EP1838570B1 - Stabilisierter schwimmender träger - Google Patents

Stabilisierter schwimmender träger Download PDF

Info

Publication number
EP1838570B1
EP1838570B1 EP06709110A EP06709110A EP1838570B1 EP 1838570 B1 EP1838570 B1 EP 1838570B1 EP 06709110 A EP06709110 A EP 06709110A EP 06709110 A EP06709110 A EP 06709110A EP 1838570 B1 EP1838570 B1 EP 1838570B1
Authority
EP
European Patent Office
Prior art keywords
period
swell
support
passing
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP06709110A
Other languages
English (en)
French (fr)
Other versions
EP1838570A2 (de
Inventor
Yves Martin
Jean-François DESPLAT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
D2M Consultants SA
Original Assignee
D2M Consultants SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by D2M Consultants SA filed Critical D2M Consultants SA
Publication of EP1838570A2 publication Critical patent/EP1838570A2/de
Application granted granted Critical
Publication of EP1838570B1 publication Critical patent/EP1838570B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B35/4413Floating drilling platforms, e.g. carrying water-oil separating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/10Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls
    • B63B1/107Semi-submersibles; Small waterline area multiple hull vessels and the like, e.g. SWATH
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/10Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls
    • B63B1/12Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls the hulls being interconnected rigidly
    • B63B2001/128Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls the hulls being interconnected rigidly comprising underwater connectors between the hulls

