EP1862593B2 - Verfahren und Vorrichtung zum Erfassen des Zustands von Linienbauwerken - Google Patents

Verfahren und Vorrichtung zum Erfassen des Zustands von Linienbauwerken Download PDF

Info

Publication number
EP1862593B2
EP1862593B2 EP07010752.9A EP07010752A EP1862593B2 EP 1862593 B2 EP1862593 B2 EP 1862593B2 EP 07010752 A EP07010752 A EP 07010752A EP 1862593 B2 EP1862593 B2 EP 1862593B2
Authority
EP
European Patent Office
Prior art keywords
data
track
image acquisition
scanning device
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07010752.9A
Other languages
English (en)
French (fr)
Other versions
EP1862593A2 (de
EP1862593B1 (de
EP1862593A3 (de
Inventor
Jürgen NIESSEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkil AS
Original Assignee
Arkil AS
Arkil As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38457764&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1862593(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Arkil AS, Arkil As filed Critical Arkil AS
Publication of EP1862593A2 publication Critical patent/EP1862593A2/de
Publication of EP1862593A3 publication Critical patent/EP1862593A3/de
Application granted granted Critical
Publication of EP1862593B1 publication Critical patent/EP1862593B1/de
Publication of EP1862593B2 publication Critical patent/EP1862593B2/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B35/00Applications of measuring apparatus or devices for track-building purposes
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B35/00Applications of measuring apparatus or devices for track-building purposes
    • E01B35/06Applications of measuring apparatus or devices for track-building purposes for measuring irregularities in longitudinal direction
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/01Devices or auxiliary means for setting-out or checking the configuration of new surfacing, e.g. templates, screed or reference line supports; Applications of apparatus for measuring, indicating, or recording the surface configuration of existing surfacing, e.g. profilographs

