EP1857566B1 - Flat steel product provided with a corrosion protection coating and method of its manufacture - Google Patents

Flat steel product provided with a corrosion protection coating and method of its manufacture Download PDF

Info

Publication number
EP1857566B1
EP1857566B1 EP06113962.2A EP06113962A EP1857566B1 EP 1857566 B1 EP1857566 B1 EP 1857566B1 EP 06113962 A EP06113962 A EP 06113962A EP 1857566 B1 EP1857566 B1 EP 1857566B1
Authority
EP
European Patent Office
Prior art keywords
coating
steel
steel substrate
temperature
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06113962.2A
Other languages
German (de)
French (fr)
Other versions
EP1857566A1 (en
Inventor
Wilhelm Dr. Warnecke
Manfred Meurer
Rudolf Schönenberg
Michael Keller
Alexander Elsner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Steel Europe AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES06113962.2T priority Critical patent/ES2636442T3/en
Application filed by ThyssenKrupp Steel Europe AG filed Critical ThyssenKrupp Steel Europe AG
Priority to PL06113962T priority patent/PL1857566T3/en
Priority to EP06113962.2A priority patent/EP1857566B1/en
Priority to AU2007251550A priority patent/AU2007251550B2/en
Priority to CN2007800176280A priority patent/CN101454473B/en
Priority to PCT/EP2007/054711 priority patent/WO2007132007A1/en
Priority to JP2009510444A priority patent/JP5586224B2/en
Priority to US12/300,968 priority patent/US8481172B2/en
Priority to CA2650800A priority patent/CA2650800C/en
Priority to KR1020087027954A priority patent/KR101399085B1/en
Priority to BRPI0711652-7A priority patent/BRPI0711652B1/en
Publication of EP1857566A1 publication Critical patent/EP1857566A1/en
Application granted granted Critical
Publication of EP1857566B1 publication Critical patent/EP1857566B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/27Web or sheet containing structurally defined element or component, the element or component having a specified weight per unit area [e.g., gms/sq cm, lbs/sq ft, etc.]

Definitions

  • the invention relates to a method for producing a flat steel product formed from a steel substrate, such as steel strip or sheet, and a zinc-based anticorrosive coating applied to at least one of the sides of the steel substrate.
  • metallic coatings are applied, in particular on steel sheets or strips, which are based on zinc or zinc alloys in the majority of applications.
  • Such zinc or zinc alloy coatings protect due to their barrier and cathodic protection effect the corresponding coated steel sheet in practical use against corrosion.
  • the thickness of the coating required in the prior art for sufficient corrosion resistance poses problems in processing, ie in forming and welding. This applies z. B. when in high-wear highly corrosive flanges to be welded by spot welding. This requirement exists in particular in the field of construction of automobile bodies, in general construction applications or in the construction of housings for building services.
  • a metallic protective coating sheet with improved corrosion resistance is from the EP 1 621 645 Al known.
  • the one described there Steel sheet is provided with a protective coating by conventional hot-dip galvanizing, containing (in% by weight) 0.3-2.3% Mg, 0.6-2.3% Al, optionally ⁇ 0.2% other active ingredients and balance Zn and unavoidable impurities.
  • the steel sheet is passed through a melt bath containing 0.3-2.3% by weight of Mg, 0.5-2.3% by weight of Al, optionally less than 0.2% by weight of others Alloy components and passed as rest Zn and unavoidable impurities.
  • a melt bath containing 0.3-2.3% by weight of Mg, 0.5-2.3% by weight of Al, optionally less than 0.2% by weight of others Alloy components and passed as rest Zn and unavoidable impurities.
  • the object of the invention was therefore to provide a method for producing a flat steel product, which has an optimum combination of high corrosion resistance and optimized processability and which is particularly suitable for use as a material for automotive body construction, for general construction or for home appliance.
  • the invention is based on the recognition that general properties such. As adhesion and also weldability of provided with a corrosion-protective Zn-Mg-Al coating steel sheet or strip decisively depends on the distribution of the aluminum in the coating layer. Thus, it has surprisingly been found that when, as predetermined by the invention, in a near-surface intermediate layer of sufficient thickness according to the invention low Al contents are present, compared to conventionally formed sheets improved weldability is given, although the Al content of the coating on the whole a level is guaranteed by the high corrosion protection. The correspondingly produced according to the invention sheets in the boundary layer at the transition to the steel substrate high Al concentration thereby causes the positive effect of aluminum on the corrosion protection is maintained despite the low proportion of Al in the intermediate layer.
  • flat steel products produced according to the invention likewise show a particularly good suitability for phosphating, so that they can be provided with an organic lacquer coating, for example, without any special additional measures.
  • Elements from the group Pb, Bi, Cd, Ti, B, Si, Cu, Ni, Co, Cr, Mn, Sn and rare earths can be present up to a total of their contents of 0.8% by weight in the coating produced according to the invention be.
  • Pb, Bi and Cd can be used to form a larger crystal structure (zinc flower), Ti, B, Si to improve the formability, Cu, Ni, Co, Cr, Mn to influence the boundary layer reactions, Sn influencing the surface oxidation and rare earths, especially lanthanum and cerium, to improve the flow behavior of the melt.
  • the impurities which may be present in a corrosion protection coating according to the invention also include the constituents which, as a result of the hot-dip coating, enter the coating from the steel substrate in quantities which do not affect the properties of the coating.
  • the shape of the layer structure desired according to the invention can be directly influenced by a suitable adjustment of the strip inlet and / or bath temperature.
  • the process control according to the invention is achieved in that adjacent to the steel substrate Bound layer high Al and Mg contents accumulate, while in the intermediate layer in particular low Al contents are present.
  • the difference between the temperature of the strip during immersion and the temperature of the melt bath is of particular importance.
  • the inventively minimized presence of Al in the intermediate layer can be set in a safe and targeted manner.
  • an advantageous embodiment of the invention provides that the Al content of the intermediate layer is limited to 0.25 wt .-%.
  • the layer structure used by the invention then has a particularly positive effect on the weldability and the phosphatability with at the same time still good corrosion protection of the coating, if the thickness of the intermediate layer according to the invention is at least 25% of the total thickness of the anticorrosive coating.
  • the information on the structure of the corrosion-coating layer and its individual layers contained herein and in the claims relates to a layer profile determined by a GDOS measurement (glow discharge optical emission spectrometry).
  • a GDOS measurement low discharge optical emission spectrometry
  • the surface layer is in each case not more than 0.2 .mu.m thick, so that with conventional coating thicknesses of 6 .mu.m and more, the fraction of the surface boundary layer in the total thickness of the coating overlay is approximately 3.5% and wide below it lies.
  • the coating has contents of Fe which are more than 0.3% by weight, in particular more than 0.4% by weight or even more than 0.5% by weight.
  • the relatively high Fe contents are present in particular in the region of the boundary layer adjacent to the steel substrate.
  • a flat steel product obtained according to the invention has Performance characteristics, which are superior to the conventional flat steel products, even if they have high Mg and Al contents in their protective coating.
  • the Al content of the anticorrosive coating can be limited to less than 0.6% by weight, in particular less than 0.5% by weight.
  • the total thickness of the anticorrosive coating should be at least 5 ⁇ m , in particular at least 7 ⁇ m .
  • pad weight distribution of the anticorrosive coating of at least 100 g / m 2 prove to be particularly favorable in terms of its protective effect.
  • the weldability is not adversely affected due to the invention prescribed distribution of its Al content.
  • the speed with which the steel substrate passes through the melt bath has only a minor influence on the coating result. Therefore, it can be varied in the range of 50 - 200 m / min, for example, in order to achieve the optimum work result at maximum productivity.
  • the annealing of the steel strip, which precedes the melt bath, should be carried out under a protective gas atmosphere in order to avoid oxidation of the sheet surface.
  • the protective gas atmosphere in a conventional manner contains more than 3.5 vol .-% H 2 and in each case as the radical N 2 .
  • the annealing temperature is also in a known manner in the range of 700 - 900 ° C.
  • the melt bath maintains its optimum temperature evenly despite the entry of the steel substrate.
  • the melt bath itself preferably contains at best traces of iron, since according to the invention the Fe content of the corrosion-coating layer is to be established by alloying in iron originating from the steel substrate. Accordingly, the Fe content of the melt bath is preferably limited to at most 0.1 wt%, more preferably at most 0.07 wt%.
  • a steel atmosphere steel strip under a nitrogen atmosphere containing 5% H 2 and having a dew point of -30 ° C ⁇ 2 ° C is annealed for a holding time of 60 s each Service.
  • the annealing temperature was 800 ° C at a heating rate of 10 ° C / s.
  • the steel strip was quenched at a cooling rate of 5 to 30 ° C / s to a temperature of 470 ° C ⁇ 5 ° C where it was held for 30 seconds. Then the steel strip is with a belt immersion speed of 100 m / min was passed into a melt bath whose bath temperature was 460 ° C ⁇ 5 ° C. The strip inlet temperature of the steel strip was in each case 5 ° C. above the bath temperature of the melt bath.
  • a surface boundary layer has formed on the surface of the respective coating whose Al content is high as a result of oxidation.
  • the thickness of this surface boundary layer is at most 0.2 ⁇ m and is therefore easily broken in the spot or laser welding, without causing a deterioration in the quality of the welding result.
  • the about 2.5 ⁇ m thick intermediate layer to the surface boundary layer includes, whose Al content is below 0.2%, respectively.
  • the thickness of the intermediate layer is therefore approximately 36% of the total overlay thickness of the respective anti-corrosion coating of 7 ⁇ m .
  • the intermediate layer merges into a boundary layer adjacent to the steel substrate, in which the contents of Al, Mg and Fe have increased significantly compared with the corresponding contents of the intermediate layer.
  • the thickness of the superficial oxidation surface boundary layer is max. 0.2 ⁇ m and is based on the determined in a GDOS measurement layer profile in each case in the range of up to 2.7% of the total overlay thicknesses.
  • the amount of Al enrichment on the immediate surface is at most about 1 wt .-%. This is followed up to a thickness of at least 25% of the total overlay of the coating, the intermediate layer with a low Al content of not more than 0.25 wt .-% of. In the boundary layer, the Al content rises to 4.5% at the Border to the steel substrate.
  • the Mg enrichment on the immediate surface of the coating is significantly greater than the Al enrichment. Mg contents of up to 20% are achieved here.
  • the amount of Mg decreases over the intermediate layer and is 0.5 to 2% at a depth of about 25% of the total overlay thickness of the overlay.
  • An increase of the Mg content in the direction of the steel substrate then takes place via the boundary layer. At the border to the steel substrate, the Mg content is up to 3.5%.
  • Table 1 sample According to the invention? melt bath Layer analysis top Shift analysis bottom al Fe mg al Fe mg Editions weight Thickness al Fe mg Editions weight Thickness % *) % *) g / m 2 ⁇ m % *) g / m 2 ⁇ m E1 YES 0.201 0.011 1,589 1.16 1.06 1.52 41.5 7.0 ne ne ne n.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Coating With Molten Metal (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines Stahlflachprodukts, das aus einem Stahlsubstrat, wie Stahlband oder -blech, und einem auf mindestens einer der Seiten des Stahlsubstrats aufgebrachten, auf Zink basierenden Korrosionsschutzüberzug gebildet ist.The invention relates to a method for producing a flat steel product formed from a steel substrate, such as steel strip or sheet, and a zinc-based anticorrosive coating applied to at least one of the sides of the steel substrate.