Definitions

  • the present invention relates to a floating support which comprises a working bridge supporting installations connected to the seabed, and flotation devices supporting the working bridge.
  • a floating support which comprises a working bridge supporting installations connected to the seabed, and flotation devices supporting the working bridge.
  • flotation devices supporting the working bridge.
  • a floating support which comprises a working bridge supporting installations connected to the seabed, and flotation devices supporting the working bridge.
  • a floating support which comprises a working bridge supporting installations connected to the seabed, and flotation devices supporting the working bridge.
  • flotation devices supporting the working bridge.
  • such platform may be, for example, an oil or gas exploitation platform.
  • a floating support at sea has a vertical movement under the effect of the swell.
  • This vertical movement commonly called heave movement, depends on the swell and is particularly important because it conditions the operation of facilities that are both supported by the floating support and connected to the seabed.
  • These installations may be, for example, drill pipes or pipes for transporting oil or gas.
  • these installations have a relative vertical movement relative to the support, and therefore, it is necessary to equip these installations telescopic compensation systems allowing each moment to compensate for the heave of the floating support to allow interventions at the top of these facilities.
  • These compensation systems are very expensive, especially since the motion compensation to be achieved is important, and, moreover, they have technological limits of compensation.
  • the heave movement is approximately proportional to the wave height and is conventionally characterized by the quotient of the heave by the wave height, this quotient being in first approximation an invariant as a function of the height of the swell.
  • the heave movement also depends on the shape of the flotation organs, the action of the swell generating pressures on the walls of the latter whose cumulative effect on all the walls gives at each moment a vertical force excitatory movement.
  • the heave movement also depends on the period of the swell since the distribution of pressures on a flotation device having a predetermined shape depends on the wave period and its wavelength (for this purpose, in depth).
  • the wavelength of the swell (in meters) corresponds approximately to the square of its period (in second) multiplied by 1,56).
  • the heave also depends on the impact of the swell, ie the orientation of the floating support relative to the direction of propagation of the swell.
  • the hulling movement of the support at its geometric center (usually the point of connection with the installations connected to the sea bed) is characterized by a heave transfer function which is the representation of the evolution of the quotient heave / wave height depending on the period of the swell.
  • each flotation member (typically formed by a submerged float, the immersed part of a column supported by the submerged float and supporting the working bridge, and half of each of the adjacent submerged connecting elements connecting the column-float assembly to the other column-float assemblies) is shaped so that the cumulative effects of the pressures generated by the swell it undergoes vanishes for a period of time. predetermined, conventionally called the balancing period.
  • the transfer function of the heave of such a platform has a value close to 0 for small periods, regularly increases to reach a relative maximum which is approximately equal to 0.5, drops back to 0 for the balancing period, and rises rapidly and strongly then.
  • the limitation of the heave movement is carried out by correctly configuring each floating element of the floating support so that the balancing period associated therewith is greater than the periods of the swells usually encountered on the site. use of the platform. Therefore, for the usual swells on the site, the heave transfer function will be at most equal to 0.5.
  • this value of 0.5 is relatively large and involves the use of relatively large compensation systems.
  • the heave transfer function is greater than 0.25 for a significant range of wave periods.
  • the present invention aims at producing a floating support having a particularly low heave transfer function for the usual swells.
  • the spacing between the vertical axes passing through the volume center of the flotation devices is such that, for each direction of propagation of the swell, when the period of the swell is equal, within 20%, to the period of 100-year storm swell associated with the direction of propagation considered, the centennial storm swell being the swell whose annual probability of being encountered on the site where the support is intended to be installed is 1/100, the sum of the moments, taken with respect to the horizontal axis perpendicular to the direction of propagation considered and passing through the center of gravity of the support, vertical forces of excitation of the swell on the flotation devices situated on one side of the vertical plane passing through this horizontal axis is equal to the corresponding sum associated with the flotation devices located on the other side of this vertical plane.
  • the floating support is shaped so that, for each direction of wave propagation, the sum of the moments taken with respect to the horizontal axis perpendicular to the direction of propagation considered and passing through the center of the gravity of the platform, vertical forces of excitation of the swell on the flotation devices located on one side of the vertical plane passing through this horizontal axis is equal to the corresponding sum associated with the flotation devices located on the other side of this vertical plane for a swell of predetermined period, hereinafter referred to as the extinction period.
  • the transfer function of the heave of such a platform for the direction of propagation of the swell considered has a value close to 0 for the extinction period.
