EP2821520B1 - Method for the coating of steel flat products with a metallic protective layer - Google Patents

Method for the coating of steel flat products with a metallic protective layer Download PDF

Info

Publication number
EP2821520B1
EP2821520B1 EP13174979.8A EP13174979A EP2821520B1 EP 2821520 B1 EP2821520 B1 EP 2821520B1 EP 13174979 A EP13174979 A EP 13174979A EP 2821520 B1 EP2821520 B1 EP 2821520B1
Authority
EP
European Patent Office
Prior art keywords
flat steel
steel product
ions
bath
maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13174979.8A
Other languages
German (de)
French (fr)
Other versions
EP2821520A1 (en
Inventor
Marc Dr.-Ing. Blumenau
Dirk Czupryna
Christopher Dr.-Ing. Gusek
Hans-Joachim Heiler
Fred Jindra
Peter Schmidt
Rudolf Schönenberg
Jennifer Schulz
Hans-Joachim Dr.Rer.Nat. Krautschick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Outokumpu Nirosta GmbH
Original Assignee
ThyssenKrupp Steel Europe AG
Outokumpu Nirosta GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG, Outokumpu Nirosta GmbH filed Critical ThyssenKrupp Steel Europe AG
Priority to ES13174979T priority Critical patent/ES2851199T3/en
Priority to EP13174979.8A priority patent/EP2821520B1/en
Priority to PCT/EP2014/062879 priority patent/WO2015000707A1/en
Publication of EP2821520A1 publication Critical patent/EP2821520A1/en
Application granted granted Critical
Publication of EP2821520B1 publication Critical patent/EP2821520B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/30Fluxes or coverings on molten baths
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching

Definitions

  • the invention relates to a method for coating flat steel products with a Zn- or Al-based metallic protective coating.
  • the "flat steel products" to be coated in the context of the invention are strips or sheets produced from steel by hot or cold rolling, as well as blanks and blanks obtained therefrom.
  • Flat steel products that are made from corrosion-sensitive steels and are to be used in an environment in which there is an increased risk of corrosion are usually provided with a metallic protective coating that protects the respective steel substrate against corrosive attacks.
  • a tried and tested method for applying such a coating is hot dip coating, in which the flat steel product is passed through a melt bath after a pretreatment within a short immersion period so that a coating of a defined thickness adheres to the flat steel product when it leaves the melt bath.
  • the thickness of the coating can be adjusted by means of suitable stripping devices, which the flat steel product passes when it exits the molten bath.
  • hot-rolled wide strips are to be provided with a hot-dip coating, they can be descaled in a pickling device before the annealing treatment.
  • pickling agents which contain a correspondingly aggressive acid, in particular hydrochloric or sulfuric acid, the scale present on the hot-rolled wide band is dissolved.
  • narrow belts with a width of max. 600 mm can not be coated cost-covering with the coating methods proven for wide belts.
  • wide belts are longitudinally divided into narrow belts of a predetermined width, which then pass through a pickling device parallel to one another in order to loosen and remove oxidic residues and other contaminants present on the narrow belts. Then pickling agent residues are rinsed from the narrow belts and the narrow belts are passed through a flux bath. This process, which is also known as "fluxing" in technical terms, on the one hand further cleans the surfaces of the narrow strips to be coated and activates them at the same time.
  • the narrow belts still run parallel to each other through a drying oven in which the flux is dried to such an extent that it adheres securely to the narrow belts, but does not yet burn off.
  • the corrosion protection coating is usually applied as a Zn coating.
  • the molten bath then based on Zn, into which the narrow strips are again conveyed parallel to one another, typically has a temperature of 470 ° C.
  • the melt bath typically has a temperature of up to 700 ° C.
  • a chemical passivation can follow the respective surface coating in order to also protect the protective layer from the effects of moisture (see brochure " Hot-dip galvanized steel strip ", published by ThyssenKrupp Steel Europe AG, status 2011, www.thyssenkrupp-steel-europe.com/tiny/cgJ/download.pdf ).
  • Steels with a significant alloy content of Cr and Ni are characterized by particularly good chemical resistance and high corrosion resistance. This product property is based on the formation of a stable chromium oxide layer, which effectively protects the steel surface against external influences even at higher temperatures passivated. Mo additionally supports this passivation. For this reason, steel grades with a Cr content of> 10.5% by weight are also referred to as rust, heat and acid-resistant (RHS) steels or "stainless steels" for short.
  • Ni as an alloying element in steel is stabilized similar to e.g. B. Mn or N the austenitic microstructure towards lower temperatures, which can be used specifically to improve the mechanical material properties.
  • Ni-alloyed full austenites have a significantly better suitability for environmental stress. Due to these excellent material properties, there is great potential for Ni-alloy flat steel products for high and low temperature applications, for example in the automotive vehicle structure, chemical apparatus construction, mechanical and plant engineering and for decorative elements.
  • the object of the invention was to provide a method that can be carried out economically on a large industrial scale and that with optimal reproducibility of the The result of the coating enables the economical production of flat steel products that are specially protected against corrosive attacks.
  • this object has been achieved in that the working steps specified in claim 1 are carried out when coating a flat steel product.
  • the invention is based on the idea of a flux treatment with subsequent drying of what is applied to the flat steel product during the flux treatment instead of the annealing treatment customary in hot dip coating for cleaning and activating the surfaces to be coated of wide strips in accordance with the procedure also fundamentally known from the prior art Perform flux.
  • the flux used according to the invention is modified in such a way that optimal coating results are obtained for flat steel products that consist of a wide range of different alloyed steels.
  • the procedure according to the invention makes it possible to achieve considerably better galvanizing compared to piece galvanizing Economic efficiency to provide flat steel products with metallic protective coatings in continuous throughput.
  • By dispensing with an energy-intensive annealing process step considerable energy and operating material savings are achieved and a cost-effective and environmentally friendly hot-dip coating, especially of narrow strips, is made possible, the width of which is limited to a maximum of 600 mm.
  • Several such narrow bands can of course also run through the method according to the invention in parallel.
  • the procedure according to the invention is suitable for the application of metallic coatings both on a Zn and on an Al basis.
  • the flat steel product provided in step a) is made from a structural steel which, in addition to iron and unavoidable impurities (in% by weight) C: 0.001-0.7%; Mn: 0.10-2.0%; Al: 0.01-2.0%; as well as optionally one or more elements from the group "Si, P, S, Cr, Cu, Mo, N, Ni, Nb, Ti, V, Zr, B" with the proviso that for the contents of the optionally added Elements: Si: 0.001-2.0%; P: up to 0.055%; S: up to 0.055%; Cr: 0.01 - 2.0% Cu: up to 0.6%; Mon: up to 0.2%; N: up to 0.030%; Ni: up to 2.1%; Nb: up to 0.2%; Ti: up to 0.2%; V: up to 0.2%; Zr: up to 0.2%; B: up to 0.0060.
  • the method according to the invention is also suitable for hot-dip coating flat steel products that have a ferritic, austenitic, multiphase or duplex structure and can consist of a stainless CrNi steel which, in addition to iron and unavoidable impurities (in% by weight) C: 0.001-0.5%; Mn: 0.10-6.0%; Al: 0.01-2.0%; Cr: 5.0-30.0%; Ni: 2.00 - 30.0% as well as optionally one or more elements from the group "Si, Cu, Mo, N, Nb, Ti, V" with the proviso that the following applies to the contents of the optionally added elements: Si: 0.001-2.0%; Cu: up to 2.0%; Mon: up to 5.0%; N: up to 0.2%; Nb: up to 1.0%; Ti: up to 1.0%; V: up to 0.5%.
  • a stainless CrNi steel which, in addition to iron and unavoidable impurities (in% by weight) C: 0.001-0.5%; Mn: 0.10-6.0%;
  • the flat steel product processed according to the invention in each case can be delivered in the cold or hot-rolled state with an already pre-pickled or unpickled surface.
  • the advantages of the method according to the invention are particularly evident when processing unpickled hot strip, the procedure according to the invention having proven to be particularly economical when processing narrow strip.
  • step b) the flat steel product to be coated passes through a pickling basin in which any scale adhering to it is removed.
  • the pickling time is 10-120 s.
  • the surface of the flat steel product to be coated is activated during the pickling process.
  • Liquids which are known per se and which are based on an acid, in particular hydrochloric or sulfuric acid, can be used as pickling agents for this purpose.
  • a pickling agent temperature of 30-100 ° C has proven to be particularly advantageous for the effectiveness of the pickling process. With pickling temperatures and pickling times in the specified ranges, an optimal cleaning effect is achieved and excessive pickling of the grain boundaries on the steel surface is avoided. Furthermore, by maintaining the temperature range specified according to the invention, excessive evaporation loss is avoided. This is especially true when the maximum pickling temperature is limited to 70 ° C.
  • the Fe concentration in the pickling bath should be between 5 - 130 g / l in order to also support the optimal effectiveness of the pickling process.
  • any pickling agent remaining on the flat steel product is removed by rinsing the flat steel product with an aqueous medium.
  • the rinsing time here is optimally 10-30 s at a washing agent temperature of optimally 30-100 ° C, in particular 30-70 ° C.
  • work step d in which the flat steel product undergoes fluxing, is of particular importance.
  • the purpose of this treatment is to complete the activation of the surface of the flat steel product that has already been activated in the course of pickling and to prevent re-passivation.
  • the flat steel product is passed through a flux which, according to the invention, is adjusted in the manner indicated above by the addition of ammonium chloride so that good coating results are achieved in a reliable manner.
  • Ammonium ions are contained in the flux medium forming the flux bath according to the invention in levels of 5-12 g / l, chloride ions in levels of 210-250 g / l and zinc ions in levels of 140-160 g / l, thus during drying, a ZnCl 2 / NH 4 Cl salt mixture is formed on the steel surface.
  • the proportion of chloride ions is too low, there is insufficient reduction in surface slag. If the proportion of chloride and zinc ions is too high, chlorohydroxozinc acids can form in the liquid flux medium, which unnecessarily increase the iron dissolution in the flux medium tank.
  • Potassium ions are present in the flux medium in levels of 30 - 40 g / l, as the addition of potassium ions stabilizes the flux medium against attack or reaction with the Al in the coating bath. This reduces the smoke development when the steel strip is immersed in the coating bath, which in turn has a positive effect on the environment and employee protection. If the potassium ion content of the flux medium is too low, this effect is not sufficiently effective. On the other hand, if the potassium ion content is too high, the activation effect of the flux medium may be too weak.
  • Calcium ions in levels of 0.5-1.5 g / l, sodium ions in levels of 0.5-1.5 g / l and magnesium ions in levels of 1 g / l can optionally be used in the invention used flux medium must be available.
  • Ca, Na and Mg support the effect of the potassium ions which are obligatorily present in the flux and reduce the surface tension of the flux. This improves the wetting of the steel surface by the flux medium.
  • an increase in the respective content beyond the upper limit assigned in each case does not reduce the smoke development any further, but can instead lead to a weakening of the activation effect of the flux medium.
  • Ions of Fe, Mn, Al, Mo, Ni, P, Si, Sr, Li can be present in small traces as unavoidable impurities, whereby their content should be less than 10 mg / l.
  • Optimal results of the flux treatment result from the fact that the immersion time for which the section of the flat steel product immersed in the flux bath is exposed to the flux is 10-120 s.
  • the effectiveness of the flux is increased by the fact that its temperature is 40-100 ° C, in particular 40-70 ° C. If these specified ranges for the immersion time and the flux temperature are adhered to, an optimal fine cleaning effect of the steel surface is achieved while avoiding excessive evaporation loss and excessive attack of the grain boundaries on the steel surface is avoided.
  • the density of the flux set in the range from 1.25 to 1.45 g / cm 3 can influence the applied weight of the coating to be produced on the steel substrate. If the lower limit specified according to the invention for the density of the flux medium is not reached, the medium is too aqueous and the fine cleaning effect of the steel surface is too low. If, on the other hand, the upper limit provided according to the invention for the density of the flux medium is exceeded, the flux is too sharp and the grain boundaries on the steel surface can be attacked too severely.
  • the particular effectiveness of the flux used according to the invention also contributes to the fact that its pH value is 4-4.5. If the upper limit specified for the pH value of the flux medium is exceeded, the medium is too aqueous and the fine cleaning effect of the steel surface is too low. If the lower limit specified for the pH value of the flux medium is not reached, the fluxing is again too sharp and the grain boundaries on the steel surface can be attacked too strongly.
  • step e) the flat steel product emerging from the flux bath is dried and brought to the inlet temperature at which it enters the melt bath that is subsequently passed through.
  • the minimum temperature should be so high that the flux medium carried along from the flux bath on the flat steel product surface is sufficiently dried to avoid wetting disturbances during the coating in the melt bath.
  • the drying temperature should not be too high in order to prevent the flux medium from burning off. It has therefore proven to be a particularly suitable temperature range for drying if the flat steel product is heated to a temperature of 100-230 ° C.
  • the strip inlet temperature should be maintained for at least 10 s during the drying process in order to adequately heat the flat steel product.
  • the maximum permissible drying time depends on the efficiency of the drying system used. Practical tests have shown that a maximum duration of 30 s is sensible for the systems used in today's practice.
  • the melt bath temperature is 430-700 ° C., typically 430-530 ° C.
  • the bath temperature is typically up to 780 ° C, in particular 650-780 ° C.
  • the hot-dip coated steel flat product is to be thermally post-treated in-line (galvannealing) in order to produce an Fe-Zn alloy coating, it has proven useful if the molten bath is set in such a way that a ZF coating is produced on the steel substrate.
  • the hot-dip coated steel flat product obtained can be subjected to passivation by means of a corresponding chemical treatment or re-rolling in order to improve dimensional accuracy and its mechanical properties.
  • the system 1 for hot-dip coating a flat steel product P provided as a hot-rolled strip wound into a coil C comprises, in an in-line installation in the conveying direction F, an unwinding station 2, a pickling station 3, a rinsing station 4, a flux station 5, and a drying station 6, a hot-dip station 7 and a cooling station 8 and a reeling station 9.
  • the flat steel product P to be coated is unwound from the respective coil C and first passes through the pickling station 3 and then the rinsing station 4 before it reaches the flux station 5.
  • the flat steel product P emerging from the flux station 5 passes through the drying station 6 and is then passed into the melt bath S of the melt immersion station 7.
  • the flat steel product P emerging from the molten bath S then passes through the cooling station 8, in which it is cooled to room temperature, before it is rewound into a coil in the reeling station 9.
  • the respective composition of the steels W1 - W7 is given in Table 1.
  • the steels W1 - W4 are conventional structural steels, while the steels W5 - W7 are conventional stainless CrNi stainless steels.
  • the respectively processed flat steel products P have passed through a conventional hydrochloric acid (based pickling bath B) in the pickling station 3, which has been heated to a temperature TB and which the respective section of the respective flat steel product P has passed within a pickling time tB.
  • a conventional hydrochloric acid based pickling bath B
  • a flushing bath V consisting of fully demineralized water, which has been heated to a temperature TS and which has been completed by the respective section of the respective flat steel product P within a flushing time tS.
  • the flat steel products P were then passed in the flux station 5 through a flux bath X which the respective section of the respective flat steel product P ran through within a period tF and had a temperature TF, a pH value pH_F and a density r-F. Twelve differently composed flux baths X were used in the tests. The twelve compositions X1-X12 of the flux baths X are given in Table 2.
  • the flat steel products have been dried and brought to the respective bath inlet temperature TE.
  • the thickness of the hot-dip coating applied in each case to the flat steel products has been set in a manner known per se by means of a stripping device, not shown here.
  • Tables 3a, 3b summarize the operating parameters set for a total of 55 tests.
  • Table 3a contains the tests carried out according to the invention which produced a good, fault-free coating result, while Tables 3b, 3c summarize the tests which produced faulty coating results.
  • the respective steel W1 - W7, of which the processed flat steel product P consisted the respective temperature TB of the pickling agent, the pickling time tB, the temperature TS of the flushing agent and the flushing time tS, that in the flux station 5 flux baths X1 - X12 passed through each time, the duration tF in which the respective flat steel product passed through the respective flux bath X1 - X12, the respective flux bath temperature TF, the respective pH value pH_F and the respective density RH of the respective flux bath X1 - X12 , the respective drying or bath inlet temperature TE, the composition of the respective melt bath S, the temperature TBad of the respective melt bath S and that in each case on one of the Coated sides of the flat steel product P achieved print weight AG indicated.
  • the dwell time in the drying station was 20 s and that in the melt bath was 10 s.
  • FIG. 4 The cross-sectional view shown has been taken on the structural steel flat product according to the invention coated with a cementitious coating in test 28.
  • the respective coating Z has a cover layer of Zn mixed crystals ( ⁇ phase) with ZnMg 2 phases pronounced between the Zn mixed crystals and an Fe-Zn alloy layer formed between the flat steel product P and the cover layer and consisting of Fe-Zn phases via which the cover layer is permanently adhered to the steel substrate formed by the flat steel product P.
  • a cover layer AS made of AlSi phases lies on an Fe-Al-Si alloy layer Fe-Al-Si, via which the cover layer AS is connected to the flat steel product P in this case.
  • Table 1 stolen C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Beschichten von Stahlflachprodukten mit einem auf Zn- oder Al-basierenden metallischen Schutzüberzug.The invention relates to a method for coating flat steel products with a Zn- or Al-based metallic protective coating.

