EP1850788A2 - Verbessertes filter mit positionierungs- und ortungsvorrichtungen und verfahren - Google Patents
Verbessertes filter mit positionierungs- und ortungsvorrichtungen und verfahrenInfo
- Publication number
- EP1850788A2 EP1850788A2 EP06720259A EP06720259A EP1850788A2 EP 1850788 A2 EP1850788 A2 EP 1850788A2 EP 06720259 A EP06720259 A EP 06720259A EP 06720259 A EP06720259 A EP 06720259A EP 1850788 A2 EP1850788 A2 EP 1850788A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- filter
- distal end
- legs
- manipulation device
- intravascular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/01—Filters implantable into blood vessels
- A61F2/0103—With centering means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/01—Filters implantable into blood vessels
- A61F2/0105—Open ended, i.e. legs gathered only at one side
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/01—Filters implantable into blood vessels
- A61F2/011—Instruments for their placement or removal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/01—Filters implantable into blood vessels
- A61F2002/016—Filters implantable into blood vessels made from wire-like elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2002/9528—Instruments specially adapted for placement or removal of stents or stent-grafts for retrieval of stents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0028—Shapes in the form of latin or greek characters
- A61F2230/005—Rosette-shaped, e.g. star-shaped
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0028—Shapes in the form of latin or greek characters
- A61F2230/0058—X-shaped
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0028—Shapes in the form of latin or greek characters
- A61F2230/006—Y-shaped
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0063—Three-dimensional shapes
- A61F2230/0086—Pyramidal, tetrahedral, or wedge-shaped
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0063—Three-dimensional shapes
- A61F2230/0086—Pyramidal, tetrahedral, or wedge-shaped
- A61F2230/0089—Pyramidal, tetrahedral, or wedge-shaped tetrahedral, i.e. having a triangular basis
Definitions
- the invention generally relates to filter devices for trapping blood clots and controlling embolization and thrombosis in blood vessels. More specifically, the present invention is directed to an improved filter and methods and devices for positioning and retrieving the same.
- Intravenous filters are commonly used to trap blood clots (emboli) carried in the vasculature. Such emboli may cause serious health risks including embolization and thrombosis, and may ultimately lead to death. Such emboli, if left unrestrained, may travel to the lungs through the vasculature, resulting in pulmonary embolism.
- a filtering device may be positioned in a blood vessel, such as the vena cava, in order to capture emboli and prevent emboli from reaching the lungs.
- the filter can be deployed in a tilted position, i.e., not centered within the vessel. Filters positioned in such an orientation may not function as well as well-centered filters. There is a continuing need to more accurately control the deployment of an intravenous filter within a blood vessel, such that the filter is centered in the vessel.
- the invention pertains to an intravenous filter that can be more accurately centered within a vessel.
- the invention is also directed to a deployment and/or retrieval device for positioning a filter in a vessel.
- one embodiment includes an expandable filter having multiple sets of centering legs.
- the orientation of the centering legs provides an elongated cylindrical area for more accurately centering the filter within a vessel.
- the filter may have elongated feet attached to the filter legs to more accurately center and stabilize the filter within a vessel.
- the placement device includes an inner elongate member and an outer sheath disposed about the inner elongate member.
- the inner elongate member is connected to a grasping member extending distal of the inner elongate member.
- the grasping member may be biased in an expanded configuration, but may be collapsed to engage a filter when the outer sheath is extending distally.
- Such a device may be used to deploy a filter within a vessel, reposition a filter within a vessel, or it may be used to extract a filter from a vessel.
- manipulating a filter in a vessel includes deploying, repositioning, extracting, or the like.
- Figure 1 is a plan view of an intravascular filter within the scope of the invention.
- Figures 2A and 2B are plan views of exemplary intravascular filters within the scope of the invention.
- FIGS 2C-2F are plan views of a filter in accordance with the invention and means for deploying a filter within a vessel.
- Figures 3A-3B are partial cross-sectional views of a filter deployment device and method within the scope of the invention.
- Figure 4 is a cross-sectional view of a filter manipulation device in accordance with the invention.
- Figure 5 is a cross-sectional view of a filter manipulation device in accordance with the invention.
- Figure 6 is cross-sectional view of a filter manipulation device in accordance with the invention.
- Figure 6A is a cross-sectional view of the filter manipulation device in Fig. 6 taken along line 6A-6A.
- Figure 7 is a cross-sectional view of a filter manipulation device in accordance with the invention.
- Figure 7A is a cross-sectional view of the filter manipulation device in Fig. 7 taken along line IA-I A.
- Figure 8 is a cross-sectional view of a filter and filter retrieval device within the scope of the invention.
- Figures 9A-9C are cross-sectional views of a filter retrieval device within the scope of the invention.
- Figures 10A- 1OC are plan views of illustrative embodiments of a filter retrieval device within the scope of the invention.
- FIGS. 1 IA-I IB are cross-sectional views of a filter and filter retrieval device in accordance with the invention.
- Figures 12-12A are plan views of a filter within the scope of the invention.
- Figures 13-13A are cross-sectional views of a method for retrieving a filter in accordance with the invention.
- Figures 14-14A are cross-sectional views of a method for retrieving a filter in accordance with the invention.
- FIG 1 shows one embodiment of an intravenous filter according to the invention.
- Filter 10 includes a tip 20 and multiple sets of legs 30, 40 extending from tip 20.
- Figure 1 depicts a filter having two sets of legs, but a filter having additional sets of legs is contemplated as being within the scope of the invention.
- Legs 40 are longer than legs 30, thereby creating a landing distance 50 between distal end 35 of legs 30 and distal end 45 of legs 40.
