EP1832149A1 - Method for creating circuit assemblies - Google Patents

Method for creating circuit assemblies

Info

Publication number
EP1832149A1
EP1832149A1 EP05854474A EP05854474A EP1832149A1 EP 1832149 A1 EP1832149 A1 EP 1832149A1 EP 05854474 A EP05854474 A EP 05854474A EP 05854474 A EP05854474 A EP 05854474A EP 1832149 A1 EP1832149 A1 EP 1832149A1
Authority
EP
European Patent Office
Prior art keywords
coating composition
conductive layer
polyester
substrate
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05854474A
Other languages
German (de)
English (en)
French (fr)
Inventor
Gregory J. Mccollum
Thomas C. Moriarity
Kevin C. Olson
Michael G. Sandala
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PPG Industries Ohio Inc
Original Assignee
PPG Industries Ohio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PPG Industries Ohio Inc filed Critical PPG Industries Ohio Inc
Publication of EP1832149A1 publication Critical patent/EP1832149A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/056Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an organic insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0145Polyester, e.g. polyethylene terephthalate [PET], polyethylene naphthalate [PEN]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0358Resin coated copper [RCC]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1333Deposition techniques, e.g. coating
    • H05K2203/135Electrophoretic deposition of insulating material

Definitions

  • the present invention relates to methods for fabricating electrical circuit assemblies.
  • Circuit panels ordinarily include a generally flat sheet of dielectric material with electrical conductors disposed on a major, flat surface of the sheet, or on both major surfaces.
  • the conductors are commonly formed from metallic materials such as copper and serve to interconnect the electrical components mounted to the board.
  • the panel may have via conductors extending through holes (or "through vias") in the dielectric layer so as to interconnect the conductors on opposite surfaces.
  • Multi-layer circuit panel assemblies have been made heretofore which incorporate multiple stacked circuit panels with additional layers of dielectric materials separating the conductors on mutually facing surfaces of adjacent panels in the stack. These multi-layer assemblies ordinarily incorporate interconnections extending between the conductors on the various circuit panels in the stack as necessary to provide the required electrical interconnections.
  • circuits and units are prepared in packaging levels of increasing scale. Generally, the smallest scale packaging levels are typically semiconductor chips housing multiple microcircuits and/or other components. Such chips are usually made from ceramics, silicon, and the like. Intermediate package levels (i.e., "chip carriers") comprising multilayer substrates may have attached thereto a plurality of small-scale chips housing many microelectronic circuits.
  • intermediate package levels themselves can be attached to larger scale circuit cards, motherboards, and the like.
  • the intermediate package levels serve several purposes in the overall circuit assembly including structural support, transitional integration of the smaller scale microcircuits and circuits to larger scale boards, and the dissipation of heat from the circuit assembly.
  • Substrates used in conventional intermediate package levels have included a variety of materials, for example, ceramic, fiberglass reinforced polyepoxides, and polyimides.
  • the aforementioned substrates while offering sufficient rigidity to provide structural support to the circuit assembly, typically have thermal coefficients of expansion much different than that of the microelectronic chips being attached thereto. As a result, failure of the circuit assembly after repeated use is a risk due to failure of adhesive joints between the layers of the assembly.
  • dielectric materials used on the substrates must meet several requirements, including conformality, flame resistance, and compatible thermal expansion properties.
  • Conventional dielectric materials include, for example, polyimides, polyepoxides, phenolics, and fluorocarbons. These polymeric dielectrics typically have thermal coefficients of expansion much higher than that of the adjacent layers.
  • circuit panel structures which provide high density, complex interconnections.
  • a dielectric material typically separates the circuitized layers.
  • Polymeric dielectric materials that typically are used in circuit assembly manufacture are thermoplastic or thermoset polymers. Thermoset materials are typically cured first to form a conformal coating.
