EP1835079B1 - Elektromechanisch gesteuerter Bagger und Verfahren zur Steuerung des elektromechanisch gesteuerten Baggers. - Google Patents

Elektromechanisch gesteuerter Bagger und Verfahren zur Steuerung des elektromechanisch gesteuerten Baggers. Download PDF

Info

Publication number
EP1835079B1
EP1835079B1 EP06122458A EP06122458A EP1835079B1 EP 1835079 B1 EP1835079 B1 EP 1835079B1 EP 06122458 A EP06122458 A EP 06122458A EP 06122458 A EP06122458 A EP 06122458A EP 1835079 B1 EP1835079 B1 EP 1835079B1
Authority
EP
European Patent Office
Prior art keywords
controller
excavator
stick
pump
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP06122458A
Other languages
English (en)
French (fr)
Other versions
EP1835079A1 (de
Inventor
Qinghua He
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1835079A1 publication Critical patent/EP1835079A1/de
Application granted granted Critical
Publication of EP1835079B1 publication Critical patent/EP1835079B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • E02F3/437Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like providing automatic sequences of movements, e.g. linear excavation, keeping dipper angle constant
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool

Definitions

  • This invention relates to electromechanically-integrated excavators and methods for controlling the electromechanically-integrated excavators.
  • Excavators are widely used in the construction industry, and their operation is generally flexible and highly efficient, for example the document DE 199 09 610 A1 (KOMATSU ) discloses an electromechanically-integrated excavator comprising a boom, an arm or a stick, a bucket, a monitoring processor, a data storage, an indicator screen, an audio alarm, and a communication circuit; wherein said monitoring processor is connected with said storage, said indicator screen, said audio alarm, and said communication circuit. Said document also discloses a method for controlling movement of an excavator comprising:
  • excavator operation is not without problems, including the required high labor input, the inconvenience of direct human participation under adverse conditions, and the necessity for long training of excavator operators to attain high skills, among others.
  • the improvement of electromechanical integration of excavators is critical for overcoming these drawbacks and for realizing a more automatic and intelligent operation of excavators.
  • the present invention arose in the context of the above-identified problems. It is one aspect of the present invention to provide an electromechanically-integrated excavator and a method capable of realizing highly precise operation and control, good positioning capability, and lower power consumption.
  • an electro-mechanically integrated excavator comprising a monitoring processor, a data storage, a watchdog, an indicator screen, an audio alarm, an optoelectronic isolating circuit, a high speed optoelectronic isolating circuit, a counter, a filter, and a communication circuit
  • the monitoring processor is connected respectively with the storage, the watchdog, the indicator screen, the audio alarm, the revolution counter, the filter, and the communication circuit
  • the optoelectronic isolating circuit is connected with the filter
  • the high speed optoelectronic isolating circuit is connected with the counter.
  • the excavator of the present invention also comprises a motion controller, a boom angle sensor, a stick or arm angle sensor, and a bucket angle sensor, wherein the outputs of the boom angle sensor, the stick angle sensor, and the bucket angle sensor are connected with the inputs of the motion controller, and the motion controller is connected with the monitoring processor via the communication circuit.
  • the electromechanically-integrated excavator also comprises a laser emitter rack set near the front portion of the excavator, a laser emitter mounted on the laser emitter rack, and a height detector fixedly mounted on the stick of the excavator, the output of the height detector being connected with the monitoring processor.
  • the electromechanically-integrated excavator also comprises an energy-saving controller, a mode select switch, and a knob for setting the engine speed or revolutions.