Definitions

  • the invention relates to a method for detecting the condition of line structures according to the preamble of claim 1, and to an apparatus for carrying out this method according to the preamble of claim 17.
  • a line structure is understood to mean a structure extending substantially in a length, in particular a direction of travel, such as a track, a road, a bridge, a tunnel, a dyke or the like.
  • a trolley which can be moved over a track and on which a laser scanner is mounted, with which the ballast profile of a ballast bed of a track can be scanned in order to locate excess or missing ballast.
  • a cross-sectional profile of the ballast bed is scanned at discrete intervals and compared with a desired cross-sectional profile in order to determine in this way deviations of the actual value from the desired value.
  • the method has the disadvantage that only a superficial inspection of a single, the quality of the track path influencing factor is made and also the evaluation of the data in connection with the integrated displacement sensor is complex and the subsequent assignment of gravel bed error requires a complex subsequent data processing.
  • Out JP 200 506 20 34 A is a measuring method for checking the height and the course of tracks is known in which prisms are attached to the tracks and are scanned by a laser.
  • the method has the disadvantage that although it can reliably inspect individual sections of the route in which it is installed, rapid inspection over long distances is either too time-consuming or too cost-intensive due to the complicated installation of the system on the rails.
  • WO 01/90738 A2 It is known to guide an eddy current probe along a rail and to record the signal of the probe location dependent. To locate a GPS unit is used.
  • the method has the disadvantage that it only detects a single parameter for determining the condition of a rail and, moreover, only damage in the near-surface region of laid rails and points components can be detected.
  • the scanning device comprises at least one sensor device which generates an electromagnetic oscillation by means of an antenna device with an electric dipole, and which transmits the electromagnetic oscillation to the ambient air by means of a waveguide whose cross-sectional area increases transversely to the propagation direction of the electromagnetic oscillation from the dipole to an outlet opening coupled.
  • the invention is based on the finding that, although with conventional radar antennas, imaging of areas of a linear structure such as the substructure of track paths is possible, the radar antenna for this purpose must be brought as close as possible to the surface of the linear structure, such as the track bed and even then the imaging quality for a high-resolution analysis is not sufficient.
  • the small distance between line structure, in particular track bed surface and antenna causes considerable safety risks in collision with any objects in the line structure.
  • the distance between line structure, in particular track bed and antenna can be increased and this on the one hand air coupling can be achieved, whereby greater distances between antenna and ground are possible and thereby the safety of the device even at fast speeds of the Measuring cart be ensured.
  • the special antenna arrangement on the one hand provides a pronounced directional characteristic, so that the electromagnetic oscillation is emitted in one direction with a small opening angle.
  • the antenna device according to the invention may comprise one or more such waveguide antenna devices.
  • the antenna devices may radiate perpendicularly in the direction of the ground or inclined with respect to the vertical to measure in an oblique direction into the ground, for example to measure laterally below a track or to measure the floor areas sideways from the track.
  • the antenna device with waveguide can be arranged at a safe height distance above the track, so that collisions with other track systems, components or foreign bodies can be excluded.
  • the scanning device scans the linear structure with a further sensor devices, wherein the further sensor device preferably operates according to a different measuring method than the antenna device.
  • a multi-sensor device is used in the method according to the invention which comprises at least two, preferably more than two sensor devices, in particular sensor devices which operate with different measuring methods. This makes it possible with high-precision local assignment of the different measurement results to obtain a differentiated representation of the investigated linear structure.
  • a track substructure and ground in the region between rails and preferably also under these rails is scanned with the antenna device.
  • the scanning of this area by means of the antenna allows a safe assessment of the particularly important area between and under the rails when measuring track paths.
  • the antenna device operates in the radar frequency range.
  • the radar frequency range includes frequencies that allow both a differentiated representation of geological layers and have a sufficient depth of penetration in the examined soil area.
  • the inventive method can be further developed by the geographical position is determined by a satellite-based location system.
  • a satellite-based location system As a result, the combination of a radar survey of the underground track tracks with a satellite-based positioning, for example by means of GPS, and thus on the one hand provides an accurate location determination and on the other hand, a fast data evaluation.
  • the data of the satellite positioning system are compared with the data of a route database for location determination and / or with a Doppler radar for speed determination.
  • the accuracy of currently available satellite navigation systems is not sufficient for many track-use condition detection applications to allow for rapid location of detected defects.
  • a route network such as for track tracks, roadways or the like available, with its exact data regarding directions, radii, branches and lengths of individual sections is stored in the route networks of many countries in a route database.
  • certain positions and positional shifts with the track paths of the route data network are compared and takes place on the basis of found congruities or similarities an exact position determination.
  • the accuracy of the navigation can be significantly improved and thus an accuracy of up to one meter can be achieved.
  • Adjustment is to be understood in this context as meaning, on the one hand, that the speed determined by the Doppler radar or the distance calculated therefrom is compared with that of the satellite navigation system, and a deviation factor is determined and this deviation factor is used as the correction value of the data obtained with the satellite navigation system.
  • the Doppler radar data a section of the route or period in which no satellite reception is possible, for example in tunnels, can be bridged. In this case, an extrapolation of the previous, driven direction is made on the basis of Doppler radar data and the current location is calculated.
  • the data determined with the antenna device are compared with reference data of previously known geological layer compositions, which are stored in a reference database, by means of digital data processing and assigned to specific geological layer compositions.
  • the comparison and the assignment by means of digital data processing can take place by comparison of the radar data in certain area sections or volume sections with the data stored in the reference database, taking into account a certain tolerance range, in order to carry out an assignment of the layer composition.
  • the automatic identification of the geological layer structure allows a much faster evaluation of the obtained measurement data and thus a faster detection of possible critical layer structures, layer structure changes or defects in the layer structures.
  • the assignment takes place by visualizing the layer structures from the measured radar data and comparing these layer structures with the layer structures of geological layers previously known from radar data with a previously known layer composition.
  • This visualization allows a user of the device, who need not necessarily be a radar expert, to easily rectify irregularities in known layers or unfavorable layer compositions To recognize ways and immediately recognize changing gradients of layer structures.
  • the layers are displayed in two-dimensional sectional views, in particular transverse and longitudinal sections through or along the track path, on an image output device and the layer compositions are visualized by preferably standardized symbols or surface fillings.
  • the user of the method according to the invention is provided with a representation of the measured data, which enables a fast, traceable evaluation.
  • the surface profile or sections of the surface profile of the track path is scanned by means of a laser scanning device, preferably by means of scanning perpendicular to the movement of the measuring carriage oscillating by the laser beam.
  • the environment and / or the surface of the line structure is detected by means of a digital image capture device.
  • the digital imaging device records the trolley devices or parts of the trolley track, the surface and the trolley area of both railways of the track, and / or the surface of the sleepers and / or a fixed carriageway.
  • This development of the invention improves the disadvantage of known methods in that an inspection method for track paths is provided in which at the same time a comprehensive image acquisition of several relevant examination areas takes place. Damage to the contact wire of the track can thus be detected on the basis of an evaluation of the digital image data.
  • outbreaks, cracks or wear areas in the surface or in the driving edge area of the rail tracks can be detected and displayed. This is preferably done by vertical or slightly oblique recording direction on the surface of the rail tracks by means of two individual digital image capture devices, which are preferably each directed obliquely from the inside to the rail tracks. In this way, in particular the state of wear of the driving edges can be determined and possibly necessary measures to extend the service life of the rail or to remedy severe signs of wear are made.
  • this training on the one hand allows the easier assignment of defects that have been detected by means of a radar or laser examination, to a specific point along the track, as they can be found better on the basis of the simultaneously captured image data.
  • this can allow a better orientation of a user within the investigated environment on the basis of the additional image data or a direct assignment of the image data to the radar data or laser scanning data.
  • this further development of the method also makes it possible, in addition to the radar or laser examination, to perform a differentiated additional investigation of safety-relevant features from the surroundings and / or the surface of the track path.
  • a simultaneous detection of relevant radar or laser data and relevant image data can be carried out with the method according to the invention, which allows a comprehensive assessment of the condition of the track path.
  • the digital image capture device can be done, for example, with a line-scanning video camera.
  • the digital image acquisition can take place by digital individual images recorded at discrete intervals, the spacing of which is preferably selected such that a gap-free mapping of the track path results on the basis of the recorded image sections.
  • a plurality of digital image capture devices are used, in particular digital video or photo cameras, which record mutually offset and / or in different orientations relevant excerpts of the environment and / or the track path.
  • this training is also suitable for the analysis of fixed carriageway routes. These are typically made of concrete and are increasingly used for high-speed railways. For such routes concrete sleepers are used. This material requires a periodic check for cracks, which can be done conveniently by digital imaging of the surface of the components. In this case, a digital image evaluation can preferably take place, which automatically detects and marks the cracks.
  • the digital image acquisition can be further developed by using the digital image capture device, the fasteners of the rails are recorded on the thresholds and preferably automatically checked by digital image analysis for presence and correct location. Fasteners between the rail and the threshold can become loose or be loosened or even removed by vandalism. A review of these fasteners at regular intervals is required and can preferably be done with the method according to the invention. In this case, as described above, it is preferable to detect and display an automatic detection of a possible loosening or lack of these fastening elements by means of digital image evaluation.
  • the method mentioned above or the method developments described above are further developed by examining the wall of a tunnel with the antenna device, the digital image acquisition device and / or the laser scanning device.
  • the management of railways through tunnels has become increasingly important in the course of the route modernization.
  • tunnel superstructure to check elms at regular intervals to detect loose rocks or moisture.
  • After the construction of a tunnel to the Bauabdging often it is advantageous to check these parameters and to determine the rock thickness. This can be carried out with the inventive method in an advantageous manner by using the antenna device, the wall of the tunnel is examined.
  • the antenna device must have at least one antenna which is aligned corresponding to the tunnel wall.
  • the antenna device comprises a plurality of antennas, in particular radar antennas, which preferably measure in a direction perpendicular to the tunnel wall.
  • the method according to the invention can be further developed with regard to all method aspects and further developments according to the invention by analyzing the data measured with the antenna device and / or the digital image acquisition device and / or the laser scanning device by a digital data evaluation and thereby layer boundaries and / or defects by comparison with reference data and / or by comparing the local measured data with a data averaged over a certain environmental area and / or by comparing adjacent data or data areas are identified and marked.
  • a number of different measurement data can thus be determined in particular simultaneously during a single measurement run, for example radar measurement data for inspection of the substructure of the track, image measurement data for inspecting the surface of the track of the track, the contact wire and the surroundings and laser-determined measurement data for checking the position of track and sleepers or the ballast bed.
  • the evaluation of these data often has to be done in a short time and the evaluation time can be significantly reduced if the known manual assessment of the data is omitted and an automatic analysis is performed by comparison with reference data. This can be done either a comparison of local data with averaged data to detect deviations from the average normal state.
  • the method according to the invention can be developed with regard to all aspects and further training by sorting each automatically or manually recognized defect into one of at least two groups and these groups characterizing the measures to be taken for remedying the defect.
  • This allows a quick overview of the entire condition of a line structure and improves the coordination of repair measures considerably.
  • this training is advantageous if the inspection method according to the invention in connection with immediately following repair measures, possibly even directly coupled to the measuring carriage, is used to make a quick decision on the manner of repairing a defect.
  • the sorting into the groups takes place on the basis of the extent or the manner of the detected defect and the measures known from previous repairs measures that are required to remedy such a defect.
  • a measure can also be understood as a preventive processing which is intended to increase the service life of the track route or parts thereof.
  • the measurement data of the radar device, the laser scanning device and / or the image acquisition device are assigned to each other for a measurement range and merged into a database and a measurement data statement is formed, which is composed of at least two of these data sets.
  • the simultaneous detection of measurement data sets by means of different measurement methods which is possible with the method according to the invention, not only enables the time required for the inspection to be shortened, but also allows the measurement data to be subjected to a common consideration and thus to gain further knowledge from the measurement data sets combined in this way. For example, analyzes from one measurement dataset can often be verified using another dataset.
  • the combination of multiple sets of measurements allows full evaluation of defects, for example, by obtaining the surface dimensions of a crack from the image acquisition data and the depth of the crack from the laser scan data or the radar data.
  • Another important further development of the method consists in carrying out at least two measurements at a location or in one area offset from one another, assigning the measurement data from the two temporally staggered measurements by means of digital data processing to geographically coincident positions, preferably comparing them Differences between the measurement data from the two temporally staggered measurements are automatically marked.
  • the data recorded in a current measurement can be compared by exact position determination with the corresponding data of a previous measurement and in this way changes that have occurred between the two measurements can be detected. The thus detected defects or changes can be visualized and highlighted in image representations.
  • a monitoring ie a time-shifted multiple control of the track path, made possible, which allows the observation of a damage progress to determine the right time for repair measures.
  • the results may be subjected to a simple manual follow-up on the screen or in a print-out to decide whether to take action to correct the defect / change or to make a description of the detected defect / change.
  • the data recorded with the device according to the invention can be compared with external data recorded at other times, provided that they also have sufficiently accurate position information.
  • the time-offset measurements at one location may in each case include measurement data from at least two different measurement methods. This allows monitoring with differentiated measurement data for different line structure properties.
  • the method according to the invention is suitable for detecting the condition of dike structures, wherein the measuring vehicle travels on the dike crown and the state of the dyke in front of and / or behind the dike crown is detected by means of at least one antenna device mounted on a cantilever arm.
  • a further aspect of the invention is an apparatus for detecting the condition of line structures, in particular track ways, comprising: a scanning device mounted on a measuring vehicle for measuring the track path, a central data storage device for storing the measurement data acquired by the scanning device, and a navigation device for determining the geographical Position of the scanning device along the track path in which the scanning device comprises an antenna device with an electric dipole for generating an electromagnetic vibration and a waveguide for coupling the vibration to the ambient air whose cross-sectional area increases transversely to the propagation direction of the electromagnetic oscillation from the dipole to an outlet opening.
  • the device according to the invention can be developed according to claims 18 to 33. These advanced devices have features that make them particularly suitable for use in carrying out the method according to the invention and its further developments. For the embodiments, specific features, variants and advantages of the features of these devices and device developments, reference is made to the preceding description of the corresponding method features.
  • Another aspect of the invention is the use of a previously described device to detect the condition of dyke structures or the condition of driveways, especially roads. It has surprisingly been found that the device according to the invention are particularly well suited for detecting upcoming damage in the area of dyke structures and driveways in advance, for example by detecting incipient under-rinses.
  • the method according to the invention can be further developed for detecting the condition of dike structures by detecting the state of the dyke in front of and behind the dike crown by means of a outrigger with radar antennas mounted thereon, and in this way both the dyke substance immediately below the dike crown with the aid of the directly in the vicinity of the measuring vehicle installed radar antennas are detected as well as the dyke substance in the area of the foot of the dike by correspondingly radar antennas are arranged on the extension arm in this area.
  • FIG. 1 is mounted on a measuring vehicle 10 extending in the direction of travel Auslegarm 21 with transverse arm 22 attached thereto.
  • an antenna device with a waveguide 30 is fixed, which radiates downward in the vertical direction and between two rail tracks 11,12 on which the measuring carriage 10 rolls, measures.
  • two radar antennas 31,32 are arranged.
  • the left in the direction of travel radar antenna 31 measures on left rail track 11 laterally over
  • the right in the direction of travel radar antenna 32 measures on the right rail track 21 laterally over.
  • the antenna device with waveguide 30 measures up to 4m in soil and substructure below the track strands 11,12 in and thus allows an evaluation of this soil, the substructure and the superstructure, i. the sleepers and the ballast bed of the railway track.
  • the radar antennas 31,32 measure in the typical frequency range up to 4m in the substructure and the soil in, with specially tuned frequency ranges even deeper, and allow an evaluation of superstructure, substructure and soil in this lateral area.
  • the radar measurement can be done at speeds up to 200km / h with a horizontal resolution, the defects from a size of a few meters makes recognizable.
  • a laser scanning device 40 is arranged, which scans the gravel profile and compares with a desired profile to detect in this way excess or missing gravel. Sampling can also be done at speeds up to 200km / h.
  • a plurality of digital line scan cameras 50, 51, 52 which receive the surface of the track path, are arranged between the two wheelsets 13, 14 or 15, 16 of the measuring carriage 10.
  • two digital line scan cameras 50,52 which are directed to the rail head in the area of the driving edge and record this with a resolution of 0.1 x 0.5 mm.
  • Another set of digital line scan cameras 51 is directed at the mid-track track surface and allows a solid track 17 and the sleepers 18 to be inspected for cracks.
  • a camera set 51 is used, which consists of four digital line scan cameras that can detect cracks with a width of 0.1 mm or more.
  • two line scan cameras per rail are arranged, which detect in the direction of travel left and right of this rail, the road surface and threshold surface.
  • a GPS antenna 70 is arranged, which is coupled to a GPS processing device 71.
  • the data of the GPS processing apparatus is matched with the data of a wheel incremental encoder 72, thereby achieving an accuracy of 1m in determining the position of the meter.
  • the measurement data of the radar antennas 30-32, the laser scanning system 40, the digital line scan cameras 50-52 and 60-61 and the position data from the GPS unit 70,71 and the Radinkrementalgeber 72 are fed to a central storage and evaluation computer 90.
  • the processing of the data is based on FIG. 2 described.
  • FIG. 2 are symbolically a radar device 130 with a plurality of radar antennas, a laser scanner 140, a digital image acquisition device 150 for observing the surface of a solid lane and the sleepers, a digital image acquisition device for detecting the catenary wire of the track, a digital image capture device for detecting the environment 161 and an incremental encoder 172 for detecting the number of revolutions and rotational position of a wheel of the measuring truck shown schematically.
  • These measurement data acquisition elements 130, 140, 150, 160, 161 and 172 transmit their measurement data via an input interface to a first data processing station 200 within a central data processing device 190.
  • the first data processing station 200 further receives data from a GPS antenna 170 about the runtime signals to particular satellites. Within the first data processing station 200, the signals received from the GPS antenna are matched with the data of the incremental encoder 172 and the route network data stored in a memory unit 210, thus accurately determining the location of the trolley at 1 m.
  • the data is forwarded to a second data processing station 220.
  • the measurement data of the individual measurement acquisition devices is compared with the reference data stored in a second storage device 230.
  • the reference data stored in the second storage device represent typical measured values, such as gray values or gray value curves for known assignment values, whereby assignment values are, for example, the wear width in the region of the running edge of a rail or certain types of soil or track substructures, for example soiled or new gravel or the like.
  • the processing of the measurement data in the second data processing station 220 therefore makes it possible to associate certain layer properties or surface properties with the acquired measurement data.
  • the properties assigned in this way are assigned to the measurement data in the identified area by means of a visualization parameter and can be displayed in this way by manual data evaluation or by visualization of the measurement data on a screen be highlighted or imaged in an expression.
  • an evaluation of the measured data continues to take place with regard to possible defects.
  • This can be done in various known ways.
  • a single measurement value can be compared with an average value of the measured values in its environment, and if the individual measured value deviates from this mean value by a certain amount, a defect at the location of the individual measured value can be detected.
  • cracks in the measured data of a surface of the fixed roadway can be detected or sub-rinses in the substructure of the track bed can be detected from the radar data.
  • the measurement data thus parameterized are forwarded to a third data processing station 240.
  • the third data processing station 240 based on the parameters of the measured data from a third data memory 250, which contains a catalog of measures, each measure found a measure assigned, which must be taken to maintain the route security and to extend the service life of the route or should.
  • measurement data from different transducers can furthermore be compared with one another in order to obtain a conclusion about the depth of a crack or the orientation of a wear surface, for example based on the surface profile data obtained by laser scanning and the image data of an examination site obtained by digital image acquisition.
  • the data of all transducers for any given examination site can be assigned to one another in order in this way to enable a comprehensive assessment of an examination site.
  • the measurement data from an earlier measurement can be stored and compared with the measurement data of the current measurement. In this way, the track track can be monitored to detect the progress of defects and to determine the timely time for a maintenance or repair action.
  • the measured data are forwarded in a parameterized and prepared way to a screen in order to make a visualization for a user on this screen.
  • the user can fade in on the screen longitudinal or transverse profiles of the examined track and at the same time retrieve and display a surface image and a surface profile of this track at the appropriate location.
  • the geographical position data for the examined site can be retrieved and to better navigate images of the environment of this place can be displayed.
  • the transducers are designed to measure at speeds above 50km / h and a range of transducers can measure at speeds up to 200km / h.
  • the data preparation allows differentiation and identification of defects by digital image analysis and assignment of measurement data from different measurement systems for a study site and therefore allows a user to quickly detect defects or changes in the area of a track.