Zur Verbesserung ihrer Beständigkeit gegen Korrosion werden insbesondere auf Stahlblechen oder -bändern metallische Überzüge aufgebracht, die in der überwiegenden Zahl der Anwendungsfälle auf Zink oder Zinklegierungen basieren. Solche Zink- bzw. Zinklegierungsüberzüge schützen aufgrund ihrer Barriere- und kathodischen Schutzwirkung das entsprechend beschichtete Stahlblech im praktischen Einsatz gut gegen Korrosion.To improve their resistance to corrosion, metallic coatings are applied, in particular on steel sheets or strips, which are based on zinc or zinc alloys in the majority of applications. Such zinc or zinc alloy coatings protect due to their barrier and cathodic protection effect the corresponding coated steel sheet in practical use against corrosion.

Die beim Stand der Technik für eine ausreichende Korrosionsbeständigkeit erforderliche Dicke des Überzugs bringt jedoch Probleme bei der Verarbeitung, d. h. beim Umformen und Verschweißen mit sich. Dies gilt z. B. dann, wenn im praktischen Einsatz hoch korrosionsbelastete Flansche mittels Punktschweißen verschweißt werden sollen. Diese Anforderung besteht insbesondere im Bereich des Baus von Automobilkarosserien, bei allgemeinen Bauanwendungen oder beim Bau von Gehäusen für die Haustechnik. Die bei einer solchen Schweißung erzeugte Verbindung soll bei ausreichendem Schweißstrom einen Mindestpunktdurchmesser von 4 × t

Figure imgb0001
(t = Einzelblechdicke) aufweisen und spritzerfrei schweißbar sein.However, the thickness of the coating required in the prior art for sufficient corrosion resistance poses problems in processing, ie in forming and welding. This applies z. B. when in high-wear highly corrosive flanges to be welded by spot welding. This requirement exists in particular in the field of construction of automobile bodies, in general construction applications or in the construction of housings for building services. The connection produced in such a weld should, with sufficient welding current, have a minimum point diameter of 4 × t
Figure imgb0001
(t = single sheet thickness) and can be welded spatter-free.

Vor dem Hintergrund der Probleme bei der Verarbeitung von konventionell mit einer Zn-Schicht großer Dicke beschichteten Blechen sind hochkorrosionsbeständige Zn-Mg- bzw. Zn-Mg-Al-Schichtsysteme entwickelt worden, die bei deutlich verminderter Schichtdicke einen mit einer konventionellen, 7,5 µm dicken Zinkbeschichtung vergleichbaren Korrosionsschutz bieten, jedoch eine signifikant bessere Verarbeitbarkeit aufweisen.Against the background of the problems in the processing of conventional coated with a Zn layer of large thickness sheets highly corrosion resistant Zn-Mg and Zn-Mg-Al layer systems have been developed, the one with a significantly reduced layer thickness with a conventional, 7.5 offer μ m thick zinc coating comparable corrosion protection, but have a significantly better processability.

Eine Möglichkeit, solcherart feuerverzinkte Stahlbleche mit erhöhter Korrosionsbeständigkeit bei gleichzeitig vermindertem Auflagengewicht herzustellen, ist in der EP 0 038 904 B1 beschrieben. Gemäß diesem Stand der Technik wird durch Schmelztauchbeschichten auf ein Stahlsubstrat eine 0,2 Gew.-% Al und 0,5 Gew.-% Mg enthaltende Zinkbeschichtung aufgebracht. Auch wenn das derart beschichtete Blech eine verbesserte Beständigkeit gegen Rostbildung aufweisen soll, erfüllt es in der Praxis die heute an die Korrosionsbeständigkeit solcher Bleche insbesondere im Bereich der Anschlussflansche einer Automobilkarosserie gestellten Anforderungen jedoch nicht.One way to produce such hot-dip galvanized steel sheets with increased corrosion resistance at the same time reduced coating weight, is in the EP 0 038 904 B1 described. According to this prior art, a zinc coating containing 0.2% by weight of Al and 0.5% by weight of Mg is applied to a steel substrate by hot dip coating. Even if the sheet coated in this way should have an improved resistance to rust formation, in practice it does not meet the requirements imposed today on the corrosion resistance of such sheets, in particular in the area of the connecting flanges of an automobile body.

Ein weiteres mit einem metallischen Schutzüberzug versehenes Blech mit verbesserter Korrosionsbeständigkeit ist aus der EP 1 621 645 Al bekannt. Das dort beschriebene Stahlblech ist durch konventionelles Feuerverzinken mit einem Schutzüberzug versehen, der (in Gew.-%) 0,3 - 2,3 % Mg, 0,6 - 2,3 % Al, optional < 0,2 % sonstige wirksame Bestandteile und als Rest Zn sowie unvermeidbare Verunreinigungen enthält. Zur Erzeugung des Zn-Überzugs wird das Stahlblech durch ein Schmelzenbad mit 0,3 - 2,3 Gew.-% Mg, 0,5 - 2,3 Gew.-% Al, optional weniger als 0,2 Gew.-% weiteren Legierungsbestandteilen und als Rest Zn und unvermeidbaren Verunreinigungen geleitet. In Folge des hohen Al- und Mg-Anteils in seinem Überzug weist ein solches Blech eine besonders gute Korrosionsbeständigkeit auf. Praktische Versuche haben jedoch ergeben, dass auch gemäß der EP 1 621 645 A1 beschaffene Bleche die von der verarbeitenden Industrie an die Verschweißbarkeit solcher Bleche gestellten Anforderungen nicht erfüllen. Auch zeigt sich, dass die betreffenden Bleche eine nach heutigen Maßstäben nur unzureichende Eignung zum Phosphatieren besitzen.Another provided with a metallic protective coating sheet with improved corrosion resistance is from the EP 1 621 645 Al known. The one described there Steel sheet is provided with a protective coating by conventional hot-dip galvanizing, containing (in% by weight) 0.3-2.3% Mg, 0.6-2.3% Al, optionally <0.2% other active ingredients and balance Zn and unavoidable impurities. To produce the Zn coating, the steel sheet is passed through a melt bath containing 0.3-2.3% by weight of Mg, 0.5-2.3% by weight of Al, optionally less than 0.2% by weight of others Alloy components and passed as rest Zn and unavoidable impurities. As a result of the high Al and Mg content in its coating, such a sheet has a particularly good corrosion resistance. However, practical experiments have shown that also according to the EP 1 621 645 A1 provided sheets do not meet the requirements imposed by the processing industry on the weldability of such sheets. It also shows that the sheets in question have a suitability for phosphating insufficient by today's standards.

Beim aus der WO 89/09844 A1 bekannten Stand der Technik ist der Einfluss von Pb und Al z. T. in Gegenwart von Si auf eine Zn-Al-Schmelztauchbeschichtung bzw. Überzugslegierung untersucht worden. Die dazu angestellten Versuche sind in der Regel ohne Mg durchgeführt worden. Sofern die betrachteten Beispiele überhaupt Mg enthielten, war Mg in so geringen Mengen vorhanden, dass es keinen erkennbaren Einfluss auf die Korrosionsbeständigkeit hat. Der positive Einfluss von Mg auf die Korrosionsschutzwirkung ist in D2 nicht erwähnt.When out of the WO 89/09844 A1 known prior art is the influence of Pb and Al z. T. been examined in the presence of Si on a Zn-Al hot-dip coating or coating alloy. The experiments were usually carried out without Mg. If the examples considered contained Mg at all, Mg was present in such small amounts that it had no discernible influence on the corrosion resistance. The positive influence of Mg on the corrosion protection effect is not mentioned in D2.

Die Aufgabe der Erfindung bestand daher darin, ein Verfahren zur Herstellung eines Stahlflachprodukts anzugeben, das eine optimale Kombination von hoher Korrosionsbeständigkeit und optimierter Verarbeitbarkeit besitzt und welches sich insbesondere für die Verwendung als Werkstoff für den Automobilkarosseriebau, für allgemeine Bauzwecke oder für den Hausgerätebau eignet.The object of the invention was therefore to provide a method for producing a flat steel product, which has an optimum combination of high corrosion resistance and optimized processability and which is particularly suitable for use as a material for automotive body construction, for general construction or for home appliance.