Bei den im Sinne der Erfindung zu beschichtenden "Stahlflachprodukten" handelt es sich um aus Stahl durch Warm- oder Kaltwalzen erzeugte Bänder oder Bleche sowie daraus gewonnene Zuschnitte und Platinen.The "flat steel products" to be coated in the context of the invention are strips or sheets produced from steel by hot or cold rolling, as well as blanks and blanks obtained therefrom.

Stahlflachprodukte, die aus korrosionsempfindlichen Stählen hergestellt sind und in einer Umgebung eingesetzt werden sollen, bei der ein erhöhtes Korrosionsrisiko besteht, werden üblicherweise mit einem metallischen Schutzüberzug versehen, der das jeweilige Stahlsubstrat gegen korrosive Angriffe schützt. Ein zum Auftrag eines solchen Überzugs bewährtes Verfahren ist das Schmelztauchbeschichten, bei dem das Stahlflachprodukt nach einer Vorbehandlung innerhalb einer kurzen Tauchdauer durch ein Schmelzenbad geleitet wird, so dass beim Verlassen des Schmelzenbades ein Überzug definierter Dicke auf dem Stahlflachprodukt haftet. Die Dicke des Überzugs kann dabei durch geeignete Abstreifeinrichtungen eingestellt werden, die das Stahlflachprodukt beim Austritt aus dem Schmelzenbad passiert.Flat steel products that are made from corrosion-sensitive steels and are to be used in an environment in which there is an increased risk of corrosion are usually provided with a metallic protective coating that protects the respective steel substrate against corrosive attacks. A tried and tested method for applying such a coating is hot dip coating, in which the flat steel product is passed through a melt bath after a pretreatment within a short immersion period so that a coating of a defined thickness adheres to the flat steel product when it leaves the melt bath. The thickness of the coating can be adjusted by means of suitable stripping devices, which the flat steel product passes when it exits the molten bath.

Durch dieses in der Fachsprache auch "Schmelztauchveredelung" bezeichnete Vorgehen werden Stahlflachprodukte erhalten, die gegenüber unveredelten Stahlflachprodukten eine deutlich verlängerte Produktlebensdauer besitzen.This procedure, which is also known as "hot-dip refinement" in technical terms, results in flat steel products which have a significantly longer product service life than unfinished flat steel products.

Es sind verschiedenste Varianten von Verfahren bekannt, die bei optimierter Wirtschaftlichkeit jeweils eine optimale Haftung des Überzugs und optimale Gebrauchseigenschaften des mit dem Überzug versehenen Stahlflachprodukts gewährleisten sollen. Als eine dieser Entwicklungen zu nennen ist hier der Vorschlag, durch zusätzliche Zugabe von Mg zu einem Zn-Schmelzenbad den durch den so legierten Überzug bewirkten Korrosionsschutz deutlich zu steigern. Beispiele für auf diesem Vorschlag basierende Beschichtungsverfahren sind in der EP 1 857 566 A1 , der EP 2 055 799 A1 und der EP 1 693 477 A1 erläutert. WO 95/04607 A1 offenbart einen Prozess zur Herstellung eines galvanisierten Stahlartikels.The most varied of variants of processes are known which, with optimized economic efficiency, are each intended to ensure optimum adhesion of the coating and optimum usage properties of the flat steel product provided with the coating. One of these developments is the proposal to significantly increase the corrosion protection brought about by the coating alloyed in this way by adding Mg to a molten Zn bath. Examples of coating processes based on this proposal are given in US Pat EP 1 857 566 A1 , the EP 2 055 799 A1 and the EP 1 693 477 A1 explained. WO 95/04607 A1 discloses a process for making a galvanized steel article.

Jeweils entscheidend für den Erfolg bei der Beschichtung von Stahlflachprodukten ist eine ausreichende Aktivierung der zu beschichtenden Oberfläche. Darüber hinaus muss sichergestellt sein, dass die betreffende Oberfläche beim Eintauchen in das jeweilige Schmelzenbad weitestgehend frei von Verunreinigungen und Oxiden ist, die das Beschichtungsergebnis stören könnten.Sufficient activation of the surface to be coated is decisive for the success of the coating of flat steel products. In addition, it must be ensured that the surface in question is largely free of impurities and oxides that could interfere with the coating result when it is immersed in the respective molten bath.

Mit im kontinuierlichen Durchlauf erfolgenden Schmelztauchbeschichtungsverfahren lassen sich kalt- oder warmgewalzte Stahlbänder mit Breiten von mehr als 600 mm, so genannte "Breitbänder", besonders kosteneffektiv mit einem Schutzüberzug versehen. Bei den in der Praxis eingesetzten Verfahren dieser Art durchläuft das jeweils zu beschichtende Stahlflachprodukt nacheinander und unterbrechungsfrei die Prozessschritte "Reinigung", "Glühgasaktivierung der Oberfläche" und "Schmelztauchbeschichtung". Wie beispielsweise in der WO 2009/030823 A1 beschrieben, erfolgt die Aktivierung der Oberfläche dabei typischerweise in einem Durchlaufofen über eine heterogene Glühgas-Metall-Reaktion unter einer H2-N2-haltigen Glühatmosphäre bei Temperaturen von mehr als 700 °C. Sollen warmgewalzte Breitbänder mit einem Schmelztauchüberzug versehen werden, so können sie vor der Glühbehandlung in einer Beizeinrichtung entzundert werden. Darin wird durch Einsatz von Beizmitteln, die eine entsprechend aggressive Säure, insbesondere Salz- oder Schwefelsäure, enthalten, der auf dem warmgewalzten Breitband vorhandene Zunder gelöst.With hot-dip coating processes that take place continuously, cold-rolled or hot-rolled steel strips with widths of more than 600 mm, so-called "wide strips", can be provided with a protective coating in a particularly cost-effective manner. With the methods of this type used in practice, this happens in each case Coating flat steel product successively and without interruption the process steps "cleaning", "annealing gas activation of the surface" and "hot-dip coating". As for example in the WO 2009/030823 A1 described, the activation of the surface typically takes place in a continuous furnace via a heterogeneous annealing gas-metal reaction under an annealing atmosphere containing H 2 -N 2 at temperatures of more than 700 ° C. If hot-rolled wide strips are to be provided with a hot-dip coating, they can be descaled in a pickling device before the annealing treatment. By using pickling agents which contain a correspondingly aggressive acid, in particular hydrochloric or sulfuric acid, the scale present on the hot-rolled wide band is dissolved.

In der Praxis hat sich herausgestellt, dass sich Schmalbänder, deren Breite auf max. 600 mm beschränkt ist, mit den für Breitbänder bewährten Beschichtungsverfahren nicht kostendeckend beschichten lassen. In der Praxis werden daher Breitbänder in Schmalbänder vorgegebener Breite längsgeteilt, die dann parallel zueinander eine Beizeinrichtung durchlaufen, um auf den Schmalbändern vorhandene oxidische Rückstände und sonstige Verschmutzungen zu lösen und zu entfernen. Anschließend werden Beizmittelrückstände von den Schmalbändern gespült und die Schmalbänder durch ein Flussmittelbad geleitet. Durch diesen in der Fachsprache auch als "Fluxen" bekannten Vorgang werden einerseits die zu beschichtenden Oberflächen der Schmalbänder weiter gereinigt und gleichzeitig aktiviert. Andererseits wird durch das Fluxmittel eine Rückpassivierung der aktivierten Oberfläche bis zum Eintauchen in das Beschichtungsbad verhindert. Anschließend durchlaufen die Schmalbänder immer noch parallel zueinander einen Trocknungsofen, in dem das Flussmittel soweit angetrocknet wird, dass es sicher auf den Schmalbändern haftet, jedoch noch nicht abbrennt. Das Flussmittel stellt so eine gute und gleichmäßige Benetzbarkeit der Schmalbänder im anschließend durchlaufenen Schmelzenbad sicher. Üblicherweise wird der Korrosionsschutzüberzug als Zn-Überzug aufgebracht. Das dann auf Zn basierende Schmelzenbad, in das die Schmalbänder wiederum parallel zueinander gefördert werden, hat dazu typischerweise eine Temperatur von 470 °C. Es ist jedoch auch möglich, die Schmalbänder mit einer auf Al basierenden Beschichtung schmelztauchzubeschichten. Das Schmelzenbad hat in diesem Fall typischerweise eine Temperatur von bis zu 700 °C. An die jeweilige Oberflächenbeschichtung kann sich eine chemische Passivierung anschließen, um auch die Schutzschicht vor Feuchtigkeitseinwirkung zu schützen (s. Broschüre " Feuerverzinkter Bandstahl", veröffentlicht von der ThyssenKrupp Steel Europe AG, Stand 2011, www.thyssenkrupp-steel-europe.com/tiny/cgJ/download.pdf ).In practice it has been found that narrow belts with a width of max. 600 mm is limited, can not be coated cost-covering with the coating methods proven for wide belts. In practice, therefore, wide belts are longitudinally divided into narrow belts of a predetermined width, which then pass through a pickling device parallel to one another in order to loosen and remove oxidic residues and other contaminants present on the narrow belts. Then pickling agent residues are rinsed from the narrow belts and the narrow belts are passed through a flux bath. This process, which is also known as "fluxing" in technical terms, on the one hand further cleans the surfaces of the narrow strips to be coated and activates them at the same time. On the other hand, a reverse passivation of the activated surface up to the Prevents immersion in the coating bath. Then the narrow belts still run parallel to each other through a drying oven in which the flux is dried to such an extent that it adheres securely to the narrow belts, but does not yet burn off. In this way, the flux ensures good and even wettability of the narrow strips in the melt bath that is subsequently passed through. The corrosion protection coating is usually applied as a Zn coating. The molten bath then based on Zn, into which the narrow strips are again conveyed parallel to one another, typically has a temperature of 470 ° C. However, it is also possible to hot-dip the narrow strips with an Al-based coating. In this case, the melt bath typically has a temperature of up to 700 ° C. A chemical passivation can follow the respective surface coating in order to also protect the protective layer from the effects of moisture (see brochure " Hot-dip galvanized steel strip ", published by ThyssenKrupp Steel Europe AG, status 2011, www.thyssenkrupp-steel-europe.com/tiny/cgJ/download.pdf ).

Wie eingangs erwähnt, werden in der voranstehend erläuterten Weise üblicherweise Stahlflachprodukte beschichtet, die in hohem Maße korrosionsempfindlich sind.As mentioned at the beginning, flat steel products that are highly sensitive to corrosion are usually coated in the manner explained above.

