EP1835079B1 - Excavatrice commandée électro-mécaniquement et procédé de commande de l'excavatrice commandée électro-mécaniquement. - Google Patents
Excavatrice commandée électro-mécaniquement et procédé de commande de l'excavatrice commandée électro-mécaniquement. Download PDFInfo
- Publication number
- EP1835079B1 EP1835079B1 EP06122458A EP06122458A EP1835079B1 EP 1835079 B1 EP1835079 B1 EP 1835079B1 EP 06122458 A EP06122458 A EP 06122458A EP 06122458 A EP06122458 A EP 06122458A EP 1835079 B1 EP1835079 B1 EP 1835079B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- controller
- excavator
- stick
- pump
- engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 238000000034 method Methods 0.000 title claims description 9
- 238000012544 monitoring process Methods 0.000 claims description 24
- 230000005693 optoelectronics Effects 0.000 claims description 13
- 238000004891 communication Methods 0.000 claims description 12
- 230000001276 controlling effect Effects 0.000 claims description 5
- 230000001105 regulatory effect Effects 0.000 claims description 5
- 238000013500 data storage Methods 0.000 claims description 4
- 238000006073 displacement reaction Methods 0.000 claims description 4
- 230000007257 malfunction Effects 0.000 description 6
- 239000003921 oil Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 239000010720 hydraulic oil Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/28—Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
- E02F3/36—Component parts
- E02F3/42—Drives for dippers, buckets, dipper-arms or bucket-arms
- E02F3/43—Control of dipper or bucket position; Control of sequence of drive operations
- E02F3/435—Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
- E02F3/437—Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like providing automatic sequences of movements, e.g. linear excavation, keeping dipper angle constant
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/26—Indicating devices
- E02F9/264—Sensors and their calibration for indicating the position of the work tool
Definitions
- This invention relates to electromechanically-integrated excavators and methods for controlling the electromechanically-integrated excavators.
- Excavators are widely used in the construction industry, and their operation is generally flexible and highly efficient, for example the document DE 199 09 610 A1 (KOMATSU ) discloses an electromechanically-integrated excavator comprising a boom, an arm or a stick, a bucket, a monitoring processor, a data storage, an indicator screen, an audio alarm, and a communication circuit; wherein said monitoring processor is connected with said storage, said indicator screen, said audio alarm, and said communication circuit. Said document also discloses a method for controlling movement of an excavator comprising:
- excavator operation is not without problems, including the required high labor input, the inconvenience of direct human participation under adverse conditions, and the necessity for long training of excavator operators to attain high skills, among others.
- the improvement of electromechanical integration of excavators is critical for overcoming these drawbacks and for realizing a more automatic and intelligent operation of excavators.
- the present invention arose in the context of the above-identified problems. It is one aspect of the present invention to provide an electromechanically-integrated excavator and a method capable of realizing highly precise operation and control, good positioning capability, and lower power consumption.
- an electro-mechanically integrated excavator comprising a monitoring processor, a data storage, a watchdog, an indicator screen, an audio alarm, an optoelectronic isolating circuit, a high speed optoelectronic isolating circuit, a counter, a filter, and a communication circuit
- the monitoring processor is connected respectively with the storage, the watchdog, the indicator screen, the audio alarm, the revolution counter, the filter, and the communication circuit
- the optoelectronic isolating circuit is connected with the filter
- the high speed optoelectronic isolating circuit is connected with the counter.
- the excavator of the present invention also comprises a motion controller, a boom angle sensor, a stick or arm angle sensor, and a bucket angle sensor, wherein the outputs of the boom angle sensor, the stick angle sensor, and the bucket angle sensor are connected with the inputs of the motion controller, and the motion controller is connected with the monitoring processor via the communication circuit.
- the electromechanically-integrated excavator also comprises a laser emitter rack set near the front portion of the excavator, a laser emitter mounted on the laser emitter rack, and a height detector fixedly mounted on the stick of the excavator, the output of the height detector being connected with the monitoring processor.
- the electromechanically-integrated excavator also comprises an energy-saving controller, a mode select switch, and a knob for setting the engine speed or revolutions.