- the landing distance 50 may resemble a cylindrical wall between distal ends 35, 45 of legs 30, 40.
- the landing distance 50 provides an elongated planar surface for the filter 10 to engage the wall 60 of a vessel. By engaging the wall 60 at multiple distances from the filter tip 20, the filter 10 may be more accurately centered in a vessel.
- One set of legs may include securing hooks 55 at the distal end 35, 45 of legs 30, 40. Securing hooks 55 prevent the filter 10 from migrating downstream or tilting after deployment.
- Hooks 55 may comprise thermally reactive metals, such as shape memory alloys. Preferably, hooks may comprise a nickel-titanium alloy such as nitinol.
- Hooks 55 comprising a thermally reactive metal may be subjected to thermal energy, such as an electrical charge, non-invasive RF energy, or the like. Hooks 55 subjected to thermal energy may tend to straighten to facilitate disengagement from the vessel wall 60 during a filter retrieval process. As hooks 55 straighten as a result of subjecting them to a thermal energy source, hooks 55 lose their anchoring ability, therefore, allowing the filter 10 to be disengaged from the vessel.
- FIG. 2A shows another embodiment of the invention.
- Filter 90 includes a plurality of legs 92 extending from the tip 94.
- a longitudinal landing foot 95 is connected to each leg 92 at distal end 96.
- Landing feet 95 provide an elongated planar surface for the filter 90 to engage the wall 60 of a vessel. The elongated planar surface formed by the landing feet 95 may more accurately center the filter 90 in a vessel.
- a securing hook 55 may be disposed at the proximal end of each landing foot 95 in order to engage the vessel wall 60. Alternatively, securing hooks 55 may be disposed at the distal end of each landing foot 95 as shown in Figure 2B. The location of securing hooks 55 may be determined by the method of deployment or retrieval of the filter 90 from a vessel.
- FIG. 2C shows an alternate embodiment of the filter 90 of Figs. 2A, 2B.
- Filter 90 has centering feet 98 attached at distal ends 96 of legs 92. Centering feet 98 extend both proximally and distally from distal end 96 of legs 92. Centering feet 98 may provide a longer longitudinal distance for centering the filter 90 than feet 95. Centering feet 98 provide greater control for anchoring and centering the filter 90 within a vessel. Greater control is accomplished because centering feet 98 exit deployment sheath first, allowing for a gradual expansion of filter 90, as opposed to a sudden "jump" in expansion as is common with prior art filters. As shown in Figure 2D, prior to deployment centering feet 98 are substantially longitudinal with deployment sheath 99.
- FIG. 3 A shows a delivery device 100 for delivering a filter such as filter 10.
- Delivery device 100 includes an elongated shaft 110.
- Elongated shaft 110 has a distal segment 115 having an enlarged diameter relative to the portion of elongated shaft 110 proximate the distal segment 115.
- Distal segment 115 may include a shape memory polymer (SMP), such that when the SMP is subjected to a thermal energy source increasing its temperature above its glass transition temperature (Tg), the distal segment 115 may transform to a preformed shape. Such a preformed shape may have an expanded diameter.
- Filter 10 may be disposed within distal segment 115 prior to deployment.
- Push wire 118 may extend through elongated shaft 110 to filter 10.
- SMP shape memory polymer
- Push wire may abut filter 10 or may be releasably attached to filter 10.
- the enlarged distal segment 115 may be subjected to a thermal energy source, allowing the distal segment 115 to be expanded to abut the wall 60 of a vessel prior to deployment of the filter 10.
- the expanded state of enlarged distal segment 115 allows the filter 10 to be partially expanded within the distal segment 115 prior to deployment within the vessel. Partially expanding the filter 10 in the distal segment 115 prior to deployment minimizes the additional amount (“jump") the filter 10 must expand after deploying the filter distal of the distal segment 115. By minimizing the jump the filter must undergo in order to engage the vessel wall 60, the filter 10 may be more precisely centered in the vessel.
- FIG. 4 shows a filter manipulation device 200 in accordance with the invention.
- Filter manipulation device 200 may be used as a delivery device, a repositioning device, or a retrieval device.
- Filter manipulation device 200 includes an outer sheath 210 and a push/pull wire 220 disposed within outer sheath 210.
- a first braided member 230 may be disposed about a portion of distal end of push/pull wire 220 and extend distally therefrom.
- first braided member 230 may be disposed adjacent to clip 240 and extend distally therefrom.
- the first braided member 230 may comprise a polymer, a metal, such as a stainless steel alloy, or the like.
- first braided member 230 may include a nickel-titanium alloy.
- the first braided member 230 may be braided in a one-over-one configuration, a two-over-one configuration, or the like.
- First braided member 230 may substantially comprise a conical shape. A proximal portion of first braided member 230 may extend over distal end of push/pull wire 220, or may be secured to distal end of push/pull wire 220. First braided member 230 may be secured to the distal portion of push/pull wire 220 with a tubular sleeve. Tubular sleeve, may be heat shrink tubing, a polymer jacket, a metallic band, or the like. Preferably, first braided member 230 may be secured to push/pull wire 220 with a hypotube 245. Hypotube 245 may be an elongated metallic tube including a stainless steel or nickel-titanium alloy. Hypotube 245 may include a helical cut or a plurality of apertures formed in at least a portion of the hypotube 245.
- First braided member 230 may be formed to be biased in an expanded configuration as shown in Figure 4, but may be contracted within outer sheath 210 by moving outer sheath 210 in the distal direction during a delivery or removal process.
