this basis, the present invention is based on the problem to provide a novel method for printing a substrate. This problem is solved by a method according to claim 1. According to the invention, output data, in particular an output data matrix, of a print image to be printed by the inkjet printing device depends on a current print speed, depending on a current drop frequency of the or each inkjet print head of the inkjet printer and depending on a current skew angle of the or each nozzle row of or each inkjet printhead with respect to the transport direction of the printing material before transmission of the data to the inkjet printing device in target data, in particular a target data matrix, converted to control the inkjet printing device in real time.

Im Sinne des erfindungsgemäßen Verfahrens wird vorgeschlagen, die Umsetzung der Ausgangsdaten in die Zieldaten zur Ansteuerung einer in Druckrichtung schräggestellten Inkjet-Druckeinrichtung unabhängig von der Hardware der Inkjet-Druckköpfe der Inkjet-Druckeinrichtung auszuführen. Die erfindungsgemäße Umsetzung der Ausgangsdaten in die Zieldaten erfolgt demnach vor Übertragung von Bildinformation von der Druckvorstufe an die Inkjet-Druckeinrichtung und damit zwischen der Druckvorstufe und der Inkjet-Druckeinrichtung. Die Umwandlung der Ausgangsdaten in die Zieldaten erfolgt erfindungsgemäß in Echtzeit, wobei die aktuelle Druckgeschwindigkeit, die aktuelle Tropfenfrequenz sowie der aktuelle Schrägstellungswinkel variable Größen bei der Umsetzung der Ausgangsdaten in die Zieldaten sind.For the purposes of the method according to the invention, it is proposed that the conversion of the output data into the target data for controlling an inkjet printing device inclined in the printing direction be carried out independently of the hardware of the inkjet print heads of the inkjet printing device. The inventive conversion of the output data in the target data is thus carried out before the transfer of image information from the prepress to the inkjet printing device and thus between the prepress and the inkjet printing device. According to the invention, the conversion of the output data into the target data takes place in real time, wherein the current print speed, the current drop frequency and the current skew angle are variable variables in the conversion of the output data into the target data.

Hierdurch kann die Umsetzung der Ausgangsdaten in die Zieldaten z. B. an eine sich ändernde Druckgeschwindigkeit angepasst werden, so dass auch bei sich ändernden Druckgeschwindigkeiten mit der Inkjet-Druckeinrichtung eine hohe Druckqualität gewährleistet werden kann.As a result, the conversion of the output data in the target data z. B. be adapted to a changing printing speed, so that even with changing printing speeds with the inkjet printing device, a high print quality can be guaranteed.

Nach einer ersten vorteilhaften Weiterbildung der Erfindung erfolgt die Umwandlung der Ausgangsdaten in die Zieldaten über eine Transformation, derart, dass eine Ausgangsdatenmatrix in Druckrichtung sowie quer zur Druckrichtung skaliert und geschert wird. Ein Skalierungsfaktor zur Skalierung der Ausgangsdatenmatrix quer Druckrichtung wird aus dem aktuellen Schrägstellungswinkel, nämlich aus dem Verhältnis der Ausdehnung des Druckbilds quer zur Druckrichtung bei schräggestellter Inkjet-Druckeinrichtung zur Ausdehnung desselben quer zur Druckrichtung bei nicht schräggestellter Inkjet-Druckeinrichtung, ermittelt. Ein Skalierungsfaktor zur Skalierung der Ausgangsdatenmatrix in Druckrichtung wird aus der aktuellen Druckgeschwindigkeit und der aktuellen Tropfenfrequenz ermittelt. Ein Scherwinkel zur Scherung der Ausgangsdatenmatrix wird aus dem aktuellen Schrägstellungswinkel ermittelt.According to a first advantageous development of the invention, the conversion of the output data into the target data takes place via a transformation such that an output data matrix is scaled and sheared in the printing direction as well as transversely to the printing direction. A scaling factor for scaling the output data matrix transversely printing direction is determined from the current skew angle, namely from the ratio of the expansion of the print image transversely to the printing direction with inclined inkjet printing device for extending the same transversely to the printing direction in non-inclined inkjet printing device. A scaling factor for scaling the output data matrix in the printing direction is determined from the current print speed and the current drop frequency. A shear angle to shear the output data matrix is determined from the current skew angle.

Nach einer zweiten, alternativen vorteilhaften Weiterbildung der Erfindung erfolgt die Umwandlung der Ausgangsdaten in die Zieldaten derart, dass eine Ausgangsdatenmatrix abhängig von dem aktuellen Schrägstellungswinkel, der aktuellen Druckgeschwindigkeit und der aktuellen Tropfenfrequenz schrittweise abgetastet wird, wobei dann, wenn ein oder mehrere Düsenpositionen der Inkjet-Druckeinrichtung auf einen Bildpunkt in einer Ausgangsdatenmatrix treffen, ein entsprechender Bildpunkt in einer Zieldatenmatrix gesetzt wird.According to a second, alternative advantageous embodiment of the invention, the conversion of the output data into the target data takes place in such a way that an output data matrix is scanned step by step depending on the current skew angle, the current print speed and the current drop frequency, wherein if one or more nozzle positions of the inkjet Printer to hit a pixel in an output data matrix, a corresponding pixel is set in a target data matrix.

Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung. Ausführungsbeispiele der Erfindung werden an Hand der Zeichnung näher erläutert. Dabei zeigt:

Fig. 1:
eine schematisierte Darstellung zur Verdeutlichung der Druckverhältnisse bei einer nicht schräggestellten Inkjet-Druckeinrichtung;
Fig. 2:
eine schematisierte Darstellung zur Verdeutlichung der Druckverhältnisse bei einer schräggestellten Inkjet-Druckeinrichtung;
Fig. 3
eine erste Darstellung zur Verdeutlichung einer ersten Variante des erfindungsgemäßen Verfahrens;
Fig. 4:
eine zweite Darstellung zur weiteren Verdeutlichung der ersten Variante des erfindungsgemäßen Verfahrens;
Fig. 5:
eine dritte Darstellung zur weiteren Verdeutlichung der ersten Variante des erfindungsgemäßen Verfahrens;
Fig. 6:
eine erste Darstellung zur Verdeutlichung einer zweiten Variante des erfindungsgemäßen Verfahrens;
Fig. 7:
eine zweite Darstellung zur weiteren Verdeutlichung der zweiten Variante des erfindungsgemäßen Verfahrens; und
Fig. 8:
eine dritte Darstellung zur weiteren Verdeutlichung der zweiten Variante des erfindungsgemäßen Verfahrens.
Preferred embodiments of the invention will become apparent from the dependent claims and the description below. Embodiments of the invention will be explained in more detail with reference to the drawing. Showing:
Fig. 1:
a schematic representation to illustrate the pressure conditions in a non-tilted inkjet printing device;
Fig. 2:
a schematic representation to illustrate the pressure conditions in a tilted inkjet printing device;
Fig. 3
a first representation to illustrate a first variant of the method according to the invention;
4:
a second representation for further clarification of the first variant of the method according to the invention;
Fig. 5:
a third representation for further clarification of the first variant of the method according to the invention;
Fig. 6:
a first representation to illustrate a second variant of the method according to the invention;
Fig. 7:
a second illustration for further clarification of the second variant of the method according to the invention; and
Fig. 8:
a third illustration for further clarification of the second variant of the method according to the invention.