- the energy saving mode is selected via the mode select switch and a desired engine speed is input via the engine speed setting knob.
- Both the mode information and the desired revolutions per minute (rpm) are sent to the engine controller, which is a subpart of the energy-saving controller, in which the rotating speed is monitored in real-time and fed back.
- the position of the throttle of the engine is adjusted by a linear displacement electromagnet to meet the requirement on the engine power and to control the power of the engine.
- the desired pump pressure is input via a ⁇ p regulating knob into a pump controller, which is a subpart of the energy saving controller.
- the information of the position of the throttle and the rpm of the engine is input into the controller to get a valid feedback.
- the output signal from the pump controller serves to control the pump regulator so as to control the pump.
- a method for controlling the work of the electromechanically-integrated excavator comprising the steps of (1) determining the movement of the excavator by utilizing a motion controller so as to obtain the motion sequence of the operating devices, incl., the boom, the stick, and the bucket; (2) setting parameters for the starting point of the motion sequence to obtain a Pulse Width Modulation (PWM) signal to control a pilot electro-hydraulic proportional valve, by means of which the main valve driving the operation of each hydraulic cylinder of the operating devices is controlled; (3) obtaining the position information of the operating devices by utilizing the angle sensors mounted on the boom, the stick, and the bucket of the excavator respectively, which information is then transmitted by a bus to the motion controller, wherein the obtained position information is compared with that preset for the operating devices, wherein the control parameters are corrected in real-time by applying the method of adaptive Proportional-Integral-Differential (PID) algorithm, by which the PID) algorithm, by which the PID
- the operating device of an excavator in accordance with one embodiment of the present invention comprises a boom 1, an arm or a stick 3, and a bucket 6 mounted with angle sensors 2, 4, and 7, respectively.
- a laser emitter rack 8 with a laser emitter 9 mounted thereon is disposed near the front portion of the stick 3, a height detector 5 is fixedly mounted on the stick 3, the output of the height detector 5 is connected with a monitoring processor.
- the laser emitter rack 8 is set to a horizontal status, and the laser head of the laser emitter 9 rotates and emits a laser signal, which is received by the height detector 5 by which the relative height of the laser beam is measured in comparison with the zero level.
- the signal of the measured relative height is transmitted by a bus to a processor of the monitoring system for processing; the processed signal is displayed on an indicator screen of the monitoring system, and then is transmitted by a communication circuit to a motion controller.
- the monitoring system of an excavator in accordance with one embodiment of the present invention comprises a monitoring processor, a data storage, a watchdog for protecting the system from specific (software or hardware) failures that may cause the system to stop responding, an indicator screen, an audio alarm, an optoelectronic isolating circuit with isolation elements, a high speed optoelectronic isolating circuit, a revolution counter, a filter, a communication circuit, a motion controller, a boom angle sensor, a stick or arm angle sensor, a bucket angle sensor, a laser emitter, and a height detector, wherein the monitoring processor is connected with the storage, the watchdog, the indicator screen, the audio alarm, the counter, the filter, and the communication circuit, and the optoelectronic isolating circuit is connected with the filter.
- the position information from the boom angle sensor, the stick angle sensor, and the bucket angle sensor is transmitted as a signal by a bus to the motion controller, and then is sent via the communication circuit to the monitoring processor for processing.
- the obtained signal is then displayed on the indicator screen.
- Based on the laser signal received by the height detector the relative height of the laser beam in comparison to the zero level is measured, and is transmitted by a bus to the monitoring processor for processing.
- the obtained signal is then displayed on the indicator screen.
- the high-speed pulse signal from the engine is sent via the high-speed optoelectronic isolating circuit to the counter to be counted, and then is sent to the monitoring processor.
- Various on-off signals passed through the optoelectronic isolating circuit and the filter are sent to the monitoring processor for processing.
- the obtained signal is then displayed on the indicator screen.
- the pressure, the temperature, and the liquid level at each node can be displayed when the excavator is in operation.
- an intelligent control of the operation of the excavator can also be realized.