  • the energy saving mode is selected via the mode select switch and a desired engine speed is input via the engine speed setting knob.
  • Both the mode information and the desired revolutions per minute (rpm) are sent to the engine controller, which is a subpart of the energy-saving controller, in which the rotating speed is monitored in real-time and fed back.
  • the position of the throttle of the engine is adjusted by a linear displacement electromagnet to meet the requirement on the engine power and to control the power of the engine.
  • the desired pump pressure is input via a ⁇ p regulating knob into a pump controller, which is a subpart of the energy saving controller.
  • the information of the position of the throttle and the rpm of the engine is input into the controller to get a valid feedback.
  • the output signal from the pump controller serves to control the pump regulator so as to control the pump.
  • a method for controlling the work of the electromechanically-integrated excavator comprising the steps of (1) determining the movement of the excavator by utilizing a motion controller so as to obtain the motion sequence of the operating devices, incl., the boom, the stick, and the bucket; (2) setting parameters for the starting point of the motion sequence to obtain a Pulse Width Modulation (PWM) signal to control a pilot electro-hydraulic proportional valve, by means of which the main valve driving the operation of each hydraulic cylinder of the operating devices is controlled; (3) obtaining the position information of the operating devices by utilizing the angle sensors mounted on the boom, the stick, and the bucket of the excavator respectively, which information is then transmitted by a bus to the motion controller, wherein the obtained position information is compared with that preset for the operating devices, wherein the control parameters are corrected in real-time by applying the method of adaptive Proportional-Integral-Differential (PID) algorithm, by which the PID) algorithm, by which the PID
  • the operating device of an excavator in accordance with one embodiment of the present invention comprises a boom 1, an arm or a stick 3, and a bucket 6 mounted with angle sensors 2, 4, and 7, respectively.
  • a laser emitter rack 8 with a laser emitter 9 mounted thereon is disposed near the front portion of the stick 3, a height detector 5 is fixedly mounted on the stick 3, the output of the height detector 5 is connected with a monitoring processor.
  • the laser emitter rack 8 is set to a horizontal status, and the laser head of the laser emitter 9 rotates and emits a laser signal, which is received by the height detector 5 by which the relative height of the laser beam is measured in comparison with the zero level.
  • the signal of the measured relative height is transmitted by a bus to a processor of the monitoring system for processing; the processed signal is displayed on an indicator screen of the monitoring system, and then is transmitted by a communication circuit to a motion controller.
  • the monitoring system of an excavator in accordance with one embodiment of the present invention comprises a monitoring processor, a data storage, a watchdog for protecting the system from specific (software or hardware) failures that may cause the system to stop responding, an indicator screen, an audio alarm, an optoelectronic isolating circuit with isolation elements, a high speed optoelectronic isolating circuit, a revolution counter, a filter, a communication circuit, a motion controller, a boom angle sensor, a stick or arm angle sensor, a bucket angle sensor, a laser emitter, and a height detector, wherein the monitoring processor is connected with the storage, the watchdog, the indicator screen, the audio alarm, the counter, the filter, and the communication circuit, and the optoelectronic isolating circuit is connected with the filter.
  • the position information from the boom angle sensor, the stick angle sensor, and the bucket angle sensor is transmitted as a signal by a bus to the motion controller, and then is sent via the communication circuit to the monitoring processor for processing.