  • the cancellation of the heave motion at the center of gravity for the extinction period following the direction of propagation of the swell is due to the fact that, with a predetermined spacing between the various vertical axes passing through the volume center of the flotation devices, the sum of the moments, taken with respect to the horizontal axis perpendicular to the direction of propagation considered and passing through the center of gravity of the support, vertical forces of excitation of the swell on the flotation devices situated on one side of the plane vertical passing through this horizontal axis is equal to the corresponding sum associated with the flotation devices located on the other side of this vertical plane, although each of the efforts on each flotation device taken separately is not zero.
  • the phenomenon can be easily understood by imagining a floating support comprising a working bridge and two flotation devices.
  • the swell has for half-wavelength the distance separating the two vertical axes passing through the center of volume of the buoyancy members and has for direction of propagation the direction of alignment of the two axes
  • these two buoyancy devices are subject to to vertical forces in phase opposition due to the excitation of the swell (one being at the right of one ridge when the other is at the right of a hollow, for example) and, consequently, the moment, taken with respect to the horizontal axis perpendicular to the direction of propagation considered and passing through the central point of the bridge (located halfway between the two flotation organs), vertical forces of excitation of the swell on one both flotation devices are equal to the corresponding moment associated with the other flotation device.
  • the period of the wave corresponding to this half-wavelength is the extinction period of the support.
  • the direction of propagation of the swell is perpendicular to the alignment direction of the two vertical axes, there is no extinction period for this direction of propagation.
  • each flotation member is dimensioned (in the usual way) so that the sum of the vertical excitation forces it supports is zero for a swell whose period is equal to 1.5 times. the period of the centennial storm swell.
  • the balancing period is equal to 1.5 times the extinction period.
  • the transfer function of the heave at the center of gravity of such a platform is then particularly remarkable: it has a value close to 0 for small periods, regularly increases to reach a first relative maximum which is less than 0.1 ( approximately equal to 0.075), drops back to 0 for the extinction period, increases again regularly to reach a second relative maximum which is less than 0.15 (approximately equal to 0.125), drops back to 0 for the equilibration period, and goes up quickly and strongly thereafter.
  • the compensation systems used may have a reduced compensation amplitude, the heave transfer function being at most equal to 0.15 for all the swells encountered on the site.
  • the floating support 1 (in this case the semi-submersible platform 1) illustrated in FIG. figure 1 comprises a working bridge 2 and four buoyancy members 3 supporting the bridge 2. Installations 4 (in this case pipes 4) which are connected to the seabed are supported and connected to the bridge 2 at its geometric center 5.
  • Each flotation member 3 is formed of a submerged float 6, the immersed part of a column 7 which is supported by the submerged float 6 and which supports the working bridge 2, and half of each submerged connecting element 11 connecting this float-column assembly to other float-column assemblies.
  • the four flotation members 3 are arranged so that the vertical axes Z passing through the center of their respective volume form a square and the distance L separating the two vertical axes Z delimiting the same side of the square is equal to the half-length of wave H of a swell whose direction of movement corresponds to the alignment direction D of these two vertical axes Z.
  • the four flotation members 3 are, two by two, subjected to vertical forces of excitation in opposition of phase, and consequently, the sum of the moments, taken with respect to the horizontal axis perpendicular to the direction of propagation considered and passing through the center of gravity of the support (generally close of the geometric center 5 of the bridge 2), vertical forces of excitation of the swell on the floating members 3 situated on one side of the plane vertical P passing through this horizontal axis is equal to the corresponding sum associated with the flotation members 3 located on the other side of this vertical plane P.
  • the period of the swell corresponding to this half-wavelength is the period of extinction of the support 1, when the swell has for direction of propagation the alignment direction D of the two axes Z.
  • a floating support 1 having a particular geometry for example having three flotation members 3 arranged so that their vertical axes Z passing through their respective centers of volume form an equilateral triangle as illustrated in FIG. figure 3 or having four flotation members 3 arranged so that their vertical axes Z passing through their respective centers of volume form a square such as that shown in FIG.
  • the theoretical spacing between the vertical axes Z is determined so that the sum of the moments, taken with respect to the horizontal axis perpendicular to the direction of propagation of the swell and passing through the geometric center 5 of the bridge 2 (in general near the center of gravity of the platform 1), vertical forces of excitation of the swell on the flotation devices 3 situated on one side of the vertical plane P passing through this horizontal axis is equal to the corresponding sum associated with the buoyancy members 3 situated on the other side of this vertical plane P, for the swell whose period corresponds to the period of extinction.