- the main parameters of the system including without limitation, the fuel level, the oil pressure, the water temperature, the oil temperature, the low battery voltage, the high water temperature of the engine cooling system, the low fuel, the filter clogging, the air filter deficiency, the high temperature of hydraulic oil, the low oil pressure, the high oil temperature, and the low water level, are monitored and displayed, and alarm is issued when these levels exceed certain preset values.
- the capability to diagnose malfunctions by the monitoring processor allows the values of the key control parameters of each port to be displayed in real-time when the machine is in operation. If a malfunction occurs, the position of the malfunction can be rapidly and conveniently detected, and corrective actions can be taken in speedily.
- the operating device of the excavator is regarded as a manipulator with multiple degrees of freedom, wherein the position information of the operating devices is determined by angle sensors 2, 4, and 7 mounted on the boom 1, the stick 3, and the bucket 6, respectively.
- the signal carrying the position information from the above three sensors is transmitted by a bus to the motion controller 11 of the excavator, in which the precise movement of the operating devices are determined.
- a movement may be expressed as a horizontal line, a sloped line, an arc line, etc.
- the signal is sent for analysis in accordance with kinematic and dynamic layouts to obtain a motion sequence of the operating devices, i.e., the boom 1, the stick 3, and the bucket 6.
- the values of the control parameters on the motion sequence are adjusted in real-time in accordance with the position information of the operating devices by applying adaptive Proportional Integral Derivative (PID) algorithm, and then the real-time-corrected control parameters are obtained as a Pulse-Width-Modulated (PWM) output.
- PID Proportional Integral Derivative
- PWM Pulse-Width-Modulated
- the energy saving mode is selected via the mode select switch and a desired engine revolution speed is input via the engine speed setting knob.
- Both the mode information and the desired rpm are sent to the engine controller, which is a subpart of the energy-saving controller, in which the rotating speed is monitored in real-time and fed back.
- the position of the throttle of the engine is adjusted by a linear displacement electromagnet to meet the requirement on the engine power and to control the power of the engine.
- the desired pump pressure is input via a ⁇ p regulating knob (pressure regulating knob) into a pump controller, which is a subpart of the energy saving controller.
- the information of the position of the throttle and the rpm of the engine is input into the controller to get a valid feedback.
- the output signal from the pump controller serves to control the pump regulator so as to control the pump.
- the engine controller and the pump controller together form an energy-saving controller and realize a good match among the parameters of the engine, the hydraulic pump, and the loading, so as to realize energy saving.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Paleontology (AREA)
- Operation Control Of Excavators (AREA)
Claims (5)
- Excavateur électro-mécaniquement intégré, comprenant une flèche (1), un bras ou une tige (3), un godet (6), un processeur de contrôle, une mémoire, un circuit de surveillance, un écran d'affichage, une alarme audio, un circuit d'isolement optoélectronique, un circuit d'isolement optoélectronique à grande vitesse, un compteur de tours, un filtre et un circuit de communication; dans lequel ledit processeur de contrôle est relié à ladite mémoire, audit circuit de surveillance, audit écran d'affichage, à ladite alarme audio, audit compteur, audit filtre et audit circuit de communication; ledit circuit d'isolement optoélectronique est relié audit filtre; et ledit circuit d'isolement optoélectronique à grande vitesse est relié audit compteur.
- Excavateur selon la revendication 1, comprenant en outre un contrôleur de mouvement possédant une entrée; une sonde d'angle de flèche (2), une sonde d'angle de bras ou de tige (4), une sonde d'angle de godet (7), chaque sonde d'angle possédant une sortie; dans lequel lesdites sorties des sondes d'angle (2, 4, 7) sont reliées à ladite entrée du contrôleur de mouvement; et ledit contrôleur de mouvement est relié audit processeur de contrôle par le biais dudit circuit de communication.
- Excavateur selon la revendication 1, comprenant en outre un magasin d'émetteur laser (8) disposé à proximité de la portion frontale de l'excavateur, un émetteur laser (9) installé sur le magasin d'émetteur laser, et un détecteur de hauteur (5) monté fixement sur la tige (3) de l'excavateur; dans lequel l'extrémité de sortie du détecteur de hauteur est reliée au processeur de contrôle.