- the first braided member 230 may abut filter 10 in an expanded configuration.
- the first braided member 230 may act as a wedge to capture the filter 10. Frictional forces between the first braided member 230 and the filter 10 hold the filter 10 adjacent the first braided member 230 and provide purchase during manipulation of the filter 10.
- Moving outer sheath 210 in the distal direction allows the distal end 212 of outer sheath 210 to contact the first braided member 230, such that braided member 230 is compressed at least partially within outer sheath 210.
- Braided member 230 provides sufficient purchase of the filter 10 due to the frictional contact between the interface of the first braided member 230 and filter 10. The purchase created by the frictional contact is sufficient to allow the manipulation device 200 to maneuver and position the filter 10. As outer sheath 210 is moved in the distal direction, first braided member 230 collapses filter 10 to a collapsed state sufficient to retain filter 10 within outer sheath 210.
- the distal end of push/pull wire 220 may include a clip 240, preferably comprising a nickel-titanium alloy, such as nitinol.
- Clip 240 may be formed such as by heat setting with a curved shape so as to open as the outer sheath 210 is retracted proximally.
- Clip 240 may be a substantially conical shaped.
- Clip 240 may be formed to extend over and grasp the tip 20 of a filter 10.
- Clip 240 may be secured to push/pull wire 220 by a sleeve, heat shrink member, adhesive, welding, or any other ways known in the art.
- clip 240 is secured to push/pull wire 220 with a tubular member comprising a polymer or metallic alloy.
- clip 240 is secured to push/pull wire 220 with hypotube 245.
- Clip 240 may contact the tip 20 of filter 10 as outer sheath 210 is extended distally.
- Clip 240 may collapse and securely encompass tip 20 once outer sheath 210 is extended distally. Frictional contact with filter 10 created by clip 240 and/or first braided member 230 may allow manipulation of filter 10 within a vessel.
- Outer sheath 210 may be partially retracted proximally, allowing first braided member 230 to expand partially. Partially expanded first braided member 230 is thus disengaged from the filter 10, while clip 240 remains secured about tip 20 of filter 10 due to the continued engagement of outer sheath 210 about clip 240. Thus, the operator may continue to control the position of the filter 10 prior to retracting outer sheath 210 fully. Once filter 10 has been positioned in a vessel, outer sheath 210 may then be retracted fully, disengaging manipulation device 200 from filter 10.
- Figure 5 shows an alternate embodiment of manipulation device 200.
- Manipulation device 200 may optionally include second braided member 250 disposed about push/pull wire 220 and extending distally therefrom.
- Second braided member 250 may be included instead of or in addition to clip 240. Similar to clip 240, second braided member 250 may engage filter tip 20 as outer sheath 210 is extended distally. Frictional forces between second braided member 250 and filter tip 20 may hold filter 10 adjacent to manipulation device 200.
- Second braided member 250 may extend substantially the length of hypotube 245, or second braided member 250 may extend a portion thereof.
- First braided member 230 may be disposed adjacent to second braided member 250 and may also extend substantially the length of hypotube 245, or a portion thereof.
- manipulation device 200 may include an inflatable balloon 260 disposed about a distal portion of outer sheath 210.
- Inflatable balloon 260 may be a single balloon disposed concentrically about outer sheath 210 or may comprise a plurality of lobes 265.
- balloon 260 may comprise four inflatable lobes 265 spaced equidistantly about outer sheath 210, i.e., at 90 degree intervals.
- Inflatable balloon 260 may be inflated through catheter inflation port (not shown) to center the manipulation device 200 within a body vessel. Centering the manipulation device 200 within a body vessel may facilitate centering the filter 10 during a delivery process or capturing the filter 10 during a retrieval process.
- the use of balloon 260 having a plurality of lobes 265 allows for continued blood flow through the vessel while the balloon 260 is inflated.
- manipulation device 200 may include a plurality of wires 270.
- manipulation device 200 may include a plurality of wires 270 spaced about outer sheath 210.
- manipulation device 200 includes four wires 270 spaced equidistantly about outer sheath 210, i.e., at 90 degree intervals.
- Wires 270 may have a circular cross-section or may be substantially flat.
- Wires 270 may comprise a polymer, a metal, or the like.
- wires 270 comprise a nickel-titanium alloy, such as nitinol.
- Wires 270 preferably are heat set in a curved shape such that wires 270 abut the vessel wall 60 when in an open position.
- An actuation rod (not shown) extending through the catheter may be used to direct the wires 270 between an open and a closed position.
- wires 270 may be actuated to an opened position by exposing wires to a thermal energy source, such as an electrical charge, RF heating, or the like.
- Wires 270 similar to balloon 260, may facilitate centering the manipulation device 200 within the vessel wall 60 during a filter manipulation process. Wires 270 allow for continued blood flow through the vessel while the wires 270 are in an open position.
- FIG 8 shows an alternate embodiment of a filter retrieval device in accordance with the invention.
- Filter 300 includes a tip 320 having a lumen 310 extending therethrough.
- lumen 310 may include a step-wise transition in diameter within the tip 320.
- An elongate shaft 330 having an expandable member 340 disposed at the distal end thereof may be extended through the lumen 310.
- a stop 315 may be disposed about elongate shaft 330 at a predetermined distance from expandable member 340. Stop 315 may be positioned such that stop 315 abuts the tip 320 just as expandable member 340 extends past the step-wise transition of lumen 310. Therefore, an operator may know the expandable member 340 is correctly positioned relative to the filter 300 during a retrieval process when the operator feels the stop 315 abut the tip 320 of filter 300.
- the expandable member 340 may be an inflatable balloon.