Bevor nachfolgend das erfindungsgemäße Verfahren zum Bedrucken eines Bedruckstoffs im Detail beschrieben wird, sollen vorab unter Bezugnahme auf Fig. 1 und 2 Druckverhältnisse an Inkjet-Druckeinrichtungen beschrieben werden. So zeigt Fig. 1 schematisch einen Inkjet-Druckkopf, der eine Düsenreihe 10 aus mehreren nebeneinander angeordneten Düsen 11 umfasst, die entlang einer Reihe bzw. Linie 12 mit gleichem Abstand zueinander positioniert sind. Der Abstand der Düsen 11 einer solchen Düsenreihe 10 ist durch die verwendete Technologie des Inkjet-Druckkopfes vorgegeben.Before the process according to the invention for printing on a printing material is described in detail below, reference should be made in advance to FIG Fig. 1 and 2 Pressure conditions are described on inkjet printing devices. So shows Fig. 1 schematically an inkjet printhead comprising a nozzle row 10 of a plurality of juxtaposed nozzles 11, which are positioned along a row or line 12 equidistant from each other. The spacing of the nozzles 11 of such a nozzle row 10 is predetermined by the technology used in the inkjet printing head.

Zum Bedrucken eines Bedruckstoffs wird vorzugsweise der zu bedruckende Bedruckstoff in Richtung des Pfeils 13 relativ zum vorzugsweise feststehenden Ink-jet-Druckkopf bewegt, wobei sich für den Fall einer konstanten Tropfenfrequenz an Druckfarbe und einer konstanten Druckgeschwindigkeit das in Fig. 1 dargestellte Raster aus möglichen Positionen 14 für Druckfarbetropfen ergibt. In Fig. 1 ist dabei die Tropfenfrequenz, Druckgeschwindigkeit und der Abstand der Düsen derart gewählt, dass vier benachbarte Positionen 14 von Druckfarbetropfen ein Quadrat 15 mit einem definierten Flächeninhalt beschreiben. Ein Abstand X der Positionen 14 in Druckrichtung bestimmt die Auflösung in Druckrichtung, ein Abstand Y der Positionen 14 quer zur Druckrichtungen bestimmt die Auflösung quer zur Druckrichtung, wobei in Fig. 1 diese beiden Auflösungen gleich groß sind. Es sei darauf hingewiesen, dass selbstverständlich auch die Auflösung in Druckrichtung unterschiedlich groß sein kann wie die Auflösung quer zur Druckrichtung. Aus dem Abstand Y der Düsen 11 quer zur Druckrichtung multipliziert mit der Anzahl der Düsen 11 ergibt sich die bedruckbare Breite bzw. die Erstreckung eines mit dem Ink-jet-Druckkopf druckbaren Druckbilds quer zur Druckrichtung, wobei gemäß Fig. 1 die Düsenreihe 10 aus Düsen 11 mit der Druckrichtung 13 einen Winkel α von in etwa 90° einschließt. Der Flächeninhalt des Quadrats 15 der Fig. 1 ist ein Maß für die Flächendeckung bzw. optische Dichte, mit der gedruckt werden kann.For printing a printing substrate, the printing material to be printed is preferably moved in the direction of the arrow 13 relative to the preferably stationary ink-jet printing head, wherein in the case of a constant drop frequency of ink and a constant printing speed, the in Fig. 1 illustrated Raster of possible positions 14 for drops of ink results. In Fig. 1 In this case, the droplet frequency, printing speed and the distance of the nozzles are chosen such that four adjacent positions 14 of ink droplets describe a square 15 with a defined surface area. A distance X of the positions 14 in the printing direction determines the resolution in the printing direction, a distance Y of the positions 14 transverse to the printing directions determines the resolution transverse to the printing direction, wherein Fig. 1 these two resolutions are the same size. It should be noted that, of course, the resolution in the printing direction can be different in size than the resolution transverse to the printing direction. From the distance Y of the nozzles 11 transversely to the printing direction multiplied by the number of nozzles 11 results in the printable width or the extent of a printable with the ink-jet print head print image transversely to the printing direction, according to Fig. 1 the nozzle row 10 of nozzles 11 with the pressure direction 13 forms an angle α of approximately 90 °. The area of the square 15 of the Fig. 1 is a measure of the area coverage or optical density that can be used to print.

Fig. 2 verdeutlicht die Druckverhältnisse, die sich dann einstellen, wenn die Düsenreihe 10 aus den Düsen 11 um einen Winkel β zur Druckrichtung 13 schräggestellt wird, wobei in Fig. 2 der Winkel β beispielsweise 30° beträgt. Hieraus folgt unmittelbar, dass sich der Abstand Y der Positionen 14 für Druckfarbetropfen quer zur Druckrichtung verringert, wodurch die Auflösung quer zur Druckrichtung erhöht werden kann. Soll im Vergleich zur Fig. 1 mit unveränderter Flächendeckung bzw. unveränderter optischer Dichte gedruckt werden, so kann der Abstand X zwischen den Positionen für Druckfarbetropfen in Druckrichtung durch eine Erhöhung der Druckgeschwindigkeit vergrößert werden. Fig. 2 illustrates the pressure conditions, which then set when the nozzle row 10 is tilted from the nozzles 11 by an angle β to the printing direction 13, wherein in Fig. 2 the angle β is for example 30 °. It follows immediately that the distance Y of the ink droplet positions 14 decreases transversely to the printing direction, whereby the resolution can be increased transversely to the printing direction. Should be compared to Fig. 1 are printed with unchanged area coverage or unchanged optical density, the distance X between the positions for ink droplets in the printing direction can be increased by increasing the printing speed.

In Fig. 2 wird die erzielbare Flächendeckung bzw. erzielbare optische Dichte durch ein von vier benachbarten Positionen 14 aufgespanntes Parallelogramm 16 visualisiert, wobei die Fläche des Parallelogramms 16 der Fig. 2 der Fläche des Quadrats 15 der Fig. 1 entspricht.In Fig. 2 the achievable area coverage or achievable optical density is visualized by a parallelogram 16 spanned by four adjacent positions 14, the area of the parallelogram 16 of FIG Fig. 2 the area of the square 15 of the Fig. 1 equivalent.