- Excavateur selon la revendication 1, comprenant en outre un moteur possédant un étranglement et possédant un régime du moteur; une pompe hydraulique possédant une pression de pompe et possédant un réglage de contrôle de la pompe; un électroaimant à déplacement linéaire; un contrôleur d'économie d'énergie possédant un contrôleur de moteur et un contrôleur de pompe; ledit contrôleur de pompe possédant un signal de sortie de contrôleur de pompe; un interrupteur de sélection de mode possédant une position pour un mode de fonctionnement normal et un mode de fonctionnement économique; un bouton de réglage du régime du moteur; et un bouton de réglage de la pression; dans lequel ladite position dudit interrupteur de sélection de mode est transmise audit contrôleur de moteur; ledit régime du moteur est réglé par le biais dudit bouton de réglage du régime du moteur et transmis audit contrôleur de moteur; ladite pression de pompe est réglée par le biais du bouton de réglage de la pression de pompe et transmise audit contrôleur de pompe; ledit régime du moteur est contrôlé en temps réel et renvoyé audit contrôleur de moteur; la position de l'étranglement est réglée par ledit électroaimant à déplacement linéaire; les positions dudit étranglement et dudit régime du moteur sont entrées dans ledit contrôleur d'économie d'énergie; et ledit signal de sortie du contrôleur de pompe contrôle ledit réglage de pompe.
- Méthode pour le contrôle du mouvement de l'excavateur selon la revendication 2, comprenant les étapes suivantes:(1) réglage d'une trajectoire de mouvement pour l'excavateur, et obtention d'une séquence de mouvement de ladite flèche (1), de ladite tige (3) et dudit godet (6) en utilisant ledit contrôleur de mouvement, ladite séquence de mouvement comprenant une pluralité de points de positionnement séquentiels;(2) obtention d'un signal de modulation de largeur d'impulsion correspondant à ladite trajectoire de mouvement pour le contrôle du fonctionnement de ladite flèche, de ladite tige et dudit godet;(3) obtention d'informations sur la position de ladite flèche (1), de ladite tige (3) et dudit godet (6), en utilisant lesdites sondes d'angle (2, 4, 7) installées sur ladite flèche, sur ladite tige et sur ledit godet; transmission desdites informations de position par le biais d'un bus, vers ledit contrôleur de mouvement; comparaison desdites informations de position avec ladite trajectoire de mouvement; et correction dudit signal de modulation de largeur d'impulsion en temps réel en appliquant un algorithme proportionnel-intégral-différentiel;(4) répétition de l'étape (3) pour contrôler le mouvement à chaque point séquentiel dans ladite séquence de mouvement.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200610331374 | 2006-03-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1835079A1 EP1835079A1 (fr) | 2007-09-19 |
EP1835079B1 true EP1835079B1 (fr) | 2008-05-07 |
Family
ID=37495883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06122458A Not-in-force EP1835079B1 (fr) | 2006-03-17 | 2006-10-17 | Excavatrice commandée électro-mécaniquement et procédé de commande de l'excavatrice commandée électro-mécaniquement. |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP1835079B1 (fr) |
DE (1) | DE602006001105D1 (fr) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102890487A (zh) * | 2012-09-24 | 2013-01-23 | 三一重机有限公司 | 多控制器电控系统 |