- Expandable member 340 may include a protective material 345 at the proximal end of expandable member 340.
- the protective material 345 may create a barrier between the expandable member 340 and the filter tip 320, thus protective material 345 may enhance the durability of expandable member 340.
- the protective material 345 may be conical shaped, pedal shaped, or the like, and may comprise a metal or polymer.
- the expandable member may be expanded. Once in an expanded state, the elongate shaft may be pulled proximally, thereby shifting the filter in the proximal direction during a filter retrieval process.
- Retrieval device 400 may include an elongate shaft 405 and an outer sheath 410.
- Elongate shaft 405 may be disposed in outer sheath 410.
- Distal portion 415 of elongate shaft 405 may include grasping tongs 420, such as forceps or pincers.
- tongs 420 may be an integral portion of elongate shaft 405.
- tongs 420 may be laser cut in the distal portion 415 of elongate shaft 405.
- Tongs 420 may include a plurality of appendages 425.
- tongs 420 may include three equidistantly spaced appendages 425.
- Tongs 420 may comprise a polymer, a metal, or the like.
- Appendages 425 preferably are biased in an open position as shown in Figure 9B.
- Appendages 425 may be biased in an open position during a heat set process, such as steam setting.
- Appendages 425 may have an abrasive surface such as ridges 427 and grooves 428 to facilitate griping a filter such as filter 10.
- tongs 420 are collapsed in outer sheath 410 and delivered near the filter 10. Outer sheath 410 is then retracted proximally, thereby allowing tongs 420 to extend distal of the outer sheath 410. Once appendages 425 are exposed from outer sheath 410, appendages 425 expand to their biased open position. Tongs 420 are then moved over filter 10. Outer sheath 410 is then extended distally over tongs 420 forcing tongs 420 to collapse around filter 10. Preferably, tongs 420 collapse around tip 20. Outer sheath 410 prevents tongs 420 from expanding, therefore retaining the filter 10. The elongate shaft 400 and outer sheath 410 may then be retracted from the vessel, wherein tongs 420 retain filter 10.
- FIGS 10A- 1OC illustrate another retrieval device 500 in accordance with the invention.
- retrieval device 500 may include an elongate shaft 505 having a grasping member such as loop 515, shepherd's hook 525 or atraumatic hook 535 for grasping a filter.
- a filter such as filter 550 may include a tip 555 having mating geometry adapted to receive the grasping member of retrieval device 500. Such mating geometry may include a hook 560, 565.
- Elongate shaft 505 may be extended through a vessel to filter 550.
- Grasping member, such as loop 515 is positioned to mate with and grasp filter 550 by hook 560, 565. Elongate shaft 505 may then be retracted, withdrawing filter 550 from the vessel.
- Grasping members such as shown in Figures 10A- 1OC provide an operator with a greater margin of error in directing a retrieval device to a filter.
- Retrieval device 600 may include an outer sheath 610 and an elongate shaft 620.
- Elongate shaft 620 may include a clasp 630 disposed at the distal end of elongate shaft 620.
- clasp 630 may be formed as an integral portion of elongate shaft 620.
- Clasp may include a plurality of appendages 635 laser cut about the circumference of elongate shaft 620.
- Appendages 635 include locking geometry such as barbs 640.
- Barbs 640 include a ramp 642 and a shelf 644.
- Filter 650 may include a tip 660 having complimentary interlocking geometry.
- Tip 660 may include a lumen 665 having a beveled surface 668. Lumen 665 may have an enlarged diameter portion creating a lip 667.
- retrieval device 600 may be advanced through a vessel to a position proximate the filter 650.
- Elongate shaft 620 may then be advanced distally to encounter filter 650.
- Ramps 642 of barbs 640 may contact bevel 668.
- Continued distal advancement of the elongate shaft 620 causes the appendages 635 to compress inwardly due to the sloping geometry of the bevel 668 and ramps 642.
- the shelf 644 of barbs 640 mate with lip 667, thereby locking the filter 650 to elongate shaft 620 as shown in Figure 1 IB.
- the interlocking geometry prevents filter 650 from disengaging with elongate shaft 620. Therefore, filter 650 may be withdrawn from a vessel by retracting the retrieval device 600 proximally.
- FIG 12 illustrates a filter 700 having geometry to facilitate removal from a vessel.
- Filter 700 includes a plurality of legs 710 extending from a tip 720. Legs 710 have a protrusion 715 disposed at their distal end. As is more clearly shown in Figure 12A, protrusion 715 may resemble a ramp 717 having a tapered angle and an apex 718. Protrusion 715 securely anchors filter to a vessel wall upon deployment within a vessel, while protrusion 715 subsequently may facilitate removal or repositioning filter 700. The protrusion 715 causes minimal amounts of trauma to the vessel wall due to its ramp shape.
- an elongate sheath 730 may be advanced within the vessel to the filter 700 as shown in Figure 13.
- the distal end 731 of elongate sheath 730 abuts the ramp 717 of protrusion 715.
- the distal end 731 of elongate sheath 730 urges the protrusion 715 inward to disengage the protrusion 715 from the wall 60 as shown in Figure 13 A. Because the protrusion 715 does not include a hook or barb, the legs 710 may be disengaged from the wall 60 with minimal injury to the vessel wall 60.
- Filter 800 includes a plurality of legs 810 extending distally from tip 820.
- Legs 810 include a longitudinal base portion 830 extending from the distal end 815 of legs 810.
- Longitudinal base portion 830 may extend either proximal or distal of distal end 815 of legs 810 or may extend in both the proximal and distal directions.