Description

  • Die Erfindung betrifft ein Verfahren zum Erfassen des Zustands von Linienbauwerken gemäß dem Oberbegriff des Anspruchs 1, und eine Vorrichtung zum Durchführen dieses Verfahrens gemäß dem Oberbegriff des Anspruchs 17.
  • Unter einem Linienbauwerk wird in diesem Zusammenhang ein sich im Wesentlichen in einer Länge, insbesondere einer Fahrtrichtung erstreckendes Bauwerk, wie beispielsweise ein Gleisweg, eine Strasse, eine Brücke, ein Tunnel, ein Deich oder dergleichen verstanden.
  • Die Inspektion von Linienbauwerken wie beispielsweise Gleiswegen ist zur Sicherstellung der Betriebssicherheit in der laufenden Nutzung und zur Qualitätsüberwachung nach erfolgten Umbau- oder Reparaturmaßnahmen eine wichtige Messaufgabe. Unter Gleiswegen sollen in diesem Zusammenhang die direkten Gleisanlagen, d.h. Schwellen, Schienen und Schienenbefestigungselemente, der Gleisunterbau, in der Regel bestehend aus Schotterbett und Planumsschutzschicht, sowie das darunter und seitlich liegende Bodenumfeld bzw. Erdreich und bauliche oder natürliche Strukturen, die in das Profil des Gleisfahrwegs hineinragen oder dazu benachbart sind, verstanden werden. Neben den üblichen, in zeitlich regelmäßigen Abständen durchgeführten Inspektionsvorgängen, welche Verschleißerscheinungen oder durch den Betrieb hervorgerufene Schädigungen aufdecken sollen, hat die Qualitätssicherung nach Neubau oder Umbau eine erhebliche Bedeutung gewonnen.
  • Im Zuge der zunehmenden Beanspruchung von Gleiswegen durch hohe Fahrgeschwindigkeiten der Züge und stark frequente Nutzung der Gleiswege wird es in naher Zukunft erforderlich werden, die Zeitintervalle, in denen eine regelmäßige Inspektion durchgeführt wird, erheblich zu verkürzen, um die Betriebssicherheit und Wirtschaftlichkeit sicherzustellen. Aufgrund der durch höhere Achslasten und Fahrgeschwindigkeiten erheblich gestiegenen Beanspruchungen der Gleiswege ist es erforderlich, bei der Inspektion von Gleiswegen weitergehende Analysen durchzuführen, um sich abzeichnende Schädigungen im Gleis- oder Schwellenbereich oder im Bereich des Gleisbettes oder Unterbaus erkennen und beheben zu können, bevor diese eine starke Beschädigung des Gleiswegs verursachen und folglich kostenintensive Reparaturen nach sich ziehen. Es ist aus wirtschaftlichen Gründen wünschenswert, die Anzahl der Inspektionen zu verringern und die Inspektion in einem kurzen Zeitraum durchzuführen, um den durch die Inspektion verursachten Nutzungsausfall des Gleiswegs möglichst kurz zu halten.
  • Schließlich ist es für heutige und zukünftige Inspektionsaufgaben erforderlich, die bei der Inspektion gewonnenen Ergebnisse möglichst schnell in einer solchen Weise aufzubereiten, dass Schäden rasch erkannt und behoben werden können. Diese rasche Erkennung und Zuordnung muss in einem weit verzweigten Streckennetz mit hoher Präzision erfolgen können.
  • Aus EP 1 420 113 A2 ist ein Messwagen bekannt, der über ein Gleis bewegt werden kann und an dem ein Laserscanner montiert ist, mit dem das Bettungsprofil einer Schotterbettung eines Gleises abgetastet werden kann, um überschüssigen oder fehlenden Schotter zu orten. Hierzu wird in diskreten Abständen ein Querschnittprofil des Schotterbetts abgetastet und mit einem Soll-Querschnittsprofil verglichen, um auf diese Weise Abweichungen des Ist-Werts vom Soll-Wert zu ermitteln. Das Verfahren weist den Nachteil auf, dass nur eine oberflächliche Inspektion eines einzelnen, die Qualität des Gleisweges beeinflussenden Faktors vorgenommen wird und zudem die Auswertung der Daten im Zusammenhang mit dem integrierten Wegsensor aufwendig ist und die nachträgliche Zuordnung von Schotterbettfehlem eine aufwendige nachträgliche Datenverarbeitung erfordert.
  • Aus JP 200 506 20 34 A ist ein Messverfahren zur Überprüfung der Höhe und des Verlaufs von Gleisen bekannt, bei dem Prismen an den Gleisen befestigt werden und durch einen Laser abgetastet werden. Das Verfahren weist den Nachteil auf, dass es zwar einzelne Streckenabschnitte, in denen es installiert ist, zuverlässig inspizieren kann, jedoch eine schnelle Inspektion über weite Streckenbereiche entweder zeitlich zu aufwendig oder zu kostenintensiv ist aufgrund der erforderlichen aufwendigen Montage des Systems an den Schienen.
  • Aus EP 1 120 493 A2 ist ein Verfahren zur Untersuchung des Zustands des Oberbaus von Schienenwegen bekannt, bei dem durch Eindrücken eines Probenrohres in den Oberbau und eine Gammastrahlungsuntersuchung die Dichte des Oberbaus schichtweise bestimmt wird. Das Verfahren weist den Nachteil auf, dass es eine schnelle Untersuchung des Gleiswegs nicht ermöglicht und zudem nur isolierte Parameter über den Zustand des Gleiswegs ermittelt.
  • Aus WO 01/90738 A2 ist es bekannt, eine Wirbelstrom-Prüfsonde entlang einer Schiene zu führen und das Signal der Sonde ortsabhängig aufzuzeichnen. Zur Ortsbestimmung wird eine GPS-Einheit verwendet. Das Verfahren weist den Nachteil auf, dass es lediglich einen einzelnen Parameter zur Bestimmung des Zustands einer Schiene erfasst und zudem nur Schäden im oberflächennahen Bereich von verlegten Schienen und Weichenbauteilen detektiert werden können.
  • Aus DE 43 40 254 C2 ist schließlich ein Verfahren zur Erfassung des Zustandes des Oberbaus, Unterbaus und Untergrundes von Eisenbahngleisen bekannt, bei dem mittels einer Sende- und Empfangsantenne eines Georadarsystems der Untergrund unterhalb der Gleise erfasst wird. Das Verfahren ermöglicht eine verhältnismäßig schnelle Analyse des Bodenbereichs unterhalb von Gleisen, ist jedoch noch weiter verbesserungsfähig.
  • So besteht ein Bedarf für ein Verfahren, bei dem eine Analyse von Linienbauwerken wie Gleiswegen, insbesondere des Gleisbetts und Bodenbereichs unterhalb und seitlich des Gleises, möglich ist, ohne dass punktuelle Aufschlüsse erforderlich sind.
  • Weiterhin besteht ein Bedarf dahingehend, das Verfahren so weiterzubilden, dass eine schnellere und präzisere Erfassung des Zustands des Linienbauwerks, insbesondere des Unterbaus von Gleiswegen möglich ist.
  • Es besteht weiterhin ein Bedarf für ein Analyseverfahren für Linienbauwerke, bei dem eine Zuordnung der Messdaten zu Ortungsdaten in präziserer Form erfolgen kann.
  • Weiterhin besteht ein Bedarf für ein Analyseverfahren für Linienbauwerke, bei dem die gemessenen Daten solcherart aufbereitet werden, dass die geologischen Schlichten und etwaige, kritische geologische Strukturen sowie Fehlstellen im Gleisunterbau schneller erfasst und zugeordnet werden können.
  • Weiterhin besteht ein Bedarf für ein Verfahren, welches in der Lage ist, die Betriebssicherheit eines Linienbauwerks umfassend innerhalb eines kurzen Untersuchungszeitraums zu prüfen und zu dokumentieren.
  • Diese Aufgaben werden gemäß der Erfindung mit einem Verfahren nach Anspruch 1 und eine Vorrichtung mit den Merkmalen des Anspruchs 17 gelöst.
  • Erfindungsgemäß umfasst die Abtastvorrichtung zumindest eine Sensorvorrichtung, die mittels einer Antennenvorrichtung mit einen elektrischen Dipol eine elektromagnetische Schwingung erzeugt, und die mittels eines Hohlleiters, dessen Querschnittsfläche sich quer zur Ausbreitungsrichtung der elektromagnetischen Schwingung vom Dipol zu einer Austrittsöffnung hin vergrößert, die elektromagnetische Schwingung an die Umgebungsluft koppelt.
  • Die Erfindung beruht auf der Erkenntnis, dass zwar mit üblichen Radarantennen eine Abbildung von Bereichen eines Linienbauwerks wie des Unterbaus von Gleiswegen möglich ist, die Radarantenne hierzu jedoch möglichst nahe an die Oberfläche des Linienbauwerks, wie des Gleisbetts herangeführt werden muss und selbst dann die Abbildungsqualität für eine hochauflösende Analyse nicht ausreichend ist. Der geringe Abstand zwischen Linienbauwerk, insbesondere Gleisbettoberfläche und Antenne verursacht jedoch erhebliche Sicherheitsrisiken bei Kollision mit etwaigen Gegenständen im Bereich des Linienbauwerks. Zudem ist es beispielsweise erforderlich, die Radarantenne im Bereich bestimmter Gleisanlagen, beispielsweise Weichen oder Bahnübergängen, hoch zu setzen. Dies erfolgt nach dem Stand der Technik durch manuelle Betätigung einer Hebevorrichtung, wodurch die Fahrtgeschwindigkeit des Messzuges erheblich vermindert wird.
  • Indem man eine Antennenvorrichtung mit einem solchen Hohlleiter verwendet, kann der Abstand zwischen Linienbauwerk, insbesondere Gleisbett und Antenne erhöht werden und hierdurch einerseits eine Luftankopplung erreicht werden, wodurch größere Abstände zwischen Antenne und Boden möglich werden und hierbei die Sicherheit der Vorrichtung auch bei schnellen Fahrgeschwindigkeiten des Messwagens sichergestellt werden. Die spezielle Antennenanordnung stellt einerseits eine ausgeprägte Richtcharakteristik bereit, sodass die elektromagnetische Schwingung in einer Richtung mit einem geringen Öffnungswinkel ausgesendet wird. Die erfindungsgemäße Antennenvorrichtung kann eine oder mehrere solcher Antennenvorrichtungen mit Hohlleiter aufweisen: Die Antennenvorrichtungen können senkrecht in Richtung des Bodens abstrahlen oder gegenüber der Senkrechten geneigt sein, um in einer schrägen Richtung in den Boden hinein zu messen, beispielsweise um von seitlich unterhalb eines Gleises zu messen oder die Bodenbereiche seitlich vom Gleis zu messen. Es hat sich für die Vermessung von Gleis- wegen gezeigt, dass insbesondere eine mittig zwischen den beiden Gleissträngen angeordnete Antennenvorrichtung mit senkrechter Abstrahlrichtung eine besonders günstige Erfassung des Unterbaus von Gleiswegen ermöglicht. Die Antennenvorrichtung mit Hohlleiter kann in einem sicheren Höhenabstand oberhalb des Gleises angeordnet werden, so dass Kollisionen mit sonstigen Gleisanlagen, Bauteilen oder Fremdkörpern ausgeschlossen werden können.
  • Bei einer ersten vorteilhaften Fortbildung ist es bevorzugt, dass die Abtastvorrichtung mit einer weiteren Sensorvorrichtungen das Linienbauwerk abtastet, wobei die weitere Sensorvorrichtung vorzugsweise nach einem unterschiedlichen Messverfahren als die Antennevorrichtung arbeitet. Hierdurch wird eine Multisensorvorrichtung im erfindungsgemäßen Verfahren eingesetzt, welche zumindest zwei, vorzugsweise mehr als zwei Sensorvorrichtungen umfasst, insbesondere Sensorvorrichtungen, die mit unterschiedlichen Messverfahren arbeiten. Hierdurch wird es bei hochpräziser örtlicher Zuordnung der unterschiedlichen Messergebnisse möglich, eine differenzierte Darstellung des untersuchten Linienbauwerks zu erhalten.
  • Insbesondere ist es bevorzugt, wenn mit der Antennenvorrichtung ein Gleisunterbau und Boden im Bereich zwischen Schienen und vorzugsweise auch unter diesen Schienen abgetastet wird. Die Abtastung dieses Bereichs mittels der Antenne ermöglicht bei Vermessung von Gleiswegen eine sichere Beurteilung des besonders wichtigen Bereichs zwischen und unter den Schienen.
  • Weiterhin ist es bevorzugt, dass die Antennenvorrichtung im Radarfrequenzbereich arbeitet. Der Radarfrequenzbereich beinhaltet Frequenzen, die sowohl eine differenzierte Darstellung geologischer Schichten ermöglichen als auch eine ausreichende Eindringtiefe in den untersuchten Bodenbereich aufweisen.
