EP1863068B1 - Ensemble d'aimants pour pompe ionique à pulvérisation cathodique - Google Patents

Ensemble d'aimants pour pompe ionique à pulvérisation cathodique Download PDF

Info

Publication number
EP1863068B1
EP1863068B1 EP06425377A EP06425377A EP1863068B1 EP 1863068 B1 EP1863068 B1 EP 1863068B1 EP 06425377 A EP06425377 A EP 06425377A EP 06425377 A EP06425377 A EP 06425377A EP 1863068 B1 EP1863068 B1 EP 1863068B1
Authority
EP
European Patent Office
Prior art keywords
pump
magnets
ion pump
sputter ion
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP06425377A
Other languages
German (de)
English (en)
Other versions
EP1863068A1 (fr
Inventor
Michele Mura
Luca Bonmassar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Varian SpA
Original Assignee
Varian SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Varian SpA filed Critical Varian SpA
Priority to EP06425377A priority Critical patent/EP1863068B1/fr
Priority to DE602006002264T priority patent/DE602006002264D1/de
Priority to US11/807,644 priority patent/US20070280834A1/en
Priority to JP2007145763A priority patent/JP2007324134A/ja
Publication of EP1863068A1 publication Critical patent/EP1863068A1/fr
Application granted granted Critical
Publication of EP1863068B1 publication Critical patent/EP1863068B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J41/00Discharge tubes for measuring pressure of introduced gas or for detecting presence of gas; Discharge tubes for evacuation by diffusion of ions
    • H01J41/12Discharge tubes for evacuating by diffusion of ions, e.g. ion pumps, getter ion pumps
    • H01J41/18Discharge tubes for evacuating by diffusion of ions, e.g. ion pumps, getter ion pumps with ionisation by means of cold cathodes