  • this theoretical spacing is performed for a range of wave propagation directions. Given the possible symmetries, for a platform 1 having three flotation devices 3 arranged in equilateral triangle, the direction of propagation of the swell can vary by 60 °, and for a platform 1 having four floating members 3 arranged in square, it can vary from 45 °. This determination for different propagation directions makes it possible to choose an optimum spacing with respect to the hulling behavior of platform 1 for centennial storm swells, which defines the shutdown period of platform 1 for the propagation direction concerned. A tolerance of 20% over the extinction period makes it possible to adapt the geometry of the platform without damaging its heaving behavior.
  • the extinction period for the direction of propagation of the parallel swell to one side of the square, is obtained when the length of one side of the square corresponds to the half-wavelength of the centennial storm swell.
  • the extinction period is obtained when the height of the triangle corresponds to the half-length wave of the centennial storm swell.
  • the wavelength of the corresponding swell is 224 m
  • the height of the equilateral triangle formed by the three vertical axes Z is 112 m
  • the spacing between each axis vertical Z is 130 m.
  • each flotation member 3 is dimensioned (in the usual way) so that the sum of the vertical excitation forces to which it is subjected is canceled for a swell whose period is greater than the period of time. extinction, that is to say each flotation member 3 is dimensioned so that the balancing period associated with it is greater than the extinction period.
  • each flotation device 3 is equal to about 1.5 times the extinction period.
  • each flotation device 3 is sized to have a balancing period of 18 s.
  • the figure 3 represents a platform with three flotation members 3 arranged so that the vertical axes Z passing through their centers of respective volumes form an equilateral triangle, and having an extinction period of 12 s (the distance between the vertical axes Z is therefore 130 m).
  • Each flotation member 3 is configured to have a balancing period of 18 seconds, the submerged float 6 having the shape of a cylinder 30 meters in diameter, and the column 7 having the shape of a cylinder of 18 meters in diameter, the draft on site is 44 meters.
  • the mass of the platform 1, including the oil processing facilities it supports, is 65 000 tonnes.
  • the figure 2 is the representation of the transfer function of the heave of two platforms having both the same balancing period of 18 s and having three flotation members 3 arranged so that the vertical axes Z passing through their centers of respective volumes form an equilateral triangle.
  • the first curve FT1 corresponds to a conventional platform classically sized and adapted to severe waves of 12 s, the vertical axes Z being spaced from each other by about 70 meters: the transfer function of the heave has a value close to 0 for short periods (less than 6 s), increases steadily to reach a relative maximum of about 0.5 (for a period of about 13 s), decreases to 0 for the balancing period (18 s ), and goes up quickly and strongly thereafter.
  • the second curve FT2 corresponds to a platform sized according to the present invention, the spacing between the vertical axes Z being 130 m so as to have an extinction period of 12 s: the transfer function of the heave has a value close to 0 for small periods (less than 6 s), regularly increases to reach a first relative maximum which is approximately equal to 0.075 (for a period of about 10 s), decreases to 0 for the extinction period (12 s), increases again regularly to reach a second relative maximum which is approximately equal to 0.125 (for a period of about 15 s), drops back to 0 for the balancing period (18 s), and rises rapidly and strongly thereafter .
  • the offshore behavior of a platform 1 according to the present invention is particularly improved.
  • the working bridge 2 may comprise volumes that can be rendered watertight, in order to ensure the safety of the floating support 1 in the event of damage to a flotation member 3 causing its invasion by the water sea.
  • the platform 1 is associated with a guide structure which is adapted to be supported by the platform and to guide, in the vicinity of the sea level, the installations 4 (for example the pipes 4) connected to the seabed.
  • the guiding structure comprises a cage which extends in a longitudinal direction (which corresponds substantially to the vertical when the structure is connected to the platform) and a connecting member which is adapted to cooperate with a complementary linkage member. by the platform so as to form a ball joint between it and the cage. In this way, when the platform is subjected to the action of the swell, the ball joint makes the guiding structure less sensitive to the overall movement of the platform, which greatly reduces the contact forces between the pipes and the guide structure.
  • the guide structure can support vertical tensioning systems of the pipes, well heads, a derrick ...
  • the connecting member may be arranged longitudinally at one end of the cage and, transversely, either in the center of the cage (the organ is then a spherical pivot, or at the periphery of the cage (the organ is then a spherical crown).
  • the guide structure also comprises a ballast element which is disposed at a portion of the cage longitudinally remote from the connecting member (the ballast element is fixed to the longitudinal end of the cage opposite to the one where the linkage is arranged). While the marine currents tend to deflect the cage and pipes from the vertical due to the ball joint between the cage and the floating support, the ballast element tends to reduce this deflection and thus protects the pipes from mechanical stresses. consecutive to this deviation.
  • ballast element has an immersed mass-to-volume ratio at least equal to twice (or even triple) that of the cage.
  • floats are connected to the upper part of the cage, and more specifically, at the level of the cage that is adapted to be close to the surface of the sea.