  • dielectric materials with increasingly lower dielectric constants and dielectric loss factors.
  • the present invention is directed toward a method for preparing a circuit assembly.
  • the method comprises: (a) applying a curable coating composition to a substrate, (b) curing the coating composition to form a coating on the substrate, and (c) applying a conductive layer to all surfaces.
  • the curable coating composition is comprised of (i) one or more ungelled active hydrogen-containing resins, (ii) one or more polyester curing agents, and (iii) optionally one or more transesterification catalysts.
  • the method also comprises: (d) applying a resist to the conductive layer applied in step (c), (e) processing said resist to form a predetermined pattern of exposed underlying metal, (f) etching said exposed metal, and (g) stripping the remaining second resist to form an electrical circuit pattern.
  • the present invention is directed to a method for preparing a circuit assembly.
  • the method comprises: (a) applying a curable coating composition to a substrate, (b) curing the curable coating composition to form a coating on the substrate, and (c) applying a conductive layer to all surfaces.
  • the curable coating composition is comprised of (i) one or more ungelled active hydrogen-containing resins, (ii) one or more polyester curing agents, and (iii) optionally one or more transesterification catalysts.
  • the curable coating compositions useful in the methods of the present invention comprise as a main film-former, an ungelled, active hydrogen- containing resin (i).
  • a wide variety of film-forming polymers are known and can be used in the curable coating compositions of the present invention provided they comprise active hydrogen groups, as determined by the Zerewitinoff test, described in the JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, Vol. 49, page 3181 (1927).
  • the active hydrogens are derived from hydroxyl groups, thiol groups, primary amine groups and/or secondary amine groups.
  • ungelled the resins are substantially free of crosslinking and have an intrinsic viscosity when dissolved in a suitable solvent, as determined, for example, in accordance with ASTM-D1795 or ASTM-D4243.
  • the intrinsic viscosity of the reaction product is an indication of its molecular weight.
  • a gelled reaction product on the other hand, since it is of essentially infinitely high molecular weight, will have an intrinsic viscosity too high to measure.
  • a reaction product that is “substantially free of crosslinking” refers to a reaction product that has a weight average molecular weight (Mw), as determined by gel permeation chromatography, of less than 1 ,000,000.
  • a variety of active hydrogen-containing resin materials are suitable for use in the present invention.
  • suitable resins include: polyepoxide polymers, acrylic polymers, polyester polymers, urethane polymers, silicon-based polymers, polyether polymers, polyurea polymers, vinyl polymers, polyamide polymers, polyimide polymers, mixtures thereof and copolymers thereof.
  • silicon-based polymers is meant a polymer comprising one or more -SiO- units in the backbone.
  • Such silicon- based polymers can include hybrid polymers, such as those comprising organic polymeric blocks with one or more -SiO- units in the backbone.
  • the polymer is typically a water-dispersible, electrodepositable film- forming polymer.
  • the water-dispersible polymer may be ionic in nature; that is, the polymer can contain anionic functional groups to impart a negative charge or cationic functional groups to impart a positive charge. Most often, the polymer contains cationic salt groups, usually cationic amine salt groups.
  • Non-limiting examples of film-forming resins suitable for use as the polymer in the composition of the present invention, in particular in anionic electrodepositable coating compositions include base-solubilized, carboxylic acid group-containing polymers such as the reaction product or adduct of a drying oil or semi-drying fatty acid ester with a dicarboxylic acid or anhydride; and the reaction product of a fatty acid ester, unsaturated acid or anhydride and any additional unsaturated modifying materials which are further reacted
  • Suitable electrodepositable resin comprises an alkyd-aminoplast vehicle, i.e., a vehicle containing an alkyd resin and an amine-aldehyde resin.
  • Another suitable anionic electrodepositable resin composition comprises mixed esters of a resinous polyol.