Definitions

  • the present invention concerns a sputter ion pump having an improved magnet assembly.
  • a sputter ion pump 10 is a device for producing high vacuum conditions. It comprises a vacuum enclosure 20 housing at least one anode 30 consisting of a plurality of hollow cylindrical pump cells 40, and a cathode 50 consisting of plates, e.g. made of titanium, located on opposite ends of cells 40. Pump 10 comprises means 60 for applying to the anode a higher potential than the cathode potential. Magnets 70 located external to enclosure 20, at opposite ends of pump cells 40, are further provided for producing a magnetic field oriented parallel to the axes of said pump cell.
  • anode 30 and cathode 50 typically, 3 to 9 kV
  • a strong electric field region is generated between anode cells 40 and cathode 50, resulting in electron emission from the cathode, the electrons being then captured in the anode cells.
  • the resulting positive ions, because of the electric field, are attracted by cathode 50 and collide with the surface thereof. Ion collision with the titanium plates forming cathode 50 results in the "sputtering" phenomenon, that is, the emission of titanium atoms from the cathode surface.
  • magnets 70 for generating a magnetic field B allows imparting helical trajectories to electrons, so as to increase the lengths of their paths between the cathode and the anode and, consequently, the chances of colliding with gas molecules inside the pump cells and ionising such molecules.
  • One such parameter is the magnetic field strength.
  • international patent application WO 2004/061889 discloses an ion pump in which the magnetic field strength is changed by providing additional magnets. More particularly, the ion pump disclosed in WO 2004/061889 includes primary magnets of opposite polarities disposed on opposite ends of the pump cells, and secondary magnets disposed on two opposite sides of the pump cells, perpendicularly to the primary magnets. Possibly, additional secondary magnets can be provided on two other opposite sides of the pump cells, perpendicularly to both the primary magnets and the other secondary magnets.
  • an ion pump can be obtained that has reduced size, weight and manufacturing costs as compared to the pump disclosed in WO 2004/061889 , which has a symmetric configuration of the magnetic assembly.
  • FIG. 1 there is shown a sputter ion pump according to a first embodiment of the invention.
  • Ion pump 1 comprises a vacuum enclosure 3 housing the plates forming the cathode and the pump cells forming the anode. Vacuum enclosure 3 and the components housed therein, which are made in accordance with the prior art shown in Fig. 1 , will not be further described.
  • Vacuum enclosure 3 is connected to a connecting flange 5 for connecting pump 1 with a chamber to be evacuated and is provided with a high voltage electric feedthrough 7 allowing pump connection to a power supply.
  • Primary magnets 9a, 9b are located external to vacuum enclosure 3, at opposite ends of the cylindrical anode pump cells, for producing a magnetic field parallel to the pump cell axes.
  • a secondary magnet assembly 11 comprising one or more magnets, is provided on one side only of pump cells 3 housed within enclosure 3. More particularly, in the illustrated example, secondary magnet assembly 11 is provided only on the bottom side of enclosure 3, opposite connecting flange 5.
  • the magnets in secondary magnet assembly 11 are so arranged as to produce a magnetic field in orthogonal direction to the field produced by primary magnets 9a, 9b, thereby reducing the edge effects of the primary magnets.
  • secondary magnets 11 are permanent magnets.
  • pump 1 is equipped with a substantially U-shaped bearing structure 13 associated with enclosure 3, primary and secondary magnets 9a, 9b, 11 being secured to that structure by means of screws 15.
  • secondary magnet assembly 11 includes two secondary magnets 11', 11" arranged side by side and having opposite polarities.
  • Figs. 4A and 4B there is shown the strength of the transversal magnetic field component (in Tesla) in a longitudinal cross-section respectively of a prior art pump made in accordance with the layout of Fig. 1 and of the pump in accordance with the invention, in the embodiment shown in Figs. 2 and 3 .
  • the dotted-line rectangle corresponds to the region occupied by the pump cells forming the pump anode.
  • secondary magnets 11 results in a considerable increase in magnetic field strength. More particularly, thanks to secondary magnets 11, there is a considerable increase in the region where the transversal magnetic field component exceeds a critical value (0.14 Tesla in the illustrated example), above which the maximum efficiency of the pump cells is achieved.
  • HMF high magnetic field
  • LMF low magnetic field
  • Fig. 5 the behaviour of the pumping speed versus pressure for the ion pump of Figs. 2 and 3 is shown and compared to the behaviour of a prior art pump made in accordance with the layout of Fig. 1 . It can be appreciated that both curves have substantially the same behaviour in the pressure range 10 -6 to 10 -8 mbars (10 -4 to 10 -6 Pa), even if the ion pump in accordance with the invention allows attaining pumping speeds exceeding by about 20% those of a pump without secondary magnets.
  • the pumping speed of a pump in accordance with the invention is about twice the pumping speed of a pump lacking secondary magnets, but otherwise identical.
  • the strength of the transversal magnetic field component exceeds the critical value in a larger portion of the region occupied by the pump cells as compared to the prior art solutions, and, in particular, that, notwithstanding the asymmetric arrangement of the secondary magnets in accordance with the invention, such a strength exceeds said critical value over the whole central area of said region and not only on the side closest to secondary magnet assembly 11.
  • a sputter ion pump with satisfactory pumping speed even at low pressures can be obtained by using a reduced number of secondary magnets disposed on a single side of the pump cells and, consequently, by keeping the size, the weight and the manufacturing costs limited as compared to the ion pump disclosed in WO 2004/061889 .
  • the pump in accordance with the invention attains the desired aims.
  • FIG. 6 and 7 there is shown a second preferred embodiment of pump 1 in accordance with the invention.
  • a plate 17 is provided on the side of vacuum enclosure 3 opposite to secondary magnets 11 in order to confine inside the pump the magnetic field due to the provision of secondary magnets 11.
  • said plate 17 is made of a ferromagnetic material.
  • plate 17 is located at the top side of the pump, is secured to bearing structure 13 through screws 19 and is so shaped as to allow the neck of connecting flange 5 to pass.

Landscapes

  • Electron Tubes For Measurement (AREA)

Claims (7)