CN107614803A (zh) * | 2015-10-28 | 2018-01-19 | 株式会社小松制作所 | 作业机械的校正装置、作业机械以及作业机械的校正方法 |
CN108691325A (zh) * | 2017-03-29 | 2018-10-23 | 日立建机株式会社 | 工程机械 |
CN108884654A (zh) * | 2016-09-30 | 2018-11-23 | 株式会社小松制作所 | 工作装置用的箱形构造体 |
CN110725359A (zh) * | 2019-10-28 | 2020-01-24 | 上海三一重机股份有限公司 | 一种轨迹控制方法及挖掘机 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8527155B2 (en) * | 2008-06-27 | 2013-09-03 | Caterpillar Inc. | Worksite avoidance system |
KR102026348B1 (ko) * | 2012-06-08 | 2019-11-04 | 스미도모쥬기가이고교 가부시키가이샤 | 쇼벨의 제어방법 및 제어장치 |
CN104120745B (zh) * | 2014-07-28 | 2016-08-24 | 三一重机有限公司 | 一种挖掘机自动平地控制方法 |
CN104769189B (zh) * | 2014-09-10 | 2016-12-28 | 株式会社小松制作所 | 作业车辆 |
CN104929169B (zh) * | 2015-05-21 | 2017-05-24 | 徐工集团工程机械股份有限公司科技分公司 | 一种提高装载机铲装能力的控制装置及其控制方法 |
CN105350595B (zh) * | 2015-08-27 | 2017-08-29 | 中国航空工业集团公司西安飞行自动控制研究所 | 基于位置控制的挖掘机操纵装置 |
US10648160B2 (en) | 2017-04-27 | 2020-05-12 | Cnh Industrial America Llc | Work machine with bucket monitoring |
CN109281345A (zh) * | 2018-02-06 | 2019-01-29 | 上海云统信息科技有限公司 | 挖掘机远程监控云服务系统 |
IT201800006471A1 (it) * | 2018-06-19 | 2019-12-19 | Metodo e dispositivo per il controllo della profondita' di scavo di un escavatore. | |
CN111622297B (zh) * | 2020-04-22 | 2021-04-23 | 浙江大学 | 一种挖掘机的在线作业纠偏系统和方法 |
CN111622283B (zh) * | 2020-06-17 | 2024-09-06 | 雷沃重工集团有限公司 | 一种挖掘机动作状态监测装置、挖掘机及控制方法 |
CN112112215A (zh) * | 2020-09-30 | 2020-12-22 | 徐州徐工挖掘机械有限公司 | 一种适用于挖掘机的节能控制方法 |
CN114001732A (zh) * | 2021-10-28 | 2022-02-01 | 山东大学 | 一种移动机器人仿形内壁行走导航方法及系统 |
CN114439070A (zh) * | 2022-02-15 | 2022-05-06 | 西安方元明鑫精密机电制造有限公司 | 一种基于可编程控制器的挖掘机用电动缸功率匹配控制系统 |
CN115874675B (zh) * | 2023-03-08 | 2023-07-11 | 博鼎精工智能科技(山东)有限公司 | 一种液压多路阀控制系统及其实现方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4603234A (en) * | 1983-04-04 | 1986-07-29 | Gte Lenkurt Incorporated | Switching circuit including current limiting and initializing signal isolation |
EP0125736A1 (fr) * | 1983-05-17 | 1984-11-21 | Hitachi Construction Machinery Co., Ltd. | Drague |
FR2552284B1 (fr) * | 1983-09-20 | 1985-10-25 | Leseure Jean Yves | Circuit isolateur a coupleur optoelectronique |
JPH07107276B2 (ja) * | 1988-10-07 | 1995-11-15 | 株式会社小松製作所 | 作業機の制御装置 |
JP3308073B2 (ja) * | 1993-10-18 | 2002-07-29 | 日立建機株式会社 | 油圧建設機械の原動機回転数制御装置 |
US5528498A (en) * | 1994-06-20 | 1996-06-18 | Caterpillar Inc. | Laser referenced swing sensor |
US5999872A (en) * | 1996-02-15 | 1999-12-07 | Kabushiki Kaisha Kobe Seiko Sho | Control apparatus for hydraulic excavator |
JPH10317417A (ja) * | 1997-05-19 | 1998-12-02 | Hitachi Constr Mach Co Ltd | 多関節作業機械の姿勢制御装置 |
JP3364419B2 (ja) * | 1997-10-29 | 2003-01-08 | 新キャタピラー三菱株式会社 | 遠隔無線操縦システム並びに遠隔操縦装置,移動式中継局及び無線移動式作業機械 |
JP3461281B2 (ja) * | 1998-03-05 | 2003-10-27 | 株式会社小松製作所 | 建設機械の作業機制御装置 |
CN1249307C (zh) * | 2000-11-17 | 2006-04-05 | 日立建机株式会社 | 建筑机械的显示装置和显示控制装置 |
US6782644B2 (en) * | 2001-06-20 | 2004-08-31 | Hitachi Construction Machinery Co., Ltd. | Remote control system and remote setting system for construction machinery |
JP2003097316A (ja) * | 2001-09-20 | 2003-04-03 | Komatsu Ltd | 作業機械 |
-
2006
- 2006-10-17 DE DE602006001105T patent/DE602006001105D1/de active Active
- 2006-10-17 EP EP06122458A patent/EP1835079B1/fr not_active Not-in-force