Diese Aufgabe ist erfindungsgemäß durch das in Anspruch 1 angegebene Verfahren gelöst worden.This object has been achieved by the method specified in claim 1.

Der Erfindung liegt die Erkenntnis zu Grunde, dass allgemeine Eigenschaften wie z. B. Haftung und auch Schweißeignung eines mit einem vor Korrosion schützenden Zn-Mg-Al-Überzug versehenen Stahlblechs oder -bands entscheidend von der Verteilung des Aluminiums in der Überzugsschicht abhängt. So hat sich überraschend herausgestellt, dass dann, wenn, wie von der Erfindung vorgegeben, in einer oberflächennahen Zwischenschicht ausreichender Dicke erfindungsgemäß geringe Al-Gehalte vorhanden sind, eine gegenüber konventionell ausgebildeten Blechen verbesserte Schweißeignung gegeben ist, obwohl der Al-Gehalt des Überzugs insgesamt auf einem Niveau liegt, durch das ein hoher Korrosionsschutz gewährleistet ist. Die dementsprechend bei erfindungsgemäß hergestellten Blechen im Bereich der Grenzschicht am Übergang zum Stahlsubstrat hohe Al-Konzentration bewirkt dabei, dass die positive Wirkung des Aluminiums auf den Korrosionsschutz trotz des geringen Anteils an Al in der Zwischenschicht erhalten bleibt.The invention is based on the recognition that general properties such. As adhesion and also weldability of provided with a corrosion-protective Zn-Mg-Al coating steel sheet or strip decisively depends on the distribution of the aluminum in the coating layer. Thus, it has surprisingly been found that when, as predetermined by the invention, in a near-surface intermediate layer of sufficient thickness according to the invention low Al contents are present, compared to conventionally formed sheets improved weldability is given, although the Al content of the coating on the whole a level is guaranteed by the high corrosion protection. The correspondingly produced according to the invention sheets in the boundary layer at the transition to the steel substrate high Al concentration thereby causes the positive effect of aluminum on the corrosion protection is maintained despite the low proportion of Al in the intermediate layer.

Dabei zeigen erfindungsgemäß hergestellte Stahlflachprodukte ebenfalls in Folge der geringen Gehalte an Al auf ihrer Oberfläche und in der Zwischenschicht eine besonders gute Eignung zur Phosphatierung, so dass sie beispielsweise ohne besondere zusätzliche Maßnahmen mit einer organischen Lackbeschichtung versehen werden können.As a result of the low contents of Al on their surface and in the intermediate layer, flat steel products produced according to the invention likewise show a particularly good suitability for phosphating, so that they can be provided with an organic lacquer coating, for example, without any special additional measures.

Elemente aus der Gruppe Pb, Bi, Cd, Ti, B, Si, Cu, Ni, Co, Cr, Mn, Sn sowie Seltene Erden können bis zu einer Summe ihrer Gehalte von 0,8 Gew.-% im erfindungsgemäß erzeugten Überzug vorhanden sein. Pb, Bi und Cd können dabei zur Ausbildung einer größeren Kristallstruktur (Zinkblume), Ti, B, Si zur Verbesserung der Umformbarkeit, Cu, Ni, Co, Cr, Mn zur Beeinflussung der Grenzschichtreaktionen, Sn Beeinflussung der Oberflächenoxidation und seltene Erden, insbesondere Lanthan und Cer, zur Verbesserung des Fließverhaltens der Schmelze zugegeben werden. Zu den Verunreinigungen, die in einem erfindungsgemäßen Korrosionsschutzüberzug enthalten sein können, zählen auch die Bestandteile, die in Folge des Schmelztauchbeschichtens aus dem Stahlsubstrat in Mengen in den Überzug gelangen, durch die die Eigenschaften des Überzugs nicht beeinflusst werden.Elements from the group Pb, Bi, Cd, Ti, B, Si, Cu, Ni, Co, Cr, Mn, Sn and rare earths can be present up to a total of their contents of 0.8% by weight in the coating produced according to the invention be. Pb, Bi and Cd can be used to form a larger crystal structure (zinc flower), Ti, B, Si to improve the formability, Cu, Ni, Co, Cr, Mn to influence the boundary layer reactions, Sn influencing the surface oxidation and rare earths, especially lanthanum and cerium, to improve the flow behavior of the melt. The impurities which may be present in a corrosion protection coating according to the invention also include the constituents which, as a result of the hot-dip coating, enter the coating from the steel substrate in quantities which do not affect the properties of the coating.

Es hat sich gezeigt, dass bei den relativ niedrigen Al-Gehalten eines zur Durchführung des erfindungsgemäßen Verfahrens verwendeten Schmelzenbades durch eine geeignete Einstellung der Bandeintritts- und / oder der Badtemperatur selbst die Ausprägung des erfindungsgemäß angestrebten Schichtaufbaus direkt beeinflusst werden kann. Durch die erfindungsgemäße Verfahrensführung wird dabei erreicht, dass sich in der zum Stahlsubstrat angrenzenden Grenzschicht hohe Al- und Mg-Gehalte anreichern, während in der Zwischenschicht insbesondere niedrige Al-Gehalte vorhanden sind. Dabei kommt der Differenz zwischen der Temperatur des Bandes beim Eintauchen und der Temperatur des Schmelzenbades eine besondere Bedeutung zu. Indem diese Differenz im Bereich von -10 °C bis 70 °C variiert wird, lässt sich die erfindungsgemäß minimierte Anwesenheit von Al in der Zwischenschicht sicher und gezielt einstellen.It has been found that, given the relatively low Al contents of a melt bath used for carrying out the method according to the invention, the shape of the layer structure desired according to the invention can be directly influenced by a suitable adjustment of the strip inlet and / or bath temperature. By the process control according to the invention is achieved in that adjacent to the steel substrate Bound layer high Al and Mg contents accumulate, while in the intermediate layer in particular low Al contents are present. In this case, the difference between the temperature of the strip during immersion and the temperature of the melt bath is of particular importance. By varying this difference in the range from -10 ° C. to 70 ° C., the inventively minimized presence of Al in the intermediate layer can be set in a safe and targeted manner.

Besonders günstige Schweißeigenschaften stellen sich dann ein, wenn der Aluminiumgehalt der Zwischenschicht so weit wie möglich reduziert ist. Daher sieht eine vorteilhafte Ausgestaltung der Erfindung vor, dass der Al-Gehalt der Zwischenschicht auf 0,25 Gew.-% beschränkt ist.Particularly favorable welding properties occur when the aluminum content of the intermediate layer is reduced as much as possible. Therefore, an advantageous embodiment of the invention provides that the Al content of the intermediate layer is limited to 0.25 wt .-%.

Darüber hinaus wirkt sich der durch die Erfindung genutzte Schichtaufbau dann besonders positiv auf die Schweißeignung und die Phosphatierbarkeit bei gleichzeitig nach wie vor guter Korrosionsschutzwirkung des Überzuges aus, wenn die Dicke der Zwischenschicht erfindungsgemäß mindestens 25 % der Gesamtdicke des Korrosionsschutzüberzugs beträgt. Die hier und in den Ansprüchen enthaltenen Angaben zum Aufbau der Korrosionsüberzugsschicht und ihrer einzelnen Schichten beziehen sich auf ein mit einer GDOS-Messung (glow discharge optical emission spectrometry) ermitteltes Schichtprofil. Bei dem beispielsweise im VDI-Lexikon Werkstofftechnik, hrsg. von Hubert Gräfen, VDI-Verlag GmbH, Düsseldorf 1993 beschriebenen GDOS-Messverfahren handelt es sich um ein Standardverfahren zum schnellen Erfassen eines Konzentrationsprofils von Beschichtungen.In addition, the layer structure used by the invention then has a particularly positive effect on the weldability and the phosphatability with at the same time still good corrosion protection of the coating, if the thickness of the intermediate layer according to the invention is at least 25% of the total thickness of the anticorrosive coating. The information on the structure of the corrosion-coating layer and its individual layers contained herein and in the claims relates to a layer profile determined by a GDOS measurement (glow discharge optical emission spectrometry). For example, in the VDI Lexicon Materials, ed. The GDOS measuring method described by Hubert Gräfen, VDI-Verlag GmbH, Dusseldorf, 1993 is a standard method for rapidly detecting a concentration profile of coatings.

Bei erfindungsgemäß hergestellten Stahlflachprofilen zeigt eine solche GDOS-Messung, dass sich in der unmittelbar an die Oberfläche des Überzugs angrenzenden Oberflächenschicht in Folge von Oxidation herstellungsbedingt unvermeidbar ein erhöhter Al-Gehalt einstellt. Da die Dicke dieser Oberflächenschicht verglichen mit der Gesamtdicke des Überzuges jedoch sehr gering ist, wird die Oberflächenschicht beim Verschweißen eines erfindungsgemäßen Stahlflachprodukts leicht durchbrochen und beeinflusst das Schweißergebnis nur unwesentlich. Um einen möglicherweise negativen Einfluss der höhere Al-Gehalte aufweisenden Oberflächenschicht auszuschließen, sollte die Dicke der Oberflächenschicht auf weniger als 10 %, insbesondere weniger als 1 % der Gesamtdicke des Korrosionsschutzüberzugs beschränkt werden. Praktische Untersuchungen haben bestätigt, dass bei erfindungsgemäß beschaffenen Stahlflachprodukten die Oberflächenschicht jeweils maximal 0,2 µm stark ist, so dass bei üblichen Überzugsdicken von 6 µm und mehr der Anteil der Oberflächengrenzschicht an der Gesamtdicke der Überzugsauflage bei etwa 3,5 % und weit darunter liegt.In the case of flat steel profiles produced according to the invention, such a GDOS measurement shows that in the surface layer immediately adjacent to the surface of the coating, as a result of oxidation, an increased Al content inevitably occurs as a result of oxidation. However, since the thickness of this surface layer is very small compared with the total thickness of the coating, the surface layer is easily broken when welding a flat steel product according to the invention and affects the welding result only insignificantly. In order to exclude a possibly negative influence of the higher Al-containing surface layer, the thickness of the surface layer should be limited to less than 10%, in particular less than 1% of the total thickness of the anticorrosive coating. Practical investigations have confirmed that, in the case of flat steel products produced according to the invention, the surface layer is in each case not more than 0.2 .mu.m thick, so that with conventional coating thicknesses of 6 .mu.m and more, the fraction of the surface boundary layer in the total thickness of the coating overlay is approximately 3.5% and wide below it lies.

