EP1826518A1 - Plaque de refroidissement pour fours à cuve - Google Patents

Plaque de refroidissement pour fours à cuve Download PDF

Info

Publication number
EP1826518A1
EP1826518A1 EP06003955A EP06003955A EP1826518A1 EP 1826518 A1 EP1826518 A1 EP 1826518A1 EP 06003955 A EP06003955 A EP 06003955A EP 06003955 A EP06003955 A EP 06003955A EP 1826518 A1 EP1826518 A1 EP 1826518A1
Authority
EP
European Patent Office
Prior art keywords
cooling plate
holes
diameter
bores
plate according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06003955A
Other languages
German (de)
French (fr)
Inventor
Hans-Günter Wobker
Christof Dratner
Walter Nieporte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KME Special Products GmbH and Co KG
Original Assignee
KME Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE102004035968A priority Critical patent/DE102004035968A1/en
Application filed by KME Germany GmbH filed Critical KME Germany GmbH
Priority to EP06003955A priority patent/EP1826518A1/en
Publication of EP1826518A1 publication Critical patent/EP1826518A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/10Cooling; Devices therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/24Cooling arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/12Casings; Linings; Walls; Roofs incorporating cooling arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • F27D2009/0002Cooling of furnaces
    • F27D2009/0018Cooling of furnaces the cooling medium passing through a pattern of tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • F27D2009/0002Cooling of furnaces
    • F27D2009/0045Cooling of furnaces the cooling medium passing a block, e.g. metallic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • F27D2009/0002Cooling of furnaces
    • F27D2009/0051Cooling of furnaces comprising use of studs to transfer heat or retain the liner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • F27D2009/0002Cooling of furnaces
    • F27D2009/0056Use of high thermoconductive elements
    • F27D2009/0062Use of high thermoconductive elements made from copper or copper alloy

