WO2006066128A1 - Method for creating circuit assemblies - Google Patents
Method for creating circuit assemblies Download PDFInfo
- Publication number
- WO2006066128A1 WO2006066128A1 PCT/US2005/045768 US2005045768W WO2006066128A1 WO 2006066128 A1 WO2006066128 A1 WO 2006066128A1 US 2005045768 W US2005045768 W US 2005045768W WO 2006066128 A1 WO2006066128 A1 WO 2006066128A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coating composition
- conductive layer
- polyester
- substrate
- metal
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 52
- 230000000712 assembly Effects 0.000 title description 4
- 238000000429 assembly Methods 0.000 title description 4
- 229920005989 resin Polymers 0.000 claims abstract description 45
- 239000011347 resin Substances 0.000 claims abstract description 45
- 239000000758 substrate Substances 0.000 claims abstract description 34
- 239000008199 coating composition Substances 0.000 claims abstract description 32
- 229920000728 polyester Polymers 0.000 claims abstract description 30
- 239000000203 mixture Substances 0.000 claims abstract description 24
- 239000011248 coating agent Substances 0.000 claims abstract description 22
- 238000000576 coating method Methods 0.000 claims abstract description 22
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 11
- 239000001257 hydrogen Substances 0.000 claims abstract description 11
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 10
- 238000005809 transesterification reaction Methods 0.000 claims abstract description 7
- 229920000642 polymer Polymers 0.000 claims description 34
- 239000002184 metal Chemical class 0.000 claims description 23
- 229910052751 metal Inorganic materials 0.000 claims description 23
- 125000002091 cationic group Chemical group 0.000 claims description 18
- 239000002253 acid Substances 0.000 claims description 16
- 229910052736 halogen Inorganic materials 0.000 claims description 13
- 229920000647 polyepoxide Polymers 0.000 claims description 13
- 150000002367 halogens Chemical class 0.000 claims description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 11
- 229910052802 copper Inorganic materials 0.000 claims description 11
- 239000010949 copper Substances 0.000 claims description 11
- 239000003054 catalyst Substances 0.000 claims description 10
- 150000003839 salts Chemical class 0.000 claims description 8
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical class C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 6
- 229910044991 metal oxide Inorganic materials 0.000 claims description 6
- 150000004706 metal oxides Chemical class 0.000 claims description 6
- 229920000058 polyacrylate Polymers 0.000 claims description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 5
- 125000004185 ester group Chemical group 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 5
- 150000004696 coordination complex Chemical class 0.000 claims description 4
- 238000005530 etching Methods 0.000 claims description 4
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052797 bismuth Inorganic materials 0.000 claims description 3
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- VEORPZCZECFIRK-UHFFFAOYSA-N 3,3',5,5'-tetrabromobisphenol A Chemical compound C=1C(Br)=C(O)C(Br)=CC=1C(C)(C)C1=CC(Br)=C(O)C(Br)=C1 VEORPZCZECFIRK-UHFFFAOYSA-N 0.000 claims description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 2
- 150000001721 carbon Chemical group 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- -1 for example Substances 0.000 description 15
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 12
- 239000007795 chemical reaction product Substances 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- 229920002120 photoresistant polymer Polymers 0.000 description 11
- 239000004020 conductor Substances 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 125000000129 anionic group Chemical group 0.000 description 8
- 239000003989 dielectric material Substances 0.000 description 8
- 238000004070 electrodeposition Methods 0.000 description 7
- 230000005855 radiation Effects 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 6
- 150000001412 amines Chemical class 0.000 description 5
- 150000008064 anhydrides Chemical class 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 5
- 150000003141 primary amines Chemical group 0.000 description 5
- 239000004593 Epoxy Substances 0.000 description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 150000002334 glycols Chemical class 0.000 description 4
- 125000005843 halogen group Chemical group 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 150000002763 monocarboxylic acids Chemical class 0.000 description 4
- 229920000768 polyamine Polymers 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 150000003335 secondary amines Chemical group 0.000 description 4
- 230000003381 solubilizing effect Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 150000008065 acid anhydrides Chemical class 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 239000002318 adhesion promoter Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 125000003700 epoxy group Chemical group 0.000 description 3
- 229920001002 functional polymer Polymers 0.000 description 3
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 3
- 239000000976 ink Substances 0.000 description 3
- 239000011133 lead Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000004377 microelectronic Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 150000002989 phenols Chemical class 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 229920005862 polyol Polymers 0.000 description 3
- 150000003077 polyols Chemical class 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- RBACIKXCRWGCBB-UHFFFAOYSA-N 1,2-Epoxybutane Chemical compound CCC1CO1 RBACIKXCRWGCBB-UHFFFAOYSA-N 0.000 description 2
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 2
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 2
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 2
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 2