Bei erfindungsgemäß hergestellten Stahlflachprodukten weist der Überzug Gehalte an Fe auf, die mehr als 0,3 Gew.-%, insbesondere mehr als 0,4 Gew.-% oder sogar mehr als 0,5 Gew.-% betragen. Die relativ hohen Fe-Gehalte sind dabei insbesondere im Bereich der an das Stahlsubstrat angrenzenden Grenzschicht vorhanden. In dieser kommt es bevorzugt zu einer Legierungsbildung, durch die eine optimierte Haftung des Überzugs auf dem Stahlsubstrat gewährleistet ist. Auf diese Weise weist ein erfindungsgemäß beschaffenes Stahlflachprodukt Gebrauchseigenschaften auf, die den konventionellen Stahlflachprodukten auch dann überlegen sind, wenn sie hohe Mg- und Al-Gehalte in ihrem Schutzüberzug aufweisen.In the case of flat steel products produced according to the invention, the coating has contents of Fe which are more than 0.3% by weight, in particular more than 0.4% by weight or even more than 0.5% by weight. The relatively high Fe contents are present in particular in the region of the boundary layer adjacent to the steel substrate. In this case, it is preferable to form an alloy by which an optimized adhesion of the coating to the steel substrate is ensured. In this way, a flat steel product obtained according to the invention has Performance characteristics, which are superior to the conventional flat steel products, even if they have high Mg and Al contents in their protective coating.

Um zusätzlich zum erfindungsgemäßen Schichtaufbau des Korrosionsschutzüberzugs die Verschweißbarkeit und Phosphatierbarkeit eines erfindungsgemäß hergestellten Stahlflachprodukts weiter zu optimieren, kann der Al-Gehalt des Korrosionsschutzüberzugs auf weniger als 0,6 Gew.-%, insbesondere weniger als 0,5 Gew.-% beschränkt werden.In order to further optimize the weldability and phosphatability of a flat steel product produced according to the invention in addition to the layer structure of the anticorrosive coating according to the invention, the Al content of the anticorrosive coating can be limited to less than 0.6% by weight, in particular less than 0.5% by weight.

Um seine Wirkung zu sichern, sollte die Gesamtdicke des Korrosionsschutzüberzugs mindestens 5 µm, insbesondere mindestens 7 µm betragen. Dabei erweisen sich Auflagengewichtsverteilung des Korrosionsschutzüberzugs von mindestens 100 g/m2 als hinsichtlich seiner Schutzwirkung besonders günstig. Trotz höherer Auflagenstärke und Dicke des Korrosionsschutzüberzugs wird auf Grund der erfindungsgemäß vorgeschriebenen Verteilung seines Al-Gehalts die Schweißbarkeit nicht negativ beeinträchtigt.To ensure its effectiveness, the total thickness of the anticorrosive coating should be at least 5 μm , in particular at least 7 μm . In this case, pad weight distribution of the anticorrosive coating of at least 100 g / m 2 prove to be particularly favorable in terms of its protective effect. Despite higher print run thickness and thickness of the anti-corrosion coating, the weldability is not adversely affected due to the invention prescribed distribution of its Al content.

Besonders gute Produktergebnisse stellen sich ein, wenn die Badtemperatur des Schmelzenbades 440 - 480 °C beträgt.Particularly good product results occur when the bath temperature of the melt bath is 440-480 ° C.

Überraschend hat sich herausgestellt, dass die Geschwindigkeit, mit der das Stahlsubstrat das Schmelzenbad durchläuft, nur einen untergeordneten Einfluss auf das Beschichtungsergebnis hat. Daher kann sie beispielsweise im Bereich von 50 - 200 m/min variiert werden, um das jeweils optimale Arbeitsergebnis bei maximaler Produktivität zu erzielen.Surprisingly, it has been found that the speed with which the steel substrate passes through the melt bath has only a minor influence on the coating result. Therefore, it can be varied in the range of 50 - 200 m / min, for example, in order to achieve the optimum work result at maximum productivity.

Die dem Schmelzenbad vorausgehende Glühung des Stahlbands sollte unter einer Schutzgasatmosphäre durchgeführt werden, um eine Oxidation der Blechoberfläche zu vermeiden. Dazu enthält die Schutzgasatmosphäre in an sich bekannter Weise mehr als 3,5 Vol.-% H2 und jeweils als Rest N2. Die Glühtemperatur liegt dabei in ebenfalls an sich bekannter Weise im Bereich von 700 - 900 °C.The annealing of the steel strip, which precedes the melt bath, should be carried out under a protective gas atmosphere in order to avoid oxidation of the sheet surface. For this purpose, the protective gas atmosphere in a conventional manner contains more than 3.5 vol .-% H 2 and in each case as the radical N 2 . The annealing temperature is also in a known manner in the range of 700 - 900 ° C.

Indem die Bandeintrittstemperatur des Stahlsubstrats im Bereich von -10 °C bis +70 °C von der Temperatur des Schmelzenbades abweicht, wird auch erreicht, dass das Schmelzenbad seine optimale Temperatur trotz des Eintritts des Stahlsubstrats gleichmäßig beibehält.By deviating the strip entrance temperature of the steel substrate in the range of -10 ° C to +70 ° C from the temperature of the melt bath, it is also achieved that the melt bath maintains its optimum temperature evenly despite the entry of the steel substrate.

Das Schmelzenbad selbst enthält bevorzugt allenfalls Spuren von Eisen, da sich erfindungsgemäß der Fe-Gehalt der Korrosionsüberzugsschicht durch Einlegierung von Eisen einstellen soll, der aus dem Stahlsubstrat stammt. Dementsprechend ist der Fe-Gehalt des Schmelzenbades bevorzugt auf höchstens 0,1 Gew.-%, insbesondere höchstens 0,07 Gew.-% beschränkt.The melt bath itself preferably contains at best traces of iron, since according to the invention the Fe content of the corrosion-coating layer is to be established by alloying in iron originating from the steel substrate. Accordingly, the Fe content of the melt bath is preferably limited to at most 0.1 wt%, more preferably at most 0.07 wt%.

Die gute Verarbeitbarkeit, der gleichzeitig gute Korrosionsschutz und die gute Phosphatierbarkeit sind unabhängig von der Art und Beschaffenheit des Stahlsubstrats gegeben. So haben praktische Versuche ergeben, dass keine wesentlichen Unterschiede in den Eigenschaften von erfindungsgemäß hergestellten Stahlflachprodukten eintreten, wenn es sich bei dem Stahlsubstrat um einen IF-Stahl, beispielsweise einen konventionellen mikro-legierten Stahl, oder einen normal legierten Stahl, wie einem konventionellen Qualitätsstahl, handelt.The good processability, the simultaneously good corrosion protection and the good phosphatability are given regardless of the nature and condition of the steel substrate. Thus, practical experiments have shown that there are no significant differences in the properties of flat steel products produced according to the invention when the steel substrate is an IF steel, for example a conventional micro-alloyed steel, or a normal one alloyed steel, like a conventional quality steel.

Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen erläutert. Es zeigen:

Diag. 1
die bildliche Darstellung der durch eine GDOS-Messung ermittelten Verteilung der Gehalte an Zn, Mg, Al und Fe über die Dicke eines auf einem Stahlsubstrat aufgebrachten ersten Korrosionsschutzüberzugs;
Diag. 2
die bildliche Darstellung der Verteilung der durch eine GDOS-Messung ermittelten Gehalte an Zn, Mg, Al und Fe über die Dicke eines auf einem Stahlsubstrat aufgebrachten zweiten Korrosionsschutzüberzugs.
The invention will be explained below with reference to exemplary embodiments. Show it:
Diag. 1
the pictorial representation of the distribution of the contents of Zn, Mg, Al and Fe over the thickness of a first anticorrosive coating applied to a steel substrate, as determined by a GDOS measurement;
Diag. 2
the representation of the distribution of determined by a GDOS measurement levels of Zn, Mg, Al and Fe over the thickness of a deposited on a steel substrate second corrosion protection coating.

Zur Herstellung von gut punktschweißbaren und phosphatierbaren Proben von Stahlflachprodukten mit hoher Korrosionsbeständigkeit ist auf ein als Stahlsubstrat dienendes Stahlband unter einer 5 % H2 enthaltenden Stickstoffatmosphäre, deren Taupunkt bei -30 °C ± 2 °C lag, für eine Haltezeit von jeweils 60 s geglüht worden. Die Glühtemperatur betrug 800 °C bei einer Aufheizrate von 10 °C/s.For the production of good spot-weldable and phosphatizable samples of high corrosion resistant steel flat products, a steel atmosphere steel strip under a nitrogen atmosphere containing 5% H 2 and having a dew point of -30 ° C ± 2 ° C is annealed for a holding time of 60 s each Service. The annealing temperature was 800 ° C at a heating rate of 10 ° C / s.

Nach dem Glühen ist das Stahlband mit einer Abkühlrate von 5 bis 30 °C/s beschleunigt auf eine Temperatur von 470 °C ± 5 °C abgekühlt worden, auf der es für 30 s gehalten worden ist. Anschließend ist das Stahlband mit einer Bandeintauchgeschwindigkeit von 100 m/min in ein Schmelzenbad geleitet worden, dessen Badtemperatur 460 °C ± 5 °C betrug. Die Bandeintrittstemperatur des Stahlbands lag jeweils 5 °C oberhalb der Badtemperatur des Schmelzenbades.After annealing, the steel strip was quenched at a cooling rate of 5 to 30 ° C / s to a temperature of 470 ° C ± 5 ° C where it was held for 30 seconds. Then the steel strip is with a belt immersion speed of 100 m / min was passed into a melt bath whose bath temperature was 460 ° C ± 5 ° C. The strip inlet temperature of the steel strip was in each case 5 ° C. above the bath temperature of the melt bath.