  • Das erfindungsgemäße Verfahren kann weiter fortgebildet werden, indem die geographische Position durch ein satellitengestützes Ortungssystem ermittelt wird. Hierdurch wird die Kombination einer Radarvermessung des Untergrundes von Gleiswegen mit einer satellitengestützten Ortung, beispielsweise mittels GPS, bereitgestellt und somit einerseits eine genaue Standortbestimmung und andererseits eine schnelle Datenauswertung erzielt.
  • Dabei ist es besonders bevorzugt, wenn die Daten des satellitengestützen Ortungssystems mit den Daten einer Streckendatenbank zur Ortsbestimmung und/oder mit einem Dopplerradar zur Geschwindigkeitsbestimmung abgeglichen werden. Die Genauigkeit derzeit verfügbarer Satelliten-Navigationssysteme ist für viele Anwendungsfälle bei der Erfassung von Gleiswegzuständen nicht ausreichend, um eine rasche Lokalisierung aufgefundener Fehlstellen zu ermöglichen. Ein Streckennetz wie beispielsweise für Gleiswege, Straßenführungen oder dergleichen verfügbar, mit seinen exakten Daten bezüglich Richtungen, Radien, Verzweigungen und Längen einzelner Streckenabschnitte ist in den Streckennetzen vieler Länder in einer Streckendatenbank abgelegt. Bei Abgleich der durch Satellitennavigation erhaltenen Daten mit den Daten einer solchen Streckendatenbank kann die Genauigkeit der Positionsbestimmung erheblich gesteigert werden. Dies kann beispielsweise erfolgen, indem aus den durch Satellitennavigation erhaltenen Daten typische charakteristische Daten der Streckendatenbank berechnet werden und durch Vergleich der berechneten Daten mit den in der Streckendatenbank gespeicherten Daten eines zuvor eingeschränkten Streckenbereichs eine exakte Standortbestimmung erfolgen. Als Abgleich wird hierbei verstanden, dass mit dem Satelliten-Orfungssystem bestimmte Positionen und Positionsverschiebungen mit den Gleiswegen des Streckendatennetzes verglichen werden und anhand aufgefundener Kongruenzen bzw. Ähnlichkeiten eine exakte Positionsbestimmung erfolgt.
  • Mittels eines zusätzlichen oder alternativen Abgleichs der durch Satellitennavigation erhaltenen Positionsdaten mit den relativen Daten eines Dopplerradars oder den absoluten Daten einer Streckendatenbank kann die Genauigkeit der Navigation erheblich verbessert werden und somit eine Genauigkeit von bis zu einem Meter erzielt werden. Unter Abgleich soll in diesem Zusammenhang verstanden werden, dass einerseits die mit dem Dopplerradar ermittelte Geschwindigkeit bzw. daraus errechnete Distanz mit derjenigen des Satellitennavigationssystems verglichen wird und ein Abweichungsfaktor bestimmt wird und dieser Abweichungsfaktor als Korrekturwert der mit dem Satellitennavigationssystem erhaltenen Daten verwendet wird. Des weiteren kann mittels der Dopplerradar-Daten ein Streckenabschnitt oder Zeitraum überbrückt werden, in dem kein Satellitenempfang möglich ist, beispielsweise in Tunnels. In diesem Fall wird eine Extrapolation der bisherigen, gefahrenen Richtung anhand der Dopplerradardaten vorgenommen und der aktuelle Standort berechnet.
  • Vorzugsweise werden die mit der Antennenvorrichtung ermittelten Daten mit Referenzdaten vorbekannter geologischer Schichtzusammensetzungen, die in einer Referenzdatenbank abgelegt sind, mittels einer digitalen Datenverarbeitung verglichen und bestimmten geologischen Schichtzusammensefizungen zugeordnet.
  • Bei einer ausreichenden Auflösung der mit der Radarvorrichtung ermittelten Daten geben typische geologische Schichtzusammensetzungen ein charakteristisches Radarsignal ab, weiches auf die konkrete Schichtzusammensetzung der gemessenen Schicht schließen lässt. Hierbei kann eine erhebliche Differenzierung erfolgen und beispielsweise ein Schotterbett aus neuem Schotter mit scharfen Kanten von einem Schotterbett aus altem Schotter mit abgerundeten Kanten und verschmutztem Schottergestein unterschieden werden. Dieser Aspekt der Erfindung geht das Problem an, dass eine Auswertung der Daten über lange Streckenabschnitte nur durch aufwendige Analyse durch einen Fachmann für jeden einzelnen Quer- bzw. Längsschnitt erfolgen kann und somit sehr zeitaufwendig ist. Verschiebungen von geologischen Schichten oder Veränderungen geologischer Schichten, wie beispielsweise Hohlraumbildungen oder Flüssigkeitseindringungen können auf diese Weise erst nach langer Auswertungszeit erkannt werden. Dieser Nachteil kann erheblich verringert werden, wenn anhand von Referenzdaten ein Vergleich und eine Zuordnung der gemessenen Daten mit vorbekannten geologischen Schichtzusammensetzungen erfolgt Auf diese Weise kann die Auswertung sich darauf beschränken, Unregelmäßigkeiten in erkannten geologischen Schichten aufzusuchen und unerkannte geologische Schichten zu untersuchen bzw, den Verlauf der bekannten geologischen Schichten zu verfolgen. Diese Untersuchungsmaßnahmen verursachen erheblich weniger Zeitaufwand als die Einzelanalyse mit Zuordnung und Prüfung jeder einzelnen mit der Radarvorrichtung ermittelten Daten.
  • Der Vergleich und die Zuordnung mittels digitaler Datenverarbeitung kann durch Vergleich der Radardaten in bestimmten Flächenabschnitten oder Volumenabschnitten mit den in der Referenzdatenbank abgelegten Daten unter Berücksichtitung eines bestimmten Toleranzbereichs erfolgen, um auf diese Weise eine Zuordnung der Schichtzusammensetzung vorzunehmen. Die automatische Identifikation der geologischen Schichtstruktur ermöglicht eine wesentlich schnellere Auswertung der erhaltenen Messdaten und somit eine schnellere Auffindung möglicher kritischer Schichtstrukturen, Schichtstrukturveränderungen oder Fehlstellen in den Schichtstrukturen.
  • Dabei ist es besonders bevorzugt, dass die Zuordnung durch eine Visualisierung der Schichtstrukturen aus den gemessenen Radardaten und einen Vergleich dieser Schichtstrukturen mit den zuvor aus Radardaten visualisierten Schichtstrukturen geologischer Schichten mit vorbekannter Schichtzusammensetzung erfolgt. Diese Visualisierung ermöglicht einem Benutzer der Vorrichtung, der nicht zwangsläufig ein Radarfachmann sein muss, Unregelmäßigkeiten in bekannten Schichten oder ungünstige Schichtzusammensetzungen auf einfache Weise zu erkennen sowie sich ändernde Verläufe von Schichtstrukturen sofort zu erkennen.
  • Weiterhin ist es bevorzugt, dass die Schichten in zweidimensionalen Schnittansichten, insbesondere Quer- und Längsschnitten durch bzw. entlang des Gleiswegs, auf einer Bildausgabevorrichtung angezeigt werden und die Schichtzusammensetzungen durch vorzugsweise genormte Symbole oder Flächenausfüllungen visualisiert werden. Auf diese Weise wird dem Benutzer des erfindungsgemäßen Verfahrens eine Darstellung der Messdaten zur Verfügung gestellt, die eine schnelle, nachvollziehbare Auswertung ermöglicht.
  • Es ist weiterhin bevorzugt, dass während des Datenerfassungsvorgangs mit der Antennenvorrichtung das Oberflächenprofil oder Abschnitte des Oberflächenprofils des Gleiswegs mittels einer Laserabtastvorrichtung abgetastet wird, vorzugsweise mittels senkrecht zur Fahrbewegung des Messwagens oszillierendem Abtasten durch den Laserstrahl. Dies ermöglicht es, beispielsweise bei der Vermessung von geschotterten Gleiswegen, dass fehlender oder überschüssiger Schotter detektiert wird und dient so einer Qualitätsüberwachung der Gleiseinbettung. Insbesondere kann so eine dreidimensionale Ansicht des Oberflächenprofils ermittelt werden, die eine umfassende Bewertung des Schotterbettungsprofils erlaubt.
  • Weiterhin ist es bevorzugt, wenn während des Datenerfassungsvorgangs mit der Antennenvorrichtung die Umgebung und/oder die Oberfläche des Linienbauwerks mittels einer digitalen Bilderfassungsvorrichtung erfasst wird. Durch diese Fortbildung wird einem Benutzer einerseits die Zuordnung bestimmter Daten des ermittelten Datensatzes zu bestimmten Örtlichkeiten erleichtert und auf diese Weise die Auswertungsmöglichkeit verbessert. Weiterhin können mit dieser Fortbildung ergänzende Daten bereitgestellt werden, die für die Erfassung des Zustands des Linienbauwerks maßgeblich sind.
  • Dabei ist es weiterhin bevorzugt, dass mit der digitalen Bilderfassungsvorrichtung die Fahrdrahteinrichtungen oder Teile der Fahrdrahteinrichtungen des Gleiswegs, die Oberfläche und der Fahrkantenbereich beider Schienenstränge des Gleiswegs, und/oder die Oberfläche der Schwellen und/oder einer festen Fahrbahntrasse aufgezeichnet werden.
  • Diese Fortbildung der Erfindung verbessert den Nachteil bekannter Verfahren dahingehend, dass ein Inspektionsverfahren für Gleiswege bereitgestellt wird, bei dem zugleich auch eine umfassende Bilderfassung mehrerer relevanter Untersuchungsbereiche erfolgt. Es können so Beschädigungen des Fahrdrahtes des Gleiswegs anhand einer Auswertung der digitalen Bilddaten erkannt werden. Zudem können Ausbrüche, Risse oder Verschleißbereiche in der Oberfläche oder im Fahrkantenbereich der Schienenstränge erfasst und dargestellt werden. Dies wird vorzugsweise durch senkrechte oder leicht schräge Aufnahmerichtung auf die Oberfläche der Schienenstränge mittels zweier einzelner digitaler Bilderfassungseinrichtungen vorgenommen, die vorzugsweise jeweils von innen schräg auf die Schienenstränge gerichtet sind. Auf diese Weise kann insbesondere der Verschleißzustand der Fahrkanten ermittelt werden und gegebenenfalls erforderlichen Maßnahmen zur Verlängerung der Standzeit der Schiene oder zur Behebung starker Verschleißerscheinungen vorgenommen werden. Weiterhin ermöglicht diese Fortbildung einerseits die leichtere Zuordnung von Fehlstellen, die mittels einer Radar- oder Laseruntersuchung detektiert worden sind, zu einer bestimmten Stelle entlang des Gleiswegs, da diese anhand der zugleich erfassten Bilddaten besser aufgefunden werden kann. Dies kann einerseits ein besseres Zurechtfinden eines Benutzers innerhalb der untersuchten Umgebung anhand der zusätzlichen Bilddaten oder eine direkte Zuordnung der Bilddaten zu den Radardaten oder Laserabtastdaten erlauben.
  • Andererseits ermöglicht diese Fortbildung des Verfahrens auch, dass neben der Radar- oder Laseruntersuchung eine differenzierte zusätzliche Untersuchung sicherheitsrelevanter Merkmale aus der Umgebung und/oder der Oberfläche des Gleiswegs erfolgt. Auf diese Weise kann mit dem erfindungsgemäßen Verfahren eine zeitgleiche Erfassung relevanter Radar- oder Laserdaten und relevanter Bilddaten erfolgen, die eine umfassende Beurteilung des Zustands des Gleiswegs erlaubt. Die digitale Bilderfassungsvorrichtung kann dabei beispielsweise mit einer zeilenabtastenden Videokamera erfolgen. Weiterhin kann die digitale Bilderfassung durch in diskreten Abständen aufgenommene digitale Einzelbilder erfolgen, deren Abstand vorzugsweise so gewählt ist, dass sich anhand der aufgenommenen Bildausschnitte eine lückenlose Abbildung des Gleiswegs ergibt. Vorzugsweise werden mehrere digitale Bilderfassungsvorrichtungen verwendet, insbesondere digitale Video- oder Fotokameras, die versetzt zueinander und/oder in unterschiedlichen Ausrichtungen relevante Ausschnitte der Umgebung und/oder des Gleiswegs erfassen.