  • acid functional polymers also can be used such as phosphatized polyepoxide or phosphatized acrylic polymers as are well known to those skilled in the art.
  • suitable for use as the polymer are those resins comprising one or more pendent carbamate functional groups, for example, those described in U.S. Patent No. 6,165,338.
  • the polymer is a cationic, active hydrogen-containing ionic electrodepositable resin capable of deposition on a cathode.
  • cationic film-forming resins include amine salt group-containing resins such as the acid-solubilized reaction products of polyepoxides and primary or secondary amines such as those described in U.S. Pat. Nos. 3,663,389; 3,984,299; 3,947,338; and 3,947,339.
  • the polymer can also be selected from cationic acrylic resins such as those described in U.S. Pat. Nos. 3,455,806 and 3,928,157.
  • quaternary ammonium salt group-containing resins can also be employed.
  • these resins include those which are formed from reacting an organic polyepoxide with a tertiary amine salt.
  • Such resins are described in U.S. Pat. Nos. 3,962,165; 3,975,346; and 4,001 ,101.
  • examples of other cationic resins are ternary sulfonium salt group-containing resins and quaternary phosphonium salt- group containing resins such as those described in U.S. Pat. Nos. 3,793,278 and 3,984,922, respectively.
  • film-forming resins such as described in European Application No. 12463 can be used.
  • cationic compositions prepared from Mannich bases such as described in U.S. Pat. No. 4,134,932 can be used.
  • the polymer can comprise one or more positively charged resins which contain primary and/or secondary amine groups.
  • resins are described in U.S. Pat. Nos. 3,663,389; 3,947,339; and 4,116,900.
  • U.S. Pat. No. 3,947,339 a polyketimine derivative of a polyamine such as diethylenetriamine or triethylenetetraamine is reacted with a polyepoxide. When the reaction product is neutralized with acid and dispersed in water, free primary amine groups are generated.
  • the polymer has cationic salt groups and is selected from a polyepoxide-based polymer having primary, secondary and/or tertiary amine groups (such as those described above) and an acrylic polymer having hydroxyl and/or amine functional groups.
  • the polymer has cationic salt groups.
  • such cationic salt groups typically are formed by solubilizing the resin with an inorganic or organic acid such as those conventionally used in electrodepositable compositions.
  • solubilizing acids include, but are not limited to, sulfamic, acetic, lactic, and formic acids.
  • the solubilizing acid comprises sulfamic acid and/or lactic acid.
  • the coating compositions useful in the methods of the present invention comprise one or more components comprising covalently bonded halogen atoms.
  • covalently bonded halogen atom is meant a halogen atom that is covalently bonded as opposed to a halogen ion, for example, a chloride ion in aqueous solution.
  • the coating composition used in the methods of the present invention can have a covalently bonded halogen content of at least 1 weight percent, or at least 2 weight percent, or at least 5 weight percent, or at least 10 weight percent, based on total weight of resin solids. Also, the coating composition used in the methods of the present invention can have a covalently bonded halogen content of less than or equal to 50 weight percent, or less than or equal to 30 weight percent, or less or equal to 25 weight percent, or less than or equal to 20 weight percent. The coating composition can have a covalently bonded halogen content which can range between any combination of these values, inclusive of the recited values.
  • the coating composition is an electrodepositable coating composition comprising , a resinous phase dispersed in an aqueous medium.
  • the covalently bonded halogen content of the resinous phase of the electrodepositable coating composition can be derived from halogen atoms covalently bonded to the resin (i).
  • the covalently bonded halogen content can be attributed to a reactant used to form any of the film-forming resins described above.
  • the resin may be the reaction product of a halogenated phenol, for example a halogenated polyhydric phenol such as chlorinated or brominated bisphenol A with an epoxy group-containing material such as those described above with reference to the resin (i).
  • solubilization with phosphoric acid may follow.
  • an epoxy containing compound reacted with a halogenated carboxylic acid followed by reaction of any residual epoxy groups with phosphoric acid would yield a suitable polymer.
  • the acid groups can then be solubilized with amine.