Aus den unter Bezugnahme auf Fig. 1 und 2 beschriebenen Zusammenhängen folgt demnach, dass durch eine Schrägstellung einer Düsenreihe eines Inkjet-Druckkopfs quer zur Druckrichtung 13 unter Beibehaltung der erzielbaren Flächendeckung bzw. optischen Dichte sowie unter Verringerung bzw. Reduzierung der Druckbreite und damit Erstreckung des druckbaren Druckbilds quer zur Druckrichtung 13 die Druckgeschwindigkeit von Inkjet-Druckeinrichtungen erhöht werden kann. Dieser Effekt wird beim erfindungsgemäßen Verfahren zum Bedrucken eines Bedruckstoffs ausgenutzt, um die Druckgeschwindigkeit von Inkjet-Druckeinrichtungen und damit Inkjet-Druckverfahren zu erhöhen und so einen Bedruckstoff Inline zu einem druckformbasierten Druckverfahren mit einem druckformlosen Inkjet-Druckverfahren zu bedrucken.From the referring to Fig. 1 and 2 Accordingly, it follows that by an inclination of a row of nozzles of an inkjet printhead transversely to the printing direction 13 while maintaining the achievable area coverage or optical density and reducing or reducing the printing width and thus extension of the printable image across the printing direction 13, the printing speed of inkjet Printing facilities can be increased. This effect is utilized in the process according to the invention for printing on a printing material in order to increase the printing speed of inkjet printing devices and thus inkjet printing processes and thus to print a substrate inline to form a printing plate-based printing process with a pressure-free inkjet printing process.

Bedingt dadurch, dass die Inkjet-Druckköpfe bzw. Düsenreihen derselben gegenüber der Transportrichtung des Bedruckstoffs und damit der Druckrichtung schräggestellt sind, besteht die Notwendigkeit, in einer Druckvorstufe bereitgestellte Ausgangsdaten eines mit der Inkjet-Druckeinrichtung zu druckenden Druckbilds in Zieldaten zur Ansteuerung der Inkjet-Druckeinrichtung zu wandeln. Dies erfolgt im Sinne der hier vorliegenden Erfindung vor Übermittlung von Daten an die Inkjet-Druckeinrichtung in unmittelbarem Anschluss an die Bereitstellung der Ausgangsdaten in der Druckvorstufe, wobei diese Umwandlung abhängig von einer aktuellen Druckgeschwindigkeit des druckformbasierten Druckverfahrens und damit des Inkjet-Druckverfahrens, abhängig von einer aktuellen Tropfenfrequenz des oder jedes Inkjet-Druckkopfs der Inkjet-Druckeinrichtung und abhängig von einem aktuellen Schrägstellungswinkel der oder jeder Düsenreihe des oder jedes Inkjet-Druckkopfs gegenüber der Transportrichtung und damit der Druckrichtung erfolgt.Due to the fact that the inkjet printheads or nozzle rows thereof are inclined relative to the transport direction of the printing material and thus the printing direction, there is a need to provide output data of a print image to be printed with the inkjet printing device in target data for controlling the inkjet printing device in a prepress stage to change. This is done in the sense of the present invention prior to the transmission of data to the inkjet printing device immediately after the provision of the output data in the prepress, said conversion depending on a current printing speed of the printing form based printing process and thus the inkjet printing process, depending on a current drop frequency of the or each inkjet printhead of the inkjet printing device and depending on a current skew angle of the or each row of nozzles of the or each inkjet printhead with respect to the transport direction and thus the printing direction.

Die Umwandlung der Ausgangsdaten in die Zieldaten erfolgt in Echtzeit, so dass während des Druckens bei sich z. B. ändernder Druckgeschwindigkeit die Zieldaten zur Ansteuerung der Inkjet-Druckeinrichtung verändert werden können, um so bei sich ändernden Druckbedingungen stets ein optimales Druckbild mit der Inkjet-Druckeinrichtung bereitzustellen. Die aktuelle Druckgeschwindigkeit, die aktuelle Tropfenfrequenz sowie der aktuelle Schrägstellungswinkel sind demnach variable Größen bei der Umwandlung der Ausgangsdaten der Druckvorstufe in die Zieldaten zur Ansteuerung der Inkjet-Druckeinrichtung.The conversion of the output data in the target data is done in real time, so that during printing z. B. changing printing speed, the target data for controlling the inkjet printing device can be changed so as to always provide an optimal print image with the inkjet printing device under changing printing conditions. The current print speed, the current drop frequency and the current skew angle are therefore variable Sizes in the conversion of the output data of the prepress stage in the target data for controlling the inkjet printing device.

Wie bereits erwähnt, handelt es sich bei dem Schrägstellungswinkel der oder jeder Düsenreihe des oder jedes Inkjet-Druckkopfs der Inkjet-Druckeinrichtung um eine variable Größe des erfindungsgemäßen Verfahrens, wobei der Schrägstellungswinkel jedoch idealerweise so gewählt wird, dass bei einer gegebenen maximalen Druckgeschwindigkeit und einer gegebenen maximalen Tropfenfrequenz gerade noch eine geometrische Flächendeckung bzw. optische Dichte von 100% gegeben ist. Die maximale Druckgeschwindigkeit wird dann nur durch physikalische Parameter wie z. B. die Tropfengeschwindigkeit selbst sowie die damit verbundene Platzierungsgenauigkeit der Druckfarbetropfen auf dem Bedruckstoff begrenzt. Der Schrägstellungswinkel kann jedoch auch so gewählt werden, dass sich Flächendeckungen von weniger als 100% einstellen.As noted above, the skew angle of the or each nozzle row of the or each inkjet printhead of the inkjet printing device is a variable size of the method of the invention, but the skew angle is ideally chosen so that at a given maximum printing speed and a given maximum printing speed maximum drop frequency just a geometric area coverage or optical density of 100% is given. The maximum printing speed is then only by physical parameters such. B. limits the drop speed itself and the associated placement accuracy of the ink droplets on the substrate. However, the skew angle can also be selected to provide areal coverage of less than 100%.

Die aktuelle Tropfenfrequenz ist entweder für alle Düsen eines Inkjet-Druckkopfs gleich oder variabel, wobei dann, wenn eine Continuous-Inkjet-Druckeinrichtung verwendet wird, die Tropfenfrequenz für alle Düsen gleich ist, und wobei dann, wenn eine Drop-on-demand-Inkjet-Druckeinrichtung verwendet wird, die Tropfenfrequenz variabel ist.The actual drop frequency is either the same or variable for all the nozzles of an inkjet printhead, and when a continuous inkjet printer is used, the drop frequency is the same for all nozzles, and then, if a drop-on-demand inkjet Pressure device is used, the drop frequency is variable.