- Longitudinal base portion 830 helps center filter 800 within vessel wall 60, and also helps urge distal end 815 of legs 810 away from vessel wall 60 during a retrieval process.
- Securing hooks 825 may be attached to legs 810 at apex 835 where legs 810 adjoin longitudinal base portion 830. Securing hooks 825 may help anchor filter 800 to vessel wall 60 after deployment of filter 800.
- Figure 14B shows how longitudinal base portion 830 facilitates removal of filter 800 from a vessel.
- An elongate shaft 850 may be extended distally to filter 800.
- the distal end 855 of elongate shaft 850 may be positioned over filter tip 820 and then moved distally.
- Distal end 855 engages legs 810, forcing legs 810 inward.
- longitudinal base portion 830 acts as a lever pivoting at fulcrum point 860 to facilitate disengagement of hooks 825 from vessel wall 60.
- the dual action of longitudinal base portion 830 and inward movement of legs 810 disengages hooks 825 from the vessel wall 60.
- Filter 800 may then be safely removed from or repositioned in the vessel.
Landscapes
- Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/058,856 US7993362B2 (en) | 2005-02-16 | 2005-02-16 | Filter with positioning and retrieval devices and methods |
PCT/US2006/003939 WO2006088671A2 (en) | 2005-02-16 | 2006-02-06 | Improved filter with positioning and retrieval devices and methods |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1850788A2 true EP1850788A2 (de) | 2007-11-07 |
EP1850788B1 EP1850788B1 (de) | 2013-05-22 |
Family
ID=36337355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06720259.8A Not-in-force EP1850788B1 (de) | 2005-02-16 | 2006-02-06 | Verbessertes positionierungs-und ortungsvorrichtungen für filter |
Country Status (7)
Country | Link |
---|---|
US (1) | US7993362B2 (de) |
EP (1) | EP1850788B1 (de) |
JP (1) | JP4870692B2 (de) |
CA (1) | CA2597911A1 (de) |
DK (1) | DK1850788T3 (de) |
ES (1) | ES2410595T3 (de) |
WO (1) | WO2006088671A2 (de) |
Families Citing this family (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7314477B1 (en) | 1998-09-25 | 2008-01-01 | C.R. Bard Inc. | Removable embolus blood clot filter and filter delivery unit |
US9204956B2 (en) | 2002-02-20 | 2015-12-08 | C. R. Bard, Inc. | IVC filter with translating hooks |
US7704267B2 (en) | 2004-08-04 | 2010-04-27 | C. R. Bard, Inc. | Non-entangling vena cava filter |
US7967838B2 (en) | 2005-05-12 | 2011-06-28 | C. R. Bard, Inc. | Removable embolus blood clot filter |
US12115057B2 (en) | 2005-05-12 | 2024-10-15 | C.R. Bard, Inc. | Tubular filter |
EP1912696A1 (de) | 2005-08-09 | 2008-04-23 | C.R.Bard, Inc. | Embolus-blutgerinnsel-filter und abgabesystem |
WO2007061927A2 (en) | 2005-11-18 | 2007-05-31 | C. R. Bard, Inc. | Vena cava filter with filament |
WO2007064731A2 (en) * | 2005-12-02 | 2007-06-07 | C.R. Bard, Inc. | Helical vena cava filter |
CA2633866A1 (en) * | 2005-12-30 | 2007-07-12 | C.R. Bard Inc. | Embolus blood clot filter removal system and method |
WO2007079410A2 (en) | 2005-12-30 | 2007-07-12 | C.R Bard Inc. | Embolus blood clot filter delivery system |
US10188496B2 (en) | 2006-05-02 | 2019-01-29 | C. R. Bard, Inc. | Vena cava filter formed from a sheet |
CA2655158A1 (en) | 2006-06-05 | 2007-12-13 | C.R. Bard Inc. | Embolus blood clot filter utilizable with a single delivery system or a single retrieval system in one of a femoral or jugular access |
US20070299461A1 (en) * | 2006-06-21 | 2007-12-27 | Boston Scientific Scimed, Inc. | Embolic coils and related components, systems, and methods |
CA2675376C (en) * | 2007-01-18 | 2012-07-10 | Valvexchange Inc. | Tools for removal and installation of exchangeable cardiovascular valves |
US8795351B2 (en) | 2007-04-13 | 2014-08-05 | C.R. Bard, Inc. | Migration resistant embolic filter |
WO2008148049A1 (en) * | 2007-05-23 | 2008-12-04 | Interventional & Surgical Innovations Llc | Vein filter |
US8486138B2 (en) | 2007-08-21 | 2013-07-16 | Valvexchange Inc. | Method and apparatus for prosthetic valve removal |
US8114116B2 (en) * | 2008-01-18 | 2012-02-14 | Cook Medical Technologies Llc | Introduction catheter set for a self-expandable implant |
US8157853B2 (en) * | 2008-01-24 | 2012-04-17 | Medtronic, Inc. | Delivery systems and methods of implantation for prosthetic heart valves |
US8246649B2 (en) * | 2008-03-19 | 2012-08-21 | Schneider M Bret | Electrostatic vascular filters |
CA2736817A1 (en) * | 2008-09-12 | 2010-03-18 | Valvexchange Inc. | Valve assembly with exchangeable valve member and a tool set for exchanging the valve member |
CN104825247B (zh) | 2009-07-29 | 2017-05-03 | C·R·巴德公司 | 管式过滤器 |
US20110040321A1 (en) * | 2009-08-11 | 2011-02-17 | Angiodynamics, Inc. | Retrieval Device and Method of Use |
CN102858275A (zh) | 2010-04-23 | 2013-01-02 | 美敦力公司 | 用于假体心脏瓣膜的植入的输送系统以及方法 |
US20120116486A1 (en) * | 2010-10-25 | 2012-05-10 | Medtronic Ardian Luxembourg S.A.R.L. | Microwave catheter apparatuses, systems, and methods for renal neuromodulation |