- 238000002679 ablation Methods 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 125000005609 naphthenate group Chemical group 0.000 description 2
- 125000005474 octanoate group Chemical group 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 229940014800 succinic anhydride Drugs 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 2
- MUTGBJKUEZFXGO-OLQVQODUSA-N (3as,7ar)-3a,4,5,6,7,7a-hexahydro-2-benzofuran-1,3-dione Chemical compound C1CCC[C@@H]2C(=O)OC(=O)[C@@H]21 MUTGBJKUEZFXGO-OLQVQODUSA-N 0.000 description 1
- KMOUUZVZFBCRAM-OLQVQODUSA-N (3as,7ar)-3a,4,7,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1C=CC[C@@H]2C(=O)OC(=O)[C@@H]21 KMOUUZVZFBCRAM-OLQVQODUSA-N 0.000 description 1
- RYSXWUYLAWPLES-MTOQALJVSA-N (Z)-4-hydroxypent-3-en-2-one titanium Chemical group [Ti].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O RYSXWUYLAWPLES-MTOQALJVSA-N 0.000 description 1
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical class C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 1
- VLDPXPPHXDGHEW-UHFFFAOYSA-N 1-chloro-2-dichlorophosphoryloxybenzene Chemical compound ClC1=CC=CC=C1OP(Cl)(Cl)=O VLDPXPPHXDGHEW-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 1
- VQVIHDPBMFABCQ-UHFFFAOYSA-N 5-(1,3-dioxo-2-benzofuran-5-carbonyl)-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(C(C=2C=C3C(=O)OC(=O)C3=CC=2)=O)=C1 VQVIHDPBMFABCQ-UHFFFAOYSA-N 0.000 description 1
- RREANTFLPGEWEN-MBLPBCRHSA-N 7-[4-[[(3z)-3-[4-amino-5-[(3,4,5-trimethoxyphenyl)methyl]pyrimidin-2-yl]imino-5-fluoro-2-oxoindol-1-yl]methyl]piperazin-1-yl]-1-cyclopropyl-6-fluoro-4-oxoquinoline-3-carboxylic acid Chemical compound COC1=C(OC)C(OC)=CC(CC=2C(=NC(\N=C/3C4=CC(F)=CC=C4N(CN4CCN(CC4)C=4C(=CC=5C(=O)C(C(O)=O)=CN(C=5C=4)C4CC4)F)C\3=O)=NC=2)N)=C1 RREANTFLPGEWEN-MBLPBCRHSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical group NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 229910001374 Invar Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- KYPYTERUKNKOLP-UHFFFAOYSA-N Tetrachlorobisphenol A Chemical compound C=1C(Cl)=C(O)C(Cl)=CC=1C(C)(C)C1=CC(Cl)=C(O)C(Cl)=C1 KYPYTERUKNKOLP-UHFFFAOYSA-N 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229920003180 amino resin Polymers 0.000 description 1
- 239000011260 aqueous acid Substances 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229940067597 azelate Drugs 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- QPKOBORKPHRBPS-UHFFFAOYSA-N bis(2-hydroxyethyl) terephthalate Chemical compound OCCOC(=O)C1=CC=C(C(=O)OCCO)C=C1 QPKOBORKPHRBPS-UHFFFAOYSA-N 0.000 description 1
- 229910000416 bismuth oxide Inorganic materials 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical group 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 1
- JGFBRKRYDCGYKD-UHFFFAOYSA-N dibutyl(oxo)tin Chemical compound CCCC[Sn](=O)CCCC JGFBRKRYDCGYKD-UHFFFAOYSA-N 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- XXBDWLFCJWSEKW-UHFFFAOYSA-N dimethylbenzylamine Chemical compound CN(C)CC1=CC=CC=C1 XXBDWLFCJWSEKW-UHFFFAOYSA-N 0.000 description 1
- LQRUPWUPINJLMU-UHFFFAOYSA-N dioctyl(oxo)tin Chemical compound CCCCCCCC[Sn](=O)CCCCCCCC LQRUPWUPINJLMU-UHFFFAOYSA-N 0.000 description 1
- NFDOHTGWDMVSHD-UHFFFAOYSA-L dioctyltin(2+) diformate Chemical compound [O-]C=O.[O-]C=O.CCCCCCCC[Sn+2]CCCCCCCC NFDOHTGWDMVSHD-UHFFFAOYSA-L 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 150000004674 formic acids Chemical class 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 125000003010 ionic group Chemical group 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- VQPKAMAVKYTPLB-UHFFFAOYSA-N lead;octanoic acid Chemical compound [Pb].CCCCCCCC(O)=O VQPKAMAVKYTPLB-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- VYKXQOYUCMREIS-UHFFFAOYSA-N methylhexahydrophthalic anhydride Chemical compound C1CCCC2C(=O)OC(=O)C21C VYKXQOYUCMREIS-UHFFFAOYSA-N 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- LNOPIUAQISRISI-UHFFFAOYSA-N n'-hydroxy-2-propan-2-ylsulfonylethanimidamide Chemical compound CC(C)S(=O)(=O)CC(N)=NO LNOPIUAQISRISI-UHFFFAOYSA-N 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 125000005496 phosphonium group Chemical class 0.000 description 1
- 230000036211 photosensitivity Effects 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical group 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-O sulfonium group Chemical group [SH3+] RWSOTUBLDIXVET-UHFFFAOYSA-O 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 150000003512 tertiary amines Chemical group 0.000 description 1
- 238000005382 thermal cycling Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- KSBAEPSJVUENNK-UHFFFAOYSA-L tin(ii) 2-ethylhexanoate Chemical compound [Sn+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O KSBAEPSJVUENNK-UHFFFAOYSA-L 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 125000005591 trimellitate group Chemical group 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- CHJMFFKHPHCQIJ-UHFFFAOYSA-L zinc;octanoate Chemical compound [Zn+2].CCCCCCCC([O-])=O.CCCCCCCC([O-])=O CHJMFFKHPHCQIJ-UHFFFAOYSA-L 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
- H05K3/4611—Manufacturing multilayer circuits by laminating two or more circuit boards
- H05K3/4626—Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/05—Insulated conductive substrates, e.g. insulated metal substrate
- H05K1/056—Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an organic insulating layer
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0137—Materials
- H05K2201/0145—Polyester, e.g. polyethylene terephthalate [PET], polyethylene naphthalate [PEN]
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/0332—Structure of the conductor
- H05K2201/0335—Layered conductors or foils
- H05K2201/0358—Resin coated copper [RCC]
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/13—Moulding and encapsulation; Deposition techniques; Protective layers
- H05K2203/1333—Deposition techniques, e.g. coating
- H05K2203/135—Electrophoretic deposition of insulating material
Definitions
- the present invention relates to methods for fabricating electrical circuit assemblies.