Landscapes

  • Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Earth Drilling (AREA)
  • Forms Removed On Construction Sites Or Auxiliary Members Thereof (AREA)
  • Bridges Or Land Bridges (AREA)

Claims (10)

  1. Schwimmträger (1), dafür eingerichtet, Anlagen (4) zu tragen, die dafür eingerichtet sind, mit dem Meeresboden einer gegebenen Stelle verbunden zu sein, wobei der Schwimmträger (1) eine Arbeitsbrücke (2) umfasst und Schwimmorgane (3), die die Arbeitsbrücke (2) tragen, dadurch gekennzeichnet, dass der Abstand zwischen den vertikalen Achsen (Z), die durch das Volumenzentrum der Schwimmorgane (3) verlaufen, derart ist, dass für jede Ausbreitungsrichtung der Dünung, wenn die Periode der Dünung auf 20% genau der mit der betrachteten Ausbreitungsrichtung verbundenen Periode der Jahrhundertsturmdünung gleich ist, wobei die Jahrhundertsturmdünung die Dünung ist, deren jährliche Wahrscheinlichkeit, an der Stelle angetroffen zu werden, an der der Träger eingesetzt werden soll, 1/100 beträgt, die Summe der Momente der vertikalen Kräfte relativ zur horizontalen Achse, die im rechten Winkel zur betrachteten Ausbreitungsrichtung steht und durch den Schwerpunkt des Trägers (1) verläuft, die die Dünung auf die Schwimmorgane (3) ausübt, die sich auf einer Seite der vertikalen Ebene (P) befinden, die durch diese horizontale Achse verläuft, der entsprechenden Summe gleich ist, die mit den Schwimmorganen (3) verbunden ist, die sich auf der anderen Seite dieser vertikalen Ebene befinden, wobei diese Periode die Auslöschungsperiode in der Ausbreitungsrichtung der Dünung genannt wird.
  2. Schwimmträger (1) nach Patentanspruch 1, dadurch gekennzeichnet, dass er drei Schwimmorgane (3) umfasst, die derart relativ zueinander angeordnet sind, dass die vertikalen Achsen (Z), die durch ihr jeweiliges Volumenzentrum verlaufen, ein gleichseitiges Dreieck bilden, dessen Höhe auf 20% genau der halben Wellenlänge der Jahrhundertsturmdünung entspricht.
  3. Schwimmträger (1) nach Patentanspruch 1, dadurch gekennzeichnet, dass er vier Schwimmorgane (3) umfasst, die derart relativ zueinander angeordnet sind, dass die vertikalen Achsen (Z), die durch ihr jeweiliges Volumenzentrum verlaufen, ein Quadrat bilden, dessen Seitenlänge auf 20% genau der halben Wellenlänge der Jahrhundertsturmdünung entspricht.
  4. Schwimmträger (1) nach einem der Patentansprüche 1 bis 3, dadurch gekennzeichnet, dass jedes Schwimmorgan (3) derart dimensioniert ist, dass sich die Summe der vertikalen Erregungskräfte, die auf ihn ausgeübt werden, bei einer Dünung aufheben, deren Periode größer ist, als die Auslöschungsperiode, wobei diese Periode Gleichgewichtsperiode genannt wird.
  5. Schwimmträger (1) nach Patentanspruch 4, dadurch gekennzeichnet, dass die Gleichgewichtsperiode dem 1,5-fachen der Auslöschungsperiode gleich ist.
  6. Schwimmträger (1) nach einem der Patentansprüche 1 bis 5, dadurch gekennzeichnet, dass der Verbindungspunkt (5) der Anlagen (4), die dafür bestimmt sind, mit dem Meeresboden verbunden zu werden, der Schwerpunkt des Trägers (1) ist.