Stähle mit einem deutlichen Legierungsanteil an Cr und Ni zeichnen sich durch eine besonders gute chemische Beständigkeit und hohen Korrosionswiderstand aus. Diese Produkteigenschaft basiert auf der Bildung einer stabilen Chromoxidschicht, welche die Stahloberfläche auch bei höheren Temperaturen wirksam gegen äußere Einflüsse passiviert. Mo unterstützt diese Passivierung zusätzlich. Daher werden Stahlgüten mit einem Cr-Anteil > 10,5 Gew.-% auch als rost-, hitze- und säurebeständige (RHS)-Stähle oder kurz als "rostfreie Stähle" bezeichnet. Ni als Legierungselement in Stahl stabilisiert ähnlich wie z. B. Mn oder N den austenitischen Gefügezustand zu tieferen Temperaturen hin, was gezielt genutzt werden kann, um die mechanischen Werkstoffeigenschaften zu verbessern. Vollaustenitische Stahlgüten mit > 8 Gew.-% Ni besitzen weiterhin keinen Spröd-Duktil-Übergang, was Tieftemperaturanwendungen ermöglicht. Im Vergleich zu hoch-Mn-legierten Stahlgüten weisen Ni-legierte Vollaustenite eine deutlich bessere Umweltbeanspruchungseignung auf. Aufgrund dieser hervorragenden Werkstoffeigenschaften besteht ein großes Einsatzpotential für Ni-legierte Stahlflachprodukte für Hoch- und Tieftemperaturanwendungen u. a. in der automobilen Fahrzeugstruktur, dem chemischen Apparatebau, Maschinen- und Anlagenbau sowie für dekorative Elemente.Steels with a significant alloy content of Cr and Ni are characterized by particularly good chemical resistance and high corrosion resistance. This product property is based on the formation of a stable chromium oxide layer, which effectively protects the steel surface against external influences even at higher temperatures passivated. Mo additionally supports this passivation. For this reason, steel grades with a Cr content of> 10.5% by weight are also referred to as rust, heat and acid-resistant (RHS) steels or "stainless steels" for short. Ni as an alloying element in steel is stabilized similar to e.g. B. Mn or N the austenitic microstructure towards lower temperatures, which can be used specifically to improve the mechanical material properties. Fully austenitic steel grades with> 8% by weight Ni also have no brittle-ductile transition, which enables low-temperature applications. Compared to high-Mn-alloyed steel grades, Ni-alloyed full austenites have a significantly better suitability for environmental stress. Due to these excellent material properties, there is great potential for Ni-alloy flat steel products for high and low temperature applications, for example in the automotive vehicle structure, chemical apparatus construction, mechanical and plant engineering and for decorative elements.

Trotz dieser hervorragenden spezifischen Werkstoffeigenschaften, insbesondere gegenüber schädlichen Umwelteinflüssen, können die Einsatzqualitäten CrNilegierter Stähle durch eine metallische Beschichtung zusätzlich gesteigert werden. Auch hierzu kommen in der Praxis Schmelztauchbeschichtungsverfahren der voranstehend erläuterten Art zum Einsatz.Despite these excellent specific material properties, especially with regard to harmful environmental influences, the quality of use of CrNalloyed steels can be further increased by a metallic coating. For this purpose, hot-dip coating processes of the type explained above are also used in practice.

Vor dem Hintergrund des voranstehend erläuterten Standes der Technik bestand die Aufgabe der Erfindung darin, ein großtechnisch kostengünstig durchführbares Verfahren anzugeben, das bei optimaler Reproduzierbarkeit des Beschichtungsergebnisses die wirtschaftliche Erzeugung von gegen korrosive Angriffe besonders geschützten Stahlflachprodukten ermöglicht.Against the background of the prior art explained above, the object of the invention was to provide a method that can be carried out economically on a large industrial scale and that with optimal reproducibility of the The result of the coating enables the economical production of flat steel products that are specially protected against corrosive attacks.

Diese Aufgabe ist erfindungsgemäß dadurch gelöst worden, dass beim Beschichten eines Stahlflachprodukts die in Anspruch 1 angegebenen Arbeitsschritte durchlaufen werden.According to the invention, this object has been achieved in that the working steps specified in claim 1 are carried out when coating a flat steel product.

Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben und werden nachfolgend wie der allgemeine Erfindungsgedanke im Einzelnen erläutert.Advantageous embodiments of the invention are specified in the dependent claims and are explained in detail below, like the general inventive concept.

Die Erfindung geht von dem Gedanken aus, an Stelle der bei der Schmelztauchbeschichtung zur Reinigung und Aktivierung der zu beschichtenden Oberflächen von Breitbändern üblichen Glühbehandlung entsprechend der aus dem Stand der Technik ebenfalls grundsätzlich bekannten Vorgehensweise eine Fluxbehandlung mit anschließender Antrocknung des bei der Fluxbehandlung auf das Stahlflachprodukt aufgetragenen Flussmittels durchzuführen. Dabei ist das erfindungsgemäß zum Einsatz kommende Flussmittel so modifiziert, dass sich für Stahlflachprodukte, die aus einer großen Bandbreite unterschiedlichst legierter Stähle bestehen, optimale Beschichtungsergebnisse ergeben.The invention is based on the idea of a flux treatment with subsequent drying of what is applied to the flat steel product during the flux treatment instead of the annealing treatment customary in hot dip coating for cleaning and activating the surfaces to be coated of wide strips in accordance with the procedure also fundamentally known from the prior art Perform flux. The flux used according to the invention is modified in such a way that optimal coating results are obtained for flat steel products that consist of a wide range of different alloyed steels.

Um dies zu leisten, umfasst ein erfindungsgemäßes Verfahren zum Beschichten eines Stahlflachprodukts mit einem metallischen, auf Zn oder Al basierenden Schutzüberzug folgende im kontinuierlichen Durchlauf absolvierte Arbeitsschritte:

  1. a) Bereitstellen des Stahlflachprodukts;
  2. b) Beizen des Stahlflachprodukts zur Entfernung von auf dem Stahlflachprodukt haftendem Zunder und zur Aktivierung der Oberfläche des Stahlflachprodukts;
  3. c) Entfernen von auf dem gebeizten Stahlflachprodukt nach dem Beizen vorhandenem Beizmittel durch Spülen des Stahlflachprodukts mit einem wässrigen Medium;
  4. d) Durchleiten des gebeizten und gespülten Stahlflachprodukts durch ein Flussmittelbad, das aus einer wässrigen Lösung besteht, die neben prozess- und herstellungsbedingten Verunreinigungen Chlorid-Ionen und Ionen der Elemente aus der Gruppe "Zink, Ammonium und Kalium" sowie optional zusätzlich Ionen der Elemente "Na, Ca und Mg" ebenso optional Spuren der Elemente "Al, Fe, Mn, Mo, Ni, P, Sr, Si und Li" mit der Maßgabe enthält, dass
    • die Gesamtkonzentration an Chlorid-Ionen c(Cl-) mindestens 210 g/l und höchstens 250 g/l,
    • die Gesamtkonzentration an Zink-Ionen c(Zn2+) mindestens 140 g/l und höchstens 160 g/l,
    • die Gesamtkonzentration an Ammonium-Ionen c(NH4 +) mindestens 5 g/l und höchstens 12 g/l,
    • die Gesamtkonzentration an Kalium-Ionen c(K+) mindestens 30 g/l und höchstens 40 g/l,
    • die Gesamtkonzentration an optional vorhandenen Natrium-Ionen c(Na+) mindestens 0,5 g/l und höchstens 1,5 g/l,
    • die Gesamtkonzentration an optional vorhandenen Kalzium-Ionen c(Ca2+) mindestens 0,5 g/l und höchstens 1,5 g/l,
    • die Gesamtkonzentration an optional vorhandenen Magnesium-Ionen c(Mg+) höchstens 1 g/l,
    • die Gehalte an den in Spuren vorhandenen Ionen der Elemente Al, Fe, Mn, Mo, Ni, P, Si, Sr und Li höchstens 10 mg/l und
    • die Dichte des Flussmittelbads mindestens 1,25 g/cm3 und höchstens 1,45 g/cm3 beträgt, wobei insbesondere keine Ionen der Elemente Fluor, Zinn, Blei, Indium, Thallium, Antimon, Wismut oder Bor im Flussmittelbad enthalten sind;
  5. e) Trocknen des aus dem Flussmittelbad austretenden Stahlflachprodukts und Erwärmen des Stahlflachprodukts auf eine 100 - 230 °C betragende Badeintrittstemperatur;
  6. f) Schmelztauchbeschichten des Stahlflachprodukts mit einem auf Zn oder Al basierenden metallischen Schutzüberzugs in einem Schmelzenbad, in das das Stahlflachprodukt mit der Badeintrittstemperatur eintritt;
  7. g) optional durchgeführtes thermisches, chemisches oder mechanisches Nachbehandeln des mit dem Schutzüberzug schmelztauchbeschichteten Stahlflachprodukts.
In order to achieve this, a method according to the invention for coating a flat steel product with a metallic protective coating based on Zn or Al comprises the following work steps completed in a continuous cycle:
  1. a) Providing the flat steel product;
  2. b) pickling of the flat steel product to remove scale adhering to the flat steel product and to activate the surface of the flat steel product;
  3. c) removing any pickling agent present on the pickled flat steel product after the pickling by rinsing the flat steel product with an aqueous medium;
  4. d) Passing the pickled and rinsed flat steel product through a flux bath, which consists of an aqueous solution which, in addition to process and manufacturing-related impurities, contains chloride ions and ions of the elements from the group "zinc, ammonium and potassium" and optionally additional ions of the elements " Na, Ca and Mg "also optionally contains traces of the elements" Al, Fe, Mn, Mo, Ni, P, Sr, Si and Li "with the proviso that
    • the total concentration of chloride ions c (Cl - ) at least 210 g / l and at most 250 g / l,
    • the total concentration of zinc ions c (Zn 2+ ) at least 140 g / l and at most 160 g / l,
    • the total concentration of ammonium ions c (NH 4 + ) at least 5 g / l and at most 12 g / l,
    • the total concentration of potassium ions c (K + ) at least 30 g / l and at most 40 g / l,
    • the total concentration of optionally present sodium ions c (Na + ) at least 0.5 g / l and at most 1.5 g / l,
    • the total concentration of optionally present calcium ions c (Ca 2+ ) at least 0.5 g / l and at most 1.5 g / l,
    • the total concentration of optionally present magnesium ions c (Mg + ) at most 1 g / l,
    • the contents of trace ions of the elements Al, Fe, Mn, Mo, Ni, P, Si, Sr and Li not more than 10 mg / l and
    • the density of the flux bath is at least 1.25 g / cm 3 and at most 1.45 g / cm 3 , in particular no ions of the elements fluorine, tin, lead, indium, thallium, antimony, bismuth or boron being contained in the flux bath;
  5. e) drying the flat steel product emerging from the flux bath and heating the flat steel product to a bath inlet temperature of 100-230 ° C .;
  6. f) hot dip coating of the flat steel product with a metallic protective coating based on Zn or Al in a molten bath, into which the flat steel product enters at the bath inlet temperature;
  7. g) optional thermal, chemical or mechanical aftertreatment of the flat steel product coated with the protective coating by hot-dip coating.

Die erfindungsgemäße Vorgehensweise erlaubt es, bei gegenüber einer Stückverzinkung erheblich verbesserter Wirtschaftlichkeit im kontinuierlichen Durchlauf Stahlflachprodukte mit metallischen Schutzüberzügen zu versehen. Durch Verzicht auf einen energieintensiven Glühprozessschritt wird eine erhebliche Energie- und Betriebsmitteleinsparung erzielt und eine kosteneffektive und umweltschonende Schmelztauchveredelung insbesondere von Schmalbändern ermöglicht, deren Breite auf höchstens 600 mm beschränkt ist. Mehrere solcher Schmalbänder können selbstverständlich auch das erfindungsgemäße Verfahren parallel durchlaufen.The procedure according to the invention makes it possible to achieve considerably better galvanizing compared to piece galvanizing Economic efficiency to provide flat steel products with metallic protective coatings in continuous throughput. By dispensing with an energy-intensive annealing process step, considerable energy and operating material savings are achieved and a cost-effective and environmentally friendly hot-dip coating, especially of narrow strips, is made possible, the width of which is limited to a maximum of 600 mm. Several such narrow bands can of course also run through the method according to the invention in parallel.

Dabei eignet sich die erfindungsgemäße Vorgehensweise für den Auftrag von metallischen Beschichtungen sowohl auf Znals auch auf Al-Basis.The procedure according to the invention is suitable for the application of metallic coatings both on a Zn and on an Al basis.

Praktische Versuche haben beispielsweise gute Beschichtungsergebnisse ergeben, wenn das im Arbeitsschritt a) bereitgestellte Stahlflachprodukt aus einem Baustahl hergestellt ist, der neben Eisen und herstellungsbedingt unvermeidbaren Verunreinigungen (in Gew.-%) C: 0,001 - 0,7 %; Mn: 0,10 - 2,0 %; Al: 0,01 - 2,0 %; sowie jeweils optional eines oder mehrere Elemente aus der Gruppe "Si, P, S, Cr, Cu, Mo, N, Ni, Nb, Ti, V, Zr, B" mit der Maßgabe enthält, dass für die Gehalte an den optional zugegebenen Elementen gilt: Si: 0,001 - 2,0 %; P: bis zu 0,055 %; S: bis zu 0,055 %; Cr: 0,01 - 2,0 % Cu: bis zu 0,6 %; Mo: bis zu 0,2 %; N: bis zu 0,030 %; Ni: bis zu 2,1 %; Nb: bis zu 0,2 %; Ti: bis zu 0,2 %; V: bis zu 0,2 %; Zr: bis zu 0,2 %; B: bis zu 0,0060. Practical tests have shown good coating results, for example, if the flat steel product provided in step a) is made from a structural steel which, in addition to iron and unavoidable impurities (in% by weight) C: 0.001-0.7%; Mn: 0.10-2.0%; Al: 0.01-2.0%; as well as optionally one or more elements from the group "Si, P, S, Cr, Cu, Mo, N, Ni, Nb, Ti, V, Zr, B" with the proviso that for the contents of the optionally added Elements: Si: 0.001-2.0%; P: up to 0.055%; S: up to 0.055%; Cr: 0.01 - 2.0% Cu: up to 0.6%; Mon: up to 0.2%; N: up to 0.030%; Ni: up to 2.1%; Nb: up to 0.2%; Ti: up to 0.2%; V: up to 0.2%; Zr: up to 0.2%; B: up to 0.0060.