- Circuit panels ordinarily include a generally flat sheet of dielectric material with electrical conductors disposed on a major, flat surface of the sheet, or on both major surfaces.
- the conductors are commonly formed from metallic materials such as copper and serve to interconnect the electrical components mounted to the board.
- the panel may have via conductors extending through holes (or "through vias") in the dielectric layer so as to interconnect the conductors on opposite surfaces.
- Multi-layer circuit panel assemblies have been made heretofore which incorporate multiple stacked circuit panels with additional layers of dielectric materials separating the conductors on mutually facing surfaces of adjacent panels in the stack. These multi-layer assemblies ordinarily incorporate interconnections extending between the conductors on the various circuit panels in the stack as necessary to provide the required electrical interconnections.
- circuits and units are prepared in packaging levels of increasing scale. Generally, the smallest scale packaging levels are typically semiconductor chips housing multiple microcircuits and/or other components. Such chips are usually made from ceramics, silicon, and the like. Intermediate package levels (i.e., "chip carriers") comprising multilayer substrates may have attached thereto a plurality of small-scale chips housing many microelectronic circuits.
- intermediate package levels themselves can be attached to larger scale circuit cards, motherboards, and the like.
- the intermediate package levels serve several purposes in the overall circuit assembly including structural support, transitional integration of the smaller scale microcircuits and circuits to larger scale boards, and the dissipation of heat from the circuit assembly.
- Substrates used in conventional intermediate package levels have included a variety of materials, for example, ceramic, fiberglass reinforced polyepoxides, and polyimides.
- the aforementioned substrates while offering sufficient rigidity to provide structural support to the circuit assembly, typically have thermal coefficients of expansion much different than that of the microelectronic chips being attached thereto. As a result, failure of the circuit assembly after repeated use is a risk due to failure of adhesive joints between the layers of the assembly.
- dielectric materials used on the substrates must meet several requirements, including conformality, flame resistance, and compatible thermal expansion properties.
- Conventional dielectric materials include, for example, polyimides, polyepoxides, phenolics, and fluorocarbons. These polymeric dielectrics typically have thermal coefficients of expansion much higher than that of the adjacent layers.
- circuit panel structures which provide high density, complex interconnections.
- a dielectric material typically separates the circuitized layers.
- Polymeric dielectric materials that typically are used in circuit assembly manufacture are thermoplastic or thermoset polymers. Thermoset materials are typically cured first to form a conformal coating.
- dielectric materials with increasingly lower dielectric constants and dielectric loss factors.
- the present invention is directed toward a method for preparing a circuit assembly.
- the method comprises: (a) applying a curable coating composition to a substrate, (b) curing the coating composition to form a coating on the substrate, and (c) applying a conductive layer to all surfaces.
- the curable coating composition is comprised of (i) one or more ungelled active hydrogen-containing resins, (ii) one or more polyester curing agents, and (iii) optionally one or more transesterification catalysts.
- the method also comprises: (d) applying a resist to the conductive layer applied in step (c), (e) processing said resist to form a predetermined pattern of exposed underlying metal, (f) etching said exposed metal, and (g) stripping the remaining second resist to form an electrical circuit pattern.
- the present invention is directed to a method for preparing a circuit assembly.
- the method comprises: (a) applying a curable coating composition to a substrate, (b) curing the curable coating composition to form a coating on the substrate, and (c) applying a conductive layer to all surfaces.
- the curable coating composition is comprised of (i) one or more ungelled active hydrogen-containing resins, (ii) one or more polyester curing agents, and (iii) optionally one or more transesterification catalysts.
- the curable coating compositions useful in the methods of the present invention comprise as a main film-former, an ungelled, active hydrogen- containing resin (i).
- a wide variety of film-forming polymers are known and can be used in the curable coating compositions of the present invention provided they comprise active hydrogen groups, as determined by the Zerewitinoff test, described in the JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, Vol. 49, page 3181 (1927).
- the active hydrogens are derived from hydroxyl groups, thiol groups, primary amine groups and/or secondary amine groups.
- ungelled the resins are substantially free of crosslinking and have an intrinsic viscosity when dissolved in a suitable solvent, as determined, for example, in accordance with ASTM-D1795 or ASTM-D4243.
- the intrinsic viscosity of the reaction product is an indication of its molecular weight.
- a gelled reaction product on the other hand, since it is of essentially infinitely high molecular weight, will have an intrinsic viscosity too high to measure.
- a reaction product that is “substantially free of crosslinking” refers to a reaction product that has a weight average molecular weight (Mw), as determined by gel permeation chromatography, of less than 1 ,000,000.
- a variety of active hydrogen-containing resin materials are suitable for use in the present invention.
- suitable resins include: polyepoxide polymers, acrylic polymers, polyester polymers, urethane polymers, silicon-based polymers, polyether polymers, polyurea polymers, vinyl polymers, polyamide polymers, polyimide polymers, mixtures thereof and copolymers thereof.
- silicon-based polymers is meant a polymer comprising one or more -SiO- units in the backbone.