  7. Schwimmträger (1) nach Patentanspruch 6, dadurch gekennzeichnet, dass den Anlagen (4), die dafür bestimmt sind, mit dem Meeresboden verbunden zu werden, mit ihnen zusammenhängende Anlagen (9) angefügt sind, die oberhalb der Schwimmorgane (3) angeordnet sind.
  8. Schwimmträger (1) nach einem der Patentansprüche 1 bis 7, dadurch gekennzeichnet, dass jedes Schwimmorgan (3) aus einem unter Wasser befindlichen Schwimmer (6), dem unter Wasser befindlichen Teil einer Säule (7), die vom unter Wasser befindlichen Schwimmer (6) getragen wird und die Arbeitsbrücke (2) trägt, und der Hälfte jedes der unter Wasser befindlichen, anschließenden Verbindungselemente (11), die diese unter Wasser befindliche Säulen-Schwimmer-Einheit mit den anderen Säulen-Schwimmer-Einheiten verbinden, besteht.
  9. Verfahren zur Dimensionierung eines Schwimmträgers (1), der dafür eingerichtet, Anlagen (4) zu tragen, die dafür eingerichtet sind, mit dem Meeresboden einer gegebenen Stelle verbunden zu sein, und der eine Arbeitsbrücke (2) umfasst und Schwimmorgane (3), die die Arbeitsbrücke (2) tragen, dadurch gekennzeichnet, dass es einen Schritt umfasst, in dem für die Stelle, für die der Träger (1) bestimmt ist, für jede Ausbreitungsrichtung der Dünung die Periode der Jahrhundertsturm-Dünung bestimmt wird, bei der es sich um die Dünung handelt, deren jährliche Wahrscheinlichkeit, an der Stelle angetroffen zu werden, 1/100 beträgt, einen Schritt, in dem für eine Reihe von Ausbreitungsrichtungen der Dünung der theoretische Abstand zwischen den vertikalen Achsen (Z), die durch das Volumenzentrum der Schwimmorgane (3) verlaufen, derart bestimmt wird, dass die Summe der Momente der vertikalen Kräfte relativ zur horizontalen Achse, die im rechten Winkel zur betrachteten Ausbreitungsrichtung steht und durch das geometrische Zentrum der Brücke (2) verläuft, die die Dünung auf die Schwimmorgane (3) ausübt, die sich auf einer Seite der vertikalen Ebene (P) befinden, die durch diese horizontale Achse verläuft, der entsprechenden Summe gleich ist, die mit den Schwimmorganen (3) verbunden ist, die sich auf der anderen Seite dieser vertikalen Ebene (P) befinden, einen Schritt, in dem ein für das Stampfschwingungsverhalten des Trägers (1) bei Jahrhundertsturmdünungen optimaler Abstand bestimmt wird, der die Auslöschungsperiode des Trägers (1) für die betrachtete Ausbreitungsrichtung definiert, und gegebenenfalls ein Schritt, in dem die Geometrie des Trägers (1) in den Grenzen eines Spielraums von 20% der Auslöschungsperiode angepasst wird.
  10. Dimensionierungsverfahren für einen Schwimmträger (1) nach Patentanspruch 1, dadurch gekennzeichnet, dass jedes Schwimmorgan (3) derart dimensioniert wird, dass die Summe der vertikalen Erregungskräfte, die auf ihn ausgeübt werden, bei einer Dünung verschwindet, deren Periode gleich dem 1,5-fachen der Auslöschungsperiode ist.
EP06709110A 2005-01-21 2006-01-17 Stabilisierter schwimmender träger Expired - Fee Related EP1838570B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0500676A FR2881102B1 (fr) 2005-01-21 2005-01-21 Support flottant stabilise
PCT/FR2006/000103 WO2006077311A2 (fr) 2005-01-21 2006-01-17 Support flottant stabilise