  • the resin in the case of a cationic salt group- containing polymer, the resin may be the reaction product of an epoxy functional material such as those described above with a halogenated phenol followed by reaction of any residual epoxy groups with an amine. The reaction product can then be solubilized with an acid.
  • the covalently bonded halogen content of the resin (i) can be derived from a halogenated compound selected from at least one of a halogenated phenol, halogenated polyepoxide, halogenated acrylic polymer, halogenated polyolefin, halogenated phosphate ester, and mixtures thereof.
  • the covalently bonded halogen content of the resin (i) is derived from a halogenated polyhydric phenol, for example, a chlorinated bisphenol A such as tetrachlorobisphenol A, or a brominated bisphenol A such as tetrabromobisphenol A.
  • the covalently bonded halogen content may be derived from a halogenated epoxy compound, for example, the diglycidyl ether of a halogenated bisphenol A.
  • the active hydrogen-containing resin (i) described above can be present in the curable coating composition of the present invention in amounts ranging from 10 to 90 percent by weight, or 30 to 45 percent by weight based on total weight of the curable coating composition.
  • the composition used in the methods of the present invention further comprises one or more polyester curing agents (ii).
  • the polyester curing agent (ii) is a material having greater than one ester group per molecule.
  • the ester groups are present in an amount sufficient to effect cross-linking at acceptable cure temperatures and cure times, for example at temperatures up to 250 0 C, and curing times of up to 90 minutes. It should be understood that acceptable cure temperatures and cure times will be dependent upon the substrates to be coated and their end uses.
  • polyesters generally suitable as the polyester curing agent (ii) are polyesters of polycarboxylic acids.
  • Non-limiting examples include bis(2- hydroxyalkyl)esters of dicarboxylic acids, such as bis(2-hydroxybutyl) azelate and bis(2-hydroxyethyl)terephthalate; tri(2-ethylhexanoyl)trimellitate; and poly(2-hydroxyalkyl)esters of acidic half-esters prepared from a dicarboxylic acid anhydride and an alcohol, including polyhydric alcohols.
  • the latter type is particularly suitable to provide a polyester with a final functionality of more than 2.
  • One suitable example includes a polyester prepared by first reacting equivalent amounts of the dicarboxylic acid anhydride (for example, succinic anhydride or phthalic anhydride) with a trihydric or tetrahydric alcohol, such as glycerol, trimethylolpropane or pentaerythritol, at temperatures below 15O 0 C, and then reacting the acidic polyester with at least an equivalent amount of an epoxy alkane, such as 1 ,2-epoxy butane, ethylene oxide, or propylene oxide.
  • the polyester curing agent (ii) can comprise an anhydride.
  • Another suitable polyester comprises a lower 2-hydroxy-akylterminated poly-alkyleneglycol terephthalate.
  • the polyester comprises at least one ester group per molecule in which the carbon atom adjacent to the esterified hydroxyl has a free hydroxyl group.
  • Also suitable is the tetrafunctional polyester prepared from the half- ester intermediate prepared by reacting trimellitic anhydride and propylene glycol (molar ratio 2:1), then reacting the intermediate with 1 ,2-epoxy butane and the glycidyl ester of branched monocarboxylic acids.
  • the polyester curing agent (ii) is substantially free of acid.
  • substantially free of acid is meant having less than 0.2 meq/g acid.
  • suitable polyester curing agents can include non-acidic polyesters prepared from a polycarboxylic acid anhydride, one or more glycols, alcohols, glycol mono-ethers, polyols, and/or monoepoxides.
  • Suitable polycarboxylic anhydrides can include dicarboxylic acid anhydrides, such as succinic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, and pyromellitic dianhydride. Mixtures of anhydrides can be used.
  • dicarboxylic acid anhydrides such as succinic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, and pyromellitic dianhydride.
  • dicarboxylic acid anhydrides such as succinic anhydride
  • Suitable alcohols can include linear, cyclic or branched alcohols.
  • the alcohols may be aliphatic, aromatic or araliphatic in nature.
  • glycols and mono-epoxides are intended to include compounds containing not more than two alcohol groups per molecule which can be reacted with carboxylic acid or anhydride functions below the temperature of 15O 0 C