- Such silicon- based polymers can include hybrid polymers, such as those comprising organic polymeric blocks with one or more -SiO- units in the backbone.
- the polymer is typically a water-dispersible, electrodepositable film- forming polymer.
- the water-dispersible polymer may be ionic in nature; that is, the polymer can contain anionic functional groups to impart a negative charge or cationic functional groups to impart a positive charge. Most often, the polymer contains cationic salt groups, usually cationic amine salt groups.
- Non-limiting examples of film-forming resins suitable for use as the polymer in the composition of the present invention, in particular in anionic electrodepositable coating compositions include base-solubilized, carboxylic acid group-containing polymers such as the reaction product or adduct of a drying oil or semi-drying fatty acid ester with a dicarboxylic acid or anhydride; and the reaction product of a fatty acid ester, unsaturated acid or anhydride and any additional unsaturated modifying materials which are further reacted
- Suitable electrodepositable resin comprises an alkyd-aminoplast vehicle, i.e., a vehicle containing an alkyd resin and an amine-aldehyde resin.
- Another suitable anionic electrodepositable resin composition comprises mixed esters of a resinous polyol.
- acid functional polymers also can be used such as phosphatized polyepoxide or phosphatized acrylic polymers as are well known to those skilled in the art.
- suitable for use as the polymer are those resins comprising one or more pendent carbamate functional groups, for example, those described in U.S. Patent No. 6,165,338.
- the polymer is a cationic, active hydrogen-containing ionic electrodepositable resin capable of deposition on a cathode.
- cationic film-forming resins include amine salt group-containing resins such as the acid-solubilized reaction products of polyepoxides and primary or secondary amines such as those described in U.S. Pat. Nos. 3,663,389; 3,984,299; 3,947,338; and 3,947,339.
- the polymer can also be selected from cationic acrylic resins such as those described in U.S. Pat. Nos. 3,455,806 and 3,928,157.
- quaternary ammonium salt group-containing resins can also be employed.
- these resins include those which are formed from reacting an organic polyepoxide with a tertiary amine salt.
- Such resins are described in U.S. Pat. Nos. 3,962,165; 3,975,346; and 4,001 ,101.
- examples of other cationic resins are ternary sulfonium salt group-containing resins and quaternary phosphonium salt- group containing resins such as those described in U.S. Pat. Nos. 3,793,278 and 3,984,922, respectively.
- film-forming resins such as described in European Application No. 12463 can be used.
- cationic compositions prepared from Mannich bases such as described in U.S. Pat. No. 4,134,932 can be used.
- the polymer can comprise one or more positively charged resins which contain primary and/or secondary amine groups.
- resins are described in U.S. Pat. Nos. 3,663,389; 3,947,339; and 4,116,900.
- U.S. Pat. No. 3,947,339 a polyketimine derivative of a polyamine such as diethylenetriamine or triethylenetetraamine is reacted with a polyepoxide. When the reaction product is neutralized with acid and dispersed in water, free primary amine groups are generated.
- the polymer has cationic salt groups and is selected from a polyepoxide-based polymer having primary, secondary and/or tertiary amine groups (such as those described above) and an acrylic polymer having hydroxyl and/or amine functional groups.
- the polymer has cationic salt groups.
- such cationic salt groups typically are formed by solubilizing the resin with an inorganic or organic acid such as those conventionally used in electrodepositable compositions.
- solubilizing acids include, but are not limited to, sulfamic, acetic, lactic, and formic acids.
- the solubilizing acid comprises sulfamic acid and/or lactic acid.
- the coating compositions useful in the methods of the present invention comprise one or more components comprising covalently bonded halogen atoms.
- covalently bonded halogen atom is meant a halogen atom that is covalently bonded as opposed to a halogen ion, for example, a chloride ion in aqueous solution.
- the coating composition used in the methods of the present invention can have a covalently bonded halogen content of at least 1 weight percent, or at least 2 weight percent, or at least 5 weight percent, or at least 10 weight percent, based on total weight of resin solids. Also, the coating composition used in the methods of the present invention can have a covalently bonded halogen content of less than or equal to 50 weight percent, or less than or equal to 30 weight percent, or less or equal to 25 weight percent, or less than or equal to 20 weight percent. The coating composition can have a covalently bonded halogen content which can range between any combination of these values, inclusive of the recited values.
- the coating composition is an electrodepositable coating composition comprising , a resinous phase dispersed in an aqueous medium.
- the covalently bonded halogen content of the resinous phase of the electrodepositable coating composition can be derived from halogen atoms covalently bonded to the resin (i).
- the covalently bonded halogen content can be attributed to a reactant used to form any of the film-forming resins described above.
- the resin may be the reaction product of a halogenated phenol, for example a halogenated polyhydric phenol such as chlorinated or brominated bisphenol A with an epoxy group-containing material such as those described above with reference to the resin (i).
- solubilization with phosphoric acid may follow.
- an epoxy containing compound reacted with a halogenated carboxylic acid followed by reaction of any residual epoxy groups with phosphoric acid would yield a suitable polymer.
- the acid groups can then be solubilized with amine.
- the resin in the case of a cationic salt group- containing polymer, the resin may be the reaction product of an epoxy functional material such as those described above with a halogenated phenol followed by reaction of any residual epoxy groups with an amine. The reaction product can then be solubilized with an acid.
- the covalently bonded halogen content of the resin (i) can be derived from a halogenated compound selected from at least one of a halogenated phenol, halogenated polyepoxide, halogenated acrylic polymer, halogenated polyolefin, halogenated phosphate ester, and mixtures thereof.