US10010437B2 (en) | 2011-10-17 | 2018-07-03 | W. L. Gore & Associates, Inc. | Endoluminal device retrieval devices and related systems and methods |
US11134981B2 (en) | 2012-03-29 | 2021-10-05 | Gyrus Acmi, Inc. | Pulmonary nodule access devices and methods of using the same |
WO2013148220A1 (en) * | 2012-03-29 | 2013-10-03 | Spiration, Inc. | Medical devices and systems for manipulating foreign bodies and methods of using the same |
US9655647B2 (en) | 2012-12-19 | 2017-05-23 | Muffin Incorporated | Apparatus and method for the retrieval of an intravascular filter |
US9486303B2 (en) * | 2013-03-14 | 2016-11-08 | Cook Medical Technologies Llc | Implantable medical device retrieval system, apparatus, and method |
US9844395B2 (en) | 2013-03-14 | 2017-12-19 | Cook Medical Technologies Llc | Umbrella inferior vena cava filter retrieval device |
US9248037B2 (en) * | 2013-03-15 | 2016-02-02 | Cook Medical Technologies Llc | Automatic wireless medical device release mechanism |
CN105578989B (zh) | 2013-06-14 | 2018-05-15 | 阿万泰血管公司 | 下腔静脉过滤器及其收回系统 |
US10010398B2 (en) | 2013-10-01 | 2018-07-03 | Cook Medical Technologies Llc | Filter device, system, and method |
WO2015143432A1 (en) * | 2014-03-21 | 2015-09-24 | The United States Of America, As Represented By The Secretary, Department Of Health & Human Services | Conductive and retrievable devices |
JP6601501B2 (ja) | 2014-11-04 | 2019-11-13 | ニプロ株式会社 | 海綿骨を圧縮するための長手方向膨張要素が内部に設けられたカテーテルデバイス |
US10278804B2 (en) | 2014-12-12 | 2019-05-07 | Avantec Vascular Corporation | IVC filter retrieval systems with releasable capture feature |
WO2016094676A1 (en) * | 2014-12-12 | 2016-06-16 | Avantec Vascular Corporation | Ivc filter retrieval systems with interposed support members |
EP3386433A4 (de) * | 2015-12-10 | 2019-09-25 | Avantec Vascular Corporation | Ivc-filterrückgewinnungssysteme mit mehreren erfassungsmodi |
EP3386434A4 (de) * | 2015-12-10 | 2019-05-29 | Avantec Vascular Corporation | Verbesserungen an der hülse eines vci-filter-entfernungssystems |
US10765502B2 (en) * | 2016-10-03 | 2020-09-08 | 3Dt Holdings, Llc | Blood filter devices, systems, and methods of using the same to detect the presence of a thrombus within said filter devices |
CN110167482A (zh) | 2016-12-22 | 2019-08-23 | 阿万泰血管公司 | 具有系绳的用于取回系统的系统、装置和方法 |
CN107468373A (zh) * | 2017-08-28 | 2017-12-15 | 科塞尔医疗科技(苏州)有限公司 | 一种双释放鞘腔静脉滤器释放装置及释放回收方法 |
WO2020006451A1 (en) * | 2018-06-29 | 2020-01-02 | Avantec Vascular Corporation | Systems and methods for implants and deployment devices |
CN113180881A (zh) * | 2021-06-04 | 2021-07-30 | 上海蓝脉医疗科技有限公司 | 一种医疗装置 |
Family Cites Families (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US600118A (en) * | 1898-03-01 | Charles | ||
US4643184A (en) * | 1982-09-29 | 1987-02-17 | Mobin Uddin Kazi | Embolus trap |
FR2606641B1 (fr) * | 1986-11-17 | 1991-07-12 | Promed | Dispositif filtrant pour caillots sanguins |
US4832055A (en) * | 1988-07-08 | 1989-05-23 | Palestrant Aubrey M | Mechanically locking blood clot filter |
US4969891A (en) * | 1989-03-06 | 1990-11-13 | Gewertz Bruce L | Removable vascular filter |
US5242462A (en) * | 1989-09-07 | 1993-09-07 | Boston Scientific Corp. | Percutaneous anti-migration vena cava filter |
US5504646A (en) * | 1989-10-13 | 1996-04-02 | Hitachi, Ltd. | Magnetic disk including protective layer having surface with protusions and magnetic disk apparatus including the magnetic disk |
GB2238485B (en) * | 1989-11-28 | 1993-07-14 | Cook William Europ | A collapsible filter for introduction in a blood vessel of a patient |
US5221261A (en) * | 1990-04-12 | 1993-06-22 | Schneider (Usa) Inc. | Radially expandable fixation member |
US5071407A (en) * | 1990-04-12 | 1991-12-10 | Schneider (U.S.A.) Inc. | Radially expandable fixation member |
FR2663217B1 (fr) * | 1990-06-15 | 1992-10-16 | Antheor | Dispositif filtrant destine a la prevention des embolies. |
US5147379A (en) * | 1990-11-26 | 1992-09-15 | Louisiana State University And Agricultural And Mechanical College | Insertion instrument for vena cava filter |
EP0575478B1 (de) | 1991-03-14 | 1997-09-10 | Ethnor | Lungenemboliefilter sowie Bausatz zum Präsentieren und Einsetzen desselben |
US5370685A (en) * | 1991-07-16 | 1994-12-06 | Stanford Surgical Technologies, Inc. | Endovascular aortic valve replacement |
US5626605A (en) * | 1991-12-30 | 1997-05-06 | Scimed Life Systems, Inc. | Thrombosis filter |
US6059825A (en) * | 1992-03-05 | 2000-05-09 | Angiodynamics, Inc. | Clot filter |
US5413588A (en) * | 1992-03-06 | 1995-05-09 | Urologix, Inc. | Device and method for asymmetrical thermal therapy with helical dipole microwave antenna |
US5324304A (en) * | 1992-06-18 | 1994-06-28 | William Cook Europe A/S | Introduction catheter set for a collapsible self-expandable implant |