Das erfindungsgemäße Verfahren eignet sich aber auch zum Schmelztauchbeschichten von Stahlflachprodukten, die ein ferritisches, austenitsches, Mehrphasen- oder Duplex-Gefüge besitzen und aus einem nicht rostenden CrNi-Stahl bestehen können, der neben Eisen und herstellungsbedingt unvermeidbaren Verunreinigungen (in Gew.-%) C: 0,001 - 0,5 %; Mn: 0,10 - 6,0 %; Al: 0,01 - 2,0 %; Cr: 5,0 - 30,0 %; Ni: 2,00 - 30,0 % sowie jeweils optional eines oder mehrere Elemente aus der Gruppe "Si, Cu, Mo, N, Nb, Ti, V" mit der Maßgabe enthält, dass für die Gehalte an den optional zugegebenen Elementen gilt: Si: 0,001 - 2,0 %; Cu: bis zu 2,0 %; Mo: bis zu 5,0 %; N: bis zu 0,2 %; Nb: bis zu 1,0 %; Ti: bis zu 1,0 %; V: bis zu 0,5 %. However, the method according to the invention is also suitable for hot-dip coating flat steel products that have a ferritic, austenitic, multiphase or duplex structure and can consist of a stainless CrNi steel which, in addition to iron and unavoidable impurities (in% by weight) C: 0.001-0.5%; Mn: 0.10-6.0%; Al: 0.01-2.0%; Cr: 5.0-30.0%; Ni: 2.00 - 30.0% as well as optionally one or more elements from the group "Si, Cu, Mo, N, Nb, Ti, V" with the proviso that the following applies to the contents of the optionally added elements: Si: 0.001-2.0%; Cu: up to 2.0%; Mon: up to 5.0%; N: up to 0.2%; Nb: up to 1.0%; Ti: up to 1.0%; V: up to 0.5%.

Das jeweils erfindungsgemäß verarbeitete Stahlflachprodukt kann im kalt- oder warmgewalzten Zustand mit bereits vorgebeizter oder ungebeizter Oberfläche angeliefert werden. Die Vorteile des erfindungsgemäßen Verfahrens wirken sich besonders bei der Verarbeitung von ungebeiztem Warmband aus, wobei sich die erfindungsgemäße Vorgehensweise bei der Verarbeitung von Schmalband als besonders wirtschaftlich herausgestellt hat.The flat steel product processed according to the invention in each case can be delivered in the cold or hot-rolled state with an already pre-pickled or unpickled surface. The advantages of the method according to the invention are particularly evident when processing unpickled hot strip, the procedure according to the invention having proven to be particularly economical when processing narrow strip.

Im Arbeitsschritt b) durchläuft das jeweils zu beschichtende Stahlflachprodukt ein Beizbecken, in dem auf ihm haftender Zunder entfernt wird. Die Beizdauer beträgt dabei 10 - 120 s. Neben der Reinigung erfolgt bereits beim Beizen eine Aktivierung der Oberfläche des zu beschichtenden Stahlflachprodukts. Als Beizmittel können an sich zu diesem Zweck bekannte Flüssigkeiten eingesetzt werden, die auf einer Säure, insbesondere Salz- oder Schwefelsäure, basieren. Hierbei hat sich für die Effektivität des Beizvorgangs eine Beizmitteltemperatur von 30 - 100 °C als besonders vorteilhaft herausgestellt. Bei in den genannten Bereichen liegenden Beiztemperaturen und Beizzeiten wird ein optimaler Reinigungseffekt erzielt und eine zu starke Anbeizung der Korngrenzen an der Stahloberfläche vermieden. Weiterhin wird durch Einhaltung des erfindungsgemäß vorgegebenen Temperaturbereichs ein übermäßiger Verdampfungsverlust vermieden. Dies gilt insbesondere dann, wenn die maximale Beiztemperatur auf 70 °C beschränkt ist.In step b), the flat steel product to be coated passes through a pickling basin in which any scale adhering to it is removed. The pickling time is 10-120 s. In addition to cleaning, the surface of the flat steel product to be coated is activated during the pickling process. Liquids which are known per se and which are based on an acid, in particular hydrochloric or sulfuric acid, can be used as pickling agents for this purpose. A pickling agent temperature of 30-100 ° C has proven to be particularly advantageous for the effectiveness of the pickling process. With pickling temperatures and pickling times in the specified ranges, an optimal cleaning effect is achieved and excessive pickling of the grain boundaries on the steel surface is avoided. Furthermore, by maintaining the temperature range specified according to the invention, excessive evaporation loss is avoided. This is especially true when the maximum pickling temperature is limited to 70 ° C.

Die Fe-Konzentration im Beizmittelbad sollte zwischen 5 - 130 g/l liegen, um ebenfalls eine optimale Wirksamkeit des Beizvorgangs zu unterstützen.The Fe concentration in the pickling bath should be between 5 - 130 g / l in order to also support the optimal effectiveness of the pickling process.

Nach dem Beizen wird auf dem Stahlflachprodukt zurückgebliebenes Beizmittel durch Spülen des Stahlflachprodukts mit einem wässrigen Medium entfernt. Die Spülzeit beträgt hier optimalerweise 10 - 30 s bei einer Spülmitteltemperatur von optimalerweise 30 - 100 °C, insbesondere 30 - 70 °C. Durch Einhaltung dieser Spültemperatur- und Spülzeitbereiche ist ein effektives Abspülen der Restsäure gewährleistet, so dass Einschleppungen von Beizrückständen in das folgende Fluxbad vermieden werden. Wird die für die Spültemperatur angegebene Obergrenze überschritten, erhöht der verstärkte Verdampfungsverlust an Spülmedium die Betriebskosten. Die maximale Spültemperatur beträgt deshalb vorteilhafter Weise 70 °C.After pickling, any pickling agent remaining on the flat steel product is removed by rinsing the flat steel product with an aqueous medium. The rinsing time here is optimally 10-30 s at a washing agent temperature of optimally 30-100 ° C, in particular 30-70 ° C. By adhering to these rinsing temperature and rinsing time ranges, effective rinsing of the residual acid is guaranteed, so that pickling residues are not carried over into the subsequent flux bath. If the upper limit specified for the flushing temperature is exceeded, the increased evaporation loss of flushing medium increases the operating costs. The maximum washing temperature is therefore advantageously 70 ° C.

Besondere Bedeutung kommt beim erfindungsgemäßen Verfahren dem Arbeitsschritt d) zu, bei dem das Stahlflachprodukt ein Fluxen durchläuft. Der Zweck dieser Behandlung besteht darin, die Aktivierung der im Zuge des Beizens bereits aktivierten Oberfläche des Stahlflachprodukts zu vervollständigen und eine Rückpassivierung zu verhindern. Hierzu wird das Stahlflachprodukt durch ein Flussmittel geleitet, das nach Maßgabe der Erfindung in der oben angegebenen Weise durch die Zugabe von Ammoniumchlorid so eingestellt ist, dass betriebssicher gute Beschichtungsergebnisse erzielt werden.In the process according to the invention, work step d), in which the flat steel product undergoes fluxing, is of particular importance. The purpose of this treatment is to complete the activation of the surface of the flat steel product that has already been activated in the course of pickling and to prevent re-passivation. For this purpose, the flat steel product is passed through a flux which, according to the invention, is adjusted in the manner indicated above by the addition of ammonium chloride so that good coating results are achieved in a reliable manner.

Ammonium-Ionen sind in Gehalten von 5 - 12 g/l, Chlorid-Ionen in Gehalten von 210 - 250 g/l und Zink-Ionen in Gehalten von 140 - 160 g/l im das erfindungsgemäß vorgegebenen Flussmittelbad bildenden Fluxmedium enthalten, damit während des Trocknens ein ZnCl2/NH4Cl-Salzgemisch an der Stahloberfläche entsteht. Dieses bildet durch thermische Spaltung während des Trocknens HCl, was eine Aktivierung sowohl gegenüber der Stahloberfläche als auch gegenüber der Oberschlacke des Beschichtungsbads sichert. Bei Über-/ oder Unterschreitung der angegebenen Grenzen ist die Aktivierung nicht effektiv oder das Abbrennen des Fluxmediums während des Trocknens zu stark. Insbesondere zeigt sich bei einem zu geringen Chlorid-Ionen-Anteil eine nicht ausreichende Reduktion von Oberflächenschlacke. Ist der Anteil an Chlorid- und Zink-Ionen zu hoch, können sich bereits im flüssigen Fluxmedium Chlorhydroxozinksäuren bilden, die die Eisenauflösung in den Fluxmediumkessel unnötig erhöhen.Ammonium ions are contained in the flux medium forming the flux bath according to the invention in levels of 5-12 g / l, chloride ions in levels of 210-250 g / l and zinc ions in levels of 140-160 g / l, thus during drying, a ZnCl 2 / NH 4 Cl salt mixture is formed on the steel surface. This forms HCl due to thermal cleavage during drying, which ensures activation both with respect to the steel surface and with respect to the top slag of the coating bath. If the specified limits are exceeded or not reached, the activation is not effective or the burning off of the flux medium during drying is too strong. In particular, if the proportion of chloride ions is too low, there is insufficient reduction in surface slag. If the proportion of chloride and zinc ions is too high, chlorohydroxozinc acids can form in the liquid flux medium, which unnecessarily increase the iron dissolution in the flux medium tank.

Kalium-Ionen sind im Fluxmedium in Gehalten von 30 - 40 g/l vorhanden, da durch die Zugabe von Kalium-Ionen das Fluxmittel gegenüber dem Angriff oder der Reaktion mit dem Al des Beschichtungsbads stabilisiert wird. Dadurch reduziert sich die Rauchentwicklung beim Eintauchen des Stahlbands in das Beschichtungsbad, was sich wiederum positiv auf Umwelt- und den Mitarbeiterschutz auswirkt. Ist der Kalium-Ionen-Anteil des Fluxmediums zu gering, zeigt sich dieser Effekt nicht ausreichend effektiv. Ist der Kalium-Ionen-Gehalt dagegen zu hoch, kann der Aktivierungseffekt des Fluxmediums zu schwach sein. Jeweils optional können Kalzium-Ionen in Gehalten von 0,5 - 1,5 g/l, Natrium-Ionen in Gehalten von 0,5 - 1,5 g/l und Magnesium-Ionen in Gehalten von ≤ 1 g/l im erfindungsgemäß verwendeten Fluxmedium vorhanden sein. Ca, Na und Mg unterstützen die Wirkung der im Fluxmittel pflichtweise vorhandenen Kalium--Ionen und reduzieren die Oberflächenspannung des Fluxmittels. Dies verbessert die Benetzung der Stahloberfläche durch das Fluxmedium. Eine Erhöhung der jeweiligen Gehalte über die jeweils zugeordnete Obergrenze hinaus verringert die Rauchentwicklung jedoch nicht weiter, sondern kann zu einer Schwächung des Aktivierungseffekts des Fluxmediums führen.Potassium ions are present in the flux medium in levels of 30 - 40 g / l, as the addition of potassium ions stabilizes the flux medium against attack or reaction with the Al in the coating bath. This reduces the smoke development when the steel strip is immersed in the coating bath, which in turn has a positive effect on the environment and employee protection. If the potassium ion content of the flux medium is too low, this effect is not sufficiently effective. On the other hand, if the potassium ion content is too high, the activation effect of the flux medium may be too weak. Calcium ions in levels of 0.5-1.5 g / l, sodium ions in levels of 0.5-1.5 g / l and magnesium ions in levels of 1 g / l can optionally be used in the invention used flux medium must be available. Ca, Na and Mg support the effect of the potassium ions which are obligatorily present in the flux and reduce the surface tension of the flux. This improves the wetting of the steel surface by the flux medium. However, an increase in the respective content beyond the upper limit assigned in each case does not reduce the smoke development any further, but can instead lead to a weakening of the activation effect of the flux medium.

Ionen von Fe, Mn, Al, Mo, Ni, P, Si, Sr, Li können als unvermeidbare Verunreinigungen in geringen Spuren vorhanden sein, wobei deren Gehalt jeweils weniger als 10 mg/l betragen soll.Ions of Fe, Mn, Al, Mo, Ni, P, Si, Sr, Li can be present in small traces as unavoidable impurities, whereby their content should be less than 10 mg / l.

Optimale Ergebnisse der Flux-Behandlung ergeben sich dadurch, dass die Eintauchdauer, über die der jeweils in das Flussmittelbad tauchende Abschnitt des Stahlflachprodukts dem Flussmittel ausgesetzt ist, 10 - 120 s beträgt. Die Wirksamkeit des Flussmittels wird dabei dadurch gesteigert, dass seine Temperatur 40 - 100 °C, insbesondere 40 - 70 °C, beträgt. Bei Einhaltung dieser für die Eintauchdauer und die Fluxmitteltemperatur vorgegebenen Bereiche wird bei Vermeidung eines übermäßigen Verdampfungsverlustes ein optimaler Feinstreinigungseffekt der Stahloberfläche erzielt und ein übermäßiger Angriff der Korngrenzen an der Stahloberfläche vermieden.Optimal results of the flux treatment result from the fact that the immersion time for which the section of the flat steel product immersed in the flux bath is exposed to the flux is 10-120 s. The effectiveness of the flux is increased by the fact that its temperature is 40-100 ° C, in particular 40-70 ° C. If these specified ranges for the immersion time and the flux temperature are adhered to, an optimal fine cleaning effect of the steel surface is achieved while avoiding excessive evaporation loss and excessive attack of the grain boundaries on the steel surface is avoided.

Über die im Bereich von 1,25 - 1,45 g/cm3 eingestellte Dichte des Flussmittels kann dabei Einfluss auf das Auflagengewicht der auf dem Stahlsubstrat zu erzeugenden Beschichtung genommen werden. Wird die für die Dichte des Fluxmediums erfindungsgemäß vorgegebene Untergrenze unterschritten, ist das Medium zu wässrig und der Feinstreinigungseffekt der Stahloberfläche zu gering. Wird dagegen die für die Dichte des Fluxmediums erfindungsgemäß vorgesehene Obergrenze überschritten, ist das Fluxen zu scharf und die Korngrenzen an der Stahloberfläche können zu stark angegriffen werden.The density of the flux set in the range from 1.25 to 1.45 g / cm 3 can influence the applied weight of the coating to be produced on the steel substrate. If the lower limit specified according to the invention for the density of the flux medium is not reached, the medium is too aqueous and the fine cleaning effect of the steel surface is too low. If, on the other hand, the upper limit provided according to the invention for the density of the flux medium is exceeded, the flux is too sharp and the grain boundaries on the steel surface can be attacked too severely.