  • Suitable mono-epoxides can include glycidyl esters of branched monocarboxylic acids. Further, alkylene oxides, such as ethylene oxide or propylene oxide may be used. Suitable glycols can include, for example ethylene glycol and polyethylene glycols, propylene glycol and polypropylene glycols, and 1 ,6-hexanediol. Mixtures of glycols may be used.
  • Non-acidic polyesters can be prepared, for example, by reacting, in one or more steps, trimellitic anhydride (TMA) with glycidyl esters of branched monocarboxylic acids in a molar ratio of 1 :1.5 to 1 :3, if desired with the aid of an esterification catalyst such as stannous octoate or benzyl dimethyl amine, at temperatures of 50-150 0 C. Additionally, trimellitic anhydride can be reacted with 3 molar equivalents of a monoalcohol such as 2-ethylhexanol.
  • TMA trimellitic anhydride
  • glycidyl esters of branched monocarboxylic acids in a molar ratio of 1 :1.5 to 1 :3, if desired with the aid of an esterification catalyst such as stannous octoate or benzyl dimethyl amine, at temperatures of 50-150 0 C.
  • trimellitic anhydride can be reacted with
  • trimellitic anhydride (1 mol.) can be reacted first with a glycol or a glycol monoalkyl ether, such as ethylene glycol monobutyl ether in a molar ratio of 1 :0.5 to 1 :1 , after which the product is allowed to react with 2 moles of glycidyl esters of branched monocarboxylic acids.
  • a glycol or a glycol monoalkyl ether such as ethylene glycol monobutyl ether in a molar ratio of 1 :0.5 to 1 :1
  • polycarboxylic acid anhydride i.e., those containing two or three carboxyl functions per molecule or a mixture of polycarboxylic acid anhydrides can be reacted simultaneously with a glycol, such as 1 ,6-hexane diol and/or glycol mono-ether and monoepoxide, after which the product can be reacted with mono-epoxides, if desired.
  • a glycol such as 1 ,6-hexane diol and/or glycol mono-ether and monoepoxide
  • polyamines such as diethylene triamine to form amide polyesters.
  • Such "amine-modified" polyesters may be incorporated in the linear or branched amine adducts described above to form self-curing amine adduct esters.
  • non-acidic polyesters of the types described above typically are soluble in organic solvents, and typically can be mixed readily with the active hydrogen-containing resin (i) previously described.
  • a transesterification catalyst (iii) may optionally be present in the compositions used in the methods of the present invention.
  • the catalyst (iii) can be any suitable catalyst known for catalysis of the transesterification reaction.
  • the catalyst (iii) comprises a metal oxide, metal complex or metal salt.
  • Suitable metal oxides include, for example, oxides of lead, bismuth, and tin, including dialkyltin oxides such as dioctyltin oxide or dibutyltin oxide.
  • lead oxide and bismuth oxide can also be used when dissolved in an aqueous acid solution for example, an aqueous solution of a sulfonic acid.
  • Suitable salts may include carboxylate salts (for example, octoates or naphthenates) of lead, zinc, calcium, barium, iron, bismuth and tin, including dialkyltin dicarboxylates.
  • carboxylate salts for example, octoates or naphthenates
  • Non-limiting examples of salts include lead octoate, zinc octoate, and dioctyltin formate.
  • a suitable example of a metal complex is titanium acetyl acetonate.
  • salts e.g., octoates, and naphthenates, of the alkali and earth alkali metals, of the lanthanides, and of zirconium, cadmium, chromium; acetyl acetonate complexes of lead, zinc, cadmium, cerium, thorium, copper; alkali aluminium alcoholates and titanium tetraisopropoxide.
  • Mixtures of any of the salts, oxides and/or complexes described above can also be used.
  • the amount of catalyst may be indicated by the metal content contained in the compositions.
  • Metal contents of 0.1 to 3.0 percent by weight are suitable, or metal contents of 0.3 to 1.6 percent by weight may be used, based on the total weight of the curable coating composition.
  • the method of the present invention comprises: (a) applying any of the curable coating compositions described above to a substrate, (b) curing the coating composition to form a coating on the substrate, and (c) applying a conductive layer to all surfaces.
  • the substrate can comprise any of a variety of substrates.
  • the substrate is electrically conductive.
  • Suitable electroconductive substrates can comprise metal substrates, for example, iron, aluminum, gold, nickel, copper, magnesium or alloys of any of the foregoing metals, as well as substrates coated with a conductive material, e.g., conductive carbon-coated materials.