US5836868A (en) * | 1992-11-13 | 1998-11-17 | Scimed Life Systems, Inc. | Expandable intravascular occlusion material removal devices and methods of use |
WO1995009567A1 (en) * | 1993-10-01 | 1995-04-13 | Boston Scientific Corporation | Improved vena cava filter |
US5407243A (en) * | 1993-12-10 | 1995-04-18 | Riemann; Mathew W. | Tick removing device |
US5853420A (en) * | 1994-04-21 | 1998-12-29 | B. Braun Celsa | Assembly comprising a blood filter for temporary or definitive use and device for implanting it, corresponding filter and method of implanting such a filter |
US5601595A (en) * | 1994-10-25 | 1997-02-11 | Scimed Life Systems, Inc. | Remobable thrombus filter |
US6214025B1 (en) * | 1994-11-30 | 2001-04-10 | Boston Scientific Corporation | Self-centering, self-expanding and retrievable vena cava filter |
NL1003497C2 (nl) * | 1996-07-03 | 1998-01-07 | Cordis Europ | Katheter met tijdelijk vena-cava filter. |
US5669933A (en) * | 1996-07-17 | 1997-09-23 | Nitinol Medical Technologies, Inc. | Removable embolus blood clot filter |
US6066158A (en) | 1996-07-25 | 2000-05-23 | Target Therapeutics, Inc. | Mechanical clot encasing and removal wire |
US6391044B1 (en) * | 1997-02-03 | 2002-05-21 | Angioguard, Inc. | Vascular filter system |
US5827324A (en) * | 1997-03-06 | 1998-10-27 | Scimed Life Systems, Inc. | Distal protection device |
US5814064A (en) | 1997-03-06 | 1998-09-29 | Scimed Life Systems, Inc. | Distal protection device |
FR2767121B1 (fr) * | 1997-08-05 | 1999-10-29 | Jean Michel Chabout | Distributeur de medicaments |
US6066149A (en) | 1997-09-30 | 2000-05-23 | Target Therapeutics, Inc. | Mechanical clot treatment device with distal filter |
ATE452598T1 (de) * | 1997-11-07 | 2010-01-15 | Salviac Ltd | Embolieschutzvorrichtung |
US6443972B1 (en) * | 1997-11-19 | 2002-09-03 | Cordis Europa N.V. | Vascular filter |
US5984947A (en) * | 1998-05-04 | 1999-11-16 | Scimed Life Systems, Inc. | Removable thrombus filter |
US6342062B1 (en) * | 1998-09-24 | 2002-01-29 | Scimed Life Systems, Inc. | Retrieval devices for vena cava filter |
US6007558A (en) * | 1998-09-25 | 1999-12-28 | Nitinol Medical Technologies, Inc. | Removable embolus blood clot filter |
US6171327B1 (en) * | 1999-02-24 | 2001-01-09 | Scimed Life Systems, Inc. | Intravascular filter and method |
US6231589B1 (en) * | 1999-03-22 | 2001-05-15 | Microvena Corporation | Body vessel filter |
US6156055A (en) * | 1999-03-23 | 2000-12-05 | Nitinol Medical Technologies Inc. | Gripping device for implanting, repositioning or extracting an object within a body vessel |
US6179859B1 (en) * | 1999-07-16 | 2001-01-30 | Baff Llc | Emboli filtration system and methods of use |
US6214026B1 (en) * | 1999-07-30 | 2001-04-10 | Incept Llc | Delivery system for a vascular device with articulation region |
US6544279B1 (en) * | 2000-08-09 | 2003-04-08 | Incept, Llc | Vascular device for emboli, thrombus and foreign body removal and methods of use |
US6589263B1 (en) * | 1999-07-30 | 2003-07-08 | Incept Llc | Vascular device having one or more articulation regions and methods of use |
US6346116B1 (en) * | 1999-08-03 | 2002-02-12 | Medtronic Ave, Inc. | Distal protection device |
US6251122B1 (en) * | 1999-09-02 | 2001-06-26 | Scimed Life Systems, Inc. | Intravascular filter retrieval device and method |
US6146404A (en) * | 1999-09-03 | 2000-11-14 | Scimed Life Systems, Inc. | Removable thrombus filter |
US6187025B1 (en) * | 1999-09-09 | 2001-02-13 | Noble-Met, Ltd. | Vascular filter |
US6325815B1 (en) * | 1999-09-21 | 2001-12-04 | Microvena Corporation | Temporary vascular filter |
US6375670B1 (en) * | 1999-10-07 | 2002-04-23 | Prodesco, Inc. | Intraluminal filter |
US6364895B1 (en) * | 1999-10-07 | 2002-04-02 | Prodesco, Inc. | Intraluminal filter |
US6540722B1 (en) * | 1999-12-30 | 2003-04-01 | Advanced Cardiovascular Systems, Inc. | Embolic protection devices |
US6540768B1 (en) * | 2000-02-09 | 2003-04-01 | Cordis Corporation | Vascular filter system |
US6602271B2 (en) * | 2000-05-24 | 2003-08-05 | Medtronic Ave, Inc. | Collapsible blood filter with optimal braid geometry |
US6468290B1 (en) * | 2000-06-05 | 2002-10-22 | Scimed Life Systems, Inc. | Two-planar vena cava filter with self-centering capabilities |
US6558405B1 (en) * | 2000-08-29 | 2003-05-06 | Advanced Cardiovascular Systems, Inc. | Embolic filter |
US6616684B1 (en) * | 2000-10-06 | 2003-09-09 | Myocor, Inc. | Endovascular splinting devices and methods |
US6616680B1 (en) * | 2000-11-01 | 2003-09-09 | Joseph M. Thielen | Distal protection and delivery system and method |
US6692458B2 (en) * | 2000-12-19 | 2004-02-17 | Edwards Lifesciences Corporation | Intra-pericardial drug delivery device with multiple balloons and method for angiogenesis |
US6569184B2 (en) * | 2001-02-27 | 2003-05-27 | Advanced Cardiovascular Systems, Inc. | Recovery system for retrieving an embolic protection device |
US6596011B2 (en) * | 2001-06-12 | 2003-07-22 | Cordis Corporation | Emboli extraction catheter and vascular filter system |