Die aktuelle Druckgeschwindigkeit wird über einen Sensor messtechnisch erfasst und stellt eine variable Eingangsgröße für die Umwandlung der Ausgangsdaten der Druckvorstufe für das mit der Inkjet-Druckeinrichtung zu druckende Druckbild in die Zieldaten zur Ansteuerung der Inkjet-Druckeinrichtung dar.The current printing speed is detected by measurement via a sensor and represents a variable input variable for the conversion of the output data of the prepress for the inkjet printing device to be printed image in the target data for controlling the inkjet printing device.

Zur Umwandlung der Ausgangsdaten in die Zieldaten wird nach einer ersten Variante des erfindungsgemäßen Verfahrens so vorgegangen, dass die Ausgangsdaten über eine Transformation in die Zieldaten umgewandelt werden, nämlich derart, dass in Form einer Ausgangsdatenmatrix, insbesondere einer Ausgangsbitmap, vorliegende Ausgangsdaten in Druckrichtung sowie quer zur Druckrichtung skaliert und weiterhin geschert werden, um eine Zieldatenmatrix, insbesondere eine Zielbitmap, zur Ansteuerung der Inkjet-Druckeinrichtung bereitzustellen. Die detaillierte Vorgehensweise bei dieser Transformation wird nachfolgend unter Bezugnahme auf Fig. 3 bis 5 erläutert.In order to convert the output data into the target data, according to a first variant of the method according to the invention, the output data is transformed into the target data via a transformation, namely such that output data in the printing direction and transversely to the output data are present in the form of an output data matrix, in particular an output bitmap print direction are scaled and further sheared to provide a target data matrix, in particular a target bitmap, for driving the inkjet printing device. The detailed procedure in this transformation will be described below with reference to FIG Fig. 3 to 5 explained.

In Fig. 3 ist mit der Bezugsziffer 17 eine in einer Druckvorstufe bereitgestellte Ausgangsdatenmatrix für eine mit einer Inkjet-Druckeinrichtung zu druckendes Druckbild beziffert, wobei es sich bei dieser Ausgangsdatenmatrix 17 um eine orthogonale Ausgangsbitmap handelt, die unter Anwendung bekannter Verfahren gerastert ist. Im einfachsten Fall liegen je Bildpunkt rein binäre Daten vor, was bedeutet, dass ein Bildpunkt der Ausgangsdatenmatrix 17 entweder gesetzt und damit schwarz bzw. ungesetzt und damit weiß ist. Bei dem zu druckenden Druckbild handelt es sich im gezeigten Ausführungsbeispiel um ein A, wobei in Fig. 3 ein ungesetzter und damit weißer Bildpunkt mit der Bezugsziffer 18 und ein gesetzter und damit schwarzer Bildpunkt mit der Bezugsziffer 19 gekennzeichnet ist.In Fig. 3 the reference numeral 17 indicates an output data matrix provided in a prepress stage for a print image to be printed with an inkjet printer device, this output data matrix 17 being an orthogonal output bitmap which has been screened using known methods. In the simplest case, there are purely binary data per pixel, which means that one pixel of the output data matrix 17 is either set and thus black or unset and thus white. In the exemplary embodiment shown, the printed image to be printed is an A, wherein in Fig. 3 an unoccupied and thus white pixel with the reference numeral 18 and a set and thus black pixel is designated by the reference numeral 19.

In Fig. 3 wird zur Umwandlung der Ausgangsdatenmatrix 17 in eine Zieldatenmatrix zuerst eine Skalierung der Ausgangsdatenmatrix quer zur Druckrichtung 13 vorgenommen, wobei sich ein Skalierungsfaktur für die Skalierung quer zur Druckrichtung aus dem aktuellen Schrägstellungswinkel ergibt. So ergibt sich der Skalierungsfaktor für die Skalierung quer zur Druckrichtung aus einem Verhältnis der Druckbreite des schräggestellten Inkjet-Druckkopfes im Verhältnis zur Druckbreite des nicht schräggestellten Inkjet-Druckkopfes.In Fig. 3 In order to convert the output data matrix 17 into a target data matrix, first a scaling of the output data matrix is performed transversely to the printing direction 13, whereby a scaling factor for the scaling transversely to the printing direction results from the current skew angle. Thus, the scaling factor for the scaling transversely to the printing direction results from a ratio of the printing width of the inclined inkjet printhead in relation to the printing width of the non-inclined inkjet printhead.

Mit anderen Worten ausgedrückt, ergibt sich der Skalierungsfaktor für die Skalierung quer zur Druckrichtung aus dem Verhältnis der Ausdehnung des Druckbilds quer zur Druckrichtung bei schräggestellter Inkjet-Druckeinrichtung zur Ausdehnung des Druckbilds quer zur Druckrichtung bei nicht schräggestellter Inkjet-Druckeinrichtung. In Fig. 3 ist eine mit diesem Skalierungsfaktor skalierte Datenmatrix mit der Bezugsziffer 20 gekennzeichnet.In other words, the scaling factor for the scaling transversely to the printing direction results from the ratio of the extent of the printed image transversely to the printing direction with an inclined inkjet printing device for extending the printed image transversely to the printing direction with non-inclined inkjet printing device. In Fig. 3 For example, a data matrix scaled by this scaling factor is identified by the reference numeral 20.

Darauffolgend erfolgt im Ausführungsbeispiel der Fig. 3 eine Skalierung in Druckrichtung, wobei ein Skalierungsfaktor zur Skalierung in Druckrichtung aus der aktuellen Druckgeschwindigkeit und der aktuellen Tropfenfrequenz ermittelt wird.
Dann, wenn die Tropfenfrequenz unverändert ist, entspricht der Skalierungsfaktor in Druckrichtung dem Verhältnis der Druckgeschwindigkeit des Inkjet-Druckkopfes in nicht schräggestellter Betriebsart zur Druckgeschwindigkeit desselben in schräggestellter Betriebsart. Fig. 3 beziffert eine Datenmatrix, die sowohl quer zur Druckrichtung als auch in Druckrichtung skaliert ist, mit der Bezugsziffer 21.
Subsequently, in the embodiment of the Fig. 3 a scaling in the printing direction, wherein a scaling factor for scaling in the printing direction from the current print speed and the current drop frequency is determined.
Then, when the drop frequency is unchanged, the scale factor in the print direction corresponds to the ratio of the print speed of the inkjet print head in non-skewed mode to the print speed thereof in the skewed mode. Fig. 3 numbers a data matrix, which is scaled both transversely to the printing direction and in the printing direction, with the reference numeral 21.

In Fig. 3 erfolgt anschließend an die obige Skalierung in Druckrichtung sowie quer zur Druckrichtung eine Scherung der Ausgangsdatenmatrix, wobei ein Scherungswinkel aus dem aktuellen Schrägstellungswinkel ermittelt wird. Eine um beide Skalierungsfaktoren skalierte und um den Scherwinkel transformierte Datenmatrix, die der Zieldatenmatrix zur Ansteuerung der Inkjet-Druckeinrichtung entspricht, ist in Fig. 3 mit der Bezugsziffer 22 gekennzeichnet.In Fig. 3 Then, following the above scaling in the printing direction and transversely to the printing direction, a shear of the output data matrix takes place, wherein a shear angle is determined from the current skew angle. A scaled by both scaling factors and the shear angle transformed data matrix corresponding to the target data matrix for driving the inkjet printing device is in Fig. 3 designated by the reference numeral 22.