  • a suitable iron- nickel alloy is INVAR, (trademark owned by lmphy S.
  • A., 168 Rue de Rivoli, Paris, France comprising approximately 64 weight percent iron and 36 weight percent nickel.
  • This alloy has a low coefficient of thermal expansion, comparable to that of silicon materials used to prepare chips. This property is desirable for example to prevent failure of adhesive joints between successively larger or smaller scale layers of a chip scale package, due to thermal cycling during normal use.
  • a nickel-iron alloy is used as the electrically conductive core
  • a layer of copper metal can be applied to all surfaces of the electrically conductive core to ensure optimum conductivity.
  • the layer of copper metal may be applied by conventional means, such as electroplating or metal vapor deposition.
  • the layer of copper typically has a thickness of from 1 to 8 microns.
  • circuitized materials such as printed circuit boards are suitable as substrates.
  • the aforementioned coating compositions can be applied by a variety of application techniques well known in the art, for example, by roll-coating or spray application techniques.
  • the resinous binder may or may not include solubilizing or neutralizing acids and amines to form cationic and anionic salt groups, respectively.
  • any of the previously described ionic group-containing compositions can be electrophoretically applied to an electroconductive substrate.
  • the applied voltage for electrodeposition may be varied and can be, for example, as low as 1 volt to as high as several thousand volts, but typically between 50 and 500 volts.
  • the current density is usually between 0.5 ampere and 5 amperes per square foot (0.5 to 5 milliamperes per square centimeter) and tends to decrease during electrodeposition indicating the formation of an insulating conformal film on all exposed surfaces of the core.
  • conformal film or coating is meant a film or coating having a substantially uniform thickness which conforms to the substrate topography, including the surfaces within (but not occluding) any holes that may be present.
  • the coating After the coating has been applied by an appropriate method, such as those mentioned above, it is cured.
  • the coating can be cured at ambient temperatures or thermally cured, at elevated temperatures ranging from 90 to
  • the dielectric coating thickness can be no more than 50 microns, or no more than 25 microns, or no more than 20 microns.
  • the core surface may be pretreated or otherwise prepared for the application of the dielectric coating. For example, cleaning, rinsing, and/or treatment with an adhesion promoter prior to application of the dielectric may be appropriate.
  • the surface of the dielectric coating is optionally ablated in a predetermined pattern to expose sections of the substrate.
  • ablation can be performed using a laser or by other conventional techniques, for example, mechanical drilling and chemical or plasma etching techniques.
  • a conductive layer can be applied to all surfacesafter the optional ablation step.
  • the conductive layer may comprise a conductive paste or ink or metai.
  • Suitable conductive pastes and inks can include, for example, conductive silver coating copper pastes such as DD PASTE SAP510 and
  • Suitable metals include copper or any metal or alloy with sufficient conductive properties.
  • the conductive material can be applied by electroplating or any other suitable method known in the art to provide a uniform conductive layer.
  • the conductive layer can be applied in a predetermined pattern, such as a circuit pattern.
  • the thickness of this conductive layer can range from 1 to 50 microns, or from 5 to 25 microns. In the case where the dielectric coating is ablated prior to the application of the conductive layer, conductive or metallized vias are formed.
  • the adhesion promoter layer can range from 50 to 5000 angstroms thick and can be a metal or metal oxide selected from chromium, titanium, nickel, cobalt, cesium, iron, aluminum, copper, gold, tungsten, and zinc, and alloys and oxides thereof.
  • the method of the present invention also comprises: (d) applying a resist to the conductive layer applied in step (c), (e) processing said resist to form a predetermined pattern of exposed underlying conductive layer, (f) etching said exposed conductive layer, and (g) stripping the remaining second resist to form an electrical circuit pattern.
  • a resinous photosensitive layer i.e. "photoresist” or "resist”
  • the coated substrate can be cleaned and/or pretreated; e.g., treated with an acid etchant to remove oxidized metal.