- the covalently bonded halogen content of the resin (i) is derived from a halogenated polyhydric phenol, for example, a chlorinated bisphenol A such as tetrachlorobisphenol A, or a brominated bisphenol A such as tetrabromobisphenol A.
- the covalently bonded halogen content may be derived from a halogenated epoxy compound, for example, the diglycidyl ether of a halogenated bisphenol A.
- the active hydrogen-containing resin (i) described above can be present in the curable coating composition of the present invention in amounts ranging from 10 to 90 percent by weight, or 30 to 45 percent by weight based on total weight of the curable coating composition.
- the composition used in the methods of the present invention further comprises one or more polyester curing agents (ii).
- the polyester curing agent (ii) is a material having greater than one ester group per molecule.
- the ester groups are present in an amount sufficient to effect cross-linking at acceptable cure temperatures and cure times, for example at temperatures up to 250 0 C, and curing times of up to 90 minutes. It should be understood that acceptable cure temperatures and cure times will be dependent upon the substrates to be coated and their end uses.
- polyesters generally suitable as the polyester curing agent (ii) are polyesters of polycarboxylic acids.
- Non-limiting examples include bis(2- hydroxyalkyl)esters of dicarboxylic acids, such as bis(2-hydroxybutyl) azelate and bis(2-hydroxyethyl)terephthalate; tri(2-ethylhexanoyl)trimellitate; and poly(2-hydroxyalkyl)esters of acidic half-esters prepared from a dicarboxylic acid anhydride and an alcohol, including polyhydric alcohols.
- the latter type is particularly suitable to provide a polyester with a final functionality of more than 2.
- One suitable example includes a polyester prepared by first reacting equivalent amounts of the dicarboxylic acid anhydride (for example, succinic anhydride or phthalic anhydride) with a trihydric or tetrahydric alcohol, such as glycerol, trimethylolpropane or pentaerythritol, at temperatures below 15O 0 C, and then reacting the acidic polyester with at least an equivalent amount of an epoxy alkane, such as 1 ,2-epoxy butane, ethylene oxide, or propylene oxide.
- the polyester curing agent (ii) can comprise an anhydride.
- Another suitable polyester comprises a lower 2-hydroxy-akylterminated poly-alkyleneglycol terephthalate.
- the polyester comprises at least one ester group per molecule in which the carbon atom adjacent to the esterified hydroxyl has a free hydroxyl group.
- Also suitable is the tetrafunctional polyester prepared from the half- ester intermediate prepared by reacting trimellitic anhydride and propylene glycol (molar ratio 2:1), then reacting the intermediate with 1 ,2-epoxy butane and the glycidyl ester of branched monocarboxylic acids.
- the polyester curing agent (ii) is substantially free of acid.
- substantially free of acid is meant having less than 0.2 meq/g acid.
- suitable polyester curing agents can include non-acidic polyesters prepared from a polycarboxylic acid anhydride, one or more glycols, alcohols, glycol mono-ethers, polyols, and/or monoepoxides.
- Suitable polycarboxylic anhydrides can include dicarboxylic acid anhydrides, such as succinic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, and pyromellitic dianhydride. Mixtures of anhydrides can be used.
- dicarboxylic acid anhydrides such as succinic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, and pyromellitic dianhydride.
- dicarboxylic acid anhydrides such as succinic anhydride
- Suitable alcohols can include linear, cyclic or branched alcohols.
- the alcohols may be aliphatic, aromatic or araliphatic in nature.
- glycols and mono-epoxides are intended to include compounds containing not more than two alcohol groups per molecule which can be reacted with carboxylic acid or anhydride functions below the temperature of 15O 0 C
- Suitable mono-epoxides can include glycidyl esters of branched monocarboxylic acids. Further, alkylene oxides, such as ethylene oxide or propylene oxide may be used. Suitable glycols can include, for example ethylene glycol and polyethylene glycols, propylene glycol and polypropylene glycols, and 1 ,6-hexanediol. Mixtures of glycols may be used.
- Non-acidic polyesters can be prepared, for example, by reacting, in one or more steps, trimellitic anhydride (TMA) with glycidyl esters of branched monocarboxylic acids in a molar ratio of 1 :1.5 to 1 :3, if desired with the aid of an esterification catalyst such as stannous octoate or benzyl dimethyl amine, at temperatures of 50-150 0 C. Additionally, trimellitic anhydride can be reacted with 3 molar equivalents of a monoalcohol such as 2-ethylhexanol.
- TMA trimellitic anhydride
- glycidyl esters of branched monocarboxylic acids in a molar ratio of 1 :1.5 to 1 :3, if desired with the aid of an esterification catalyst such as stannous octoate or benzyl dimethyl amine, at temperatures of 50-150 0 C.
- trimellitic anhydride can be reacted with
- trimellitic anhydride (1 mol.) can be reacted first with a glycol or a glycol monoalkyl ether, such as ethylene glycol monobutyl ether in a molar ratio of 1 :0.5 to 1 :1 , after which the product is allowed to react with 2 moles of glycidyl esters of branched monocarboxylic acids.
- a glycol or a glycol monoalkyl ether such as ethylene glycol monobutyl ether in a molar ratio of 1 :0.5 to 1 :1
- polycarboxylic acid anhydride i.e., those containing two or three carboxyl functions per molecule or a mixture of polycarboxylic acid anhydrides can be reacted simultaneously with a glycol, such as 1 ,6-hexane diol and/or glycol mono-ether and monoepoxide, after which the product can be reacted with mono-epoxides, if desired.