Die jeweilige Zusammensetzung des Schmelzenbades sowie die Analysen des sich durch die Feuerverzinkung im Schmelzenbad auf der Ober- und Unterseite des Korrosionsschutzüberzuges sind in Tabelle 1 für zwölf in der voranstehend beschriebenen Weise beschichtete Proben E1 - E12 - soweit ermittelt - zusammengestellt. Es zeigt sich, dass die auf dem Stahlsubstrat jeweils gebildeten Überzüge hohe Anteile an Fe aufweisen. Die im Zuge der Erzeugung des Überzugs eingetretene Auflegierung mit Fe stellt ein besonders hohes Haftungsvermögen des Überzugs auf dem Stahlsubstrat sicher.The respective composition of the melt bath and the analyzes of the hot dip galvanizing in the melt bath on the top and bottom of the anti-corrosion coating are summarized in Table 1 for twelve coated in the manner described above E1 - E12 - as far as determined. It turns out that the coatings formed on the steel substrate each have high levels of Fe. The alloying with Fe which occurs during the production of the coating ensures a particularly high adhesion of the coating to the steel substrate.

Darüber hinaus ergaben Analysen der Verteilung der Gehalte an Zn, Al, Mg und Fe über die Dicke des jeweils auf dem Stahlsubstrat gebildeten Korrosionsschutzüberzugs, dass der Al-Gehalt des Überzugs in einer oberflächennahen Zwischenschicht, deren Dicke jeweils mehr als 25 % der Auflagendicke (Gesamtdicke) des Überzugs beträgt, jeweils unter 0,2 % liegt. Die entsprechende Verteilung über die Dicke D (Oberfläche D = 0 µm) ist für die Proben E1 und E2 in den Diagrammen 1 und 2 bildlich dargestellt.In addition, analysis of the distribution of contents of Zn, Al, Mg and Fe over the thickness of the anticorrosive coating formed on the steel substrate revealed that the Al content of the coating in a near-surface intermediate layer each exceeding 25% of the overlay thickness (total thickness ) of the coating is less than 0.2%. The corresponding distribution across the thickness D (surface D = 0 μ m) is shown pictorially for the samples E1 and E2 in the diagrams 1 and 2.

In den Diagrammen ist zu erkennen, dass sich an der Oberfläche des jeweiligen Überzugs eine Oberflächengrenzschicht gebildet hat, deren Al-Gehalt in Folge von Oxidation hoch ist. Die Dicke dieser Oberflächengrenzschicht liegt jedoch bei maximal 0,2 µm und wird daher beim Punkt- oder Laserschweißen leicht durchbrochen, ohne dass es zu einer Beeinträchtigung der Qualität des Schweißergebnisses kommt.It can be seen in the diagrams that a surface boundary layer has formed on the surface of the respective coating whose Al content is high as a result of oxidation. However, the thickness of this surface boundary layer is at most 0.2 μ m and is therefore easily broken in the spot or laser welding, without causing a deterioration in the quality of the welding result.

An die Oberflächengrenzschicht schließt sich die etwa 2,5 µm dicke Zwischenschicht an, deren Al-Gehalt jeweils unter 0,2 % liegt. Die Dicke der Zwischenschicht liegt somit bei rund 36 % der Gesamtauflagendicke des jeweiligen Korrosionsschutzüberzugs von 7 µm.The about 2.5 μ m thick intermediate layer to the surface boundary layer includes, whose Al content is below 0.2%, respectively. The thickness of the intermediate layer is therefore approximately 36% of the total overlay thickness of the respective anti-corrosion coating of 7 μm .

Die Zwischenschicht geht über in eine am Stahlsubstrat anliegende Grenzschicht, in der die Gehalte an Al, Mg und Fe gegenüber den korrespondierenden Gehalten der Zwischenschicht deutlich angestiegen sind.The intermediate layer merges into a boundary layer adjacent to the steel substrate, in which the contents of Al, Mg and Fe have increased significantly compared with the corresponding contents of the intermediate layer.

Um die Abhängigkeit des Schichtaufbaus und der Zusammensetzung eines erfindungsgemäß erzeugten Korrosionsüberzugs vom jeweils verarbeiteten Stahlsubstrat und von der Bandeintritts- bzw. Badtemperatur zu überprüfen, sind basierend auf einem konventionellen mikro-legierten Stahl IF und einem ebenso konventionellen Qualitätsstahl QS weitere Proben E13 - E22 im Laborversuch mit einem Korrosionsschutzüberzug erzeugt worden. Die Zusammensetzung der Stähle IF und QS sind in Tabelle 3 angegeben.In order to check the dependence of the layer structure and the composition of a corrosion coating produced according to the invention from the respectively processed steel substrate and from the strip inlet or bath temperature, further samples E13-E22 are in laboratory experiment based on a conventional micro-alloyed steel IF and a likewise conventional quality steel QS produced with a corrosion protection coating. The composition of the steels IF and QS are given in Table 3.

Die bei den Laborversuchen eingestellten Betriebsparameter sowie eine Analyse der entsprechend erzeugten Überzugsschicht sind in Tabelle 2 zusammengefasst. Es zeigte sich, dass das Ergebnis der Beschichtung insbesondere im Hinblick auf die Einbindung von hohen aus dem Stahlsubstrat stammenden Fe-Gehalten und die Ausbildung der oberflächennahen Zwischenschicht mit unterhalb von 0,25 Gew.-% liegenden Al-Gehalten unabhängig von der Zusammensetzung des Stahlsubstrats ist.The operating parameters set in the laboratory tests and an analysis of the correspondingly produced coating layer are summarized in Table 2. It was found that the result of the coating, in particular with regard to the incorporation of high Fe contents originating from the steel substrate, and the formation of the near-surface intermediate layer having Al contents below 0.25% by weight, irrespective of the composition of the steel substrate.

Insgesamt haben an den Proben E1 - E22 vorgenommene Untersuchungen bestätigt, dass bei einem erfindungsgemäß erzeugten Korrosionsschutzüberzug in der unmittelbar an die Oberfläche des Überzugs angrenzenden Oberflächengrenzschicht die Elemente Mg und Al als Oxid angereichert vorhanden sind. Daneben liegt Zn-Oxid an der Oberfläche vor.Overall, investigations carried out on samples E1-E22 have confirmed that in the case of a corrosion protection coating produced according to the invention in the surface boundary layer immediately adjacent to the surface of the coating, the elements Mg and Al are enriched in the form of oxide. In addition, Zn oxide is present on the surface.

Zusätzlich sind Betriebsversuche B1 - B19 durchgeführt worden, bei denen als Stahlsubstrat aus dem Qualitätsstahl QS bestehende Stahlbänder verwendet worden sind. Die dabei eingestellten Betriebsparameter, die jeweilige Schmelzenbadzusammensetzung sowie eine Analyse der jeweils auf dem Stahlsubstrat erhaltenen Korrosionsschutzschicht sind in Tabelle 4 angegeben.In addition, operational tests B1 - B19 were carried out, in which existing steel strips were used as steel substrate made of quality steel QS. The operating parameters set, the respective Schmelzenbadzusammensetzung and an analysis of each obtained on the steel substrate corrosion protection layer are given in Table 4.