  • the resinous photosensitive layer can be a positive or negative photoresist.
  • the photoresist layer can have a thickness ranging from 1 to 50 microns, or 5 to 25 microns, and can be applied by any method known to those skilled in the photolithographic processing art. Additive or subtractive processing methods may be used to create the desired circuit patterns.
  • Suitable positive-acting photosensitive resins include any of those known to practitioners skilled in the art. Examples include dinitrobenzyl functional polymers such as those disclosed in U.S. Pat. No. 5,600,035, columns 3-15. Such resins have a high degree of photosensitivity.
  • the resinous photosensitive layer is a composition comprising a dinitrobenzyl functional polymer, typically applied by spraying.
  • the resinous photosensitive layer comprises an electrodepositable composition comprising a dinitrobenzyl functional polyurethane and an epoxy-amine polymer such as that described in Examples 3-6 of U.S. Pat. No. 5,600,035.
  • Negative-acting photoresists include liquid or dry-film type compositions. Any of the previously described liquid compositions may be applied by spray, roll-coating, spin coating, curtain coating, screen coating, immersion coating, or electrodeposition application techniques. Preferably, liquid photoresists are applied by electrodeposition, more preferably cationic electrodeposition.
  • Electrodepositable photoresist compositions comprise an ionic, polymeric material which may be cationic or anionic, and may be selected from polyesters, polyurethanes, acrylics, and polyepoxides. Examples of photoresists applied by anionic electrodeposition are shown in U.S. Pat. No. 3,738,835. Photoresists applied by cationic electrodeposition are described in U.S. Pat. No. 4, 592,816. Examples of dry-film photoresists include those disclosed in U.S. Pat. Nos. 3,469,982, 4,378,264, and 4,343,885. Dry-film photoresists are typically laminated onto the surface such as by application of hot rollers.
  • the multi- layer substrate may be packaged at this point allowing for transport and processing of any subsequent steps at a remote location.
  • a photo-mask having a desired pattern may be placed over the photosensitive layer and the layered substrate exposed to a sufficient level of a suitable radiation source, typically an actinic radiation source.
  • a suitable radiation source typically an actinic radiation source.
  • the term "sufficient level of radiation” refers to that level of radiation which polymerizes the monomers in the radiation-exposed areas in the case of negative acting resists, or which depolymerizes the polymer or renders the polymer more soluble in the case of positive acting resists. This results in a solubility differential between the radiation-exposed and radiation- shielded areas.
  • the photo-mask may be removed after exposure to the radiation source and the layered substrate developed using conventional developing solutions to remove more soluble portions of the photosensitive layer, and uncover selected areas of the underlying conductive layer.
  • Theconductive layer thus uncovered may then be etched using metal etchants which convert metal to water soluble metal complexes.
  • the soluble complexes then may be removed by water spraying.
  • the photosensitive layer protects the underlying substrate during the etching step.
  • the remaining photosensitive layer which is impervious to the etchants, may then be removed by a chemical stripping process to provide a - circuit pattern connected by the conductive vias.
  • circuit assembly After preparation of the circuit pattern on the multi-layered substrate, other circuit components may be attached to form a circuit assembly. Additional components include, for example, one or more smaller scale components such as semiconductor chips, interposer layers, larger scale circuit cards or mother boards and active or passive components. Note that interposers used in the preparation of the circuit assembly may be prepared using appropriate steps of the process of the present invention. Components may be attached using conventional adhesives, surface mount techniques, wire bonding or flip chip techniques.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Paints Or Removers (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
EP05854474A 2004-12-17 2005-12-16 Method for creating circuit assemblies Withdrawn EP1832149A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US63732804P 2004-12-17 2004-12-17
PCT/US2005/045768 WO2006066128A1 (en) 2004-12-17 2005-12-16 Method for creating circuit assemblies