Publications (2)

Publication Number Publication Date
EP1838570A2 EP1838570A2 (de) 2007-10-03
EP1838570B1 true EP1838570B1 (de) 2010-06-16

Family

ID=34953679

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06709110A Expired - Fee Related EP1838570B1 (de) 2005-01-21 2006-01-17 Stabilisierter schwimmender träger

Country Status (5)

Country Link
US (1) US7503728B2 (de)
EP (1) EP1838570B1 (de)
BR (1) BRPI0606452B1 (de)
FR (1) FR2881102B1 (de)
WO (1) WO2006077311A2 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112015026254B1 (pt) * 2013-04-15 2019-04-09 Single Buoy Moorings, Inc. Sistema de riser tensionado superior para uma embarcação semissubmersível em árvore seca
AT516640A3 (de) 2014-12-22 2024-05-15 Swimsol Gmbh Schwimmende Plattform
CN106428447A (zh) * 2016-12-06 2017-02-22 大连理工大学 一种超大型多浮体半潜式浮动平台

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3490406A (en) * 1968-08-23 1970-01-20 Offshore Co Stabilized column platform
US4015552A (en) * 1975-08-25 1977-04-05 Korkut Mehmet D Semi-submersible drill barge
CA1075092A (en) * 1976-01-19 1980-04-08 Seatek (A California Partnership) Method and apparatus for stabilization of a floating semi-submersible structure
US4850744A (en) * 1987-02-19 1989-07-25 Odeco, Inc. Semi-submersible platform with adjustable heave motion
WO2002087959A2 (en) * 2001-05-01 2002-11-07 Drillmar, Inc. Multipurpose unit with multipurpose tower and method for tendering with a semisubmersible

Also Published As

Publication number Publication date
BRPI0606452A2 (pt) 2009-06-30
US7503728B2 (en) 2009-03-17
FR2881102B1 (fr) 2007-04-20
WO2006077311A2 (fr) 2006-07-27
FR2881102A1 (fr) 2006-07-28
BRPI0606452B1 (pt) 2018-06-19
WO2006077311A3 (fr) 2006-12-14
US20080101870A1 (en) 2008-05-01
EP1838570A2 (de) 2007-10-03

Similar Documents

Publication Publication Date Title
EP3464893B1 (de) Schwimmende windenergieanlage
EP3472458A1 (de) Schwimmende vorrichtung zum tragen einer offshore-windturbine und entsprechende schwimmende windturbineneinheit
CA1305370C (fr) Systeme modulaire de production, de stockage et de chargement d'hydrocarbures au large des cotes
EP2528806A1 (de) Schwimmender träger für eine offshore-struktur, insbesondere einen windgenerator
FR2966175A1 (fr) Dispositif de support d'une eolienne de production d'energie electrique en mer, installation de production d'energie electrique en mer correspondante.
EP2479103A1 (de) Schwimmende Unterkonstruktion für Struktur vom Typ Windkraftanlage
EP1838570B1 (de) Stabilisierter schwimmender träger
FR2737179A1 (fr) Plate-forme d'exploitation petroliere en mer
FR2772336A1 (fr) Plate-forme semi-submersible d'exploitation d'un champ petrolier en mer et procede d'installation d'une telle plate-forme
FR2568908A1 (fr) Plate-forme oscillante sur pieux flexibles pour travaux en mer
EP0307255A1 (de) Kettenförmige Ankerlinie für schwimmende Gegenstände und Vorrichtung und Verfahren zu deren Herstellung
WO2018154212A1 (fr) Dispositif d'accouplement de deux bateaux
EP3490882B1 (de) Schwimmende tragstruktur mit einem schwimmer und einer dämpfungsplatte mit einer reihe von öffnungen
FR2681831A1 (fr) Plate-forme petroliere flottante a pilonnement controlable.
FR2818327A1 (fr) Eolienne maritime embarquee sur une bouee ancree par un riser
FR2778931A1 (fr) Plate-forme marine auto-elevatrice et son procede d'installation
FR3093699A1 (fr) Flotteur d’éolienne semi-submersible, ensemble d’éolienne et procédé d’ancrage associés
WO2018189084A1 (fr) Flotteur notamment d'eolienne offshore
EP1509671B1 (de) Mehrfachkettenfahrleitung-steigrohr
FR2581362A1 (fr) Plate-forme semi-submersible, notamment pour la recherche et/ou l'exploitation de gisements sous-marins en mers froides
FR3093074A1 (fr) Plateforme offshore flottante notamment pour éolienne
FR2572049A1 (fr) Installation semi-submersible, notamment pour plate-forme de forage
WO2004045946A1 (fr) Barge de grandes dimensions presentant des cavites formant cavernes dans la coque
EP0947420A1 (de) Den Seeboden nicht beschädigender Anker und entsprechendes Verankerungssystem
EP3490883A1 (de) Schwimmende trägerstruktur mit einem schwimmer und einer dämpfungsplatte mit einem querschnitt mit unterschiedlichen tiefen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070725

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): FR GB IT NL

RBV Designated contracting states (corrected)

Designated state(s): FR GB IT NL

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB IT NL

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110317

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200130

Year of fee payment: 15

Ref country code: NL

Payment date: 20200130

Year of fee payment: 15

Ref country code: IT

Payment date: 20200129

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200129

Year of fee payment: 15

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210201

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210117