Sollen beispielsweise Zn-basierte Überzüge mit einem Auflagengewicht von 400 - 600 g/m2 auf das jeweilige Stahlflachprodukt aufgebracht werden, so haben sich Flussmittelbäder mit einer Dichte von 1,25 - 1,35 g/cm3 bewährt. Sollen dagegen Zn-basierte Überzüge mit einem Auflagengewicht von weniger als 400 g/m2 auf das jeweilige Stahlflachprodukt aufgebracht werden, so haben sich Flussmittelbäder mit einer Dichte von >1,35 - 1,45 g/cm3 als günstig erwiesen.If, for example, Zn-based coatings with a coating weight of 400-600 g / m 2 are to be applied to the respective flat steel product, flux baths with a density of 1.25-1.35 g / cm 3 have proven useful. On the other hand, if Zn-based coatings with a coating weight of less than 400 g / m 2 are to be applied to the respective flat steel product, flux baths with a density of> 1.35-1.45 g / cm 3 have proven to be beneficial.

Zur besonderen Wirksamkeit des erfindungsgemäß eingesetzten Flussmittels trägt darüber hinaus bei, dass sein pH-Wert 4 - 4,5 beträgt. Wird die für den pH-Wert des Fluxmediums angegebene Obergrenze überschritten, ist das Medium zu wässrig und der Feinstreinigungseffekt der Stahloberfläche zu gering. Wird die für den pH-Wert des Fluxmediums angegebene Untergrenze unterschritten, ist das Fluxen wiederum zu scharf und die Korngrenzen an der Stahloberfläche können zu stark angegriffen werden.The particular effectiveness of the flux used according to the invention also contributes to the fact that its pH value is 4-4.5. If the upper limit specified for the pH value of the flux medium is exceeded, the medium is too aqueous and the fine cleaning effect of the steel surface is too low. If the lower limit specified for the pH value of the flux medium is not reached, the fluxing is again too sharp and the grain boundaries on the steel surface can be attacked too strongly.

Im Arbeitsschritt e) wird das aus dem Flussmittelbad austretende Stahlflachprodukt getrocknet und auf die Eintrittstemperatur gebracht, mit der es in das anschließend durchlaufene Schmelzenbad eintritt. Die Mindesttemperatur sollte dabei so hoch sein, dass das auf der Stahlflachprodukt-Oberfläche aus dem Flussmittelbad mitgeführte Fluxmedium ausreichend angetrocknet wird, um Benetzungsstörungen bei der Beschichtung im Schmelzenbad zu vermeiden. Gleichzeitig sollte die Trocknungstemperatur jedoch nicht zu hoch sein, um ein Abbrennen des Fluxmediums zu vermeiden. Als besonders geeigneter Temperaturbereich für die Trocknung hat es sich deshalb erwiesen, wenn das Stahlflachprodukt auf eine Temperatur von 100 - 230 °C erwärmt wird. Die Bandeintrittstemperatur sollte während des Trocknens für mindestens 10 s gehalten werden, um das Stahlflachprodukt adäquat durchzuwärmen. Die maximal zulässige Trocknungsdauer hängt von der Leistungsfähigkeit der jeweils eingesetzten Trocknungsanlage ab. Praktische Versuche haben hier belegt, dass bei den in der heutigen Praxis eingesetzten Anlagen eine Höchstdauer von 30 s sinnvoll ist.In step e) the flat steel product emerging from the flux bath is dried and brought to the inlet temperature at which it enters the melt bath that is subsequently passed through. The minimum temperature should be so high that the flux medium carried along from the flux bath on the flat steel product surface is sufficiently dried to avoid wetting disturbances during the coating in the melt bath. At the same time, however, the drying temperature should not be too high in order to prevent the flux medium from burning off. It has therefore proven to be a particularly suitable temperature range for drying if the flat steel product is heated to a temperature of 100-230 ° C. The strip inlet temperature should be maintained for at least 10 s during the drying process in order to adequately heat the flat steel product. The maximum permissible drying time depends on the efficiency of the drying system used. Practical tests have shown that a maximum duration of 30 s is sensible for the systems used in today's practice.

Im Arbeitsschritt f) durchläuft das Stahlflachprodukt das Schmelzenbad. Optimale Beschichtungsergebnisse ergeben sich dabei dann, wenn die Verweildauer, über die der jeweilige Abschnitt des Stahlflachprodukts dem Schmelzenbad ausgesetzt ist, 1 - 120 s, insbesondere 1 - 60 s, beträgt. Dabei können über eine entsprechend eingestellte Legierung des Schmelzenbads Zn- oder Al-Überzüge auf dem jeweiligen Stahlflachprodukt erzeugt werden. Zu den Zn- oder Al-basierten Überzügen zählen dabei:

  • Z-Überzüge, die basierend auf einem Schmelzenbad erzeugt werden, das neben Zn und herstellungs- und prozessbedingt unvermeidbaren Verunreinigungen Al in Gehalten von mehr als 0,10 Gew.-% und bis zu 0,3 Gew.-%, Si in Gehalten von bis zu 0,2 Gew.-% und Fe in Gehalten von weniger als 0,5 Gew.-% enthält,
  • ZA-Überzüge, die basierend auf einem Schmelzenbad erzeugt werden, das neben Zn und herstellungs- und prozessbedingt unvermeidbaren Verunreinigungen Al in Gehalten von mehr als 0,10 Gew.-% und bis zu 5 Gew.-%, Si in Gehalten von bis zu 0,2 Gew.-% und Fe in Gehalten von weniger als 0,5 Gew.-% enthält,
  • ZM-Überzüge, die basierend auf einem Schmelzenbad erzeugt werden, das neben Zn und herstellungs- und prozessbedingt unvermeidbaren Verunreinigungen Al in Gehalten von mehr als 0,10 Gew.-% und bis zu 8,0 Gew.-%, Mg in Gehalten von 0,2 - 8,0 Gew.-%, Si in Gehalten von weniger als 2,0 Gew.-%, Pb in Gehalten von weniger als 0,1 Gew.-%, Ti in Gehalten von weniger als 0,2 Gew.-%, Ni in Gehalten von weniger als 1 Gew.-%, Cu in Gehalten von weniger als 1 Gew.-%, Co in Gehalten von weniger als 0,3 Gew.-%, Mn in Gehalten von weniger als 0,05 Gew.-%, Cr in Gehalten von weniger als 0,1 Gew.-%, Sr in Gehalten von weniger als 0,5 Gew.-%, B in Gehalten von weniger als 0,1 Gew.-%, Bi in Gehalten von weniger als 0,1 Gew.-%, Cd in Gehalten von weniger als 0,1 Gew.-% und Fe in Gehalten von weniger als 3,0 Gew.-% enthält, wobei für das Verhältnis %Al/%Mg des Al-Gehalts %Al zum Mg-Gehalt %Mg gilt %Al/%Mg ≤ 1,
  • ZF-Überzüge, die basierend auf einem Schmelzenbad erzeugt werden, das neben Zn und herstellungs- und prozessbedingt unvermeidbaren Verunreinigungen Al in Gehalten von mehr als 0,1 Gew.-% und bis zu 0,15 Gew.-%, Si in Gehalten von bis zu 0,2 Gew.-% und Fe in Gehalten von weniger als 0,5 Gew.-% enthält,
    sowie
  • AS-Überzüge, die basierend auf einem Schmelzenbad erzeugt werden, das neben Al und herstellungs- und prozessbedingt unvermeidbaren Verunreinigungen Si in Gehalten von 1 - 15 Gew.-% und Fe in Gehalten von 1,0 - 5,0 Gew.-% enthält.
In step f) the steel flat product passes through the molten bath. Optimum coating results are obtained when the dwell time over which the respective section of the flat steel product is exposed to the molten bath is 1 to 120 s, in particular 1 to 60 s. In this case, Zn or Al coatings can be produced on the respective flat steel product via an appropriately adjusted alloy of the molten bath. The Zn or Al-based coatings include:
  • Z coatings that are produced on the basis of a molten bath which, in addition to Zn and impurities that are unavoidable due to the manufacturing and process, contain Al in contents of more than 0.10% by weight and up to 0.3% by weight, Si in contents of contains up to 0.2% by weight and Fe in contents of less than 0.5% by weight,
  • ZA coatings that are produced on the basis of a molten bath which, in addition to Zn and unavoidable impurities due to the manufacturing and process, contain Al in contents of more than 0.10% by weight and up to 5% by weight, Si in contents of up to Contains 0.2% by weight and Fe in contents of less than 0.5% by weight,
  • ZM coatings that are produced on the basis of a molten bath which, in addition to Zn and impurities that are unavoidable due to the manufacturing and process, contain Al in contents of more than 0.10% by weight and up to 8.0% by weight, Mg in contents of 0.2-8.0% by weight, Si in contents of less than 2.0% by weight, Pb in contents of less than 0.1% by weight, Ti in contents of less than 0.2% by weight %, Ni in contents of less than 1% by weight, Cu in contents of less than 1% by weight, Co in contents of less than 0.3% by weight, Mn in contents of less than 0, 05% by weight, Cr in contents of less than 0.1% by weight, Sr in contents of less than 0.5% by weight, B in contents of less than 0.1% by weight, Bi in Contents of less than 0.1 wt.%, Cd in contents of less than 0.1 wt.% And Fe in contents of less than 3.0 wt.%, The ratio% Al /% Mg of the Al content% Al to the Mg content% Mg applies% Al /% Mg ≤ 1,
  • ZF coatings that are produced on the basis of a molten bath which, in addition to Zn and impurities that are unavoidable due to the manufacturing and process, contain Al in contents of more than 0.1% by weight and up to 0.15% by weight, Si in contents of contains up to 0.2% by weight and Fe in contents of less than 0.5% by weight,
    as
  • AS coatings that are produced on the basis of a molten bath which, in addition to Al and impurities that are unavoidable due to the manufacturing and process, contain Si in contents of 1-15% by weight and Fe in contents of 1.0-5.0% by weight .

Versuche haben belegt, dass Stahlflachprodukte, die aus unter die oben genannte Legierungsvorschrift fallenden rostfreien CrNi-Stählen gefertigt und in erfindungsgemäßer Weise prozessiert worden sind, sich mit jedem der voranstehend erläuterten Überzüge beschichten lassen und dass sich aus einem Baustahl der oben angegebenen Art gefertigte Stahlflachprodukte besonders gut mit einem in erfindungsgemäßer Weise aufgebrachten ZM-Überzug gegen Korrosion schützen lassen. Stahlflachprodukte, die aus nicht rostendem Stahl hergestellt und in erfindungsgemäßer Weise mit einem AS-Überzug versehen sind, eignen sich insbesondere bei Hochtemperaturanwendungen. Durch die AS-Beschichtung werden solche Stahlflachprodukte gegen die Bildung von Anlauffarben geschützt.Tests have shown that flat steel products made from stainless CrNi steels falling under the alloy specification mentioned above and processed in the manner according to the invention can be coated with any of the coatings explained above and that flat steel products made from a structural steel of the type specified above are particularly suitable can be well protected against corrosion with a ZM coating applied in accordance with the invention. Flat steel products made from stainless steel and provided with an AS coating in accordance with the invention are particularly suitable for high-temperature applications. The AS coating protects such flat steel products against the formation of tarnishing.

Im Fall, dass es sich bei dem Schmelzenbad um ein Znbasiertes Bad handelt, beträgt die Schmelzenbadtemperatur 430 - 700 °C, typischerweise 430 - 530 °C, während bei einem Schmelzenbad, das Al-basiert ist, die Badtemperatur typischerweise bis zu 780 °C, insbesondere 650 - 780 °C, beträgt.In the event that the melt bath is a Zn-based bath, the melt bath temperature is 430-700 ° C., typically 430-530 ° C., while at a melt bath that is Al-based, the bath temperature is typically up to 780 ° C, in particular 650-780 ° C.

Soll das schmelztauchbeschichtete Stahlflachprodukt in-line thermisch nachbehandelt werden (Galvannealing), um einen Fe-Zn-Legierungsüberzug zu erzeugen, so hat es sich bewährt, wenn das Schmelzenbad so eingestellt wird, dass auf dem Stahlsubstrat ein ZF-Überzug erzeugt wird.If the hot-dip coated steel flat product is to be thermally post-treated in-line (galvannealing) in order to produce an Fe-Zn alloy coating, it has proven useful if the molten bath is set in such a way that a ZF coating is produced on the steel substrate.

Ebenso optional wie die Galvannealing-Behandlung kann das erhaltene schmelztauchbeschichtete Stahlflachprodukt einer Passivierung durch eine entsprechende chemische Behandlung oder einem Nachwalzen unterzogen werden, um eine Maßhaltigkeit und seine mechanischen Eigenschaften zu verbessern.Just as optionally as the galvannealing treatment, the hot-dip coated steel flat product obtained can be subjected to passivation by means of a corresponding chemical treatment or re-rolling in order to improve dimensional accuracy and its mechanical properties.

Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert. Es zeigen:

Fig. 1
eine Anlage zum Schmelztauchbeschichten mit den für die Durchführung des erfindungsgemäßen Verfahrens erforderlichen und optional zusätzlich vorgesehenen Arbeitsstationen;
Fig. 2
eine Querschliffdarstellung eines Stahlflachprodukts mit in erfindungsgemäßer Weise auf ein Stahlflachprodukt appliziertem ZM-Überzug;
Fig. 3
eine Querschliffdarstellung eines Stahlflachprodukts mit in erfindungsgemäßer Weise auf ein Stahlflachprodukt appliziertem AS-Überzug;
Fig. 4
eine Querschliffdarstellung eines Stahlflachprodukts mit in erfindungsgemäßer Weise auf ein Stahlflachprodukt appliziertem ZM-Überzug.
The invention is explained in more detail below on the basis of exemplary embodiments. Show it:
Fig. 1
a system for hot-dip coating with the work stations required and optionally additionally provided for carrying out the method according to the invention;
Fig. 2
a cross-sectional view of a flat steel product with a ZM coating applied to a flat steel product in accordance with the invention;
Fig. 3
a cross-sectional view of a flat steel product with in accordance with the invention AS-coating applied to a flat steel product;
Fig. 4
a cross-sectional view of a flat steel product with a ZM coating applied to a flat steel product in the manner according to the invention.