  • Schließlich eignet sich diese Fortbildung auch für die Analyse fester Fahrbahntrassen. Diese sind typischerweise aus Beton gefertigt und werden zunehmend für Hochgeschwindigkeitsfahrtrassen verwendet. Für solche Trassen werden Schwellen aus Beton verwendet. Bei diesem Material ist es erforderlich, in regelmäßigen Abständen eine Überprüfung auf Risse durchzuführen, was in komfortabler Weise durch eine digitale Bilderfassung der Oberfläche der Bauteile erfolgen kann. Dabei kann vorzugsweise eine digitale Bildauswertung erfolgen, die die Risse automatisch detektiert und markiert.
  • Die digitale Bilderfassung kann weiter fortgebildet werden, indem mit der digitalen Bilderfassungsvorrichtung die Befestigungselemente der Schienen an den Schwellen aufgezeichnet werden und vorzugsweise durch eine digitale Bildauswertung automatisch auf Vorhandensein und richtige Lage geprüft werden. Befestigungselemente zwischen Schiene und Schwelle können sich lockern oder durch Vandalismus gelockert oder sogar entfernt werden. Eine Überprüfung dieser Befestigungselemente in regelmäßigen Abständen ist erforderlich und kann vorzugsweise mit dem erfindungsgemäßen Verfahren erfolgen. Hierbei ist es, wie zuvor beschrieben, bevorzugt, mittels digitaler Bildauswertung eine automatische Detektion einer eventuellen Lockerung oder eines Fehlens dieser Befestigungselemente zu detektieren und anzuzeigen.
  • Gemäß eines weiteren Aspekts der Erfindung wird das eingangs genannte Verfahren oder die zuvor beschriebenen Verfahrensfortbildungen weiter fortgebildet, indem mit der Antennenvorrichtung, der digitalen Bilderfassungsvorrichtung und/oder der Laserabtastvorrichtung die Wandung eines Tunnels untersucht wird. Die Führung von Gleiswegen durch Tunnels hat im Zuge der Trassenmodemisierung zunehmend Bedeutung gewonnen. In diesem Zusammenhang ist es erforderlich, auch die Wandung von Tunnels, d.h. Tunneloberbau, Ulmen in regelmäßigen Abständen zu prüfen, um lockeres Gestein oder Feuchtigkeit zu detektieren. Weiterhin ist es nach dem Bau eines Tunnels zur Bauabnahme oftmals vorteilhaft, diese Parameter zu überprüfen und die Felsdicke zu ermitteln. Dies kann mit dem erfindungsgemäßen Verfahren in vorteilhafter Weise ausgeführt werden, indem mit der Antennenvorrichtung die Wandung des Tunnels untersucht wird. Hierzu muss die Antennenvorrichtung zumindest eine Antenne aufweisen, die entsprechend zur Tunnelwand ausgerichtet ist. Vorzugsweise umfasst die Antennenvorrichtung mehrere Antennen, insbesondere Radarantennen die vorzugsweise in senkrechter Richtung zur Tunnelwandung messen.
  • Es hat sich dabei überraschend herausgestellt, dass mit der erfindungsgemäßen Antennenvorrichtung mit Hohlleiter auch eine beabstandet durchgeführte Abtastung der Tunnelwandung durchgeführt werden kann und hierbei die Tunnelwandoberfläche dargestellt und ein Reliefnachweis geführt werden kann. Auf diese Weise können Ausbrüche, vorstehende Bauelemente oder Versatze in der Tunnelwandung erfasst werden, was mit bisher bekannten Methoden nicht in einer vertretbaren Zeitspanne möglich war.
  • Das erfindungsgemäße Verfahren kann hinsichtlich aller erfindungsgemäßer Verfahrensaspekte und -fortbildungen weiter fortgebildet werden, indem die mit der Antennenvorrichtung und/oder der digitalen Bilderfassungsvorrichtung und/oder der Laserabtastvorrichtung gemessenen Daten durch eine digitale Datenauswertung analysiert werden und hierbei Schichtgrenzen und/oder Fehlstellen durch Vergleich mit Referenzdaten und/oder durch Vergleichen der lokalen gemessenen Daten mit einem über einen bestimmten Umgebungsbereich gemittelten Daten und/oder durch Vergleichen benachbarter Daten oder Datenbereiche identifiziert und markiert werden.
  • Mit dem erfindungsgemäßen Verfahren können so insbesondere gleichzeitig während einer einzigen Messfahrt eine Reihe unterschiedlicher Messdaten ermittelt werden, beispielsweise Radarmessdaten zur Inspektion des Unterbaus des Gleiswegs, Bildmessdaten zur Inspektion der Oberfläche des Oberbaus des Gleiswegs, des Fahrdrahtes sowie der Umgebung und laserermittelte Messdaten zur Überprüfung der Lage von Gleis und Schwellen oder des Schotterbetts. Die Auswertung dieser Daten muss oftmals in kurzer Zeit erfolgen und die Auswertungszeit kann maßgeblich reduziert werden, wenn von der bekannten manuellen Begutachtung der Daten abgegangen wird und eine automatische Analyse durch Vergleich mit Referenzdaten vorgenommen wird. Hierbei kann entweder ein Vergleich lokaler Daten mit gemittelten Daten erfolgen, um Abweichungen vom gemittelten Normalzustand zu detektieren.
  • Weiterhin kann das erfindungsgemäße Verfahren hinsichtlich aller Aspekte und Fortbildungen fortgebildet werden, indem jede automatisch oder manuell erkannte Fehlstelle in eine von mindestens zwei Gruppen einsortiert wird und diese Gruppen die zu ergreifenden Maßnahmen zur Behebung der Fehlstelle charakterisieren. Dies ermöglicht eine schnelle Übersicht über den gesamten Zustand eines Linienbauwerks und verbessert die Koordinierung von ReparaturmaHnahmen erheblich. Insbesondere ist diese Fortbildung vorteilhaft, wenn das erfindungsgemäße Inspektionsverfahren im Zusammenhang mit unmittelbar folgenden Reparaturmaßnahmen, gegebenenfalls sogar unmittelbar angekoppelt an den Messwagen, eingesetzt wird, um eine schnelle Entscheidung über die Art und Weise der Reparatur einer Fehlstelle zu treffen. Die Einsortierung in die Gruppen erfolgt dabei anhand des Ausmaßes bzw. der Art und Weise der erkannten Fehlstelle und den aus zuvor durchgeführten Reparaturen bekannten Maßnahmen, die zur Behebung einer solchen Fehlstelle erforderlich sind. Unter Maßnahme kann hierbei auch eine präventive Bearbeitung verstanden werden, die die Standzeit des Gleiswegs oder Teilen davon erhöhen soll.
  • Bei einer besonders vorteilhaften Verfahrensfortbildung werden die Messdaten der Radarvorrichtung, der Laserabtastvorrichtung und/oder der Bilderfassungseinrichtung einander für einen Messbereich zugeordnet und in eine Datenbank zusammengeführt und es wird eine Messdatenaussage gebildet, die aus zumindest zwei dieser Datensätze zusammengesetzt ist. Die mit dem erfindungsgemäßen Verfahren mögliche gleichzeitige Erfassung von Messdatensätzen mittels unterschiedlicher Messverfahren ermöglicht nicht nur eine Verkürzung der für die Inspektion erforderlichen Zeit, sondern erlaubt es auch, die Messdaten einer gemeinsamen Betrachtung zu unterziehen und hierdurch weitergehende Erkenntnisse aus den solcherart kombinierten Messdatensätzen zu gewinnen. So können oftmals Analysen aus einem Messdatensatz mit Hilfe eines anderen Messdatensatzes verifiziert werden. Des Weiteren erlaubt die Kombination mehrerer Messdatensätze die vollumfängliche Bewertung von Fehlstellen, beispielsweise, indem die oberflächlichen Abmessungen eines Risses aus den Bilderfassungsdaten und die Tiefe des Risses aus den Laserabtastdaten oder den Radarmessdaten gewonnen wird.
  • Schließlich besteht eine weitere wichtige Verfahrensfortbildung darin, dass zumindest zwei Messungen an einem Ort oder in einem Bereich zeitlich versetzt zueinander durchgeführt, die Messdaten aus den zwei zeitlich versetzt zueinander durchgeführten Messungen mittels einer digitalen Datenverarbeitung geographisch übereinstimmenden Positionen zugeordnet werden, miteinander verglichen werden, wobei vorzugsweise Unterschiede zwischen den Messdaten aus den zwei zeitlich versetzt zueinander durchgeführten Messungen automatisch markiert werden. So können durch wiederholte Inspektion eines Gleiswegs die bei einer aktuellen Messung aufgenommenen Daten durch die exakte Positionsbestimmung mit den entsprechenden Daten einer vorherigen Messung verglichen werden und auf diese Weise Veränderungen, die zwischen den beiden Messungen erfolgt sind, erfasst werden. Die so detektierten Fehlstellen bzw. Veränderungen können in Bilddarstellungen visualisiert und hervorgehoben werden. Auf diese Weise wird einerseits ein Monitoring, also eine zeitversetzte Mehrfachkontrolle des Gleiswegs, ermöglicht, was die Beobachtung eines Schadensfortschritts erlaubt, um den richtigen Zeitpunkt für Reparaturmaßnahmen zu bestimmen. Weiterhin können die Ergebnisse einer einfachen manuellen Nachkontrolle am Bildschirm oder in einem Ausdruck unterzogen werden, um zu entscheiden, ob Maßnahmen zur Behebung der Fehlstelle/Veränderung getroffen werden müssen bzw. um eine Beschreibung der erfassten Fehlstelle/Veränderung vorzunehmen. Des Weiteren können die mit der erfindungsgemäßen Vorrichtung aufgenommenen Daten mit zu anderen Zeitpunkten aufgenommenen Fremddaten abgeglichen werden, sofern diese ebenfalls über eine ausreichend genaue Positionsinformation verfügen.
  • Dabei können insbesondere die zeitlich versetzten Messungen an einem Ort jeweils Messdaten aus zumindest zwei unterschiedlichen Messverfahren umfassen. So wird ein Monitoring mit differenzierten Messdaten für verschiedene Eigenschaften des Linienbauwerks ermöglicht.
  • Insbesondere eignet sich das erfindungsgemäße Verfahren zum Erfassen des Zustands von Deichbauten wobei das Messfahrzeug auf der Deichkrone fährt und mittels zumindest einer an einem Auslegerarm montierten Antennenvorrichtung der Zustand des Deichs vor und/oder hinter der Deichkrone erfasst wird.
  • Ein weiterer Aspekt der Erfindung ist eine Vorrichtung zum Erfassen des Zustands von Linienbauwerken, insbesondere Gleiswegen, umfassend: eine an einem Messfahrzeug befestigte Abtastvorrichtung zum Vermessen des Gleiswegs, eine zentrale Datenspeichervorrichtung zum Speichern der von der Abtastvorrichtung erfassten Messdaten, und eine Navigationsvorrichtung zum Ermitteln der geographischen Position der Abtastvorrichtung entlang des Gleiswegs bei der die Abtastvorrichtung eine Antennenvorrichtung mit einem elektrischen Dipol zur Erzeugung einer elektromagnetischen Schwingung und einen Hohlleiter zur Kopplung der Schwingung an die Umgebungsluft umfasst, dessen Querschnittsfläche sich quer zur Ausbreitungsrichtung der elektromagnetischen Schwingung vom Dipol zu einer Austrittsöffnung hin vergrößert.
  • Die erfindungsgemäße Vorrichtung kann fortgebildet werden nach den Ansprüchen 18 bis 33. Diese fortgebildeten Vorrichtungen weisen Merkmale auf, die sie insbesondere dafür geeignet machen, zur Ausführung des erfindungsgemäßen Verfahrens und seiner Fortbildungen verwendet zu werden. Zu den Ausführungsformen, spezifischen Merkmalen, Varianten und Vorteilen der Merkmale dieser Vorrichtungen und Vorrichtungsfortbildungen wird auf die vorangegangene Beschreibung zu den entsprechenden Verfahrensmerkmalen verwiesen.
  • Schließlich ist ein weiterer Aspekt der Erfindung die Verwendung einer zuvor beschriebenen Vorrichtung, um damit den Zustand von Deichbauten oder den Zustand von Fahrwegen, insbesondere Straßen, zu erfassen. Es hat sich überraschend herausgestellt, dass die erfindungsgemäße Vorrichtung insbesondere gut dafür geeignet sind, um sich anbahnende Schäden im Bereich von Deichbauten und Fahrwegen im Vorfeld zu erfassen, beispielsweise indem beginnende Unterspülungen detektiert werden. Das erfindungsgemäße Verfahren kann dabei zum Erfassen des Zustands von Deichbauten fortgebildet werden, indem es mittels eines Auslegearms mit daran montierten Radarantennen den Zustand des Deichs vor und hinter der Deichkrone erfasst und auf diese Weise sowohl die Deichsubstanz unmittelbar unter der Deichkrone mit Hilfe der direkt in Messfahrzeugnähe installierten Radarantennen erfasst werden als auch die Deichsubstanz im Bereich des Fußes des Deichs, indem entsprechend Radarantennen am Auslegearm in diesem Bereich angeordnet werden.