  • the obtained signal is then displayed on the indicator screen.
  • Based on the laser signal received by the height detector the relative height of the laser beam in comparison to the zero level is measured, and is transmitted by a bus to the monitoring processor for processing.
  • the obtained signal is then displayed on the indicator screen.
  • the high-speed pulse signal from the engine is sent via the high-speed optoelectronic isolating circuit to the counter to be counted, and then is sent to the monitoring processor.
  • Various on-off signals passed through the optoelectronic isolating circuit and the filter are sent to the monitoring processor for processing.
  • the obtained signal is then displayed on the indicator screen.
  • the pressure, the temperature, and the liquid level at each node can be displayed when the excavator is in operation.
  • an intelligent control of the operation of the excavator can also be realized.
  • the main parameters of the system including without limitation, the fuel level, the oil pressure, the water temperature, the oil temperature, the low battery voltage, the high water temperature of the engine cooling system, the low fuel, the filter clogging, the air filter deficiency, the high temperature of hydraulic oil, the low oil pressure, the high oil temperature, and the low water level, are monitored and displayed, and alarm is issued when these levels exceed certain preset values.
  • the capability to diagnose malfunctions by the monitoring processor allows the values of the key control parameters of each port to be displayed in real-time when the machine is in operation. If a malfunction occurs, the position of the malfunction can be rapidly and conveniently detected, and corrective actions can be taken in speedily.
  • the operating device of the excavator is regarded as a manipulator with multiple degrees of freedom, wherein the position information of the operating devices is determined by angle sensors 2, 4, and 7 mounted on the boom 1, the stick 3, and the bucket 6, respectively.
  • the signal carrying the position information from the above three sensors is transmitted by a bus to the motion controller 11 of the excavator, in which the precise movement of the operating devices are determined.
  • a movement may be expressed as a horizontal line, a sloped line, an arc line, etc.
  • the signal is sent for analysis in accordance with kinematic and dynamic layouts to obtain a motion sequence of the operating devices, i.e., the boom 1, the stick 3, and the bucket 6.
  • the values of the control parameters on the motion sequence are adjusted in real-time in accordance with the position information of the operating devices by applying adaptive Proportional Integral Derivative (PID) algorithm, and then the real-time-corrected control parameters are obtained as a Pulse-Width-Modulated (PWM) output.
  • PID Proportional Integral Derivative
  • PWM Pulse-Width-Modulated
  • the energy saving mode is selected via the mode select switch and a desired engine revolution speed is input via the engine speed setting knob.
  • Both the mode information and the desired rpm are sent to the engine controller, which is a subpart of the energy-saving controller, in which the rotating speed is monitored in real-time and fed back.
  • the position of the throttle of the engine is adjusted by a linear displacement electromagnet to meet the requirement on the engine power and to control the power of the engine.
  • the desired pump pressure is input via a ⁇ p regulating knob (pressure regulating knob) into a pump controller, which is a subpart of the energy saving controller.
  • the information of the position of the throttle and the rpm of the engine is input into the controller to get a valid feedback.
  • the output signal from the pump controller serves to control the pump regulator so as to control the pump.
  • the engine controller and the pump controller together form an energy-saving controller and realize a good match among the parameters of the engine, the hydraulic pump, and the loading, so as to realize energy saving.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Operation Control Of Excavators (AREA)