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102890487A (zh) * | 2012-09-24 | 2013-01-23 | 三一重机有限公司 | 多控制器电控系统 |
CN107614803A (zh) * | 2015-10-28 | 2018-01-19 | 株式会社小松制作所 | 作业机械的校正装置、作业机械以及作业机械的校正方法 |
CN107614803B (zh) * | 2015-10-28 | 2020-10-16 | 株式会社小松制作所 | 作业机械的校正装置、作业机械以及作业机械的校正方法 |
US10968607B2 (en) | 2015-10-28 | 2021-04-06 | Komatsu Ltd. | Calibration device of work machine, work machine, and calibration method of work machine |
CN108884654A (zh) * | 2016-09-30 | 2018-11-23 | 株式会社小松制作所 | 工作装置用的箱形构造体 |
CN108691325A (zh) * | 2017-03-29 | 2018-10-23 | 日立建机株式会社 | 工程机械 |
CN108691325B (zh) * | 2017-03-29 | 2020-11-03 | 日立建机株式会社 | 工程机械 |
CN110725359A (zh) * | 2019-10-28 | 2020-01-24 | 上海三一重机股份有限公司 | 一种轨迹控制方法及挖掘机 |
CN110725359B (zh) * | 2019-10-28 | 2022-03-01 | 上海三一重机股份有限公司 | 一种轨迹控制方法及挖掘机 |
Also Published As
Publication number | Publication date |
---|---|
EP1835079A1 (fr) | 2007-09-19 |
DE602006001105D1 (de) | 2008-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1835079B1 (fr) | Excavatrice commandée électro-mécaniquement et procédé de commande de l'excavatrice commandée électro-mécaniquement. | |
CN100557150C (zh) | 机电一体化挖掘机及控制方法 | |
US11001992B2 (en) | Shovel, display method, and mobile terminal | |
US20210002851A1 (en) | Shovel | |
US11525244B2 (en) | Display device for shovel | |
US11421396B2 (en) | Shovel | |
US10927528B2 (en) | Shovel | |
EP3950404B1 (fr) | Engin de chantier fonctionnant sur batterie | |
EP3438356B1 (fr) | Pelle | |
JPWO2016158539A1 (ja) | ショベル | |
EP3244069A1 (fr) | Appareil de construction | |
EP3489422A3 (fr) | Commande d'une machine de terrassement | |
WO1999005368A1 (fr) | Procede et appareil permettant de commander un outil de travail | |
US20220010527A1 (en) | Excavator | |
KR102522711B1 (ko) | 쇼벨 | |
US11377825B2 (en) | Shovel, method for controlling shovel, and mobile information terminal | |
JP7152148B2 (ja) | 建設機械 | |
EP3831764A1 (fr) | Machine de travail | |
US20240084547A1 (en) | Apparatus and method for actively reducing action impact of excavator, and excavator | |
EP3779069A1 (fr) | Excavatrice | |
JP7114302B2 (ja) | ショベル及びショベルの管理装置 | |
WO2019031431A1 (fr) | Excavatrice, dispositif d'assistance d'excavatrice et dispositif de gestion d'excavatrice | |
CN2900632Y (zh) | 机电一体化挖掘机 | |
US20240175243A1 (en) | Shovel control device and shovel | |
US20220010530A1 (en) | Shovel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070405 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB IT |
|
REF | Corresponds to: |
Ref document number: 602006001105 Country of ref document: DE Date of ref document: 20080619 Kind code of ref document: P |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20090210 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20121012 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20121011 Year of fee payment: 7 Ref country code: IT Payment date: 20121018 Year of fee payment: 7 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20131017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131017 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602006001105 Country of ref document: DE Effective date: 20140501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140501 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131017 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20160429 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161102 |