  • Eine bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens wird anhand der Figuren beschrieben. Es zeigen:
    • Figur 1: Eine schematische Seitenansicht eines Messfahrzeugs mit einer daran montierten erfindungsgemäßen Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens, und
    • Figur 2: Einen schematischen Datenflussplan für den Ablauf des erfindungsgemäßen Verfahrens.
  • Bezug nehmend auf Figur 1 ist an einem Messfahrzeug 10 ein sich in Fahrtrichtung erstreckender Auslegarm 21 mit daran befestigtem Querausleger 22 montiert.
  • Am äußeren Ende des Längsauslegers 21 ist eine Antennenvorrichtung mit Hohlleiter 30 befestigt, die in senkrechter Richtung nach unten abstrahlt und zwischen zwei Schienensträngen 11,12, auf denen der Messwagen 10 rollt, hindurchmisst. Am Querausleger 22 sind zwei Radarantennen 31,32 angeordnet. Die in Fahrtrichtung links liegende Radarantenne 31 misst am linken Schienenstrang 11 seitlich vorbei, die in Fahrtrichtung rechts liegende Radarantenne 32 misst am rechten Schienenstrang 21 seitlich vorbei.
  • Die Antennenvorrichtung mit Hohlleiter 30 misst bis zu 4m in Erdreich und Unterbau unterhalb der Gleisstränge 11,12 hinein und erlaubt somit eine Auswertung dieses Erdreichs, des Unterbaus und des Oberbaus, d.h. der Schwellen und des Schotterbetts des Gleiswegs. Die Radarantennen 31,32 messen im typischen Frequenzbereich bis zu 4m in den Unterbau und das Erdreich hinein, bei besonders abgestimmten Frequenzbereichen auch noch tiefer, und erlauben eine Auswertung von Ober-, Unterbau und Erdreich in diesem seitlichen Bereich. Die Radarmessung kann bei Geschwindigkeiten bis zu 200km/h mit einer horizontalen Auflösung erfolgen, die Fehlstellen ab einer Größe von einigen Metern erkennbar macht.
  • Im Bereich hinter den beiden vorderen Laufrädern 13,14 des Messwagens 10 ist eine Laserabtastvorrichtung 40 angeordnet, welche das Schotterprofil abtastet und mit einem Sollprofil vergleicht, um auf diese Weise überschüssigen oder fehlenden Schotter zu detektieren. Die Abtastung kann ebenfalls bei Geschwindigkeiten bis zu 200km/h erfolgen.
  • Des weiteren sind zwischen den beiden Laufradsätzen 13,14 bzw. 15,16 des Messwagens 10 mehrere digitale Zeilenkameras 50,51,52 angeordnet, welche die Oberfläche des Gleiswegs aufnehmen. Hierunter sind zwei digitale Zeilenkameras 50,52, welche auf den Schienenkopf im Bereich der Fahrkante gerichtet sind und diesen mit einer Auflösung von 0,1 x 0,5mm aufnehmen. Diese Aufnahmen ermöglichen einen sogenannten "Head Check" und die Detektion von Kantenausbrüchen im Bereich der Fahrkante. Weiterhin werden Schweißstellen und Isolierstöße erfasst.
  • Eine weiterer Satz digitaler Zeilenkameras 51 ist auf die Gleiswegoberfläche im mittleren Bereich gerichtet und erlaubt es, eine feste Fahrbahn 17 sowie die Schwellen 18 auf Risse zu untersuchen. Hierzu wird ein Kamerasatz 51 eingesetzt, der aus vier digitalen Zeilenkameras besteht, die Risse mit einer Breite von 0,1mm oder mehr erfassen können. Von dem Kamerasatz 51 sind jeweils zwei Zeilenkameras pro Schiene angeordnet, die in Fahrtrichtung links und rechts von dieser Schiene die Fahrbahn- und Schwellenoberfläche erfassen.
  • Schließlich befinden sich an der Frontseite des Messwagens noch weitere digitale Zeilenkameras 60,61, die auf Schwenk- und Neigeköpfen montiert sind und dazu dienen, dass Gleisumfeld, das Oberleitungssystem und den Zustand der seitlichen Entwässerung zu erfassen. Diese Zeilenkameras können manuell oder automatisch bedient werden oder mit einer festen Achsausrichtung eingesetzt werden.
  • Auf dem Dach des Messwagens 10 ist eine GPS-Antenne 70 angeordnet, die mit einem GPS-Verarbeitungsgerät 71 gekoppelt ist. Die Daten des GPS-Verarbeitungsgeräts werden mit den Daten eines Radinkrementalgeber 72 abgeglichen, um hierdurch eine Genauigkeit von 1m bei der Bestimmung der Position des Messwagens zu erzielen.
  • Die Messdaten der Radarantennen 30-32, des Laserabtastsystems 40, der digitalen Zeilenkameras 50-52 und 60-61 und der Positionsdaten aus der GPS-Einheit 70,71 und dem Radinkrementalgeber 72 werden einem zentralen Speicherungs- und Auswertungsrechner 90 zugeführt.
  • Die Verarbeitung der Daten wird anhand von Figur 2 beschrieben.
  • In Figur 2 sind symbolisch eine Radarvorrichtung 130 mit mehreren Radarantennen, eine Laserabtastvorrichtung 140, eine digitale Bilderfassungsvorrichtung 150 zur Beobachtung der Oberfläche einer festen Fahrbahntrasse und der Schwellen, eine digitale Bilderfassungsvorrichtung zur Erfassung des Fahrleitungsdrahtes des Gleiswegs, eine digitale Bilderfassungsvorrichtung zur Erfassung der Umgebung 161 und ein inkrementaler Weggeber 172 zur Erfassung der Umdrehungsanzahl und Drehstellung eines Rades des Messwagens schematisch abgebildet. Diese Messdatenerfassungselemente 130,140,150,160,161 und 172 geben ihre Messdaten über eine Eingangsschnittstelle zu einer ersten Datenverarbeitungsstation 200 innerhalb einer zentralen Datenverarbeitungseinrichtung 190.
  • Die erste Datenverarbeitungsstation 200 empfängt weiterhin Daten von einer GPS-Antenne 170 über die Laufzeitsignale zu bestimmten Satelliten. Innerhalb der ersten Datenverarbeitungsstation 200 werden die von der GPS-Antenne empfangenen Signale mit den Daten des Inkrementalgebers 172 und den in einer Speichereinheit 210 abgespeicherten Streckennetzdaten abgeglichen, um auf diese Weise den Standort des Messwagens auf 1m genau zu bestimmen.
  • Hiernach werden die Daten zu einer zweiten Datenverarbeitungsstation 220 weitergeleitet. In der zweiten Datenverarbeitungsstation 220 werden die Messdaten der einzelnen Messerfassungseinrichtungen mit den in einer zweiten Speichervorrichtung 230 abgespeicherten Referenzdaten verglichen. Die in der zweiten Speichervorrichtung abgespeicherten Referenzdaten stellen typische Messwerte, wie beispielsweise Grauwerte oder Grauwertverläufe für bekannte Zuordnungswerte dar, wobei unter Zuordnungswerten beispielsweise die Verschleißbreite im Bereich der Laufkante einer Schiene oder bestimmte Bodenarten oder Gleisunterbauarten, beispielsweise verschmutzter oder neuer Schotter oder dergleichen zu verstehen sind.
  • Die Verarbeitung der Messdaten in der zweiten Datenverarbeitungsstation 220 ermöglicht daher die Zuordnung bestimmter Schichteigenschaften oder Oberflächeneigenschaften zu den gewonnenen Messdaten. Die so zugeordneten Eigenschaften werden durch einen Visualisierungsparameter den Messdaten im identifizierten Bereich zugeordnet und können auf diese Weise durch manuelle Datenauswertung oder bei einer Visualisierung der Messdaten auf einem Bildschirm oder in einem Ausdruck entsprechend hervorgehoben oder abgebildet werden.
  • In der zweiten Datenverarbeitungsstation 220 erfolgt weiterhin eine Auswertung der Messdaten im Hinblick auf etwaige Fehlstellen. Dies kann auf verschiedene, bekannte Weisen erfolgen. So kann beispielsweise ein Einzeimesswert mit einem Mittelwert der Messwerte in seiner Umgebung verglichen werden und bei Abweichung des Einzelmesswerts von diesem Mittelwert um einen bestimmten Betrag eine Fehlstelle an der Stelle des Einzelmesswerts erkannt werden. Auf diese Weise können beispielsweise Risse in den Messdaten einer Oberfläche der festen Fahrbahntrasse erkannt werden oder Unterspülungen im Unterbau des Gleisbetts aus den Radarmessdaten erkannt werden.
  • Aus der zweiten Datenverarbeitungsstation 220 werden die so parametrierten Messdaten an eine dritte Datenverarbeitungsstation 240 geleitet. In der dritten Datenverarbeitungsstation 240 wird anhand der Parameter der Messdaten aus einem dritten Datenspeicher 250, der einen Maßnahmenkatalog beinhaltet, jeder aufgefundenen Fehlstelle eine Maßnahme zugeordnet, die zum Erhalt der Streckensicherheit bzw. zur Verlängerung der Standzeit der Strecke getroffen werden muss bzw. soll.
  • In der dritten Datenverarbeitungsstation 240 können weiterhin Messdaten aus unterschiedlichen Messwertaufnehmern miteinander verglichen werden, um auf diese Weise beispielsweise anhand der durch Laserabtastung gewonnen Oberflächenprofildaten und der durch digitale Bilderfassung gewonnen Bilddaten einer Untersuchungsstelle einen Rückschluss auf die Tiefe eines Risses oder die Ausrichtung einer Verschleißfläche zu gewinnen. Grundsätzlich können in der dritten Datenverarbeitungsstation 240 die Daten aller Messwertaufnehmer für einen beliebigen Untersuchungsort einander zugeordnet werden, um auf diese Weise eine umfassende Beurteilung eines Untersuchungsortes zu ermöglichen. Weiterhin können in der dritten Datenverarbeitungsstation die Messdaten aus einer früheren Messung gespeichert werden und mit den Messdaten der aktuellen Messung verglichen werden. Auf diese Weise kann ein Monitoring des Gleiswegs erfolgen, um den Fortschritt von Fehlstellen zu erfassen und den rechtzeitigen Zeitpunkt für eine Wartungs- oder Reparaturmaßnahme zu bestimmen.
  • Die Messdaten werden in parametrierter und aufbereiteter Weise an einen Bildschirm weitergeleitet, um auf diesem Bildschirm eine Visualisierung für einen Benutzer vorzunehmen. Der Benutzer kann hierzu auf dem Bildschirm Längs- oder Querprofile des untersuchten Gleiswegs einblenden und zugleich ein Oberflächenbild und ein Oberflächenprofil dieses Gleiswegs an der entsprechenden Stelle abrufen und darstellen. Weiterhin können die geografischen Positionsdaten für die untersuchte Stelle abgerufen werden und zum besseren Zurechtfinden Bilder der Umgebung dieses Orts eingeblendet werden.
  • Mittels des erfindungsgemäßen Verfahrens und der erfindungsgemäßen Vorrichtung ist somit durch einmaliges Abfahren eines Gleiswegs eine umfassende Beurteilung des Gesamtzustands des Oberbaus, der Unterbaus und des Gleisstrangs sowie der Fahrbahntrasse und der Schwellen selbst möglich. Die Messwertaufnehmer sind ausgebildet, um bei Geschwindigkeiten oberhalb von 50km/h zu messen, eine Reihe von Messwertaufnehmern kann bei Geschwindigkeiten bis 200km/h messen. Die Datenaufbereitung erlaubt eine Differenzierung und Identifizierung von Fehlstellen durch digitale Bildauswertung und Zuordnung von Messdaten aus verschiedenen Messsystemen für eine Untersuchungsstelle und ermöglicht einem Benutzer daher, eine schnelle Erkennung von Fehlstellen oder Veränderungen im Bereich eines Gleiswegs.
  • Mittels des erfindungsgemäßen Verfahrens und der erfindungsgemäßen Vorrichtung ist weiterhin nach mehrmaligem Abfahren eines Gleiswegs eine umfassende Beurteilung von Veränderungen des Gesamtzustands des Oberbaus, der Unterbaus und des Gleisstrangs sowie der Fahrbahntrasse und der Schwellen selbst möglich, um auf diese Weise ein Monitoring mit einer automatisierten Unterscheidung zwischen sich rasch ändernden Fehlstellen und stabilen Fehlstellen oder Beschädigungen zu treffen.