  1. Pompe ionique à cathode (1), comprenant :
    - une enceinte à vide (3) équipée d'une bride d'assemblage (5) permettant de raccorder la pompe à une chambre à évacuer ;
    - une anode située à l'intérieur de ladite enceinte et constituée d'une pluralité de cellules de pompe ;
    - une cathode située à l'intérieur de ladite enceinte et constituée de plaques situées à des extrémités opposées desdites cellules de pompe ;
    - des aimants primaires (9a, 9b) situés sur lesdites extrémités opposées desdites cellules de pompe, destinés à produire un champ magnétique coaxial auxdites cellules de pompe ;
    caractérisée en ce que ladite pompe (1) comprend en outre des aimants secondaires (11 ; 11', 11") disposés sur un seul côté desdites cellules de pompe de façon à donner une configuration asymétrique à l'ensemble magnétique constitué desdits aimants primaires (9a, 9b) et desdits aimants secondaires (11 ; 11', 11").
  2. Pompe ionique à cathode (1) selon la revendication 1, dans laquelle lesdits aimants secondaires (11 ; 11', 11") sont disposés sur le côté de ladite enceinte (3) opposé à ladite bride d'assemblage (5).
  3. Pompe ionique à cathode (1) selon la revendication 1, dans laquelle lesdits deux aimants secondaires (11 ; 11', 11'') ont et sont agencés selon des polarités opposées.
  4. Pompe ionique à cathode (1) selon l'une quelconque des revendications précédentes, dans laquelle lesdits aimants secondaires (11 ; 11', 11") sont des aimants permanents.
  5. Pompe ionique à cathode (1) selon l'une quelconque des revendications précédentes, dans laquelle lesdits aimants principaux (9a, 9b) et lesdits aimants secondaires (11 ; 11', 11") sont logés à l'intérieur d'une structure de support sensiblement en forme de U (13) fixée à ladite enceinte (3).
  6. Pompe ionique à cathode (1) selon l'une quelconque des revendications précédentes, dans laquelle ladite pompe (1) comprend en outre une plaque (17) située sur le côté de ladite enceinte (3) opposé auxdits aimants secondaires (11 ; 11', 11").
  7. Pompe ionique à cathode (1) selon la revendication 6, dans laquelle ladite plaque (17) est réalisée en matériau ferromagnétique de façon à confiner le champ magnétique produit par lesdits aimants secondaires (11 ; 11', 11").
EP06425377A 2006-06-01 2006-06-01 Ensemble d'aimants pour pompe ionique à pulvérisation cathodique Expired - Fee Related EP1863068B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06425377A EP1863068B1 (fr) 2006-06-01 2006-06-01 Ensemble d'aimants pour pompe ionique à pulvérisation cathodique
DE602006002264T DE602006002264D1 (de) 2006-06-01 2006-06-01 Magnetanordnung für eine Sputter-Ionenpumpe
US11/807,644 US20070280834A1 (en) 2006-06-01 2007-05-30 Sputter ion pump having an improved magnet assembly
JP2007145763A JP2007324134A (ja) 2006-06-01 2007-05-31 改良された磁石アセンブリを有するスパッタ・イオン・ポンプ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06425377A EP1863068B1 (fr) 2006-06-01 2006-06-01 Ensemble d'aimants pour pompe ionique à pulvérisation cathodique

Publications (2)

Publication Number Publication Date
EP1863068A1 EP1863068A1 (fr) 2007-12-05
EP1863068B1 true EP1863068B1 (fr) 2008-08-13

Family

ID=37188921

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06425377A Expired - Fee Related EP1863068B1 (fr) 2006-06-01 2006-06-01 Ensemble d'aimants pour pompe ionique à pulvérisation cathodique

Country Status (4)

Country Link
US (1) US20070280834A1 (fr)
EP (1) EP1863068B1 (fr)
JP (1) JP2007324134A (fr)
DE (1) DE602006002264D1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009166478A (ja) 2007-12-17 2009-07-30 Pilot Ink Co Ltd 変色性積層体
JP4835756B2 (ja) * 2008-02-14 2011-12-14 独立行政法人情報通信研究機構 イオンポンプシステム及び電磁場発生装置
EP2151849B1 (fr) * 2008-08-08 2011-12-14 Agilent Technologies Italia S.p.A. Système de pompe à vide comprenant plusieurs pompes ioniques à pulvérisation
WO2015012671A1 (fr) * 2013-07-22 2015-01-29 Saparqaliyev Aldan Asanovich Système de dispositifs et composants de celui-ci
CN104952685B (zh) * 2015-01-19 2017-11-21 中国航天员科研训练中心 轻量化大抽速离子泵
CN109830422B (zh) * 2019-02-26 2020-05-19 东北大学 一种溅射离子泵的磁路结构及溅射离子泵