Die Anlage 1 zum Schmelztauchbeschichten eines als warmgewalztes und zu einem Coil C gewickeltes Band bereitgestellten Stahlflachprodukts P umfasst in einer in Förderrichtung F in-line aufeinander folgenden Aufstellung eine Abhaspelstation 2, eine Beizstation 3, eine Spülstation 4, eine Flux-Station 5, eine Trocknungsstation 6, eine Schmelztauchstation 7 und eine Kühlstation 8 und eine Aufhaspelstation 9.The system 1 for hot-dip coating a flat steel product P provided as a hot-rolled strip wound into a coil C comprises, in an in-line installation in the conveying direction F, an unwinding station 2, a pickling station 3, a rinsing station 4, a flux station 5, and a drying station 6, a hot-dip station 7 and a cooling station 8 and a reeling station 9.

In der Abhaspelstation 2 wird das zu beschichtende Stahlflachprodukt P vom jeweiligen Coil C abgewickelt und durchläuft zunächst die Beizstation 3 und darauffolgend die Spülstation 4, bevor es in die Flux-Station 5 gelangt. Das aus der Flux-Station 5 austretende Stahlflachprodukt P durchläuft die Trocknungsstation 6 und wird dann in das Schmelzenbad S der Schmelztauchstation 7 geleitet. Das aus dem Schmelzbad S austretende Stahlflachprodukt P durchläuft anschließend die Kühlstation 8, in der es auf Raumtemperatur abgekühlt wird, bevor es in der Aufhaspelstation 9 wieder zu einem Coil gewickelt wird.In the uncoiling station 2, the flat steel product P to be coated is unwound from the respective coil C and first passes through the pickling station 3 and then the rinsing station 4 before it reaches the flux station 5. The flat steel product P emerging from the flux station 5 passes through the drying station 6 and is then passed into the melt bath S of the melt immersion station 7. The flat steel product P emerging from the molten bath S then passes through the cooling station 8, in which it is cooled to room temperature, before it is rewound into a coil in the reeling station 9.

In der Beschichtungsanlage 1 sind 55 Versuche mit als warmgewalzte Bänder angelieferten Stahlflachprodukten P durchgeführt worden, die aus unterschiedlichen Stählen W1, W2, W3, W4, W5, W6, W7 hergestellt worden sind. Die jeweilige Zusammensetzung der Stähle W1 - W7 ist in Tabelle 1 angegeben. Bei den Stählen W1 - W4 handelt es sich um konventionelle Baustähle, während die Stähle W5 - W7 konventionelle nicht rostende CrNi-Edelstähle sind.In the coating installation 1, 55 tests were carried out with flat steel products P supplied as hot-rolled strips, which were produced from different steels W1, W2, W3, W4, W5, W6, W7. The The respective composition of the steels W1 - W7 is given in Table 1. The steels W1 - W4 are conventional structural steels, while the steels W5 - W7 are conventional stainless CrNi stainless steels.

Die jeweils verarbeiteten Stahlflachprodukte P haben in der Beizstation 3 ein konventionelles auf Salzsäure (basierendes Beizmittelbad B durchlaufen, das auf eine Temperatur TB erwärmt worden ist und das vom jeweiligen Abschnitt des jeweiligen Stahlflachprodukts P innerhalb einer Beizdauer tB passiert worden ist.The respectively processed flat steel products P have passed through a conventional hydrochloric acid (based pickling bath B) in the pickling station 3, which has been heated to a temperature TB and which the respective section of the respective flat steel product P has passed within a pickling time tB.

Anschließend haben die Stahlflachprodukte P in der Spüleinrichtung 4 ein aus vollentsalztem Wasser bestehendes Spülbad V durchlaufen, das auf eine Temperatur TS erwärmt worden ist und das vom jeweiligen Abschnitt des jeweiligen Stahlflachprodukts P innerhalb einer Spüldauer tS absolviert worden ist.Then the flat steel products P in the flushing device 4 have passed through a flushing bath V consisting of fully demineralized water, which has been heated to a temperature TS and which has been completed by the respective section of the respective flat steel product P within a flushing time tS.

Daraufhin sind die Stahlflachprodukte P in der Flux-Station 5 durch ein Flussmittelbad X geleitet worden, das vom jeweiligen Abschnitt des jeweiligen Stahlflachprodukts P innerhalb einer Dauer tF durchlaufen worden ist und eine Temperatur TF, einen pH-Wert pH_F und eine Dichte r-F hatte. Dabei sind bei den Versuchen zwölf unterschiedlich zusammengesetzte Flussmittelbäder X eingesetzt worden. Die zwölf Zusammensetzungen X1 - X12 der Flussmittelbäder X sind in Tabelle 2 angegeben.The flat steel products P were then passed in the flux station 5 through a flux bath X which the respective section of the respective flat steel product P ran through within a period tF and had a temperature TF, a pH value pH_F and a density r-F. Twelve differently composed flux baths X were used in the tests. The twelve compositions X1-X12 of the flux baths X are given in Table 2.

In der Trocknungsstation 6 sind die Stahlflachprodukte getrocknet und auf die jeweilige Badeintrittstemperatur TE gebracht worden.In the drying station 6, the flat steel products have been dried and brought to the respective bath inlet temperature TE.

Anschließend haben die Stahlflachprodukte P in der Schmelztauchstation 7 das jeweilige Schmelzenbad S durchlaufen, das auf einer Temperatur TBad gehalten worden ist.Then the flat steel products P in the hot-dip station 7 have passed through the respective molten bath S, which has been kept at a temperature T bath.

Beim Austritt aus der Schmelztauchstation 7 ist bei den Stahlflachprodukten die Dicke des jeweils aufgebrachten Schmelztauchüberzugs in an sich bekannter Weise mittels einer hier nicht gezeigten Abstreifeinrichtung eingestellt worden.When exiting the hot-dip station 7, the thickness of the hot-dip coating applied in each case to the flat steel products has been set in a manner known per se by means of a stripping device, not shown here.

In den Tabellen 3a,3b sind für insgesamt 55 Versuche die jeweils eingestellten Betriebsparameter zusammengefasst. Tabelle 3a enthält dabei die erfindungsgemäß durchgeführten Versuche, die ein gutes, fehlerfreies Beschichtungsergebnis erbracht haben, während in den Tabellen 3b,3c die Versuche zusammengefasst sind, die fehlerhafte Beschichtungsergebnisse ergeben haben.Tables 3a, 3b summarize the operating parameters set for a total of 55 tests. Table 3a contains the tests carried out according to the invention which produced a good, fault-free coating result, while Tables 3b, 3c summarize the tests which produced faulty coating results.

Für jeden der 55 Versuche sind dabei der jeweilige Stahl W1 - W7, aus dem das jeweils verarbeitete Stahlflachprodukt P bestand, die jeweilige Temperatur TB des Beizmittels, die Beizdauer tB, die Temperatur TS des Spülmittels und die Spülzeit tS, das in der Flux-Station 5 jeweils durchlaufene Flussmittelbad X1 - X12, die Dauer tF, in der das jeweilige Stahlflachprodukt das jeweilige Flussmittelbad X1 - X12 durchlaufen hat, die jeweilige Flussmittelbad-Temperatur TF, der jeweilige pH-Wert pH_F und die jeweilige Dichte r-F des jeweiligen Flussmittelbads X1 - X12, die jeweilige Trocknungs- bzw. Badeintrittstemperatur TE, die Zusammensetzung des jeweiligen Schmelzenbads S, die Temperatur TBad des jeweiligen Schmelzenbads S und das jeweils auf einer der beschichteten Seiten des Stahlflachprodukts P erreichte Auflagengewicht AG angegeben. Die Verweildauer in der Trocknungsstation betrug jeweils 20 s und die im Schmelzenbad jeweils 10 s.For each of the 55 tests, the respective steel W1 - W7, of which the processed flat steel product P consisted, the respective temperature TB of the pickling agent, the pickling time tB, the temperature TS of the flushing agent and the flushing time tS, that in the flux station 5 flux baths X1 - X12 passed through each time, the duration tF in which the respective flat steel product passed through the respective flux bath X1 - X12, the respective flux bath temperature TF, the respective pH value pH_F and the respective density RH of the respective flux bath X1 - X12 , the respective drying or bath inlet temperature TE, the composition of the respective melt bath S, the temperature TBad of the respective melt bath S and that in each case on one of the Coated sides of the flat steel product P achieved print weight AG indicated. The dwell time in the drying station was 20 s and that in the melt bath was 10 s.

Die in Fig. 2 wiedergegebene Querschliffdarstellung ist an dem in Versuch 40 mit einem ZM-Überzug beschichteten erfindungsgemäßen Edelstahl-Stahlflachprodukt genommen worden.In the Fig. 2 The cross-section shown was taken from the flat stainless steel flat product according to the invention coated with a cementitious coating in experiment 40.

Die in Fig. 3 wiedergegebene Querschliffdarstellung ist an dem in Versuch 51 mit einem AS-Überzug beschichteten erfindungsgemäßen Edelstahl-Stahlflachprodukt genommen worden.In the Fig. 3 The cross-section shown was taken from the stainless steel flat product according to the invention coated with an AS coating in experiment 51.

Die in Fig. 4 wiedergegebene Querschliffdarstellung ist an dem in Versuch 28 mit einem ZM-Überzug beschichteten erfindungsgemäßen Baustahl-Stahlflachprodukt genommen worden.In the Fig. 4 The cross-sectional view shown has been taken on the structural steel flat product according to the invention coated with a cementitious coating in test 28.

Ein Vergleich der Figuren 2 und 4 ergibt, dass die beiden Verfahrensvarianten, bei denen das jeweilige Stahlflachprodukt P mit einem ZM-Überzug Z schmelztauchbeschichtet worden ist, unabhängig vom Werkstoff des jeweiligen Stahlsubstrats zu annähernd identischen Überzügen führen. So weist der jeweilige Überzug Z eine Deckschicht aus Zn-Mischkristallen (η-Phase) mit zwischen den Zn-Mischkristallen ausgeprägten ZnMg2-Phasen sowie eine zwischen dem Stahlflachprodukt P und der Deckschicht ausgebildete, aus Fe-Zn-Phasen bestehende Legierungsschicht Fe-Zn auf, über die die Deckschicht an das durch das Stahlflachprodukt P gebildete Stahlsubstrat dauerhaft haftend angebunden ist.A comparison of the Figures 2 and 4 shows that the two process variants in which the respective flat steel product P has been hot-dip coated with a ZM coating, regardless of the material of the respective steel substrate, lead to approximately identical coatings. Thus, the respective coating Z has a cover layer of Zn mixed crystals (η phase) with ZnMg 2 phases pronounced between the Zn mixed crystals and an Fe-Zn alloy layer formed between the flat steel product P and the cover layer and consisting of Fe-Zn phases via which the cover layer is permanently adhered to the steel substrate formed by the flat steel product P.