Es sei darauf hingewiesen, dass die Reihenfolge der Skalierungen sowie der Scherung der Ausgangsdatenmatrix beliebig ist. Alle Transformationen können auch in einem Schritt erfolgen.It should be noted that the order of the scalings and the shear of the output data matrix is arbitrary. All transformations can also be done in one step.

Fig. 4 visualisiert die Auswirkungen auf die Transformation der Ausgangsdatenmatrix, wenn die Druckgeschwindigkeit höher ist als im Ausführungsbeispiel der Fig. 3. Ansonsten sind im Ausführungsbeispiel der Fig. 4 alle Parameter im Vergleich zum Ausführungsbeispiel der Fig. 3 unverändert. Durch die Erhöhung der Druckgeschwindigkeit ergibt sich eine andere Skalierung in Druckrichtung, so dass die Datenmatrix 21 und damit letztendlich auch die Zielmatrix 22 gegenüber Fig. 3 verändert ist. Da sich gegenüber Fig. 3 jedoch ausschließlich die Druckgeschwindigkeit geändert hat, bleibt der Skalierungsfaktor quer zur Druckrichtung sowie der Scherwinkel unverändert. Fig. 4 Visualizes the effects on the transformation of the output data matrix when the print speed is higher than in the embodiment of Fig. 3 , Otherwise, in the embodiment of Fig. 4 all parameters compared to the embodiment of Fig. 3 unchanged. By increasing the printing speed results in a different scaling in the printing direction, so that the data matrix 21 and thus ultimately the target matrix 22 against Fig. 3 is changed. Because opposite Fig. 3 However, only the printing speed has changed, the scaling factor across the printing direction and the shear angle remains unchanged.

Fig. 5 visualisiert die Zusammenhänge bei der Transformation der Ausgangsdatenmatrix 17 in eine Zieldatenmatrix 22 für den Fall, in welchem die Inkjet-Druckeinrichtung relativ zu einem gewölbten Führungselement, wie z. B. einem Zylinder, für den zu bedruckenden Bedruckstoff schräggestellt ist. In diesem Fall erfolgt zusätzlich zu den beiden Skalierungen sowie der Scherung eine Transformation, um durch den unterschiedlichen Abstand der Düsen des oder jedes Inkjet-Druckkopfs der Inkjet-Druckeinrichtung verursachte Laufzeitunterschiede der Druckfarbetropfen zum Bedruckstoff auszugleichen bzw. zu kompensieren. In Fig. 5 erfolgt diese Transformation zum Ausgleich der unterschiedlichen Abstände der Düsen zum Bedruckstoff zwischen der Skalierung in Druckrichtung sowie der Scherung, wobei jedoch auch hier die Reihenfolge beliebig ist. In Fig. 5 ist eine in beide Richtungen skalierte und zum Ausgleich der unterschiedlichen Düsenabstände transformierte Datenmatrix mit der Bezugsziffer 23 gekennzeichnet, wobei die Zieldatenmatrix 22 zusätzlich um den Scherwinkel geschert ist. Fig. 5 Visualizes the relationships in the transformation of the output data matrix 17 in a target data matrix 22 for the case in which the inkjet printing device relative to a curved guide element, such. B. a cylinder, is tilted for printing material to be printed. In this case, in addition to the two scales and the shear, a transformation is carried out to compensate for or compensate for differences in the transit time caused by the different distances of the nozzles of the or each inkjet printhead of the inkjet printing device to the printing substrate. In Fig. 5 This transformation is done to compensate for the different distances of the nozzle to the substrate between the scaling in the printing direction and the shear, but here too the order is arbitrary. In Fig. 5 is a scaled in both directions and transformed to compensate for the different nozzle distances data matrix with the reference numeral 23, wherein the target data matrix 22 is additionally sheared by the shear angle.

Zur Kompensation der Laufzeitunterschiede der Druckfarbe wird vorzugsweise so vorgegangen, dass die Ausgangsdaten des zu druckenden Druckbilds derart angepasst werden, dass solche Druckbildinformationen, die Düsen mit einem größeren Abstand von dem zu bedruckenden Bedruckstoff zugeordnet sind, gegenüber solchen Druckbildinformationen, die Düsen mit einem kleineren Abstand von zu bedruckendem Bedruckstoff zugeordnet sind, auf eine in Druckrichtung früherer Position verschoben werden.To compensate for differences in the ink run-time, the procedure is preferably such that the output data of the print image to be printed is adjusted so that such print image information associated with the nozzles at a greater distance from the substrate to be printed, compared with such print image information, the nozzles with a smaller distance are assigned by printing material to be printed, be moved to a position earlier in the printing direction.

Eine zweite Variante des erfindungsgemäßen Verfahrens zur Umwandlung der Ausgangsdaten der Druckvorstufe in die Zieldaten zur Ansteuerung der Inkjet-Druckeinrichtung wird nachfolgend unter Bezugnahme auf Fig. 6 bis 8 beschrieben, wobei diese Umwandlung der Ausgangsdaten in die Zieldaten nach der zweiten Variante der hier vorliegenden Erfindung dadurch erfolgt, dass eine Ausgangsdatenmatrix abhängig vom aktuellen Schrägstellungswinkel, der aktuellen Druckgeschwindigkeit und der aktuellen Tropfenfrequenz schrittweise abgetastet wird, wobei dann, wenn ein oder mehrere Düsenpositionen der Inkjet-Druckeinrichtung auf einen Bildpunkt in der Ausgangsdatenmatrix treffen, ein entsprechender Bildpunkt in der Zieldatenmatrix gesetzt wird.A second variant of the method according to the invention for converting the output data of the prepress stage into the target data for controlling the inkjet printing device is described below with reference to FIG Fig. 6 to 8 described, wherein this conversion of the output data in the target data according to the second variant of the present invention takes place in that an output data matrix depending on the current skew angle, the current print speed and the current drop frequency is scanned stepwise, wherein if one or more nozzle positions of the inkjet -Druckeinrichtung hit a pixel in the output data matrix, a corresponding pixel in the target data matrix is set.