- a glycol such as 1 ,6-hexane diol and/or glycol mono-ether and monoepoxide
- polyamines such as diethylene triamine to form amide polyesters.
- Such "amine-modified" polyesters may be incorporated in the linear or branched amine adducts described above to form self-curing amine adduct esters.
- non-acidic polyesters of the types described above typically are soluble in organic solvents, and typically can be mixed readily with the active hydrogen-containing resin (i) previously described.
- a transesterification catalyst (iii) may optionally be present in the compositions used in the methods of the present invention.
- the catalyst (iii) can be any suitable catalyst known for catalysis of the transesterification reaction.
- the catalyst (iii) comprises a metal oxide, metal complex or metal salt.
- Suitable metal oxides include, for example, oxides of lead, bismuth, and tin, including dialkyltin oxides such as dioctyltin oxide or dibutyltin oxide.
- lead oxide and bismuth oxide can also be used when dissolved in an aqueous acid solution for example, an aqueous solution of a sulfonic acid.
- Suitable salts may include carboxylate salts (for example, octoates or naphthenates) of lead, zinc, calcium, barium, iron, bismuth and tin, including dialkyltin dicarboxylates.
- carboxylate salts for example, octoates or naphthenates
- Non-limiting examples of salts include lead octoate, zinc octoate, and dioctyltin formate.
- a suitable example of a metal complex is titanium acetyl acetonate.
- salts e.g., octoates, and naphthenates, of the alkali and earth alkali metals, of the lanthanides, and of zirconium, cadmium, chromium; acetyl acetonate complexes of lead, zinc, cadmium, cerium, thorium, copper; alkali aluminium alcoholates and titanium tetraisopropoxide.
- Mixtures of any of the salts, oxides and/or complexes described above can also be used.
- the amount of catalyst may be indicated by the metal content contained in the compositions.
- Metal contents of 0.1 to 3.0 percent by weight are suitable, or metal contents of 0.3 to 1.6 percent by weight may be used, based on the total weight of the curable coating composition.
- the method of the present invention comprises: (a) applying any of the curable coating compositions described above to a substrate, (b) curing the coating composition to form a coating on the substrate, and (c) applying a conductive layer to all surfaces.
- the substrate can comprise any of a variety of substrates.
- the substrate is electrically conductive.
- Suitable electroconductive substrates can comprise metal substrates, for example, iron, aluminum, gold, nickel, copper, magnesium or alloys of any of the foregoing metals, as well as substrates coated with a conductive material, e.g., conductive carbon-coated materials.
- a suitable iron- nickel alloy is INVAR, (trademark owned by lmphy S.
- A., 168 Rue de Rivoli, Paris, France comprising approximately 64 weight percent iron and 36 weight percent nickel.
- This alloy has a low coefficient of thermal expansion, comparable to that of silicon materials used to prepare chips. This property is desirable for example to prevent failure of adhesive joints between successively larger or smaller scale layers of a chip scale package, due to thermal cycling during normal use.
- a nickel-iron alloy is used as the electrically conductive core
- a layer of copper metal can be applied to all surfaces of the electrically conductive core to ensure optimum conductivity.
- the layer of copper metal may be applied by conventional means, such as electroplating or metal vapor deposition.
- the layer of copper typically has a thickness of from 1 to 8 microns.
- circuitized materials such as printed circuit boards are suitable as substrates.
- the aforementioned coating compositions can be applied by a variety of application techniques well known in the art, for example, by roll-coating or spray application techniques.
- the resinous binder may or may not include solubilizing or neutralizing acids and amines to form cationic and anionic salt groups, respectively.
- any of the previously described ionic group-containing compositions can be electrophoretically applied to an electroconductive substrate.
- the applied voltage for electrodeposition may be varied and can be, for example, as low as 1 volt to as high as several thousand volts, but typically between 50 and 500 volts.
- the current density is usually between 0.5 ampere and 5 amperes per square foot (0.5 to 5 milliamperes per square centimeter) and tends to decrease during electrodeposition indicating the formation of an insulating conformal film on all exposed surfaces of the core.
- conformal film or coating is meant a film or coating having a substantially uniform thickness which conforms to the substrate topography, including the surfaces within (but not occluding) any holes that may be present.
- the coating After the coating has been applied by an appropriate method, such as those mentioned above, it is cured.
- the coating can be cured at ambient temperatures or thermally cured, at elevated temperatures ranging from 90 to
- the dielectric coating thickness can be no more than 50 microns, or no more than 25 microns, or no more than 20 microns.
- the core surface may be pretreated or otherwise prepared for the application of the dielectric coating. For example, cleaning, rinsing, and/or treatment with an adhesion promoter prior to application of the dielectric may be appropriate.
- the surface of the dielectric coating is optionally ablated in a predetermined pattern to expose sections of the substrate.
- ablation can be performed using a laser or by other conventional techniques, for example, mechanical drilling and chemical or plasma etching techniques.
- a conductive layer can be applied to all surfacesafter the optional ablation step.
- the conductive layer may comprise a conductive paste or ink or metai.
- Suitable conductive pastes and inks can include, for example, conductive silver coating copper pastes such as DD PASTE SAP510 and
- Suitable metals include copper or any metal or alloy with sufficient conductive properties.
- the conductive material can be applied by electroplating or any other suitable method known in the art to provide a uniform conductive layer.
- the conductive layer can be applied in a predetermined pattern, such as a circuit pattern.