Claims (5)

  1. Elektromechanisch-integrierter Bagger, der Folgendes umfasst: einen Ausleger (1), einen Arm oder einen Stiel (3), einen Eimer (6), einen Überwachungsprozessor, einen Datenspeicher, eine Totmanneinrichtung, einen Anzeigeschirm, einen akustischen Alarm, eine optoelektronische Entkopplungsschaltung, eine optoelektronische Hochgeschwindigkeits-Entkopplungsschaltung, einen Umdrehungszähler, einen Filter und eine Kommunikationsschaltung; wobei der Überwachungsprozessor mit dem Speicher, der Totmanneinrichtung, dem Anzeigeschirm, dem akustischen Alarm, dem Zähler, dem Filter und der Kommunikationsschaltung verbunden ist; die optoelektronische Entkopplungsschaltung mit dem Filter verbunden ist; und die optoelektronische Hochgeschwindigkeits-Entkopplungsschaltung mit dem Zähler verbunden ist.
  2. Elektromechanisch-integrierter Bagger nach Anspruch 1, der des Weiteren Folgendes umfasst: eine Bewegungssteuereinheit mit einem Eingang; einen Auslegerwinkelsensor (2), einen Stiel- oder Armwinkelsensor (4) und einen Eimerwinkelsensor (7), wobei jeder Winkelsensor einen Ausgang aufweist; wobei der Ausgang der Winkelsensoren (2, 4, 7) mit dem Eingang der Bewegungssteuereinheit verbunden ist; und die Bewegungssteuereinheit über die Kommunikationsschaltung mit dem Überwachungsprozessor verbunden ist.
  3. Elektromechanisch-integrierter Bagger nach Anspruch 1, der des Weiteren Folgendes umfasst: ein Laseremittergestell (8), das nahe dem Vorderteil des Baggers angeordnet ist, einen Laseremitter (9), der an dem Laseremittergestell montiert ist, und einen Höhendetektor (5), der fest an dem Stiel (3) des Baggers montiert ist; wobei das Ausgangs-Ende des Höhendetektors mit dem Überwachungsprozessor verbunden ist.
  4. Elektromechanisch-integrierter Bagger nach Anspruch 1, der des Weiteren Folgendes umfasst: einen Motor mit einer Drosselklappe und mit einer Motordrehzahl; eine Hydraulikpumpe mit einem Pumpendruck und mit einem Pumpenbetätigungsregler; einen Linearverschiebungs-Elektromagneten; eine Energiespar-Steuereinheit mit einer Motorsteuereinheit und einer Pumpensteuereinheit; wobei die Pumpensteuereinheit ein Pumpensteuereinheit-Ausgangssignal ausgibt; einen Betriebsartwählschalter mit einer Position für einen Normalbetriebsmodus und einem Energiesparbetriebsmodus; einen Motordrehzahleinstellknopf; und einen Druckregelknopf; wobei die Position des Betriebsartwählschalters an die Motorsteuereinheit übermittelt wird; die Motordrehzahl über den Motordrehzahleinstellknopf eingestellt wird und an die Motorsteuereinheit übermittelt wird; der Pumpendruck über den Druckregelknopf eingestellt wird und an die Pumpensteuereinheit übermittelt wird; die Motordrehzahl in Echtzeit überwacht wird und an die Motorsteuereinheit zurückgemeldet wird; die Position der Drosselklappe durch den Linearverschiebungs-Elektromagneten justiert wird; die Position der Drosselklappe und der Motordrehzahl in die Energiespar-Steuereinheit eingespeist werden; und das Pumpensteuereinheit-Ausgangssignal den Pumpenregler.
  5. Verfahren zum Steuern der Bewegung des Baggers nach Anspruch 2, das Folgendes umfasst:
    (1) Einstellen einer Bewegungstrajektorie für den Bagger, und Erhalten einer Bewegungssequenz des Auslegers (1), des Stiels (3) und des Eimers (6) unter Verwendung der Bewegungssteuereinheit, wobei die Bewegungssequenz mehrere aufeinanderfolgende Positionspunkte umfasst;
    (2) Erhalten eines Impulsbreitenmodulationssignals, das der Bewegungstrajektorie entspricht, zum Steuern des Betriebes des Auslegers, des Stiels und des Eimers;
    (3) Erhalten von Positionsinformationen des Auslegers (1), des Stiels (3) und des Eimers (6) unter Verwendung der Winkelsensoren (2, 4, 7), die an dem Ausleger, dem Stiel und dem Eimer montiert sind; Übermitteln der Positionsinformationen über einen Bus an die Bewegungssteuereinheit; Vergleichen der Positionsinformationen mit der Bewegungstrajektorie; und Korrigieren des Impulsbreitenmodulationssignals in Echtzeit durch Anwenden eines Proportional-Integral-Differenzial-Algorithmus';
    (4) Wiederholen des Schrittes (3) zum Steuern der Bewegung an jedem aufeinanderfolgenden Punkt in der Bewegungssequenz.
EP06122458A 2006-03-17 2006-10-17 Elektromechanisch gesteuerter Bagger und Verfahren zur Steuerung des elektromechanisch gesteuerten Baggers. Expired - Fee Related EP1835079B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200610331374 2006-03-17

Publications (2)

Publication Number Publication Date
EP1835079A1 EP1835079A1 (de) 2007-09-19
EP1835079B1 true EP1835079B1 (de) 2008-05-07

Family

ID=37495883

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06122458A Expired - Fee Related EP1835079B1 (de) 2006-03-17 2006-10-17 Elektromechanisch gesteuerter Bagger und Verfahren zur Steuerung des elektromechanisch gesteuerten Baggers.