Publications (1)

Publication Number Publication Date
EP1832149A1 true EP1832149A1 (en) 2007-09-12

Family

ID=36216839

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05854474A Withdrawn EP1832149A1 (en) 2004-12-17 2005-12-16 Method for creating circuit assemblies

Country Status (7)

Country Link
EP (1) EP1832149A1 (ja)
JP (1) JP2008524856A (ja)
KR (1) KR100878070B1 (ja)
CN (1) CN101080959A (ja)
CA (1) CA2591095A1 (ja)
MX (1) MX2007007168A (ja)
WO (1) WO2006066128A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109836885B (zh) * 2019-01-18 2021-10-29 广州市红太电子科技有限公司 一种液态感光油墨、pcb板及pcb内层板的制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4140831A (en) * 1977-03-23 1979-02-20 Minnesota Mining And Manufacturing Company Flame-retardant metal-clad dielectric sheeting comprising a non-woven fibrous layer provided with dimensional stability under etching and soldering conditions by a polyester-diepoxide adhesive
JPS5521141A (en) * 1978-08-01 1980-02-15 Tokyo Shibaura Electric Co Method of forming conductor pattern of thick film circuit board
DE3162413D1 (en) * 1980-05-22 1984-04-05 Shell Int Research Aqueous coating powder suspensions, preparation and use
JPH06207157A (ja) * 1993-01-11 1994-07-26 Nitto Boseki Co Ltd 金属張積層板用接着剤
US6218482B1 (en) * 1994-02-24 2001-04-17 New Japan Chemical Co., Ltd. Epoxy resin, process for preparing the resin and photo-curable resin composition and resin composition for powder coatings containing the epoxy resin
US5761801A (en) * 1995-06-07 1998-06-09 The Dexter Corporation Method for making a conductive film composite
US7000313B2 (en) * 2001-03-08 2006-02-21 Ppg Industries Ohio, Inc. Process for fabricating circuit assemblies using electrodepositable dielectric coating compositions
US6951707B2 (en) * 2001-03-08 2005-10-04 Ppg Industries Ohio, Inc. Process for creating vias for circuit assemblies

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006066128A1 *

Also Published As

Publication number Publication date
KR20070086376A (ko) 2007-08-27
CN101080959A (zh) 2007-11-28
WO2006066128A1 (en) 2006-06-22
JP2008524856A (ja) 2008-07-10
CA2591095A1 (en) 2006-06-22
KR100878070B1 (ko) 2009-01-13
MX2007007168A (es) 2007-08-14

Similar Documents

Publication Publication Date Title
CN100379781C (zh) 由多环氧化物和多异氰酸酯制得的聚唑烷酮粘合剂树脂组合物
US6713587B2 (en) Electrodepositable dielectric coating compositions and methods related thereto
CN1672474A (zh) 形成电路组件的通孔的方法
JP2007227985A (ja) 電着可能な誘電性コーティング組成物を用いる回路アセンブリを製作するためのプロセス
US7743494B2 (en) Process of fabricating a circuit board
US20060141143A1 (en) Method for creating circuit assemblies
US20020103270A1 (en) Photo- or heat-curable resin composition and multilayer printed wiring board
US8598467B2 (en) Multi-layer circuit assembly and process for preparing the same
KR100878070B1 (ko) 회로 어셈블리의 제조 방법
US7228623B2 (en) Process for fabricating a multi layer circuit assembly
US7666945B2 (en) Non-gelled curable compositions containing imide functional compositions
US6225031B1 (en) Process for filling apertures in a circuit board or chip carrier
JPH11171975A (ja) 熱硬化性樹脂組成物
TWI356664B (en) Method for creating curcuit assemblies
JP3865425B2 (ja) 多層配線板とその製造方法及び多層配線板の製造に用いる転写用原版とその製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070618

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070928

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100701