- the thickness of this conductive layer can range from 1 to 50 microns, or from 5 to 25 microns. In the case where the dielectric coating is ablated prior to the application of the conductive layer, conductive or metallized vias are formed.
- the adhesion promoter layer can range from 50 to 5000 angstroms thick and can be a metal or metal oxide selected from chromium, titanium, nickel, cobalt, cesium, iron, aluminum, copper, gold, tungsten, and zinc, and alloys and oxides thereof.
- the method of the present invention also comprises: (d) applying a resist to the conductive layer applied in step (c), (e) processing said resist to form a predetermined pattern of exposed underlying conductive layer, (f) etching said exposed conductive layer, and (g) stripping the remaining second resist to form an electrical circuit pattern.
- a resinous photosensitive layer i.e. "photoresist” or "resist”
- the coated substrate can be cleaned and/or pretreated; e.g., treated with an acid etchant to remove oxidized metal.
- the resinous photosensitive layer can be a positive or negative photoresist.
- the photoresist layer can have a thickness ranging from 1 to 50 microns, or 5 to 25 microns, and can be applied by any method known to those skilled in the photolithographic processing art. Additive or subtractive processing methods may be used to create the desired circuit patterns.
- Suitable positive-acting photosensitive resins include any of those known to practitioners skilled in the art. Examples include dinitrobenzyl functional polymers such as those disclosed in U.S. Pat. No. 5,600,035, columns 3-15. Such resins have a high degree of photosensitivity.
- the resinous photosensitive layer is a composition comprising a dinitrobenzyl functional polymer, typically applied by spraying.
- the resinous photosensitive layer comprises an electrodepositable composition comprising a dinitrobenzyl functional polyurethane and an epoxy-amine polymer such as that described in Examples 3-6 of U.S. Pat. No. 5,600,035.
- Negative-acting photoresists include liquid or dry-film type compositions. Any of the previously described liquid compositions may be applied by spray, roll-coating, spin coating, curtain coating, screen coating, immersion coating, or electrodeposition application techniques. Preferably, liquid photoresists are applied by electrodeposition, more preferably cationic electrodeposition.
- Electrodepositable photoresist compositions comprise an ionic, polymeric material which may be cationic or anionic, and may be selected from polyesters, polyurethanes, acrylics, and polyepoxides. Examples of photoresists applied by anionic electrodeposition are shown in U.S. Pat. No. 3,738,835. Photoresists applied by cationic electrodeposition are described in U.S. Pat. No. 4, 592,816. Examples of dry-film photoresists include those disclosed in U.S. Pat. Nos. 3,469,982, 4,378,264, and 4,343,885. Dry-film photoresists are typically laminated onto the surface such as by application of hot rollers.
- the multi- layer substrate may be packaged at this point allowing for transport and processing of any subsequent steps at a remote location.
- a photo-mask having a desired pattern may be placed over the photosensitive layer and the layered substrate exposed to a sufficient level of a suitable radiation source, typically an actinic radiation source.
- a suitable radiation source typically an actinic radiation source.
- the term "sufficient level of radiation” refers to that level of radiation which polymerizes the monomers in the radiation-exposed areas in the case of negative acting resists, or which depolymerizes the polymer or renders the polymer more soluble in the case of positive acting resists. This results in a solubility differential between the radiation-exposed and radiation- shielded areas.
- the photo-mask may be removed after exposure to the radiation source and the layered substrate developed using conventional developing solutions to remove more soluble portions of the photosensitive layer, and uncover selected areas of the underlying conductive layer.
- Theconductive layer thus uncovered may then be etched using metal etchants which convert metal to water soluble metal complexes.
- the soluble complexes then may be removed by water spraying.
- the photosensitive layer protects the underlying substrate during the etching step.
- the remaining photosensitive layer which is impervious to the etchants, may then be removed by a chemical stripping process to provide a - circuit pattern connected by the conductive vias.