Beim in Fig. 3 dargestellten AS-Überzug A liegt eine Deckschicht AS aus AlSi-Phasen auf einer Fe-Al-Si-Legierungsschicht Fe-Al-Si, über die in diesem Fall die Deckschicht AS an das Stahlflachprodukt P angebunden ist. Tabelle 1 Stahl C Si Mn Al Cr Nb Mo Ti Ni W1 0,08 0,06 0,50 0,050 0,12 0,003 0,05 0,023 0,12 W2 0,15 0,06 0,80 0,050 0,12 0,003 0,05 0,023 0,12 W3 0,055 0,04 0,30 0,060 0,060 0,004 0,020 0,004 0,090 W4 0,080 0,48 1,25 0,070 0,15 0,050 0,040 0,008 0,15 W5 0,03 2,00 2,00 0,20 18,50 1,00 2,50 1,00 13,00 W6 0,15 2,00 2,00 0,20 19,00 1,00 0,80 1,00 9,50 W7 0,07 2,00 2,00 0,20 17,00 0,00 0,00 1,00 10,50 Rest Eisen und unvermeidbare Verunreinigungen, Angaben in Gew.-% Tabelle 2 Fluxnr. Chlorid-Ionen Zink-Ionen Ammonium-Ionen Kalium-Ionen Natrium-Ionen Kalzium-Ionen Magnesium-Ionen X1 210 150 4*) 0*) 1 0 0 X2 210 150 4*) 0*) 0,6 0,7 0,8 X3 210 150 5 35 0,5 1 0,5 X4 210 150 5 35 0,5 1,5 0 X5 185*) 145 7 35 0,8 1,5 0,7 X6 235 160 8,5 30 1 0,5 0,7 X7 235 160 8,5 20*) 1,5 1,5 1 X8 235 160 8,5 60*) 1,5 0,9 0 X9 235 160 10 40 1,5 0,9 0,2 X10 250 150 12 35 0,8 1,1 0 X11 250 150 12 35 1,2 1,1 0 X12 260*) 150 13*) 35 1,2 1,1 2*) Angaben in g/l, *) nicht erfindungsgemäß Tabelle 3a (erfindungsgemäße Versuche) Versuch Stahl TB tB TS tS Fluss-mittel TF tF pH-F r_F TE Schmelzenbad [Gew.-%] TBad AG [°C] [s] [°C] [s] [°C] [s] [g/cm3] [°C] Basis-metall Al Mg Si Fe [°C] [g/m2] 3 W1 50 30 50 15 X3 60 30 4 1,29 180 Zn 0,8 0,9 - - 480 400 4 W1 50 40 50 20 X4 60 40 4,3 1,41 180 Zn 0,8 0,9 - - 480 100 10 W2 50 30 50 15 X10 60 30 4,4 1,32 180 Zn 0,8 0,9 - - 465 500 11 W2 60 30 50 15 X11 60 30 4,3 1,28 180 Zn 0,8 0,9 - - 465 500 15 W2 50 30 50 15 X3 60 30 4 1,29 180 Zn 0,8 0,9 - - 465 400 16 W3 50 30 50 15 X4 60 30 4,3 1,41 180 Zn 0,8 0,9 - - 465 100 18 W3 50 30 50 15 X6 60 30 4,2 1,28 180 Zn 0,8 0,9 - - 465 550 22 W3 50 30 50 15 X10 60 30 4,4 1,32 180 Zn 0,8 0,9 - - 465 400 23 W4 50 30 50 15 X11 60 30 4,3 1,28 180 Zn 0,8 0,9 - - 465 400 27 W4 50 30 50 15 X3 60 30 4 1,29 180 Zn 0,6 0,9 - - 465 400 28 W4 50 30 50 15 X4 60 30 4,3 1,41 180 Zn 0,2 0,9 - - 455 100 30 W5 50 30 50 15 X6 60 30 4,2 1,28 180 Zn 1,5 4,8 - - 455 450 33 W5 50 30 50 15 X9 60 30 4,3 1,32 180 Zn 0,2 0,9 - - 455 450 34 W4 50 30 50 15 X10 60 30 4,4 1,32 180 Zn 0,2 0,9 - - 455 450 35 W4 50 30 50 15 X11 60 30 4,3 1,28 180 Zn 0,2 0,9 - - 455 450 39 W6 50 30 55 15 X3 60 30 4 1,29 180 Zn 0,2 1,1 - - 455 500 40 W6 50 30 55 15 X4 70 30 4,3 1,41 180 Zn 0,2 1,1 - - 455 200 45 W7 50 30 55 15 X9 70 30 4,3 1,32 180 Zn 0,8 0,9 - - 465 450 49 W5 50 30 50 15 X10 60 30 4,4 1,32 180 Al - - 9,5 3,5 670 100 50 W5 50 30 50 15 X10 60 30 4,4 1,32 180 Al - - 9,5 3,5 670 100 51 W7 50 30 50 15 X11 60 30 4,3 1,28 220 Al - - 9,5 3,5 670 100 52 W6 50 30 50 15 X11 60 30 4,3 1,28 220 Al - - 10,5 3,2 670 150 53 W7 50 30 50 15 X11 60 30 4,3 1,28 220 Al - - 10,5 3,2 670 150 Tabelle 3b (nicht erfindungsgemäße Versuche) Versuch Stahl TB tB TS tS Flussmittel TF tF pH-F r_F TE Schmelzenbad [Gew.-%] TBad AG [°C] [s] [°C] [s] [°C] [s] [g/cm3] [°C] Basismetall Al Mg Si Fe [°C] [g/m2] 1 W1 50 30 50 15 X1 60 30 4,6 1,3 180 Zn 0,8 0,9 - - 465 400 2 W1 50 30 50 15 X2 60 30 4,3 1,29 180 Zn 0,8 0,9 - - 465 400 5 W1 50 30 50 15 X5 55 30 4,2 1,24 180 Zn 0,8 0,9 - - 465 450 6 W1 20 30 20 15 X6 20 30 4,2 1,28 180 Zn 0,8 0,9 - - 465 450 7 W1 55 30 50 15 X7 60 30 4,2 1,29 180 Zn 0,8 0,9 - - 465 450 8 W1 50 30 50 15 X8 60 30 4,4 1,28 180 Zn 0,8 0,9 - - 465 500 9 W2 50 30 50 15 X9 60 30 4,3 1,32 180 Zn 0,8 0,9 - - 465 500 12 W2 60 30 50 15 X12 60 30 4,4 1,37 180 Zn 0,8 0,9 - - 465 100 13 W2 65 30 50 15 X1 60 30 4,6 1,3 180 Zn 0,8 0,9 - - 465 400 14 W2 65 30 50 15 X2 60 30 4,3 1,29 80 Zn 0,8 0,9 - - 465 400 17 W3 50 30 50 15 X5 60 30 4,2 1,24 180 Zn 0,8 0,9 - - 465 550 19 W3 50 30 50 15 X7 60 30 4,2 1,29 180 Zn 0,8 0,9 - - 465 550 20 W3 50 30 50 15 X8 60 30 4,4 1,28 180 Zn 0,8 0,9 - - 465 400 21 W3 50 30 50 15 X9 60 30 4,3 1,32 180 Zn 0,8 0,9 - - 465 400 24 W4 50 30 50 15 X12 60 30 4,4 1,37 180 Zn 0,8 0,9 - - 465 100 25 W4 50 30 50 15 X1 60 30 4,6 1,3 180 Zn 0,6 0,9 - - 465 400 26 W4 50 30 50 15 X2 60 30 4,3 1,29 80 Zn 0,6 0,9 - - 465 400 29 W4 50 30 50 15 X5 60 30 4,2 1,24 180 Zn 0,2 1,1 - - 455 100 31 W5 50 30 50 15 X7 60 30 4,2 1,29 180 Zn 1,5 4,8 - - 455 450 32 W5 50 30 50 15 X8 60 30 4,4 1,28 180 Zn 1,5 4,8 - - 455 450 36 W5 50 30 50 15 X12 60 30 4,4 1,37 180 Zn 0,2 0,9 - - 455 100 37 W6 50 30 55 15 X1 60 30 4,6 1,3 180 Zn 0,2 1,1 - - 455 500 38 W6 50 30 55 15 X2 60 30 4,3 1,29 180 Zn 0,2 1,1 - - 455 500 Tabelle 3c (nicht erfindungsgemäße Versuche) Versuch Stahl TB tB TS tS Flussmittel TF tF pH-F r_F TE Schmelzenbad [Gew.-%] TBad AG [°C] [s] [°C] [s] [°C] [s] [g/cm3] [°C] Basis- metall Al Mg Si Fe [°C] [g/m2] 41 W6 50 30 55 15 X5 70 30 4,2 1,24 180 Zn 1,5 9,5 - - 455 400 42 W6 50 30 55 15 X6 70 30 4,2 1,28 180 Zn 1,5 9,5 - - 455 450 43 W6 50 30 55 15 X7 70 30 4,2 1,29 180 Zn 0,8 0,9 - - 465 450 44 W7 50 30 55 15 X8 70 30 4,4 1,28 180 Zn 0,8 0,9 - - 465 450 46 W7 50 30 50 15 X10 60 30 4,4 1,32 250 Zn 0,8 0,9 - - 465 400 47 W7 50 30 50 15 X11 60 30 4,3 1,28 250 Zn 0,8 0,9 - - 500 400 48 W7 50 30 50 15 X12 60 30 4,4 1,37 180 Zn 0,8 0,9 - - 465 100 54 W6 50 30 50 15 X2 60 30 4,3 1,29 180 Al - - 10,5 3,2 670 100 55 W7 50 30 50 15 X2 60 30 4,3 1,29 180 Al - - 9,5 3,5 670 150 The in Fig. 3 AS coating A shown, a cover layer AS made of AlSi phases lies on an Fe-Al-Si alloy layer Fe-Al-Si, via which the cover layer AS is connected to the flat steel product P in this case. Table 1 stole C. Si Mn Al Cr Nb Mon Ti Ni W1 0.08 0.06 0.50 0.050 0.12 0.003 0.05 0.023 0.12 W2 0.15 0.06 0.80 0.050 0.12 0.003 0.05 0.023 0.12 W3 0.055 0.04 0.30 0.060 0.060 0.004 0.020 0.004 0.090 W4 0.080 0.48 1.25 0.070 0.15 0.050 0.040 0.008 0.15 W5 0.03 2.00 2.00 0.20 18.50 1.00 2.50 1.00 13.00 W6 0.15 2.00 2.00 0.20 19.00 1.00 0.80 1.00 9.50 W7 0.07 2.00 2.00 0.20 17.00 0.00 0.00 1.00 10.50 Remainder iron and unavoidable impurities, data in% by weight Flux no. Chloride ions Zinc ions Ammonium ions Potassium ions Sodium ions Calcium ions Magnesium ions X1 210 150 4 *) 0 *) 1 0 0 X2 210 150 4 *) 0 *) 0.6 0.7 0.8 X3 210 150 5 35 0.5 1 0.5 X4 210 150 5 35 0.5 1.5 0 X5 185 *) 145 7th 35 0.8 1.5 0.7 X6 235 160 8.5 30th 1 0.5 0.7 X7 235 160 8.5 20 *) 1.5 1.5 1 X8 235 160 8.5 60 *) 1.5 0.9 0 X9 235 160 10 40 1.5 0.9 0.2 X10 250 150 12 35 0.8 1.1 0 X11 250 150 12 35 1.2 1.1 0 X12 260 *) 150 13 *) 35 1.2 1.1 2 *) Figures in g / l, *) not according to the invention attempt stole TB tB TS tS Flux medium TF tF pH-F r_F TE Melt bath [% by weight] TBad AG [° C] [s] [° C] [s] [° C] [s] [g / cm 3 ] [° C] Base metal Al Mg Si Fe [° C] [g / m 2 ] 3 W1 50 30th 50 15th X3 60 30th 4th 1.29 180 Zn 0.8 0.9 - - 480 400 4th W1 50 40 50 20th X4 60 40 4.3 1.41 180 Zn 0.8 0.9 - - 480 100 10 W2 50 30th 50 15th X10 60 30th 4.4 1.32 180 Zn 0.8 0.9 - - 465 500 11 W2 60 30th 50 15th X11 60 30th 4.3 1.28 180 Zn 0.8 0.9 - - 465 500 15th W2 50 30th 50 15th X3 60 30th 4th 1.29 180 Zn 0.8 0.9 - - 465 400 16 W3 50 30th 50 15th X4 60 30th 4.3 1.41 180 Zn 0.8 0.9 - - 465 100 18th W3 50 30th 50 15th X6 60 30th 4.2 1.28 180 Zn 0.8 0.9 - - 465 550 22nd W3 50 30th 50 15th X10 60 30th 4.4 1.32 180 Zn 0.8 0.9 - - 465 400 23 W4 50 30th 50 15th X11 60 30th 4.3 1.28 180 Zn 0.8 0.9 - - 465 400 27 W4 50 30th 50 15th X3 60 30th 4th 1.29 180 Zn 0.6 0.9 - - 465 400 28 W4 50 30th 50 15th X4 60 30th 4.3 1.41 180 Zn 0.2 0.9 - - 455 100 30th W5 50 30th 50 15th X6 60 30th 4.2 1.28 180 Zn 1.5 4.8 - - 455 450 33 W5 50 30th 50 15th X9 60 30th 4.3 1.32 180 Zn 0.2 0.9 - - 455 450 34 W4 50 30th 50 15th X10 60 30th 4.4 1.32 180 Zn 0.2 0.9 - - 455 450 35 W4 50 30th 50 15th X11 60 30th 4.3 1.28 180 Zn 0.2 0.9 - - 455 450 39 W6 50 30th 55 15th X3 60 30th 4th 1.29 180 Zn 0.2 1.1 - - 455 500 40 W6 50 30th 55 15th X4 70 30th 4.3 1.41 180 Zn 0.2 1.1 - - 455 200 45 W7 50 30th 55 15th X9 70 30th 4.3 1.32 180 Zn 0.8 0.9 - - 465 450 49 W5 50 30th 50 15th X10 60 30th 4.4 1.32 180 Al - - 9.5 3.5 670 100 50 W5 50 30th 50 15th X10 60 30th 4.4 1.32 180 Al - - 9.5 3.5 670 100 51 W7 50 30th 50 15th X11 60 30th 4.3 1.28 220 Al - - 9.5 3.5 670 100 52 W6 50 30th 50 15th X11 60 30th 4.3 1.28 220 Al - - 10.5 3.2 670 150 53 W7 50 30th 50 15th X11 60 30th 4.3 1.28 220 Al - - 10.5 3.2 670 150 attempt stole TB tB TS tS Flux TF tF pH-F r_F TE Melt bath [% by weight] TBad AG [° C] [s] [° C] [s] [° C] [s] [g / cm 3 ] [° C] Base metal Al Mg Si Fe [° C] [g / m 2 ] 1 W1 50 30th 50 15th X1 60 30th 4.6 1.3 180 Zn 0.8 0.9 - - 465 400 2 W1 50 30th 50 15th X2 60 30th 4.3 1.29 180 Zn 0.8 0.9 - - 465 400 5 W1 50 30th 50 15th X5 55 30th 4.2 1.24 180 Zn 0.8 0.9 - - 465 450 6th W1 20th 30th 20th 15th X6 20th 30th 4.2 1.28 180 Zn 0.8 0.9 - - 465 450 7th W1 55 30th 50 15th X7 60 30th 4.2 1.29 180 Zn 0.8 0.9 - - 465 450 8th W1 50 30th 50 15th X8 60 30th 4.4 1.28 180 Zn 0.8 0.9 - - 465 500 9 W2 50 30th 50 15th X9 60 30th 4.3 1.32 180 Zn 0.8 0.9 - - 465 500 12 W2 60 30th 50 15th X12 60 30th 4.4 1.37 180 Zn 0.8 0.9 - - 465 100 13 W2 65 30th 50 15th X1 60 30th 4.6 1.3 180 Zn 0.8 0.9 - - 465 400 14th W2 65 30th 50 15th X2 60 30th 4.3 1.29 80 Zn 0.8 0.9 - - 465 400 17th W3 50 30th 50 15th X5 60 30th 4.2 1.24 180 Zn 0.8 0.9 - - 465 550 19th W3 50 30th 50 15th X7 60 30th 4.2 1.29 180 Zn 0.8 0.9 - - 465 550 20th W3 50 30th 50 15th X8 60 30th 4.4 1.28 180 Zn 0.8 0.9 - - 465 400 21st W3 50 30th 50 15th X9 60 30th 4.3 1.32 180 Zn 0.8 0.9 - - 465 400 24 W4 50 30th 50 15th X12 60 30th 4.4 1.37 180 Zn 0.8 0.9 - - 465 100 25th W4 50 30th 50 15th X1 60 30th 4.6 1.3 180 Zn 0.6 0.9 - - 465 400 26th W4 50 30th 50 15th X2 60 30th 4.3 1.29 80 Zn 0.6 0.9 - - 465 400 29 W4 50 30th 50 15th X5 60 30th 4.2 1.24 180 Zn 0.2 1.1 - - 455 100 31 W5 50 30th 50 15th X7 60 30th 4.2 1.29 180 Zn 1.5 4.8 - - 455 450 32 W5 50 30th 50 15th X8 60 30th 4.4 1.28 180 Zn 1.5 4.8 - - 455 450 36 W5 50 30th 50 15th X12 60 30th 4.4 1.37 180 Zn 0.2 0.9 - - 455 100 37 W6 50 30th 55 15th X1 60 30th 4.6 1.3 180 Zn 0.2 1.1 - - 455 500 38 W6 50 30th 55 15th X2 60 30th 4.3 1.29 180 Zn 0.2 1.1 - - 455 500 attempt stole TB tB TS tS Flux TF tF pH-F r_F TE Melt bath [% by weight] TBad AG [° C] [s] [° C] [s] [° C] [s] [g / cm 3 ] [° C] Base metal Al Mg Si Fe [° C] [g / m 2 ] 41 W6 50 30th 55 15th X5 70 30th 4.2 1.24 180 Zn 1.5 9.5 - - 455 400 42 W6 50 30th 55 15th X6 70 30th 4.2 1.28 180 Zn 1.5 9.5 - - 455 450 43 W6 50 30th 55 15th X7 70 30th 4.2 1.29 180 Zn 0.8 0.9 - - 465 450 44 W7 50 30th 55 15th X8 70 30th 4.4 1.28 180 Zn 0.8 0.9 - - 465 450 46 W7 50 30th 50 15th X10 60 30th 4.4 1.32 250 Zn 0.8 0.9 - - 465 400 47 W7 50 30th 50 15th X11 60 30th 4.3 1.28 250 Zn 0.8 0.9 - - 500 400 48 W7 50 30th 50 15th X12 60 30th 4.4 1.37 180 Zn 0.8 0.9 - - 465 100 54 W6 50 30th 50 15th X2 60 30th 4.3 1.29 180 Al - - 10.5 3.2 670 100 55 W7 50 30th 50 15th X2 60 30th 4.3 1.29 180 Al - - 9.5 3.5 670 150