Claims (35)

  1. Verfahren zum Erfassen des Zustands von Linienbauwerken, mit den Schritten:
    - Abtasten des Linienbauwerks mittels einer an einem Messfahrzeug (10) befestigten Abtastvorrichtung,
    - Übertragen und Speichern der von der Abtastvorrichtung erfassten Daten zu bzw. in einer zentralen Datenspeichervorrichtung (90), und
    - Ermitteln der geographischen Position der Abtastvorrichtung entlang des Linienbauwerks,
    dadurch gekennzeichnet, dass die Abtastvorrichtung zumindest eine Sensorvorrichtung umfasst, die mittels einer Antennenvorrichtung mit einen elektrischen Dipol eine elektromagnetische Schwingung erzeugt, und dass die Antennenvorrichtung mittels eines Hohlleiters, dessen Querschnittsfläche sich quer zur Ausbreitungsrichtung der elektromagnetischen Schwingung vom Dipol zu einer Austrittsöffnung hin vergrößert, die elektromagnetische Schwingung an die Umgebungsluft koppelt.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass die mit der Abtastvorrichtung ermittelten Daten mit Referenzdaten (230) vorbekannter geologischer Schichtzusammensetzungen, die in einer Referenzdatenbank (230) abgelegt sind, mittels einer digitalen Datenverarbeitung verglichen und bestimmten geologischen Schichtzusammensetzungen zugeordnet werden.
  3. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass die Abtastvorrichtung mit einer weiteren Sensorvorrichtung das Linienbauwerk abtastet, wobei die weitere Sensorvorrichtung vorzugsweise nach einem unterschiedlichen Messverfahren als die Antennenvorrichtung arbeitet.
  4. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass die Antennenvorrichtung im Radarfrequenzbereich arbeitet.
  5. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass mit der Abtastvorrichtung, insbesondere der Antennenvorrichtung, ein Gleisunterbau und Boden im Bereich zwischen Schienen und vorzugsweise auch unter diesen Schienen abgetastet wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass während des Datenerfassungsvorgangs mit der Abtastvorrichtung, insbesondere der Antennenvorrichtung, das Oberflächenprofil oder Abschnitte des Oberflächenprofils des Linienbauwerks mittels einer Laserabtastvorrichtung (40) abgetastet wird, vorzugsweise mittels senkrecht zur Fahrbewegung des Messwagens oszillierendem Abtasten durch den Laserstrahl.
  7. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass während des Datenerfassungsvorgangs mit der Abtastvorrichtung, insbesondere der Antennenvorrichtung, die Umgebung und/oder die Oberfläche des Linienbauwerks mittels einer digitalen Bilderfassungsvorrichtung (50 - 52, 60, 61) erfasst wird.
  8. Verfahren nach dem vorhergehenden Anspruch,
    dadurch gekennzeichnet, dass mit der digitalen Bilderfassungsvorrichtung
    - die Fahrdrahteinrichtungen oder Teile der Fahrdrahteinrichtungen eines Gleiswegs,
    - die Oberfläche und der Fahrkantenbereich beider Schienenstränge dieses Gleiswegs, und/oder
    - die Oberfläche der Schwellen (51) dieses Gleiswegs und/oder einer festen Fahrbahntrasse
    aufgezeichnet werden.
  9. Verfahren nach einem der vorhergehenden Ansprüche 7 oder 8,
    dadurch gekennzeichnet, dass mit der digitalen Bilderfassungsvorrichtung (51) Befestigungselemente von Schienen an Schwellen eines Gleiswegs aufgezeichnet werden und vorzugsweise durch eine digitale Datenauswertung automatisch auf Vorhandensein und richtige Lage geprüft werden.
  10. Verfahren nach einem der vorhergehenden Ansprüche 4, 6 und/oder 7,
    dadurch gekennzeichnet, dass mit der Radarvorrichtung, der digitalen Bilderfassungsvorrichtung und/oder der Laserabtastvorrichtung die Wandung eines Tunnels untersucht wird.
  11. Verfahren nach einem der vorhergehenden Ansprüche 4 und/oder 7,
    dadurch gekennzeichnet, dass die mit der Radarvorrichtung und/oder der digitalen Bilderfassungsvorrichtung gemessenen Daten durch eine digitale Datenauswertung analysiert werden und hierbei Schichtgrenzen und/oder Fehlstellen durch Vergleich mit Referenzdaten und/oder durch Vergleichen der lokalen gemessenen Daten mit einem über einen bestimmten Umgebungsbereich gemittelten Daten und/oder durch Vergleichen benachbarter Daten oder Datenbereiche identifiziert und markiert werden.
  12. Verfahren nach dem vorhergehenden Anspruch,
    dadurch gekennzeichnet, dass jede automatisch oder manuell erkannte Fehlstelle in eine von mindestens zwei Gruppen (250) einsortiert wird und diese Gruppen die zu ergreifenden Maßnahmen zur Behebung der Fehlstelle charakterisieren.
  13. Verfahren nach einem der vorhergehenden Ansprüche 4, 6 und/oder 7,
    dadurch gekennzeichnet, dass die Messdaten der Radarvorrichtung, der Laserabtastvorrichtung und/oder der Bilderfassungseinrichtung einander für einen Messbereich zugeordnet und in eine Datenbank zusammengeführt werden und eine Messdatenaussage gebildet wird, die aus zumindest zwei dieser Datensätze zusammengesetzt ist.
  14. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass zumindest zwei Messungen an einem Ort zeitlich versetzt zueinander durchgeführt, die Messdaten aus den zwei zeitlich versetzt zueinander durchgeführten Messungen mittels einer digitalen Datenverarbeitung geographisch übereinstimmenden Positionen zugeordnet werden, miteinander verglichen werden, wobei vorzugsweise Unterschiede zwischen den Messdaten aus den zwei zeitlich versetzt zueinander durchgeführten Messungen automatisch markiert werden.
  15. Verfahren nach dem vorhergehenden Anspruch,
    dadurch gekennzeichnet, dass die zeitlich versetzten Messungen an einem Ort jeweils Messdaten aus zumindest zwei unterschiedlichen Messverfahren umfassen.
  16. Verfahren zum Erfassen des Zustands von Deichbauten, mit den Merkmalen nach einem der vorhergehenden Ansprüche 1-15, wobei das Messfahrzeug auf der Deichkrone fährt und mittels zumindest einer an einem Auslegerarm montierten Antennenvorrichtung der Zustand des Deichs vor und/oder hinter der Deichkrone erfasst wird.
  17. Vorrichtung zum Erfassen des Zustands von Linienbauwerken, insbesondere Gleiswegen, umfassend:
    - eine an einem Messfahrzeug (10) befestigte Abtastvorrichtung zum Vermessen des Gleiswegs,
    - eine zentrale Datenspeichervorrichtung (90) zum Speichern der von der Abtastvorrichtung erfassten Messdaten, und
    eine Navigationsvorrichtung zum Ermitteln der geographischen Position der Abtastvorrichtung entlang des Gleiswegs, dadurch gekennzeichnet, dass die Abtastvorrichtung eine Antennenvorrichtung mit einem elektrischen Dipol zur Erzeugung einer elektromagnetischen Schwingung und einen Hohlleiter zur Kopplung der Schwingung an die Umgebungsluft umfasst, dessen Querschnittsfläche sich quer zur Ausbreitungsrichtung der elektromagnetischen Schwingung vom Dipol zu einer Austrittsöffnung hin vergrößert.
  18. Vorrichtung nach dem vorhergehenden Anspruch,
    gekennzeichnet durch eine Referenzdatenbank (230), in der Referenzdaten (230) vorbekannter geologischer Schichtzusammensetzungen abgelegt sind, und eine digitale Datenverarbeitungsvorrichtung zum Vergleichen der mit der Abtastvorrichtung ermittelten Daten mit den Referenzdaten und zum Zuordnen einer bestimmten geologischen Schichtzusammensetzung.
  19. Vorrichtung nach einem der vorhergehenden Ansprüche 17-18,
    dadurch gekennzeichnet, dass die Abtastvorrichtung zumindest eine weitere Messvorrichtung umfasst, deren Messverfahren vorzugsweise unterschiedlich zu der Antennenvorrichtung ist.
  20. Vorrichtung nach einem der vorhergehenden Ansprüche 17-19,
    dadurch gekennzeichnet, dass die Antennenvorrichtung so ausgebildet und angeordnet ist, dass der Gleisunterbau und Boden im Bereich zwischen den Schienen und vorzugsweise auch unter den Schienen abgetastet wird.
  21. Vorrichtung nach einem der vorhergehenden Ansprüche 17-20,
    dadurch gekennzeichnet, dass die Antennenvorrichtung eine elektromagnetische Schwingung im Radarfrequenzbereich erzeugt.
  22. Vorrichtung nach einem der vorhergehenden Ansprüche 17-21,
    gekennzeichnet durch ein satellitengestütztes Ortungssystem (70, 71) zum Ermitteln der geographischen Position.
  23. Vorrichtung nach dem vorhergehenden Anspruch,
    gekennzeichnet durch eine Speichervorrichtung zum Speichern einer Streckendatenbank (210) und/oder eine Dopplerradarvorrichtung zur Geschwindigkeitsbestimmung, zum Abgleich der Daten des satellitengestützen Ortungssystems.
  24. Vorrichtung nach einem der vorhergehenden Ansprüche 17-23,
    gekennzeichnet durch eine Laserabtastvorrichtung (40) zum Abtasten des Oberflächenprofils oder von Abschnitten des Oberflächenprofils des Gleiswegs, wobei die Laserabtastvorrichtung vorzugsweise ausgebildet ist, um mittels senkrecht zur Fahrbewegung des Messwagens oszillierendem Laserstrahl abzutasten
  25. Vorrichtung nach einem der vorhergehenden Ansprüche 17-24,
    gekennzeichnet durch eine digitale Bilderfassungsvorrichtung (50 - 52, 60, 61) zum Erfassen der Umgebung und/oder der Oberfläche des Gleiswegs.
  26. Vorrichtung nach dem vorhergehenden Anspruch,
    dadurch gekennzeichnet, dass die digitale Bilderfassungsvorrichtung (60, 61; 50-52) ausgebildet ist, um
    - die Fahrdrahteinrichtungen oder Teile der Fahrdrahteinrichtungen des Gleiswegs,
    - die Oberfläche und der Fahrkantenbereich beider Schienenstränge des Gleiswegs und/oder
    - die Oberfläche der Schwellen (51) und/oder einer festen Fahrbahntrasse aufzuzeichnen.
  27. Vorrichtung nach einem der vorhergehenden Ansprüche 17-26,
    gekennzeichnet durch eine digitale Bilderfassungsvorrichtung (51), die ausgebildet ist, um die Befestigungselemente der Schienen an den Schwellen aufzuzeichnen und durch eine digitale Datenauswertungsvorrichtung zum Prüfen der Befestigungselemente auf Vorhandensein und richtige Lage.
  28. Vorrichtung nach einem der vorhergehenden Ansprüche 17, 24 und/oder 25, dadurch gekennzeichnet, dass die Antennenvorrichtung, die digitale Bilderfassungsvorrichtung und/oder die Laserabtastvorrichtung zum Untersuchen der Wandung eines Tunnels ausgebildet ist.
  29. Vorrichtung nach einem der vorhergehenden Ansprüche 17 oder 25,
    gekennzeichnet durch eine digitale Datenauswertungsvorrichtung zum Analysieren der mit der Antennenvorrichtung und/oder der digitalen Bilderfassungsvorrichtung gemessenen Daten und zum Identifizieren und Markieren von Schichtgrenzen und/oder Fehlstellen durch Vergleichen mit Referenzdaten und/oder durch Vergleichen der lokalen gemessenen Daten mit einem über einen bestimmten Umgebungsbereich gemittelten Daten und/oder durch Vergleichen benachbarter Daten oder Datenbereiche.
  30. Vorrichtung nach einem der vorhergehenden Ansprüche 17,25 und/oder 25, gekennzeichnet durch
    - eine Speichervorrichtung zum Speichern eines mit der Antennenvorrichtung und/oder der digitalen Bilderfassungsvorrichtung und/oder der Laserabtastvorrichtung zu einem ersten Zeitpunkt gemessenen ersten Datensatzes und
    - eine digitale Datenauswertungsvorrichtung zum Zuordnen der daten des ersten und eines mit der Antennenvorrichtung und/oder der digitalen Bilderfassungsvorrichtung und/oder der Laserabtastvorrichtung zu einem zweiten Zeitpunkt erfassten zweiten Datensatzes zu übereinstimmenden geographischen Positionen und zum Vergleichen des ersten und zweiten Datensatzes.
  31. Vorrichtung nach dem vorhergehenden Anspruch,
    dadurch gekennzeichnet, dass die digitale Datenauswertungsvorrichtung zum Identifizieren und Markieren von Unterschieden im ersten und zweiten Datensatz ausgebildet ist.
  32. Vorrichtung nach einem der vorhergehenden Ansprüche 17-31,
    gekennzeichnet durch eine digitale Datenverarbeitungsvorrichtung zum Einsortieren jeder automatisch oder manuell erkannten Fehlstelle in eine von mindestens zwei Gruppen (250), welche die zu ergreifenden Maßnahmen zur Behebung der Fehlstelle charakterisieren.
  33. Vorrichtung nach einem der vorhergehenden Ansprüche 17-32
    gekennzeichnet durch eine zentrale Datenspeichervorrichtung, in der die Messdaten der Radarvorrichtung, der Laserabtastvorrichtung und/oder der Bilderfassungseinrichtung für einen Messbereich zusammengeführt werden und digitale Datenverarbeitungsvorrichtung zum Bilden einer Messdatenaussage, die aus zumindest zweien dieser Datensätze zusammengesetzt ist.
  34. Verwendung einer Vorrichtung nach einem der vorhergehenden Ansprüche 17-33 zum Erfassen des Zustands von Deichbauten.
  35. Verwendung einer Vorrichtung nach einem der Ansprüche 17-33 zum Erfassen des Zustands von Fahrwegen, insbesondere Strassen.
EP07010752.9A 2006-06-01 2007-05-31 Verfahren und Vorrichtung zum Erfassen des Zustands von Linienbauwerken Not-in-force EP1862593B2 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006026048A DE102006026048A1 (de) 2006-06-01 2006-06-01 GPS gestütztes, kontinuierliches Trassenerkundungssystem mit Multisensorik