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3566185D1 (en) * 1984-04-11 1988-12-15 Sumitomo Spec Metals Magnetic field generating device for nmr-ct
US4727293A (en) * 1984-08-16 1988-02-23 Board Of Trustees Operating Michigan State University Plasma generating apparatus using magnets and method
FR2611975B1 (fr) * 1987-03-03 1995-02-17 Commissariat Energie Atomique Systeme d'aimants permanents pour un champ magnetique intense
GB2215522B (en) * 1988-02-26 1990-11-28 Picker Int Ltd Magnet arrangements
US4964968A (en) * 1988-04-30 1990-10-23 Mitsubishi Kasei Corp. Magnetron sputtering apparatus
US5133826A (en) * 1989-03-09 1992-07-28 Applied Microwave Plasma Concepts, Inc. Electron cyclotron resonance plasma source
GB9006073D0 (en) * 1990-03-17 1990-05-16 D G Teer Coating Services Limi Magnetron sputter ion plating
DE4009151A1 (de) * 1990-03-22 1991-09-26 Leybold Ag Vorrichtung zum beschichten von substraten durch katodenzerstaeubung
US5262028A (en) * 1992-06-01 1993-11-16 Sierra Applied Sciences, Inc. Planar magnetron sputtering magnet assembly
GB9302837D0 (en) * 1993-02-12 1993-03-31 Oxford Instr Uk Ltd Magnet assembly
US5592090A (en) * 1994-12-12 1997-01-07 Houston Advanced Research Center Compact, open geometry U-shaped magnet for magnetic resonance imaging
US5929732A (en) * 1997-04-17 1999-07-27 Lockheed Martin Corporation Apparatus and method for amplifying a magnetic beam
JPH11297673A (ja) * 1998-04-15 1999-10-29 Hitachi Ltd プラズマ処理装置及びクリーニング方法
JP4563629B2 (ja) * 2001-11-19 2010-10-13 株式会社エフ・ティ・エスコーポレーション 対向ターゲット式スパッタ装置
US6835048B2 (en) * 2002-12-18 2004-12-28 Varian, Inc. Ion pump having secondary magnetic field
JP2006093026A (ja) * 2004-09-27 2006-04-06 Toshiba Corp スパッタイオンポンプおよび画像表示装置
JP4557681B2 (ja) * 2004-11-09 2010-10-06 株式会社アルバック スパッタイオンポンプ

Also Published As

Publication number Publication date
US20070280834A1 (en) 2007-12-06
EP1863068A1 (fr) 2007-12-05
JP2007324134A (ja) 2007-12-13
DE602006002264D1 (de) 2008-09-25

Similar Documents

Publication Publication Date Title
EP1863068B1 (fr) Ensemble d'aimants pour pompe ionique à pulvérisation cathodique
US7259378B2 (en) Closed drift ion source
DE69828904T3 (de) Plasmabehandlungsgerät mit rotierenden magneten
EP2151849B1 (fr) Système de pompe à vide comprenant plusieurs pompes ioniques à pulvérisation
US5527394A (en) Apparatus for plasma enhanced processing of substrates
US6224725B1 (en) Unbalanced magnetron sputtering with auxiliary cathode
US20090200158A1 (en) High power impulse magnetron sputtering vapour deposition
EP2431996B1 (fr) Pompe ionique à vide
US20110215722A1 (en) Device and method for producing and/or confining a plasma
CN100369178C (zh) 具有次级磁场的离子泵
WO2011017314A2 (fr) Source d'ions de glissement fermée à champ magnétique symétrique
CN102254778A (zh) 一种实现高脉冲功率磁控放电方法
US20200072200A1 (en) High-efficiency ion discharge method and apparatus
JP2016035925A (ja) プラズマビーム発生方法並びにプラズマ源
GB2480997A (en) Plasma thruster
JP5477868B2 (ja) マグネトロン型スパッタ装置
CN216391496U (zh) 等离子体生成装置及离子源
CN115665962A (zh) 引出带状离子束的离子源
US10358713B2 (en) Surrounding field sputtering source
JP3593301B2 (ja) 電子サイクロトロン共鳴イオン源
CN108566717B (zh) 采用微波垂直注入激励等离子体发生装置
JP2978676B2 (ja) マルチセルスパッタイオンポンプ
JP5621707B2 (ja) マグネトロンスパッタリングカソード及びスパッタリング装置
JP2012515259A (ja) 同心円状の中空陰極マグネトロンスパッタ源
WO2003058069A2 (fr) Pompe a vide a arc

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602006002264

Country of ref document: DE

Date of ref document: 20080925

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090514

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100630

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100624

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100629

Year of fee payment: 5

Ref country code: GB

Payment date: 20100625

Year of fee payment: 5

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120229

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006002264

Country of ref document: DE

Effective date: 20120103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120103

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110601