Claims (5)

  1. Method for coating a flat steel product having a metal protective coating based on Zn or Al, comprising the following operating steps which are carried out in a continuous run:
    a) providing the flat steel product;
    b) pickling the flat steel product in order to remove scale which has bonded to the flat steel product and to activate the surface of the flat steel product;
    c) removing pickling agent which is present on the pickled flat steel product after pickling by cleaning the flat steel product with an aqueous medium;
    d) directing the pickled and cleaned flat steel product through a flux bath which comprises an aqueous solution which in addition to process-related and production-related impurities contains chloride ions and ions of the elements from the group "zinc, ammonium and potassium" and optionally additionally ions of the elements "Na, Ca and Mg" and also optionally traces of ions of the elements "Al, Fe, Mn, Mo, Ni, P, Sr, Si and Li" with the provision that
    - the overall concentration of chloride ions c(Cl-) is at least 210 g/l and a maximum of 250 g/l,
    - the overall concentration of zinc ions c(Zn2+) is at least 140 g/l and a maximum of 160 g/l,
    - the overall concentration of ammonium ions c(NH4 +) is at least 5 g/l and a maximum of 12 g/l,
    - the overall concentration of potassium ions c(K+) is at least 30 g/l and a maximum of 40 g/l,
    - the overall concentration of optionally present sodium ions c(Na+) is at least 0.5 g/l and a maximum of 1.5 g/l,
    - the overall concentration of optionally present calcium ions c(Ca2+) is at least 0.5 g/l and a maximum of 1.5 g/l,
    - the overall concentration of optionally present magnesium ions c(Mg+) is a maximum of 1 g/l,
    - the contents of the elements Al, Fe, Mn, Mo, Ni, P, Si, Sr and Li present in traces is a maximum of 10 mg/l,
    and
    - the density of the flux bath is at least 1.25 g/cm3 and a maximum of 1.45 g/cm3,
    - the temperature of the flux bath is from 40 to 100°C,
    - the pH value of the flux bath is from 4 to 4.5 and
    - the immersion time within which the flat steel product is directed through the flux bath is from 10 to 120 sec.;
    e) drying the flat steel product discharged from the flux bath and heating the flat steel product to a bath entry temperature which is from 100 to 230°C;
    f) hot-dip galvanising the flat steel product with a metal protective coating based on Zn or Al in a melt bath, in which the flat steel product is introduced at the bath entry temperature;
    g) optionally carried out thermal, chemical or mechanical reprocessing of the flat steel product which is hot-dip galvanised with the protective coating.
  2. Method according to claim 1, characterised in that the drying time over which the flat steel product is dried in the operating step e) is from 10 to 30 sec.
  3. Method according to either of the preceding claims, characterised in that the dwell time of the flat steel product in the melt bath is from 1 to 120 sec.
  4. Method according to any one of the preceding claims, characterised in that the temperature of the melt bath is from 430 to 780°C.
  5. Method according to any one of the preceding claims, characterised in that the flat steel product is a maximum of 600 mm wide.
EP13174979.8A 2013-07-03 2013-07-03 Method for the coating of steel flat products with a metallic protective layer Active EP2821520B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES13174979T ES2851199T3 (en) 2013-07-03 2013-07-03 Procedure for coating flat steel products with a metallic protective layer
EP13174979.8A EP2821520B1 (en) 2013-07-03 2013-07-03 Method for the coating of steel flat products with a metallic protective layer
PCT/EP2014/062879 WO2015000707A1 (en) 2013-07-03 2014-06-18 Method for coating flat steel products with a metallic protective layer, and flat steel products coated with a metallic protective layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13174979.8A EP2821520B1 (en) 2013-07-03 2013-07-03 Method for the coating of steel flat products with a metallic protective layer

Publications (2)

Publication Number Publication Date
EP2821520A1 EP2821520A1 (en) 2015-01-07
EP2821520B1 true EP2821520B1 (en) 2020-11-11

Family

ID=48740943

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13174979.8A Active EP2821520B1 (en) 2013-07-03 2013-07-03 Method for the coating of steel flat products with a metallic protective layer

Country Status (3)

Country Link
EP (1) EP2821520B1 (en)
ES (1) ES2851199T3 (en)
WO (1) WO2015000707A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131171A1 (en) * 2017-01-16 2018-07-19 新日鐵住金株式会社 Plated steel material
JP7252922B2 (en) * 2019-08-19 2023-04-05 Jfeスチール株式会社 Flux solution for hot-dip galvanizing and method for manufacturing hot-dip galvanized steel pipe
CN112522591B (en) * 2019-09-19 2022-03-18 宝山钢铁股份有限公司 Method for producing high-strength and high-corrosion-resistance steel by thin-strip continuous casting

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999006602A1 (en) * 1997-08-01 1999-02-11 Acciai Speciali Terni S.P.A. Austenitic stainless steel strips having good weldability as cast
WO2003062476A1 (en) * 2001-11-15 2003-07-31 Thyssenkrupp Acciai Speciali Terni S.P.A. In-line process for the recrystallization of solidified coarse strips in carbon steel and in low-alloyed steel and so obtainable strips having a highly checked microstructure
EP1396550A1 (en) * 2002-08-28 2004-03-10 ThyssenKrupp Stahl AG Method for manufacturing hot strip
DE102012101018B3 (en) * 2012-02-08 2013-03-14 Thyssenkrupp Nirosta Gmbh Process for hot dip coating a flat steel product
WO2013046693A1 (en) * 2011-09-29 2013-04-04 Jfeスチール株式会社 Hot-rolled steel sheet and method for producing same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2852756B2 (en) * 1978-12-06 1980-09-25 Basf Ag, 6700 Ludwigshafen Flux for dry galvanizing
US4496612A (en) * 1982-04-06 1985-01-29 E. I. Du Pont De Nemours And Company Aqueous flux for hot dip metalizing process
DE3814372A1 (en) * 1988-04-28 1989-11-09 Deca Chemie Gmbh Process for the economical operation of a hot-metallising plant
US5437738A (en) * 1994-06-21 1995-08-01 Gerenrot; Yum Fluxes for lead-free galvanizing
WO1995004607A1 (en) * 1993-08-05 1995-02-16 Ferro Technologies, Inc. Lead-free galvanizing technique
DE10107936C2 (en) * 2001-02-20 2002-12-19 Feuerverzinkung Hannover Gmbh Process for the preparation of process fluids in hot-dip galvanizing plants
EP1693477A1 (en) 2005-02-22 2006-08-23 ThyssenKrupp Steel AG Coated steel plate
PL1857566T3 (en) 2006-05-15 2017-10-31 Thyssenkrupp Steel Europe Ag Flat steel product provided with a corrosion protection coating and method of its manufacture
FR2920439B1 (en) 2007-09-03 2009-11-13 Siemens Vai Metals Tech Sas METHOD AND DEVICE FOR THE CONTROLLED OXIDATION / REDUCTION OF THE SURFACE OF A CONTINUOUSLY STRAY STEEL BAND IN A RADIANT TUBE OVEN FOR ITS GALVANIZATION
EP2055799A1 (en) 2007-11-05 2009-05-06 ThyssenKrupp Steel AG Flat steel product with an anti-corrosion metal coating and method for creating an anti-corrosion metal coating on a flat steel product

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999006602A1 (en) * 1997-08-01 1999-02-11 Acciai Speciali Terni S.P.A. Austenitic stainless steel strips having good weldability as cast
WO2003062476A1 (en) * 2001-11-15 2003-07-31 Thyssenkrupp Acciai Speciali Terni S.P.A. In-line process for the recrystallization of solidified coarse strips in carbon steel and in low-alloyed steel and so obtainable strips having a highly checked microstructure
EP1396550A1 (en) * 2002-08-28 2004-03-10 ThyssenKrupp Stahl AG Method for manufacturing hot strip
WO2013046693A1 (en) * 2011-09-29 2013-04-04 Jfeスチール株式会社 Hot-rolled steel sheet and method for producing same
EP2762584A1 (en) * 2011-09-29 2014-08-06 JFE Steel Corporation Hot-rolled steel sheet and method for producing same
DE102012101018B3 (en) * 2012-02-08 2013-03-14 Thyssenkrupp Nirosta Gmbh Process for hot dip coating a flat steel product

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IRVING MELVIN BERNSTEIN ET AL: "Residual and Minor Elements in Stainless Steels", HANDBOOK OF STAINLESS STEELS, XX, XX, 1 January 1977 (1977-01-01), pages 14 - 1, XP002430954 *

Also Published As

Publication number Publication date
WO2015000707A1 (en) 2015-01-08
ES2851199T3 (en) 2021-09-03
EP2821520A1 (en) 2015-01-07

Similar Documents

Publication Publication Date Title
DE3201475C2 (en)
EP2848709B1 (en) Method for producing a steel component with an anti-corrosive metal coating and steel component
EP2235229B9 (en) Method for coating a warm or cold-rolled flat steel product comprising 6 - 30 weight-% mn with a metallic protective layer
EP3411510B1 (en) Hot-dip galvanization system and hot-dip galvanization method
EP3445889B1 (en) Method and flux for hot galvanization
EP2848715B1 (en) Method for producing a steel component with an anti-corrosive metal coating
EP2290133A1 (en) Method for producing a steel component with an anti-corrosive metal coating and steel component
WO2007124781A1 (en) Hot dip coating process for a steel plate product made of high strengthheavy-duty steel
WO2010089273A1 (en) Method for producing a coated steel component by means of hot forming and steel component produced by means of hot forming
DE69705993T2 (en) Pickling of stainless steel with solution containing hydrogen peroxide
EP3400318B1 (en) Hot-dip galvanization system, hot-dip galvanization method and their use
DE69106552T2 (en) Surface-treated steel strip with improved weldability and coating properties and its manufacture.
DE102016106662A1 (en) Plant for hot-dip galvanizing and hot-dip galvanizing, in particular for mass production
EP2821520B1 (en) Method for the coating of steel flat products with a metallic protective layer
EP3880860B1 (en) Method for the zinc plating, in particular galvanising, of iron and steel products
JP2015532365A (en) Method for producing metal-coated steel strip
EP3872230A1 (en) Method for producing hardened steel components with a conditioned zinc alloy corrosion protection layer
DE102017106672A1 (en) Method for marking and / or marking galvanized, in particular hot-dip galvanized components
DE102013107011A1 (en) Process for coating long Cu products with a metallic protective layer and a Cu long product provided with a metallic protective layer
DE19926102B4 (en) Process and plant for producing an electrolytically coated hot strip
EP1350865A2 (en) Tinned and phosphatised sheet and method for producing such a sheet
EP4110972B1 (en) Method for producing hardened steel components with a conditioned zinc alloy corrosion protection layer
EP3872231A1 (en) Method for conditioning the surface of a metal strip coated with a zinc alloy corrosion protection layer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130703

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150703

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20151109

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200604

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1333550

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013015281

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20210218 AND 20210224

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: THYSSENKRUPP STEEL EUROPE AG

Owner name: OUTOKUMPU NIROSTA GMBH

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 36507

Country of ref document: SK

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201111

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 1333550

Country of ref document: AT

Kind code of ref document: T

Owner name: OUTOKUMPU NIROSTA GMBH, DE

Effective date: 20210215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210211

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210311

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210311

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210211

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013015281

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2851199

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210903

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210703

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013015281

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210731

REG Reference to a national code

Ref country code: SK

Ref legal event code: PC4A

Ref document number: 28966

Country of ref document: SK

Owner name: TILLOTTS PHARMA AG, RHEINFELDEN, CH

Free format text: FORMER OWNER: ASTELLAS PHARMA EUROPE LTD., SURREY, GB

Effective date: 20220322

Ref country code: SK

Ref legal event code: PC4A

Ref document number: 29766

Country of ref document: SK

Owner name: TILLOTTS PHARMA AG, RHEINFELDEN, CH

Free format text: FORMER OWNER: ASTELLAS PHARMA EUROPE LTD., SURREY, GB

Effective date: 20220322

Ref country code: SK

Ref legal event code: PC4A

Ref document number: 22156

Country of ref document: SK

Owner name: R-PHARM INTERNATIONAL, LLC, MOSCOW, RU

Free format text: FORMER OWNER: UCB PHARMA S.A., BRUSSELS, BE

Effective date: 20220325

Ref country code: SK

Ref legal event code: PC4A

Ref document number: 15733

Country of ref document: SK

Owner name: TROY TECHNOLOGY II, INC., FLORHAM PARK, NJ, US

Free format text: FORMER OWNER: TROY TECHNOLOGY CORPORATION, INC., WILMINGTON, DE; US

Effective date: 20220317

Ref country code: SK

Ref legal event code: PC4A

Ref document number: 17514

Country of ref document: SK

Owner name: R-PHARM INTERNATIONAL, LLC, MOSCOW, RU

Free format text: FORMER OWNER: UCB PHARMA S.A., BRUXELLES, BE

Effective date: 20220323

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 36507

Country of ref document: SK

Effective date: 20210703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210703

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220201

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210311

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210703

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210704

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210703

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210703

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1333550

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210703

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210704

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210703

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111