JP2005519644A (ja) * | 2001-06-18 | 2005-07-07 | レックス メディカル リミテッド パートナーシップ | 静脈フィルタ |
US6623506B2 (en) * | 2001-06-18 | 2003-09-23 | Rex Medical, L.P | Vein filter |
JP4465192B2 (ja) * | 2002-03-15 | 2010-05-19 | エヌエムティー メディカル, インコーポレイティッド | 移植物の配置において有用な結合システム |
US7658747B2 (en) * | 2003-03-12 | 2010-02-09 | Nmt Medical, Inc. | Medical device for manipulation of a medical implant |
WO2004082530A2 (en) * | 2003-03-19 | 2004-09-30 | Cook Incorporated | Delivery systems for deploying expandable intraluminal medical devices |
US8231649B2 (en) * | 2004-01-20 | 2012-07-31 | Boston Scientific Scimed, Inc. | Retrievable blood clot filter with retractable anchoring members |
-
2005
- 2005-02-16 US US11/058,856 patent/US7993362B2/en not_active Expired - Fee Related
-
2006
- 2006-02-06 DK DK06720259.8T patent/DK1850788T3/da active
- 2006-02-06 JP JP2007556168A patent/JP4870692B2/ja not_active Expired - Fee Related
- 2006-02-06 WO PCT/US2006/003939 patent/WO2006088671A2/en active Application Filing
- 2006-02-06 CA CA002597911A patent/CA2597911A1/en not_active Abandoned
- 2006-02-06 ES ES06720259T patent/ES2410595T3/es active Active
- 2006-02-06 EP EP06720259.8A patent/EP1850788B1/de not_active Not-in-force
Non-Patent Citations (1)
Title |
---|
See references of WO2006088671A2 * |
Also Published As
Publication number | Publication date |
---|---|
DK1850788T3 (da) | 2013-07-29 |
EP1850788B1 (de) | 2013-05-22 |
JP2008529722A (ja) | 2008-08-07 |
US7993362B2 (en) | 2011-08-09 |
WO2006088671A3 (en) | 2006-12-07 |
CA2597911A1 (en) | 2006-08-24 |
JP4870692B2 (ja) | 2012-02-08 |
WO2006088671A2 (en) | 2006-08-24 |
US20060184193A1 (en) | 2006-08-17 |
ES2410595T3 (es) | 2013-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7993362B2 (en) | Filter with positioning and retrieval devices and methods | |
EP1718242B1 (de) | Zentrierende intravaskularfilter | |
US7998164B2 (en) | Intravascular filter with centering member | |
US20180008393A1 (en) | Embolus blood clot filter removal system and method | |
US7534251B2 (en) | Retrievable IVC filter | |
US9055996B2 (en) | Method of retrieving a blood clot filter | |
US20060015137A1 (en) | Retrievable intravascular filter with bendable anchoring members | |
CA2460043A1 (en) | Intravascular devices, retrieval systems, and corresponding methods | |
JP6553939B2 (ja) | 静脈フィルタの挿入方法 | |
EP2816969B1 (de) | Gefässfilter | |
EP2768427B1 (de) | Vena-cava-filter mit femuraler entfernung | |
EP2708207B1 (de) | Hohlvenenfilter mit dualer Rückgewinnung | |
EP3621533B1 (de) | Gerät für rückholung von material aus gefässlumen | |
US9724184B2 (en) | Filter with deployable anchors | |
JP4767870B6 (ja) | 血管内フィルタ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070912 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20100507 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 612784 Country of ref document: AT Kind code of ref document: T Effective date: 20130615 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2410595 Country of ref document: ES Kind code of ref document: T3 Effective date: 20130702 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602006036409 Country of ref document: DE Effective date: 20130718 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 612784 Country of ref document: AT Kind code of ref document: T Effective date: 20130522 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130823 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130922 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130923 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130822 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20140225 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602006036409 Country of ref document: DE Effective date: 20140225 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602006036409 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20140901 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20140228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140206 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20140206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140901 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140228 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140228 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602006036409 Country of ref document: DE Effective date: 20140902 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20141031 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140228 Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140228 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140206 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140902 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140206 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20150804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20060206 |