Country Status (2)

Country Link
EP (1) EP1835079B1 (de)
DE (1) DE602006001105D1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102890487A (zh) * 2012-09-24 2013-01-23 三一重机有限公司 多控制器电控系统
CN107614803A (zh) * 2015-10-28 2018-01-19 株式会社小松制作所 作业机械的校正装置、作业机械以及作业机械的校正方法
CN108691325A (zh) * 2017-03-29 2018-10-23 日立建机株式会社 工程机械
CN108884654A (zh) * 2016-09-30 2018-11-23 株式会社小松制作所 工作装置用的箱形构造体
CN110725359A (zh) * 2019-10-28 2020-01-24 上海三一重机股份有限公司 一种轨迹控制方法及挖掘机

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8527155B2 (en) * 2008-06-27 2013-09-03 Caterpillar Inc. Worksite avoidance system
KR102026348B1 (ko) * 2012-06-08 2019-11-04 스미도모쥬기가이고교 가부시키가이샤 쇼벨의 제어방법 및 제어장치
CN104120745B (zh) * 2014-07-28 2016-08-24 三一重机有限公司 一种挖掘机自动平地控制方法
CN104769189B (zh) * 2014-09-10 2016-12-28 株式会社小松制作所 作业车辆
CN104929169B (zh) * 2015-05-21 2017-05-24 徐工集团工程机械股份有限公司科技分公司 一种提高装载机铲装能力的控制装置及其控制方法
CN105350595B (zh) * 2015-08-27 2017-08-29 中国航空工业集团公司西安飞行自动控制研究所 基于位置控制的挖掘机操纵装置
US10648160B2 (en) 2017-04-27 2020-05-12 Cnh Industrial America Llc Work machine with bucket monitoring
CN109281345A (zh) * 2018-02-06 2019-01-29 上海云统信息科技有限公司 挖掘机远程监控云服务系统
IT201800006471A1 (it) * 2018-06-19 2019-12-19 Metodo e dispositivo per il controllo della profondita' di scavo di un escavatore.
CN111622297B (zh) * 2020-04-22 2021-04-23 浙江大学 一种挖掘机的在线作业纠偏系统和方法
CN111622283A (zh) * 2020-06-17 2020-09-04 雷沃工程机械集团有限公司 一种挖掘机动作状态监测装置、挖掘机及控制方法
CN112112215A (zh) * 2020-09-30 2020-12-22 徐州徐工挖掘机械有限公司 一种适用于挖掘机的节能控制方法
CN114439070A (zh) * 2022-02-15 2022-05-06 西安方元明鑫精密机电制造有限公司 一种基于可编程控制器的挖掘机用电动缸功率匹配控制系统
CN115874675B (zh) * 2023-03-08 2023-07-11 博鼎精工智能科技(山东)有限公司 一种液压多路阀控制系统及其实现方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4603234A (en) * 1983-04-04 1986-07-29 Gte Lenkurt Incorporated Switching circuit including current limiting and initializing signal isolation
EP0125736A1 (de) * 1983-05-17 1984-11-21 Hitachi Construction Machinery Co., Ltd. Schwimmbagger
FR2552284B1 (fr) * 1983-09-20 1985-10-25 Leseure Jean Yves Circuit isolateur a coupleur optoelectronique
JPH07107276B2 (ja) * 1988-10-07 1995-11-15 株式会社小松製作所 作業機の制御装置
JP3308073B2 (ja) * 1993-10-18 2002-07-29 日立建機株式会社 油圧建設機械の原動機回転数制御装置
US5528498A (en) * 1994-06-20 1996-06-18 Caterpillar Inc. Laser referenced swing sensor
US5999872A (en) * 1996-02-15 1999-12-07 Kabushiki Kaisha Kobe Seiko Sho Control apparatus for hydraulic excavator
JPH10317417A (ja) * 1997-05-19 1998-12-02 Hitachi Constr Mach Co Ltd 多関節作業機械の姿勢制御装置
JP3364419B2 (ja) * 1997-10-29 2003-01-08 新キャタピラー三菱株式会社 遠隔無線操縦システム並びに遠隔操縦装置,移動式中継局及び無線移動式作業機械
JP3461281B2 (ja) * 1998-03-05 2003-10-27 株式会社小松製作所 建設機械の作業機制御装置
EP1340858B1 (de) * 2000-11-17 2013-09-18 Hitachi Construction Machinery Co., Ltd Baumaschine mit einer anzeigevorrichtung
US6782644B2 (en) * 2001-06-20 2004-08-31 Hitachi Construction Machinery Co., Ltd. Remote control system and remote setting system for construction machinery
JP2003097316A (ja) * 2001-09-20 2003-04-03 Komatsu Ltd 作業機械