Fig. 6 zeigt exemplarisch für ein mit Hilfe einer Inkjet-Druckeinrichtung zu druckendes L eine Ausgangsdatenmatrix 24 aus 8x12 Bildpunkten, wobei zum Drucken gesetzte Bildpunkte in Fig. 6 als abgerundete Quadrate 25 dargestellt sind. In der Darstellung der Fig. 6 wird als Auflösung für die Ausgangsdatenmatrix 24 in beide Richtungen derselben 200 dpi angenommen, so dass sich in beiden Richtungen eine Rasterweite 26 von 127 µm ergibt. Fig. 6 shows an example of an L to be printed by means of an inkjet printing device an output data matrix 24 of 8x12 pixels, wherein set for printing pixels in Fig. 6 are shown as rounded squares 25. In the presentation of the Fig. 6 is assumed to be the resolution for the output data matrix 24 in both directions of the same 200 dpi, so that a screen width 26 of 127 μm results in both directions.

Diese Ausgangsdatenmatrix 24 der Fig. 6 wird gemäß Fig. 7 unter Annahme eines Schrägstellungswinkels β einer Düsenreihe 10 aus Düsen 11 relativ zur Druckrichtung 13 virtuell abgetastet, wobei dann, wenn ein oder mehrere Düsenpositionen 11 auf einen gesetzten Bildpunkt 25 in der Ausgangsdatenmatrix 24 treffen, in der Zieldatenmatrix ein entsprechender Bildpunkt 27 gesetzt wird. Eine Schrittweite 28 dieser Abtastung, die der Rasterweite der Zieldatenmatrix entspricht, ist von der aktuellen Druckgeschwindigkeit und der aktuellen Tropfenfrequenz abhängig. Die Schrittweite der Abtastung und damit die Rasterweite der Zieldatenmatrix ist um so größer, je größer die Druckgeschwindigkeit ist. In Fig. 7 sind in der Zieldatenmatrix gesetzte Bildpunkte 27 zur Gewährleistung einer übersichtlicheren Darstellung als Kreise dargestellt, die etwas kleiner dargestellt sind, als sie flächenmäßig abdecken könnten.This output data matrix 24 of the Fig. 6 is according to Fig. 7 assuming a skew angle β of a nozzle row 10 of nozzles 11 is virtually sampled relative to the printing direction 13, wherein when one or more nozzle positions 11 strike a set pixel 25 in the output data matrix 24, a corresponding pixel 27 is set in the target data matrix. A step size 28 of this sample, which corresponds to the raster width of the target data matrix, depends on the current print speed and the current drop frequency. The step size of the scan and thus the raster width of the target data matrix is greater, the greater the print speed. In Fig. 7 In order to provide a clearer representation, pixels 27 set in the target data matrix are represented as circles which are shown somewhat smaller than they could cover in terms of area.

In Fig. 8 ist im Vergleich zu Fig. 7 die Schrittweite der Abtastung bzw. die Rasterweite 28 der Zieldatenmatrix durch Erhöhung der Druckgeschwindigkeit bei konstanter Tropfenfrequenz erhöht, wobei in Fig. 8 die Bildpunkte 27 der Zieldatenmatrix in etwa die gleiche Punktdichte aufweisen wie die Bildpunkte 25 der Ausgangsdatenmatrix. Daraus folgt, dass bei Erhöhung der Druckgeschwindigkeit mit nahezu unveränderter optischer Dichte gedruckt werden kann.In Fig. 8 is compared to Fig. 7 increases the step size of the scan or the raster width 28 of the target data matrix by increasing the printing speed at a constant drop frequency, wherein Fig. 8 the pixels 27 of the target data matrix have approximately the same point density as the pixels 25 of the output data matrix. As a result, printing speed can be increased with almost unchanged optical density.

Das Setzen der Bildpunkte in der Zieldatenmatrix kann binär oder über eine Grauwertmodulierung erfolgen. Dann, wenn die Inkjet-Druckeinrichtung binär arbeitende Inkjet-Druckköpfe verwendet, werden Bildpunkte in der Zieldatenmatrix, die alle dieselbe Tropfengröße aufweisen, gesetzt oder nicht gesetzt, und zwar abhängig davon, ob bei der Abtastung Düsenpositionen auf Bildpunkte in der Ausgangsdatenmatrix treffen. Wird hingegen eine Inkjet-Druckeinrichtung verwendet, deren Inkjet-Druckköpfe Grauwerte modulieren können, so wird dann, wenn eine Düsenposition auf einen Bildpunkt in der Ausgangsdatenmatrix trifft, derjenige Grauwert in der Zieldatenmatrix gesetzt, der dem Verhältnis der Flächendeckung eines Druckfarbetropfens und der gedachten Bildpunktfläche an dieser Position am nächsten kommt.The setting of the pixels in the target data matrix can be done in binary form or via gray scale modulation. Then, when the inkjet printing device uses binary inkjet printheads, pixels in the target data matrix, all of which have the same drop size, are set or not, depending on whether nozzle positions hit pixels in the output data matrix during the scan. If, on the other hand, an inkjet printing device is used whose inkjet printheads can modulate gray values, then when a nozzle position encounters a pixel in the output data matrix, the gray value in the target data matrix is set, which is the ratio of the areal coverage of an ink drop and the imaginary pixel area closest to this position.

Auch nach der zweiten Variante der hier vorliegenden Erfindung kann die unter Verwendung des unter Bezugnahme auf Fig. 6 bis 8 beschriebenen Verfahrens erzeugte Zieldatenmatrix zur Kompensation unterschiedlicher Abstände der Düsen vom zu bedruckenden Druckstoff, wie unter Bezugnahme auf Fig. 5 beschrieben, umgewandelt bzw. transformiert werden.Also according to the second variant of the present invention, which can be obtained by using the reference to Fig. 6 to 8 described method to compensate for different distances of the nozzles from the printed material to be printed, as with reference to Fig. 5 described, transformed or transformed.

Die oben beschriebene Umwandlung von Ausgangsdaten in Zieldaten erfolgt in Echtzeit, so dass eine Geschwindigkeitsänderung der Druckgeschwindigkeit bei der Inkjet-Druckeinrichtung berücksichtigt werden kann.The conversion of output data into target data described above is performed in real time, so that a speed change of the printing speed in the inkjet printing device can be taken into account.