Die Betriebsversuche haben das Ergebnis der vorangegangenen Laborversuche im vollen Umfang bestätigt. Die Dicke der die oberflächige Oxidation aufnehmenden Oberflächengrenzschicht beträgt bei den untersuchten Proben max. 0,2 µm und liegt bezogen auf das bei einer GDOS-Messung ermittelte Schichtprofil jeweils im Bereich von bis zu 2,7 % der Gesamtauflagendicken. Der Betrag der Al-Anreicherung an der unmittelbaren Oberfläche liegt maximal bei etwa 1 Gew.-%. Daran schließt sich bis zu einer Dicke von mindestens 25 % der Gesamtauflage des Überzuges die Zwischenschicht mit niedrigem Al-Gehalt von maximal 0,25 Gew.-% an. In der Grenzschicht steigt danach der Al-Gehalt bis 4,5 % an der Grenze zum Stahlsubstrat an. Die Mg-Anreicherung an der unmittelbaren Oberfläche des Überzugs ist deutlich größer als die Al-Anreicherung. Es werden hier Mg-Anteile von bis zu 20 % erreicht. Danach nimmt der Mg-Anteil über die Zwischenschicht ab und beträgt in einer Tiefe von etwa 25 % der Gesamtauflagendicke des Überzuges 0,5 bis 2 %. Über die Grenzschicht findet dann ein Anstieg auch des Mg-Gehaltes in Richtung des Stahlsubstrats ab. An der Grenze zum Stahlsubstrat beträgt der Mg-Gehalt bis zu 3,5 %. Tabelle 1 Probe Erfindungsgemäß? Schmelzenbad Schichtanalyse Oberseite Schichtanalyse Unterseite Al Fe Mg Al Fe Mg Auflagen gewicht Auflage dicke Al Fe Mg Auflagen gewicht Auflage dicke % *) % *) g/m2 µm % *) g/m2 µm E1 JA 0,201 0,011 1,589 1,16 1,06 1,52 41,5 7,0 n.e. n.e. n.e. n. e 9,0 E2 JA 0,205 0,090 2,024 1,18 1,07 1,90 40,5 7,0 n.e. n.e. n.e. n. e 8,5 E3 JA 0,189 0,021 0,733 0,47 0,37 0,75 75,9 10,6 n.e. n.e. n.e. n. e 7,7 E4 NEIN 0,189 0,021 0,733 0,66 0,58 0,75 50,0 6,7 1,61 1,69 0,77 17,6 2,1 E5 NEIN 0,202 0,013 0,790 1,38 1,37 0,76 20,7 4,0 n.e. n.e. n.e. n. e 2,9 E6 JA 0,209 n.e. 0,825 0,63 0,55 0,81 47,8 n.e. 0,71 0,61 0,82 43,5 n.e. E7 JA 0,218 n.e. 0,498 0,87 0,8 0,48 37,4 n.e. 1,22 1,25 0,48 24,4 n.e. E8 JA 0,218 n.e. 0,498 0,69 0,57 0,47 57,3 n.e. 1,19 1,11 0,48 30,1 n.e. E9 JA 0,231 n.e. 1,265 1,16 1,13 1,29 35,1 n.e. 1,96 2,15 1,29 20,0 n.e. E10 JA 0,231 n.e. 1,265 1,12 1,11 1,24 28,7 n.e. 1,35 1,42 1,24 21,4 n.e. E11 JA 0,196 n.e. 0,288 1,65 1,94 n.e. 27,3 n.e. 2,96 3,88 0,27 14,6 n.e. E12 JA 0,200 0,011 0,297 1,02 1,09 n.e. 43,2 n.e. 0,59 0,62 0,27 83,8 n.e. *)Rest Zn und unvermeidbare Verunreinigungen; n.e. = nicht ermittelt Tabelle 2 Probe Stahl Glühtemp. Bandeintrittstemperatur Badtemperatur Auflagengewicht Al Fe Mg Al Fe Mg [°C] [°C] [°C] [g/m2] [%] [g/m2] E13 IF 800 445 440 51,6 0,52 0,36 1,21 0,27 0,19 0,62 E14 QS 800 445 440 55,9 0,56 0,40 1,16 0,31 0,22 0,65 E15 IF 800 465 460 64,3 0,81 0,75 1,15 0,52 0,48 0,74 E16 QS 750 465 460 54,1 0,98 0,84 1,21 0,53 0,45 0,65 E17 IF 800 485 460 49,4 1,08 0,97 1,18 0,53 0,48 0,58 E18 QS 750 485 460 55,1 0,97 0,84 1,19 0,53 0,46 0,66 E19 IF 800 500 460 54,3 1,14 1,08 1,20 0,62 0,59 0,65 E20 QS 750 500 460 36,7 1,50 1,41 1,19 0,55 0,52 0,44 E21 IF 800 485 480 62,4 1,15 1,26 1,15 0,72 0,79 0,72 E22 QS 750 485 480 43,6 1,57 1,68 1,16 0,68 0,73 0,51 Tabelle 3 Stahl C Si Mn P S Ti Al [Gew.-%] IF 0,003 0,02 0,13 0,010 0,012 0,07 0,03 QS 0,07 0,04 0,40 0,012 0,005 0,005 0,04 Rest Eisen und unvermeidbare Verunreinigungen Tabelle 4 Versuch Erfindungs-gemäß? Bandeintrittstemperatur BET Badtemperatur BT Differenz BET-BT Überzugdicke Auflagengewicht Al Fe Mg Al Fe [°C] [µm] [g/m2] [Gew.-%] *) [g/m2] B1 NEIN 516 466 50 4,9 34,7 1,61 1,46 0,81 0,56 0,51 B2 JA 536 478 58 7,8 55,1 1,00 0,88 0,82 0,55 0,48 B3 JA 500 472 28 11,4 80,6 0, 65 0,51 0,82 0, 52 0,41 B4 JA 522 472 50 10,2 72,1 0, 94 0,82 0,81 0,68 0,59 B5 JA 493 467 26 5,7 40,2 0,66 0,47 0,81 0,27 0,19 B6 NEIN 457 456 1 11,2 79,2 0,43 0,20 0,81 0,34 0,15 B7 NEIN 483 464 19 4,8 34,4 0, 97 0,92 0,83 0, 33 0,32 B8 JA 509 466 43 9,2 65,5 0,72 0,61 0,81 0,47 0,40 B9 JA 509 466 43 9,5 67,7 0,84 0,74 0,81 0,57 0,50 B10 JA 506 471 35 7,0 49,6 1,14 1,05 0,81 0,56 0,52 B11 JA 506 471 35 5,2 37,1 1,13 1,05 0,81 0,42 0,39 B12 JA 521 457 64 5,5 39,1 1,32 1,22 0,81 0,51 0,48 B13 JA 521 457 64 8,1 57,6 1,01 0, 94 0,81 0,58 0,54 B14 JA 479 460 19 7,3 51,8 0,55 0,41 1,11 0,28 0,21 B15 JA 479 460 19 10,7 75,8 0,46 0,29 1,10 0,35 0,22 B16 NEIN 460 471 -11 4,3 30,7 0,66 0,56 1,11 0,20 0,17 B17 NEIN 460 471 -11 7,1 50,5 0,47 0,32 1,11 0,24 0,16 B18 JA 460 460 0 7,2 50,9 0,48 0,32 1,11 0,24 0,16 B19 NEIN 460 460 0 4, 6 32,6 0,79 0,65 1,11 0,26 0,21 Mittel Mittel 494 466 28 7,4 52,9 0,83 0, 42 0,70 0,35 0,91 Max Max 536 478 64 11,4 80,6 1,61 0,68 1,46 0,59 1,11 Min Min 457 456 -11 4,3 30,7 0,43 0,20 0,20 0,15 0,81 *)Rest Zn und unvermeidbare Verunreinigungen; The operational tests have fully confirmed the result of the previous laboratory tests. The thickness of the superficial oxidation surface boundary layer is max. 0.2 μ m and is based on the determined in a GDOS measurement layer profile in each case in the range of up to 2.7% of the total overlay thicknesses. The amount of Al enrichment on the immediate surface is at most about 1 wt .-%. This is followed up to a thickness of at least 25% of the total overlay of the coating, the intermediate layer with a low Al content of not more than 0.25 wt .-% of. In the boundary layer, the Al content rises to 4.5% at the Border to the steel substrate. The Mg enrichment on the immediate surface of the coating is significantly greater than the Al enrichment. Mg contents of up to 20% are achieved here. Thereafter, the amount of Mg decreases over the intermediate layer and is 0.5 to 2% at a depth of about 25% of the total overlay thickness of the overlay. An increase of the Mg content in the direction of the steel substrate then takes place via the boundary layer. At the border to the steel substrate, the Mg content is up to 3.5%. Table 1 sample According to the invention? melt bath Layer analysis top Shift analysis bottom al Fe mg al Fe mg Editions weight Thickness al Fe mg Editions weight Thickness % *) % *) g / m 2 μ m % *) g / m 2 μ m E1 YES 0.201 0.011 1,589 1.16 1.06 1.52 41.5 7.0 ne ne ne n. e 9.0 E2 YES 0,205 0,090 2,024 1.18 1.07 1.90 40.5 7.0 ne ne ne n. e 8.5 E3 YES 0,189 0,021 0.733 0.47 0.37 0.75 75.9 10.6 ne ne ne n. e 7.7 E4 NO 0,189 0,021 0.733 0.66 0.58 0.75 50.0 6.7 1.61 1.69 0.77 17.6 2.1 E5 NO 0.202 0,013 0,790 1.38 1.37 0.76 20.7 4.0 ne ne ne n. e 2.9 E6 YES 0.209 ne 0.825 0.63 0.55 0.81 47.8 ne 0.71 0.61 0.82 43.5 ne E7 YES 0.218 ne 0.498 0.87 0.8 0.48 37.4 ne 1.22 1.25 0.48 24.4 ne E8 YES 0.218 ne 0.498 0.69 0.57 0.47 57.3 ne 1.19 1.11 0.48 30.1 ne E9 YES 0.231 ne 1,265 1.16 1.13 1.29 35.1 ne 1.96 2.15 1.29 20.0 ne E10 YES 0.231 ne 1,265 1.12 1.11 1.24 28.7 ne 1.35 1.42 1.24 21.4 ne E11 YES 0.196 ne 0,288 1.65 1.94 ne 27.3 ne 2.96 3.88 0.27 14.6 ne E12 YES 0,200 0.011 0.297 1.02 1.09 ne 43.2 ne 0.59 0.62 0.27 83.8 ne *) Balance Zn and unavoidable impurities; ne = not determined sample stole Glühtemp. Strip inlet temperature bath temperature bearing weight al Fe mg al Fe mg [° C] [° C] [° C] [g / m 2 ] [%] [g / m 2 ] E13 IF 800 445 440 51.6 0.52 0.36 1.21 0.27 0.19 0.62 E14 QS 800 445 440 55.9 0.56 0.40 1.16 0.31 0.22 0.65 E15 IF 800 465 460 64.3 0.81 0.75 1.15 0.52 0.48 0.74 E16 QS 750 465 460 54.1 0.98 0.84 1.21 0.53 0.45 0.65 E17 IF 800 485 460 49.4 1.08 0.97 1.18 0.53 0.48 0.58 E18 QS 750 485 460 55.1 0.97 0.84 1.19 0.53 0.46 0.66 E19 IF 800 500 460 54.3 1.14 1.08 1.20 0.62 0.59 0.65 E20 QS 750 500 460 36.7 1.50 1.41 1.19 0.55 0.52 0.44 E21 IF 800 485 480 62.4 1.15 1.26 1.15 0.72 0.79 0.72 E22 QS 750 485 480 43.6 1.57 1.68 1.16 0.68 0.73 0.51 stole C Si Mn P S Ti al [Wt .-%] IF 0,003 0.02 0.13 0,010 0,012 0.07 0.03 QS 0.07 0.04 0.40 0,012 0.005 0.005 0.04 Remaining iron and unavoidable impurities attempt Inventions according to? Strip inlet temperature BET Bath temperature BT Difference BET-BT coating thickness bearing weight al Fe mg al Fe [° C] [.Mu.m] [G / m2] [% By weight] *) [G / m2] B1 NO 516 466 50 4.9 34.7 1.61 1.46 0.81 0.56 0.51 B2 YES 536 478 58 7.8 55.1 1.00 0.88 0.82 0.55 0.48 B3 YES 500 472 28 11.4 80.6 0, 65 0.51 0.82 0, 52 0.41 B4 YES 522 472 50 10.2 72.1 0, 94 0.82 0.81 0.68 0.59 B5 YES 493 467 26 5.7 40.2 0.66 0.47 0.81 0.27 0.19 B6 NO 457 456 1 11.2 79.2 0.43 0.20 0.81 0.34 0.15 B7 NO 483 464 19 4.8 34.4 0, 97 0.92 0.83 0, 33 0.32 B8 YES 509 466 43 9.2 65.5 0.72 0.61 0.81 0.47 0.40 B9 YES 509 466 43 9.5 67.7 0.84 0.74 0.81 0.57 0.50 B10 YES 506 471 35 7.0 49.6 1.14 1.05 0.81 0.56 0.52 B11 YES 506 471 35 5.2 37.1 1.13 1.05 0.81 0.42 0.39 B12 YES 521 457 64 5.5 39.1 1.32 1.22 0.81 0.51 0.48 B13 YES 521 457 64 8.1 57.6 1.01 0, 94 0.81 0.58 0.54 B14 YES 479 460 19 7.3 51.8 0.55 0.41 1.11 0.28 0.21 B15 YES 479 460 19 10.7 75.8 0.46 0.29 1.10 0.35 0.22 B16 NO 460 471 -11 4.3 30.7 0.66 0.56 1.11 0.20 0.17 B17 NO 460 471 -11 7.1 50.5 0.47 0.32 1.11 0.24 0.16 B18 YES 460 460 0 7.2 50.9 0.48 0.32 1.11 0.24 0.16 B19 NO 460 460 0 4, 6 32.6 0.79 0.65 1.11 0.26 0.21 medium medium 494 466 28 7.4 52.9 0.83 0, 42 0.70 0.35 0.91 Max Max 536 478 64 11.4 80.6 1.61 0.68 1.46 0.59 1.11 min min 457 456 -11 4.3 30.7 0.43 0.20 0.20 0.15 0.81 *) Balance Zn and unavoidable impurities;