Publications (4)

Publication Number Publication Date
EP1862593A2 EP1862593A2 (de) 2007-12-05
EP1862593A3 EP1862593A3 (de) 2008-06-04
EP1862593B1 EP1862593B1 (de) 2011-10-19
EP1862593B2 true EP1862593B2 (de) 2016-11-02

Family

ID=38457764

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07010752.9A Not-in-force EP1862593B2 (de) 2006-06-01 2007-05-31 Verfahren und Vorrichtung zum Erfassen des Zustands von Linienbauwerken

Country Status (3)

Country Link
EP (1) EP1862593B2 (de)
AT (1) ATE529571T1 (de)
DE (1) DE102006026048A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105844995B (zh) * 2016-05-20 2018-11-09 中铁第一勘察设计院集团有限公司 基于车载LiDAR技术的铁路线路运营维护测量方法
WO2019091681A1 (de) 2017-11-09 2019-05-16 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh System und verfahren zum navigieren innerhalb eines gleisnetzes
EP3522511A1 (de) 2018-02-05 2019-08-07 Schweizerische Bundesbahnen SBB Kommunikationsverfahren und kommunikationssystem zur vergebührung
RU2733907C1 (ru) * 2020-02-06 2020-10-08 Алексей Геннадьевич Логинов Многофункциональный автономный роботизированный комплекс диагностики и контроля верхнего строения пути и элементов железнодорожной инфраструктуры
CN112558045B (zh) * 2020-12-07 2024-03-15 福建(泉州)哈工大工程技术研究院 自动驾驶设备多线激光雷达功能下线验收方法
DE102021203305A1 (de) 2021-03-31 2022-10-06 Siemens Mobility GmbH Verfahren zum Ermitteln einer Durchfeuchtung eines Oberbaus
AT526491A1 (de) * 2022-08-31 2024-03-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Verfahren zum Bestimmen der Anordnung eines Gleisobjekts, insbesondere eines Gleisstrukturbauteils, Messvorrichtung und System

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT353487B (de) * 1977-05-31 1979-11-12 Plasser Bahnbaumasch Franz Vermessungseinrichtung zur anzeige bzw. registrierung des profilverlaufes von tunnel- roehren, durchlaessen u.dgl. engstellen
SE8000410L (sv) * 1979-01-20 1980-07-21 Lambda Ind Science Ltd Sprickdetektor
AT400988B (de) * 1983-11-07 1996-05-28 Strahlen Umweltforsch Gmbh Verfahren zur messung wetterbedingter zustandsänderungen an der oberfläche von verkehrsflächen und vorrichtung zum durchführen des verfahrens
JPH01142486A (ja) * 1987-11-30 1989-06-05 Central Res Inst Of Electric Power Ind 地盤透視法
DE4340254C2 (de) * 1993-11-26 2001-10-04 Gmb Gleisbaumaschinen Hermann Verfahren zur Erfassung des Zustandes des Oberbaues, Unterbaues und Untergrundes von Eisenbahngleisen
CZ291486B6 (cs) * 1999-04-13 2003-03-12 České Dráhy, Státní Organizace Způsob zjišťování poruchy v podloží komunikace a zařízení k provádění tohoto způsobu
DE10025066A1 (de) * 2000-05-23 2001-12-13 Bahn Ag Forschungs Und Technol Verfahren und Vorrichtung zur Detektion und Bewertung von Oberflächenschäden an verlegten Schienen und Weichenbauteilen
EP1213202B2 (de) * 2000-12-07 2009-02-18 Siemens Schweiz AG Verfahren zur Abbildung des Geleisezustandes und/oder des mechanischen Betriebsverhaltens von Schienenfahrzeugen
GB2372315A (en) * 2001-02-20 2002-08-21 Digital Image Res Ltd Determining the track condition in a transport system
GB2398946A (en) * 2003-02-22 2004-09-01 Qinetiq Ltd Microwave radar detection of surface discontinuities
DE102004016277A1 (de) * 2004-03-29 2005-10-20 Gbm Wiebe Gleisbaumaschinen Gm Vorrichtung und Verfahren zur Ermittlung des Zustandes des Oberbaus von Schienenwegen, Straßen bzw. Erdschichten

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ENGINEERING TECHNICS PRESS, 2003, ISBN: 04-94644-51-2, DOI: Using GPR on railways to identify frost susceptible areas
JOURNAL OF APPLIED GEOPHSICS 43, 2000, article "Road evaluation with ground penetrating radar", pages: 119-138

Also Published As

Publication number Publication date
EP1862593A2 (de) 2007-12-05
EP1862593B1 (de) 2011-10-19
ATE529571T1 (de) 2011-11-15
EP1862593A3 (de) 2008-06-04
DE102006026048A1 (de) 2007-12-20

Similar Documents

Publication Publication Date Title
EP1862593B2 (de) Verfahren und Vorrichtung zum Erfassen des Zustands von Linienbauwerken
AT518692B1 (de) Verfahren und System zur Instandhaltung eines Fahrwegs für Schienenfahrzeuge
EP1738029B1 (de) Verfahren zur vermessung von fahrbahnen
EP3442849B1 (de) Verfahren und messsystem zum erfassen eines festpunktes neben einem gleis
CN111895911B (zh) 一种应用于浅部砂层地面塌陷隐患监测方法
EP2784540B1 (de) Verfahren und Vorrichtung zur Ermittlung des Verschleißzustandes eines Gleises
CN103635375A (zh) 适于对导轨偏转进行成像和测量的视觉系统
DE4238034C1 (de) Verfahren und Vorrichtung zum inspektierenden, berührungslosen Abtasten der unmittelbaren Umgebung einer Gleisstrecke hinsichtlich bestimmter Meßkriterien
DE19801311A1 (de) Schienengebundene Instandhaltungsmaschine
DE19856510C2 (de) Verfahren und System zur Ermittlung von Unebenheiten und Schadstellen in der Oberfläche einer Verkehrsfläche
AT510642B1 (de) Brücken-untersichtgerät
DE19513116A1 (de) Verfahren zum berührungsfreien Vermessen von Tunnelprofilen oder Straßenoberflächen
CN114312905B (zh) 一种道岔尖轨形态图像实时监测装置
DE102010064480B3 (de) Vorrichtung zur automatisierten Erfassung von Objekten mittels eines sich bewegenden Fahrzeugs
DE3913159A1 (de) Verfahren und vorrichtung zur messung von wellenfoermigen deformationen an wenigstens einer schienenoberseite (schienenlaufflaeche) eines schienenweges
EP2017574A2 (de) Verfahren zur geodätischen Überwachung von Schienen
EP1520747B1 (de) Verfahren zur berührungslosen Messung von Winkeln und Abständen
DE19851153C1 (de) Verfahren und System zur Vermessung einer Fahrbahn
DE102011120153B4 (de) Vorrichtung und Verfahren zur automatisierten Erfassung von Objekten
AT524175B1 (de) Verfahren und Vorrichtung zum Ermitteln der Fahrdrahtposition
DE112010000427B4 (de) Schienenfahrzeug mit einem durch Schienenfahrwerke auf einem Gleis verfahrbaren Maschinenrahmen
DE102008032786A1 (de) Vorrichtung und Verfahren zum Bestimmen einer Position eines Fahrzeugs
Sussmann et al. Development of ground penetrating radar for railway infrastructure condition detection
EP1643275A1 (de) Landfahrzeug und Verfahren zum Vermessen des Oberbaus von Verkehrswegen
DE102019212261A1 (de) Verfahren, Vorrichtung und Schienenfahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20081125

17Q First examination report despatched

Effective date: 20090102

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

R17C First examination report despatched (corrected)

Effective date: 20090113

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: METHOD AND DEVICE FOR DETECTING THE CONDITION OF TRACK WAY

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RENTSCH PARTNER AG

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007008390

Country of ref document: DE

Effective date: 20111222

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20111019

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20111019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120219

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120220

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120119

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: TUEV INDUSTRIE SERVICE GMBH - TUEV RHEINLAND GROUP

Effective date: 20120719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502007008390

Country of ref document: DE

Effective date: 20120719

BERE Be: lapsed

Owner name: GBM WIEBE GLEISBAUMASCHINEN G.M.B.H.

Effective date: 20120531

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120130

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ARKIL A/S

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070531

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: TUEV INDUSTRIE SERVICE GMBH - TUEV RHEINLAND GROUP

Effective date: 20120719

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160526

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20160525

Year of fee payment: 10

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20161102

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502007008390

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: AELC

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170522

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: BELLERIVESTRASSE 203 POSTFACH, 8034 ZUERICH (CH)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 529571

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181128

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007008390

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191203