Ein Nebeneffekt des beschriebenen Verfahrens besteht darin, dass bei geringerer Druckgeschwindigkeit als der maximalen Druckgeschwindigkeit eine höhere optische Dichte erzielt werden kann. Gerade beim Druck von schwarz/weiß-Grafiken bzw. beim Druck von Texten wirkt sich dieser Nebeneffekt positiv auf die Druckbildqualität aus. Wird dieser Nebeneffekt jedoch als störend empfunden, so kann die Zieldatenmatrix durch Löschen von Bildpunkten gezielt ausgedünnt werden, und zwar derart, dass dann, wenn an einer Position der Zieldatenmatrix mehrere Bildpunkte gesetzt sind, jeweils nur die am besten platzierten Bildpunkte ausgewählt werden.A side effect of the method described is that at a lower printing speed than the maximum printing speed, a higher optical density can be achieved. Especially when printing black and white graphics or when printing texts, this side effect has a positive effect on the print quality. However, if this side effect is perceived as disturbing, then the target data matrix can be thinned out by deleting pixels, in such a way that if only one pixel of the target data matrix has multiple pixels, only the best placed pixels are selected.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1010
Düsenreihenozzle row
1111
Düsejet
1212
Linieline
1313
Druckrichtungprint direction
1414
Positionposition
1515
Quadratsquare
1616
Parallelogrammparallelogram
1717
AusgangsdatenmatrixOutput data matrix
1818
Bildpunktpixel
1919
Bildpunktpixel
2020
Datenmatrixdata matrix
2121
Daten matrixData matrix
2222
Zielmatrixtarget matrix
2323
Datenmatrixdata matrix
2424
AusgangsdatenmatrixOutput data matrix
2525
Bildpunktpixel
2626
Rasterweitescreen ruling
2727
Bildpunktpixel
2828
Rasterweitescreen ruling

Claims (12)

  1. Method for printing on a print substrate, wherein the print substrate is printed on by means of a printing-forme-based printing method, in particular with an offset printing method, and also in-line with the printing-forme-based printing method by means of an ink-jet printing method without a printing forme, wherein an ink-jet printing device has, for carrying out the ink-jet printing method, at least one ink-jet print head which comprises at least one nozzle row (10) of nozzles (11) which are arranged side by side and by way of which printing ink can be directed onto the print substrate to be printed on, and wherein the or each ink-jet print head is aligned in such a way relatively to the print substrate to be printed on that the or each nozzle row of the or each ink-jet print head is inclined in relation to a direction of transport of the print substrate, characterised in that output data, in particular an output matrix, of a print image to be printed by means of the ink-jet printing device are converted into target data, in particular a target matrix, for activating the ink-jet printing device in real time as a function of a current printing speed of the printing-forme-based printing method and thus of the ink-jet printing method, as a function of a current drop frequency of the or each ink-jet print head of the ink-jet printing device and as a function of a current angle of inclination of the or each nozzle row (10) of the or each ink-jet print head with respect to the direction of transportation of the print substrate before transmission of the data to the ink-jet printing device.
  2. Method according to claim 1, characterised in that the current printing speed of the printing-forme-based printing method and thus of the ink-jet printing method is detected using measurement techniques and is thus a variable input quantity for the conversion of the output data into the target data for activating the ink-jet printing device.
  3. Method according to claim 1 or 2, characterised in that the current drop frequency is either the same, when a continuous ink-jet printing device is used for all the nozzles of the or each ink-jet print head, or variable when a drop-on-demand ink-jet printing device is used for the nozzles of the or each ink-jet print head.
  4. Method according to one or more of claims 1 to 3, characterised in that the current angle of inclination is selected in such a way that given a maximum printing speed and given a maximum drop frequency precisely still a geometrical area coverage of 100% ensues.
  5. Method according to one or more of claims 1 to 4, characterised in that the conversion of the output data into the target data is effected by way of a transformation in such a way that an output-data matrix is scaled and sheared in the printing direction and also transversely to the printing direction.
  6. Method according to claim 5, characterised in that a scaling factor for scaling the output-data matrix transversely to the printing direction is determined from the current angle of inclination, namely from a ratio of the expansion of the print image transversely to the printing direction when the ink-jet printing device is inclined to the expansion of the print image transversely to the printing direction when the ink-jet printing device is not inclined.
  7. Method according to claim 5 or 6, characterised in that a scaling factor for scaling the output-data matrix in the printing direction is determined from the current printing speed and the current drop frequency.
  8. Method according to one or more of claims 5 to 7, characterised in that a shearing angle for shearing the output-data matrix is determined from the current angle of inclination.
  9. Method according to one or more of claims 1 to 4, characterised in that the conversion of the output data into the target data is effected in such a way that an output-data matrix is scanned step by step as a function of the current angle of inclination, the current printing speed and the current drop frequency, wherein when one or more nozzle positions of the ink-jet printing device meets or meet with an image point in an output-data matrix, a corresponding image point is set in a target-data matrix.
  10. Method according to claim 9, characterised in that in this case in order to modulate grey values in the target-data matrix, that grey value is set that comes closest to the ratio of the area coverage of a drop and an image-point area at this position.
  11. Method according to claim 9 or 10, characterised in that a step width of the scanning of the output-data matrix is dependent upon the current printing speed and the current drop frequency, with the step width being greater, the greater the printing speed is.
  12. Method according to one or more of claims 1 to 11, characterised in that when the ink-jet printing device is inclined relatively to an arched guiding element for the print substrate to be printed on and the nozzles of the or each nozzle row of the or each ink-jet print head are at a differing distance from the print substrate that is to be printed on, the conversion of the output data into the target data is effected in such a way that running-time differences of the printing ink to the print substrate caused by the differing distance of the nozzles from the print substrate to be printed on are offset or compensated for, wherein for this the output data of the print image to be printed are adapted in such a way that such print-image information that is associated with nozzles at a greater distance from the print substrate to be printed on is displaced to an earlier position in the printing direction in relation to such print-image information that is associated with nozzles at a shorter distance from the print substrate to be printed on.
EP07012240A 2006-06-24 2007-06-22 Method for printing a print substrate Not-in-force EP1870246B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006029088A DE102006029088A1 (en) 2006-06-24 2006-06-24 Method for printing a substrate

Publications (3)

Publication Number Publication Date
EP1870246A2 EP1870246A2 (en) 2007-12-26
EP1870246A3 EP1870246A3 (en) 2008-07-16
EP1870246B1 true EP1870246B1 (en) 2010-01-06

Family

ID=38535370

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07012240A Not-in-force EP1870246B1 (en) 2006-06-24 2007-06-22 Method for printing a print substrate

Country Status (6)

Country Link
US (1) US7571971B2 (en)
EP (1) EP1870246B1 (en)
JP (1) JP4885803B2 (en)
CN (1) CN101117061B (en)
CA (1) CA2592878C (en)
DE (2) DE102006029088A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010065697A1 (en) * 2008-12-03 2010-06-10 Videojet Technologies Inc. An inkjet printing system and method
JP5163669B2 (en) * 2010-02-26 2013-03-13 豊田合成株式会社 Decorative printing method
EP2420382B1 (en) 2010-08-20 2013-10-16 Agfa Graphics N.V. System and method for digital creation of a print master using a multiple printhead unit
JP5857205B2 (en) * 2012-09-10 2016-02-10 パナソニックIpマネジメント株式会社 Line head and inkjet apparatus
US10321002B1 (en) * 2018-02-14 2019-06-11 Xerox Corporation Variable data vector graphic pattern ink pantograph