Claims (4)

  1. Method for the production of a flat steel product, in which on the steel substrate, such as a steel belt or a steel sheet, a corrosion protective coating with a total thickness of at least 5 µm is generated, while the steel substrate is annealed under a protective gas atmosphere containing more than 3.5 volume percent H2 and as a residue N2 at an annealing temperature of 700 - 900 °C and starting from the annealing temperature is cooled to a belt entry temperature, with which the steel substrate enters into a molten bath (in weight percent) 0.1 - 0.4 % Al, 0.25 - 2.5 % Mg. up to 0.2 % Fe, containing residue zinc as well as unavoidable impurities and heated to a bath temperature of 420 - 500 °C, wherein the difference "BET-BT" between the belt entry temperature "BET" and the bath temperature "BT" is -10 °C to + 70 °C and is varied such that a corrosion protective coating is formed on the steel substrate, which in (in weight percent)
    Mg: 0.25 - 2.5 %,
    Al: 0.2 - 3.0 %,
    Fe: more than 0.3 - 4.0%,
    as well as optionally in total up to 0.8% of one or several elements from the group "Pb, Bi, Cd, Ti, B, Si, Cu, Ni, Co, Cr, Mn, Sn as well as rare earths,"
    contains residue zinc and unavoidable impurities and which in an intermediate layer, which extends between a surface layer directly abutting the surface of the flat steel product and a boundary layer abutting the steel substrate and the thickness of which is at least 20 % of the total thickness of the corrosion protective layer, has an Al content of at most 0.5 weight percent.
  2. Method according to Claim 1, characterised in that the bath temperature is 440 - 480 °C.
  3. Method according to any one of the preceding claims, characterised in that the belt entry temperature is 410 - 510 °C.
  4. Method according to any one of the preceding claims, characterised in that the Fe-content of the molten bath is ≤ 0.1 weight percent.
EP06113962.2A 2006-05-15 2006-05-15 Flat steel product provided with a corrosion protection coating and method of its manufacture Not-in-force EP1857566B1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
PL06113962T PL1857566T3 (en) 2006-05-15 2006-05-15 Flat steel product provided with a corrosion protection coating and method of its manufacture
EP06113962.2A EP1857566B1 (en) 2006-05-15 2006-05-15 Flat steel product provided with a corrosion protection coating and method of its manufacture
ES06113962.2T ES2636442T3 (en) 2006-05-15 2006-05-15 Flat steel product provided with an anticorrosive coating and manufacturing process
CN2007800176280A CN101454473B (en) 2006-05-15 2007-05-15 Sheet steel product provided with an anticorrosion coating and process for producing it
PCT/EP2007/054711 WO2007132007A1 (en) 2006-05-15 2007-05-15 Sheet steel product provided with an anticorrosion coating and process for producing it
JP2009510444A JP5586224B2 (en) 2006-05-15 2007-05-15 Flat steel product with anticorrosion coating and method for producing flat steel product with anticorrosion coating
AU2007251550A AU2007251550B2 (en) 2006-05-15 2007-05-15 Sheet steel product provided with an anticorrosion coating and process for producing it
US12/300,968 US8481172B2 (en) 2006-05-15 2007-05-15 Steel sheet product provided with an anticorrosion coating and process for producing it
CA2650800A CA2650800C (en) 2006-05-15 2007-05-15 Flat steel product with a corrosion protection coating and method for its production
KR1020087027954A KR101399085B1 (en) 2006-05-15 2007-05-15 Sheet steel product provided with an anticorrosion coating and process for producing it
BRPI0711652-7A BRPI0711652B1 (en) 2006-05-15 2007-05-15 FLAT STEEL PRODUCT WITH A CORROSION PROTECTION COATING AND METHOD FOR YOUR PRODUCTION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06113962.2A EP1857566B1 (en) 2006-05-15 2006-05-15 Flat steel product provided with a corrosion protection coating and method of its manufacture

Publications (2)

Publication Number Publication Date
EP1857566A1 EP1857566A1 (en) 2007-11-21
EP1857566B1 true EP1857566B1 (en) 2017-05-03

Family

ID=37075625

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06113962.2A Not-in-force EP1857566B1 (en) 2006-05-15 2006-05-15 Flat steel product provided with a corrosion protection coating and method of its manufacture

Country Status (11)

Country Link
US (1) US8481172B2 (en)
EP (1) EP1857566B1 (en)
JP (1) JP5586224B2 (en)
KR (1) KR101399085B1 (en)
CN (1) CN101454473B (en)
AU (1) AU2007251550B2 (en)
BR (1) BRPI0711652B1 (en)
CA (1) CA2650800C (en)
ES (1) ES2636442T3 (en)
PL (1) PL1857566T3 (en)
WO (1) WO2007132007A1 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5160866B2 (en) * 2007-11-29 2013-03-13 Jfeスチール株式会社 Surface-treated molten Zn-Al alloy-plated steel sheet
EP2290133B1 (en) * 2009-08-25 2012-04-18 ThyssenKrupp Steel Europe AG Method for producing a steel component with an anti-corrosive metal coating and steel component
CN101818316B (en) * 2010-05-11 2011-12-07 昆明理工大学 Zinc-based multi-element alloy for hot dipping and preparation method thereof
DE102010037254B4 (en) 2010-08-31 2012-05-24 Thyssenkrupp Steel Europe Ag Process for hot dip coating a flat steel product
CN101935815A (en) * 2010-09-01 2011-01-05 中国电力科学研究院 Transmission line fastening piece alloy coating and preparation process thereof
KR20120041544A (en) * 2010-10-21 2012-05-02 주식회사 포스코 Galvanized steel sheet having excellent coatability, coating adhesion and spot weldability and method for manufacturing the same
WO2012141659A1 (en) * 2011-04-13 2012-10-18 U.S. STEEL KOŠICE, s.r.o. Method of production of hot dip galvanized flat steel products with improved corrosion resistance
DE102011051731B4 (en) 2011-07-11 2013-01-24 Thyssenkrupp Steel Europe Ag Process for the preparation of a flat steel product provided by hot dip coating with a metallic protective layer
DE102012101018B3 (en) 2012-02-08 2013-03-14 Thyssenkrupp Nirosta Gmbh Process for hot dip coating a flat steel product
EP2703515A1 (en) 2012-09-03 2014-03-05 voestalpine Stahl GmbH Method for applying a protective cover to a flat steel product and flat steel product with such a protective cover
DE102013101134B3 (en) * 2013-02-05 2014-05-08 Thyssenkrupp Steel Europe Ag Metallic, surface-refined by hot dip coating flat product, preferably made of steel
EP2821520B1 (en) 2013-07-03 2020-11-11 ThyssenKrupp Steel Europe AG Method for the coating of steel flat products with a metallic protective layer
GB2521363A (en) * 2013-12-17 2015-06-24 Eaton Ind Netherlands Bv Method for producing a housing for medium voltage switchgear and such a housing
US20170275724A1 (en) * 2014-08-25 2017-09-28 Tata Steel Ijmuiden B.V. Cold rolled high strength low alloy steel
DE102015101312A1 (en) * 2015-01-29 2016-08-04 Thyssenkrupp Steel Europe Ag A method of applying a metallic protective coating to a surface of a steel product
WO2016156896A1 (en) * 2015-03-31 2016-10-06 Arcelormittal Panel for vehicle comprising a coated steel sheet locally reinforced
CN105502060A (en) * 2015-12-22 2016-04-20 常熟市复林造纸机械有限公司 Corrosion-resistant paper guide roll for paper winding machine
KR101767788B1 (en) 2015-12-24 2017-08-14 주식회사 포스코 Plating steel material having excellent friction resistance and white rust resistance and method for manufacturing same
JP6848261B2 (en) * 2016-08-19 2021-03-24 コニカミノルタ株式会社 Radiation image processing equipment and programs
CN108018513A (en) * 2016-10-28 2018-05-11 宝山钢铁股份有限公司 A kind of dip galvanized aluminum magnesium clad steel sheet and its manufacture method
CN108913949A (en) * 2018-07-11 2018-11-30 江苏麟龙新材料股份有限公司 It is a kind of for preplating alloy-steel plate without silicon multicomponent alloy coating material and its manufacturing method
CN108914032A (en) * 2018-07-31 2018-11-30 江苏大力神科技股份有限公司 A kind of continuous producing method of steel band plating magnalium zinc
DE102018132171A1 (en) * 2018-12-13 2020-06-18 Thyssenkrupp Steel Europe Ag Battery case and usage
WO2020245027A1 (en) * 2019-06-03 2020-12-10 Thyssenkrupp Steel Europe Ag Method for producing a sheet-metal component from a steel-plate product which is provided with an anti-corrosion coating
WO2020259842A1 (en) * 2019-06-27 2020-12-30 Thyssenkrupp Steel Europe Ag Method for producing a coated steel flat product, method for producing a steel component and coated steel flat product
DE102019215051A1 (en) * 2019-09-30 2021-04-01 Thyssenkrupp Steel Europe Ag Sheet steel with a deterministic surface structure
CN112941417A (en) * 2021-03-03 2021-06-11 靖江新舟合金材料有限公司 Alloy coated steel plate and production method thereof
CN113430477A (en) * 2021-05-27 2021-09-24 中电建武汉铁塔有限公司 Zinc liquid for batch hot dip galvanizing workpiece and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1621645A1 (en) * 2004-07-28 2006-02-01 Corus Staal BV Steel sheet with hot dip galvanized zinc alloy coating