- circuit assembly After preparation of the circuit pattern on the multi-layered substrate, other circuit components may be attached to form a circuit assembly. Additional components include, for example, one or more smaller scale components such as semiconductor chips, interposer layers, larger scale circuit cards or mother boards and active or passive components. Note that interposers used in the preparation of the circuit assembly may be prepared using appropriate steps of the process of the present invention. Components may be attached using conventional adhesives, surface mount techniques, wire bonding or flip chip techniques.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Paints Or Removers (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Insulated Metal Substrates For Printed Circuits (AREA)
- Manufacturing Of Printed Circuit Boards (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007546967A JP2008524856A (en) | 2004-12-17 | 2005-12-16 | Method for making a circuit assembly |
MX2007007168A MX2007007168A (en) | 2004-12-17 | 2005-12-16 | Method for creating circuit assemblies. |
EP05854474A EP1832149A1 (en) | 2004-12-17 | 2005-12-16 | Method for creating circuit assemblies |
CA002591095A CA2591095A1 (en) | 2004-12-17 | 2005-12-16 | Method for creating circuit assemblies |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US63732804P | 2004-12-17 | 2004-12-17 | |
US60/637,328 | 2004-12-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006066128A1 true WO2006066128A1 (en) | 2006-06-22 |
Family
ID=36216839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2005/045768 WO2006066128A1 (en) | 2004-12-17 | 2005-12-16 | Method for creating circuit assemblies |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP1832149A1 (en) |
JP (1) | JP2008524856A (en) |
KR (1) | KR100878070B1 (en) |
CN (1) | CN101080959A (en) |
CA (1) | CA2591095A1 (en) |
MX (1) | MX2007007168A (en) |
WO (1) | WO2006066128A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109836885B (en) * | 2019-01-18 | 2021-10-29 | 广州市红太电子科技有限公司 | Liquid photosensitive ink, PCB and preparation method of PCB inner layer plate |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4140831A (en) * | 1977-03-23 | 1979-02-20 | Minnesota Mining And Manufacturing Company | Flame-retardant metal-clad dielectric sheeting comprising a non-woven fibrous layer provided with dimensional stability under etching and soldering conditions by a polyester-diepoxide adhesive |
JPH06207157A (en) * | 1993-01-11 | 1994-07-26 | Nitto Boseki Co Ltd | Adhesive for metal-clad laminate |
US5761801A (en) * | 1995-06-07 | 1998-06-09 | The Dexter Corporation | Method for making a conductive film composite |
US6218482B1 (en) * | 1994-02-24 | 2001-04-17 | New Japan Chemical Co., Ltd. | Epoxy resin, process for preparing the resin and photo-curable resin composition and resin composition for powder coatings containing the epoxy resin |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5521141A (en) * | 1978-08-01 | 1980-02-15 | Tokyo Shibaura Electric Co | Method of forming conductor pattern of thick film circuit board |
EP0040869B1 (en) * | 1980-05-22 | 1984-02-29 | Shell Internationale Researchmaatschappij B.V. | Aqueous coating powder suspensions, preparation and use |
US7000313B2 (en) * | 2001-03-08 | 2006-02-21 | Ppg Industries Ohio, Inc. | Process for fabricating circuit assemblies using electrodepositable dielectric coating compositions |
US6951707B2 (en) * | 2001-03-08 | 2005-10-04 | Ppg Industries Ohio, Inc. | Process for creating vias for circuit assemblies |
-
2005
- 2005-12-16 MX MX2007007168A patent/MX2007007168A/en not_active Application Discontinuation
- 2005-12-16 WO PCT/US2005/045768 patent/WO2006066128A1/en active Application Filing
- 2005-12-16 EP EP05854474A patent/EP1832149A1/en not_active Withdrawn
- 2005-12-16 CA CA002591095A patent/CA2591095A1/en not_active Abandoned
- 2005-12-16 KR KR1020077013774A patent/KR100878070B1/en not_active IP Right Cessation
- 2005-12-16 JP JP2007546967A patent/JP2008524856A/en active Pending
- 2005-12-16 CN CNA2005800432165A patent/CN101080959A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4140831A (en) * | 1977-03-23 | 1979-02-20 | Minnesota Mining And Manufacturing Company | Flame-retardant metal-clad dielectric sheeting comprising a non-woven fibrous layer provided with dimensional stability under etching and soldering conditions by a polyester-diepoxide adhesive |
JPH06207157A (en) * | 1993-01-11 | 1994-07-26 | Nitto Boseki Co Ltd | Adhesive for metal-clad laminate |
US6218482B1 (en) * | 1994-02-24 | 2001-04-17 | New Japan Chemical Co., Ltd. | Epoxy resin, process for preparing the resin and photo-curable resin composition and resin composition for powder coatings containing the epoxy resin |
US5761801A (en) * | 1995-06-07 | 1998-06-09 | The Dexter Corporation | Method for making a conductive film composite |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 018, no. 568 (C - 1266) 31 October 1994 (1994-10-31) * |
Also Published As
Publication number | Publication date |
---|---|
JP2008524856A (en) | 2008-07-10 |
KR20070086376A (en) | 2007-08-27 |
MX2007007168A (en) | 2007-08-14 |
EP1832149A1 (en) | 2007-09-12 |
KR100878070B1 (en) | 2009-01-13 |
CN101080959A (en) | 2007-11-28 |
CA2591095A1 (en) | 2006-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100379781C (en) | Polyoxazolidone adhesive resin compoistion prepared from polyepoxides and polyisocyanates | |
US6713587B2 (en) | Electrodepositable dielectric coating compositions and methods related thereto | |
CN1672474A (en) | Process for creating holes of circuit assembly | |
JP2007227985A (en) | Process for fabricating circuit assemblies using electrodepositable dielectric coating compositions | |
US7743494B2 (en) | Process of fabricating a circuit board | |
US20060141143A1 (en) | Method for creating circuit assemblies | |
US20020103270A1 (en) | Photo- or heat-curable resin composition and multilayer printed wiring board | |
US8598467B2 (en) | Multi-layer circuit assembly and process for preparing the same | |
KR100878070B1 (en) | Method for creating circuit assemblies | |
US7228623B2 (en) | Process for fabricating a multi layer circuit assembly | |
US7666945B2 (en) | Non-gelled curable compositions containing imide functional compositions | |
US6225031B1 (en) | Process for filling apertures in a circuit board or chip carrier | |
JPH11171975A (en) | Thermosetting resin composition | |
TWI356664B (en) | Method for creating curcuit assemblies | |
JP3865425B2 (en) | MULTILAYER WIRING BOARD AND ITS MANUFACTURING METHOD, TRANSFER MASTER FOR MANUFACTURING MULTILAYER WIRING BOARD AND ITS MANUFACTURING METHOD |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: MX/a/2007/007168 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200580043216.5 Country of ref document: CN Ref document number: 2007546967 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005854474 Country of ref document: EP Ref document number: 2591095 Country of ref document: CA Ref document number: 1020077013774 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWP | Wipo information: published in national office |
Ref document number: 2005854474 Country of ref document: EP |