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60147348A (en) * 1984-01-11 1985-08-03 Fuji Sangyo Kk Ink jet printer
JPH02208049A (en) * 1989-02-08 1990-08-17 Canon Inc Liquid jet recording method and its device
JP3302785B2 (en) * 1993-06-08 2002-07-15 株式会社リコー Ink jet recording device
DE4340164A1 (en) * 1993-11-25 1995-06-01 Roland Man Druckmasch Liquid jet printing method
JPH09201955A (en) * 1996-01-26 1997-08-05 Seiko Epson Corp Printing apparatus
DE19745136B4 (en) * 1996-10-17 2007-07-12 Heidelberger Druckmaschinen Ag Rotary sheet printing press
JP2001232744A (en) * 2000-02-21 2001-08-28 Fuji Photo Film Co Ltd Method and device for lithographic printing using ink-jet recording method
JP2001328254A (en) * 2000-05-19 2001-11-27 Seiko Epson Corp Recording method and recording device
DE10057061C1 (en) * 2000-11-17 2002-05-23 Koenig & Bauer Ag Printing device e.g. for offset printing plate manufacture, uses ink jet printing heads positioned in spaced parallel rows
JP2002361833A (en) * 2001-06-12 2002-12-18 Fuji Photo Film Co Ltd Hybrid printer
JP4704635B2 (en) * 2001-09-28 2011-06-15 株式会社セイコーアイ・インフォテック Inkjet printer
JP2003127368A (en) * 2001-10-29 2003-05-08 Konica Corp Ink jet printer
JP2003145777A (en) * 2001-11-16 2003-05-21 Hitachi Printing Solutions Ltd Ink-jet printer
US6533385B1 (en) * 2001-12-14 2003-03-18 Pitney Bowes Inc. Method for determining a printer's signature and the number of dots per inch printed in a document to provide proof that the printer printed a particular document
JP4150250B2 (en) * 2002-12-02 2008-09-17 富士フイルム株式会社 Drawing head, drawing apparatus and drawing method
JP3903073B2 (en) * 2004-03-31 2007-04-11 富士フイルム株式会社 Bleeding determination method and image recording method and apparatus
JP2006076021A (en) * 2004-09-07 2006-03-23 Tohoku Ricoh Co Ltd Combination type image forming apparatus
JP2006076270A (en) * 2004-09-13 2006-03-23 Tohoku Ricoh Co Ltd Composite image formation apparatus
JP4007357B2 (en) * 2004-09-29 2007-11-14 富士フイルム株式会社 Image forming apparatus and method
EP1645421B1 (en) * 2004-10-08 2008-07-02 Brother Kogyo Kabushiki Kaisha Ink jet printer

Also Published As

Publication number Publication date
EP1870246A3 (en) 2008-07-16
EP1870246A2 (en) 2007-12-26
CA2592878C (en) 2010-11-30
JP2008001105A (en) 2008-01-10
CN101117061A (en) 2008-02-06
DE102006029088A1 (en) 2007-12-27
US7571971B2 (en) 2009-08-11
CN101117061B (en) 2011-04-20
CA2592878A1 (en) 2007-12-24
DE502007002529D1 (en) 2010-02-25
JP4885803B2 (en) 2012-02-29
US20080001982A1 (en) 2008-01-03

Similar Documents

Publication Publication Date Title
DE69927330T2 (en) Inkjet printhead calibration
DE69221780T2 (en) Ink jet recorder
EP3216611B1 (en) Method for compensating defective nozzles in an inkjet printing machine
EP0921008B1 (en) Method for compensating the tolerance in an ink jet print head
DE69502605T2 (en) A method of operating an ink jet printer, and an ink jet printer using this method
DE102006016065A1 (en) Additional device for an operating according to the offset printing principle printing machine
DE69811172T2 (en) Offset pixel compensation for an inkjet printer
WO2013143668A1 (en) Method and arrangement for printing a three-dimensional surface
EP1870246B1 (en) Method for printing a print substrate
EP0216176A1 (en) Arrangement of outlet orifices of a print head in a multicolour ink printer
EP3025868A1 (en) Two-dimensional method for inkjet printing with printhead alignment
DE69515837T2 (en) INK-JET RECORDING METHOD AND DEVICE
EP0257570A2 (en) Method to align print nozzles in an ink jet printer head of an ink jet printer and electronic circuit for carrying out this method
EP3538373B1 (en) Method for printing a varying pattern of landing zones on a substrate by means of ink-jet printing
DE60014644T2 (en) PRINTING METHOD WITH AN INK JET PRINTER USING MULTIPLE PRESSURE SPEEDS
DE60119684T2 (en) Determination of the setting value for recording the change in the printing position by means of several kinds of inspection patterns
DE60030111T2 (en) LATERAL SPREADING HEAD
DE69731263T2 (en) Printing device with adjustment of line print heads
EP2162291B1 (en) Method for printing a substrate
DE69905055T2 (en) IMPROVED POSITIONING FOR CONTINUOUSLY INK JET PRINTER
CH698649B1 (en) Method for operating an inkjet printing device.
DE102018115296B4 (en) Method for improving the drop positioning of an inkjet printing device
DE102016102683A1 (en) Method for controlling the printing elements of mutually offset printheads in an ink printing device
EP0921009A1 (en) Apparatus for compensating the tolerance in an ink jet print head
DE102020119455A1 (en) Method and device for increasing the print quality of an inkjet printing device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: B41J 3/54 20060101AFI20071004BHEP

Ipc: G06F 3/12 20060101ALI20080611BHEP

Ipc: B41J 11/00 20060101ALI20080611BHEP

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MANROLAND AG

17P Request for examination filed

Effective date: 20090115

AKX Designation fees paid

Designated state(s): BE CH DE FR GB LI SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB LI SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. AG PATENT- UND MARKENANWAELTE VSP

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502007002529

Country of ref document: DE

Date of ref document: 20100225

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20101007

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007002529

Country of ref document: DE

Owner name: MANROLAND WEB SYSTEMS GMBH, DE

Free format text: FORMER OWNER: MANROLAND AG, 63075 OFFENBACH, DE

Effective date: 20120626

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: MANROLAND WEB SYSTEMS GMBH, DE

Free format text: FORMER OWNER: MANROLAND AG, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: MANROLAND WEB SYSTEMS GMBH, DE

Effective date: 20171019

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20171109 AND 20171115

REG Reference to a national code

Ref country code: BE

Ref legal event code: PD

Owner name: MANROLAND WEB SYSTEMS GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), AFFECTATION / CESSION; FORMER OWNER NAME: MANROLAND AG

Effective date: 20171017

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20180621

Year of fee payment: 12

Ref country code: DE

Payment date: 20180625

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20180620

Year of fee payment: 12

Ref country code: FR

Payment date: 20180620

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20180620

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180620

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007002529

Country of ref document: DE

Owner name: MANROLAND GOSS WEB SYSTEMS GMBH, DE

Free format text: FORMER OWNER: MANROLAND WEB SYSTEMS GMBH, 86153 AUGSBURG, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007002529

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190623

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190622

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190622

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630