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1036986B (en) 1975-06-13 1979-10-30 Centro Speriment Metallurg STEEL ALLOY AND COATED ALLOY PRODUCTS
AU525668B2 (en) 1980-04-25 1982-11-18 Nippon Steel Corporation Hot dip galvanizing steel strip with zinc based alloys
JPS5891162A (en) 1981-11-18 1983-05-31 Nisshin Steel Co Ltd Manufacture of galvanized steel plate
US4401727A (en) * 1982-06-23 1983-08-30 Bethlehem Steel Corporation Ferrous product having an alloy coating thereon of Al-Zn-Mg-Si Alloy, and method
US4812371A (en) * 1986-11-17 1989-03-14 Nippon Steel Corporation Zn-Al hot-dip galvanized steel sheet having improved resistance against secular peeling of coating
JP2755387B2 (en) * 1988-04-12 1998-05-20 大洋製鋼株式会社 Manufacturing method of hot-dip zinc-alloy-plated steel sheet for pre-coated steel sheet and pre-coated steel sheet
JPH02285057A (en) * 1989-04-27 1990-11-22 Sumitomo Metal Ind Ltd Method for continuously annealing steel sheet to be galvanized
DE19650157A1 (en) 1996-12-04 1998-06-10 Basf Coatings Ag Process for coating substrates, preferably of metal
US6177140B1 (en) 1998-01-29 2001-01-23 Ispat Inland, Inc. Method for galvanizing and galvannealing employing a bath of zinc and aluminum
JP2000160315A (en) 1998-11-27 2000-06-13 Nippon Steel Corp Hot dip galvannealed steel
JP2000336467A (en) * 1999-03-24 2000-12-05 Kawasaki Steel Corp Galvanized steel sheet and production thereof
US6465114B1 (en) 1999-05-24 2002-10-15 Nippon Steel Corporation -Zn coated steel material, ZN coated steel sheet and painted steel sheet excellent in corrosion resistance, and method of producing the same
JP2002180225A (en) * 2000-12-13 2002-06-26 Nippon Steel Corp Plated steel sheet having excellent corrosion resistance and workability
DE60236447D1 (en) * 2001-10-23 2010-07-01 Sumitomo Metal Ind PROCESS FOR HOT PRESS PROCESSING OF A PLATED STEEL PRODUCT
US6902829B2 (en) 2001-11-15 2005-06-07 Isg Technologies Inc. Coated steel alloy product
DE10300751A1 (en) 2003-01-11 2004-07-22 Chemetall Gmbh Process for coating metallic surfaces, coating composition and coatings produced in this way
JP4377743B2 (en) * 2004-05-06 2009-12-02 新日本製鐵株式会社 High corrosion resistance galvannealed steel sheet
EP1693477A1 (en) * 2005-02-22 2006-08-23 ThyssenKrupp Steel AG Coated steel plate
ES2629109T3 (en) * 2006-05-15 2017-08-07 Thyssenkrupp Steel Europe Ag Procedure for the manufacture of a flat steel product coated with a corrosion protection system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1621645A1 (en) * 2004-07-28 2006-02-01 Corus Staal BV Steel sheet with hot dip galvanized zinc alloy coating

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCHUHMACHER B ET AL: "Element distribution of aluminium and lead in hot-dip galvanized coatings and their influences on the coating properties", PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON ZINC AND ZINC ALLOY COATED STEEL SHEET (GALVATECH '98) MAKUHARI, CHIBA [JP], C11-6, 20 September 1998 (1998-09-20) - 23 September 1998 (1998-09-23), The Iron and Steel Institute of Japan, Tokyo [JP], pages 819 - 824 *

Also Published As

Publication number Publication date
ES2636442T3 (en) 2017-10-05
WO2007132007A1 (en) 2007-11-22
EP1857566A1 (en) 2007-11-21
JP5586224B2 (en) 2014-09-10
BRPI0711652A2 (en) 2011-11-29
CN101454473A (en) 2009-06-10
AU2007251550A1 (en) 2007-11-22
CN101454473B (en) 2013-09-18
PL1857566T3 (en) 2017-10-31
CA2650800C (en) 2013-12-03
BRPI0711652B1 (en) 2018-03-06
US20100024925A1 (en) 2010-02-04
AU2007251550B2 (en) 2012-05-03
KR101399085B1 (en) 2014-05-27
KR20090007597A (en) 2009-01-19
JP2009537697A (en) 2009-10-29
CA2650800A1 (en) 2007-11-22
US8481172B2 (en) 2013-07-09

Similar Documents

Publication Publication Date Title
EP1857566B1 (en) Flat steel product provided with a corrosion protection coating and method of its manufacture
EP2432910B2 (en) Method for hot-dip coating a flat steel product containing 2-35 wt% mn and flat steel product
EP1658390B1 (en) Method for producing a hardened steel part
EP1819840B1 (en) Method for hot dip coating a strip of heavy-duty steel
DE69930291T2 (en) High-strength hot-dip galvanized steel sheet with excellent plating adhesion and press formability, and process for its production
EP2848709B1 (en) Method for producing a steel component with an anti-corrosive metal coating and steel component
EP2055799A1 (en) Flat steel product with an anti-corrosion metal coating and method for creating an anti-corrosion metal coating on a flat steel product
DE202005022081U1 (en) Sheet steel with galvanized zinc alloy coating
WO2007124781A1 (en) Hot dip coating process for a steel plate product made of high strengthheavy-duty steel
EP2402472A1 (en) High-tensile, cold formable steel and flat steel product composed of such steel
EP2924141A1 (en) Cold rolled steel flat product and method for its production
EP2976442B1 (en) Method for improving the weldability of high-manganese-containing steel strips
EP3583238A1 (en) Method for producing steel sheets, steel sheet, and use thereof
EP2208803A1 (en) High-tensile, cold formable steel, steel flat product, method for producing a steel flat product and use of a steel flat product
DE202018006293U1 (en) Hot-dip coated steel sheet
EP4208576A1 (en) Steel component produced by hot-shaping a steel flat product, steel flat product and method for producing a steel component
DE102013101134B3 (en) Metallic, surface-refined by hot dip coating flat product, preferably made of steel
EP3583237A1 (en) Method for producing steel sheets, steel sheet and use thereof
EP3775299B1 (en) Method for producing from a steel flat a steel component provided with a coating
DE69701070T2 (en) Hot-dip galvanized steel sheet and manufacturing process therefor
EP3332048B1 (en) Method for producing a zinc-magnesium-galvannealed hot-dip coating and flat steel product provided with such a coating
DE69408739T2 (en) Surface-treated steel sheet and method of manufacturing the same
EP4045314B1 (en) Method for producing a flat steel product, and method for producing a component therefrom
EP3894603B1 (en) Method for producing a coated steel flat product, method for producing a steel component and coated steel flat product ii
EP3356565B1 (en) Steel-sheet product and steel component produced by forming such a steel-sheet product

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080507

17Q First examination report despatched

Effective date: 20080605

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP STEEL EUROPE AG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502006015492

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C23C0002060000

Ipc: C23C0002020000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 2/06 20060101ALI20160914BHEP

Ipc: C23C 2/02 20060101AFI20160914BHEP

INTG Intention to grant announced

Effective date: 20161007

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTC Intention to grant announced (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

INTG Intention to grant announced

Effective date: 20170316

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 890071

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006015492

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2636442

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20171005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170803

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170903

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006015492

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170515

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20200527

Year of fee payment: 15

Ref country code: LU

Payment date: 20200520

Year of fee payment: 15

Ref country code: DE

Payment date: 20200520

Year of fee payment: 15

Ref country code: FR

Payment date: 20200522

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20200527

Year of fee payment: 15

Ref country code: GB

Payment date: 20200527

Year of fee payment: 15

Ref country code: PL

Payment date: 20200511

Year of fee payment: 15

Ref country code: IT

Payment date: 20200528

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20200522

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200728

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006015492

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210601

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 890071

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210515

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210515

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210515

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210515

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210601

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200515