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102890487A (zh) * 2012-09-24 2013-01-23 三一重机有限公司 多控制器电控系统
CN107614803A (zh) * 2015-10-28 2018-01-19 株式会社小松制作所 作业机械的校正装置、作业机械以及作业机械的校正方法
CN107614803B (zh) * 2015-10-28 2020-10-16 株式会社小松制作所 作业机械的校正装置、作业机械以及作业机械的校正方法
US10968607B2 (en) 2015-10-28 2021-04-06 Komatsu Ltd. Calibration device of work machine, work machine, and calibration method of work machine
CN108884654A (zh) * 2016-09-30 2018-11-23 株式会社小松制作所 工作装置用的箱形构造体
CN108691325A (zh) * 2017-03-29 2018-10-23 日立建机株式会社 工程机械
CN108691325B (zh) * 2017-03-29 2020-11-03 日立建机株式会社 工程机械
CN110725359A (zh) * 2019-10-28 2020-01-24 上海三一重机股份有限公司 一种轨迹控制方法及挖掘机
CN110725359B (zh) * 2019-10-28 2022-03-01 上海三一重机股份有限公司 一种轨迹控制方法及挖掘机

Also Published As

Publication number Publication date
DE602006001105D1 (de) 2008-06-19
EP1835079A1 (de) 2007-09-19

Similar Documents

Publication Publication Date Title
EP1835079B1 (de) Elektromechanisch gesteuerter Bagger und Verfahren zur Steuerung des elektromechanisch gesteuerten Baggers.
US11001992B2 (en) Shovel, display method, and mobile terminal
US11525244B2 (en) Display device for shovel
US20210002851A1 (en) Shovel
US20200354921A1 (en) Shovel and shovel management system
EP3730700A1 (de) Schaufel- und schaufelverwaltungssystem
US20200131731A1 (en) Shovel
US20180202130A1 (en) Shovel
EP3950404B1 (de) Batteriebetriebene arbeitsmaschine
EP3438356B1 (de) Schaufel
CN102575454A (zh) 作业机械的远程管理系统
JPWO2016158539A1 (ja) ショベル
EP3244069A1 (de) Konstruktionsvorrichtung
EP3489422A3 (de) Steuerung einer erdbewegungsmaschine
WO1999005368A1 (en) Method and apparatus for controlling a work implement
US11377825B2 (en) Shovel, method for controlling shovel, and mobile information terminal
EP3779072B1 (de) Schaufel
KR102522711B1 (ko) 쇼벨
JP7152148B2 (ja) 建設機械
KR20100005722A (ko) 건설 기계의 운전 시스템
EP3831764A1 (de) Arbeitsmaschine
US20240084547A1 (en) Apparatus and method for actively reducing action impact of excavator, and excavator
JP7114302B2 (ja) ショベル及びショベルの管理装置
US20220010527A1 (en) Excavator
WO2019031431A1 (ja) ショベル、ショベルの支援装置、及び、ショベルの管理装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070405

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

AKX Designation fees paid

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 602006001105

Country of ref document: DE

Date of ref document: 20080619

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121012

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20121011

Year of fee payment: 7

Ref country code: IT

Payment date: 20121018

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131017

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006001105

Country of ref document: DE

Effective date: 20140501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140501

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131017

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160429

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161102