Definitions

  • the invention relates to a cooling plate made of copper or a copper alloy for shaft furnaces according to the features in the preamble of claim 1.
  • Such a cooling plate counts in the scope of DE 29 07 511 C2 to the state of the art. It has a plurality of bores for a coolant extending in a row at a distance from each other and extending parallel to the grooves.
  • the holes are connected at the ends with transversely directed connecting pipes for coupling to a coolant inlet and a coolant outlet. They are introduced by deep hole drilling in the cooling plate.
  • the holes have a diameter of 50 mm to 65 mm. The center distance between two adjacent holes is uniform. It is approximately four times the diameter of a hole.
  • a known cooling plate Due to the arrangement and dimensions of the holes, a known cooling plate has a thickness between 90 mm and 150 mm incl. Of projections on the hot side. This thickness is determined by the diameter of the holes and the fact that the material thickness between the holes and the hot side and the cold side of the cooling plate should be between 15 mm and 30 mm to prevent leaks. This results in a high weight for the cooling plate associated with a relatively high cost of materials.
  • the invention is - starting from the prior art - the object of the invention to provide a cooling plate made of copper or a copper alloy for shaft furnaces, which has the same or better cooling properties without risk of leakage a smaller thickness.
  • the inventive measure In addition to reducing the thickness of the cooling plate is achieved by the inventive measure also has a better cooling effect. With approximately the same amount of cooling water as in the design of the prior art results in a temperature reduction of about 60 ° C to 70 ° C on the hot side of the cooling plate. This is due to the larger surface area of the smaller holes relative to a larger diameter hole.
  • the invention limits the temperature gradient on the hot side. In this way, a more uniform load of the cooling plate is achieved hereby is associated with a reduction of expected on the cooling plate delay.
  • the invention allows all holes arranged in a row to be inserted from bore to bore with the same center distance. It is also conceivable, however, that according to the features of claim 2, at least two, a maximum of four holes are grouped together, wherein the center distance of adjacent holes in a group is smaller than the center distance of adjacent bores of two consecutive groups.
  • the holes in a group are connected via a central supply / discharge with a connecting pipe, which is coupled to a coolant inlet or with a coolant outlet.
  • the inner diameter of the connecting pipe can be adjusted to the diameter of the central supply / discharge. It is also conceivable that the attachment end of the connecting pipe is deformed oval on the cooling plate. This measure should prove expedient if more than two holes are assigned to a connecting pipe.
  • a further embodiment of a group arrangement of holes is in the features of claim 4. Thereafter, the holes in a group are at least partially connected via oblique holes with a connection pipe, which in turn is coupled to a coolant inlet or a coolant outlet. Also in this embodiment, the oval deformation of the connecting pipe should be advantageous to detect all mouths of the oblique holes.
  • a preferred ratio of the diameter of the holes to the center distance between two adjacent holes is characterized in the features of claim 5. This ratio is d + 5 mm ⁇ s ⁇ 2d.
  • the thickness of the cooling plate is further reduced with the same or improved cooling effect according to claim 6, characterized in that the ratio of the thickness of the cooling plate to the diameter of the bores 1.4 to 4, preferably 1.5 to 2.7, is.
  • the ratio of the material thickness between a bore and the hot side to the diameter of a bore is according to claim 7 0.4 to 1.25, preferably 0.5 to 1.0.
  • the diameter of a bore advantageously between 18 mm and 45 mm, preferably between 20 mm and 40 mm in size.
  • cooling plate 1 denotes a cooling plate of a copper alloy for a shaft furnace in FIG.
  • the cooling plate 1 alternately grooves 3 and projections 4.
  • the cooling plate 1 is traversed in the vertical direction by a plurality of in-line holes 5, which are made by deep hole drilling. These holes 5 are designed as blind holes. The inlet ends are closed by plugs 6.
  • the bores 5 are conveyed from a coolant inlet 7 via a connecting pipe 8 with a coolant, such as e.g. Water, acted upon at the lower end 9 of the cooling plate 1.
  • a coolant such as e.g. Water
  • the heated coolant exits at the upper end 10 of the bores 5 via a connecting pipe 11 into a coolant outlet 12.
  • the holes 5 are each grouped together in the region of the connecting pipes 8, 11.
  • Each group 13, 13a has three holes in the embodiment 5.
  • the center distance s of the holes 5 in a group 13, 13a is smaller than the center distance s 1 of adjacent bores 5 of two consecutive groups 13, 13a sized.
  • each group 13, 13a are connected via a central inlet / outlet 14 with a connecting pipe 8, 11.
  • the connecting pipes 8, 11 consist of a copper alloy. They have circumferentially cuffs 15 made of steel, over which they are gas-tight welded to a shaft furnace jacket.
  • the cooling plate 1 adjacent ends 16 of the connecting pipes 8, 11 are flared and lie in recesses 17 on the cold side 18 of the cooling plate 1.
  • the flanged ends 16 are welded via V-seams 19 with the cooling plate 1.
  • the ratio of the diameter d of the holes 5 to the center distance s of two adjacent holes 5 is designed as d ⁇ s ⁇ 3d. This ratio is preferably d + 5 mm ⁇ s ⁇ 2d.
  • the ratio of the thickness t of the cooling plate 1 - measured from the bottom of the groove - to the diameter d of the bores is between 1.4 to 4, preferably as 1.5 to 2.7.
  • the ratio of the material thickness r between a bore 5 and the hot side 2 in the groove bottom of the cooling plate 1 to the diameter d of a bore 5 is 0.4 to 1.25, preferably 0.5 to 1.0.
  • the diameter d of the bores is 18 mm to 45 mm, preferably 20 mm to 40 mm.
  • FIG. 3 shows, in contrast to that of Figure 2, that the holes 5 of a group 13 are connected in part via oblique holes 20 with a connecting pipe 8, 11, which in turn is coupled to a coolant inlet 7 or a coolant outlet 12. Otherwise, the embodiment of FIG. 3 corresponds to that of FIG. 2.
  • connecting pipes 8, 11 open straight into the cooling plate 1 and are welded by fillet welds.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Blast Furnaces (AREA)

Abstract

Blast furnace cooling plate consists of copper or copper alloy with several coolant holes in a series separated by gaps and parallel to heating side (2), The ratio of hole diameter to (d) to the mean distance s between adjacent holes is given by the inequality d = s 3d.

Description

Die Erfindung betrifft eine Kühlplatte aus Kupfer oder einer Kupferlegierung für Schachtöfen gemäß den Merkmalen im Oberbegriff des Anspruchs 1.The invention relates to a cooling plate made of copper or a copper alloy for shaft furnaces according to the features in the preamble of claim 1.

Eine solche Kühlplatte zählt im Umfang der DE 29 07 511 C2 zum Stand der Technik. Sie weist mehrere in einer Reihe im Abstand zueinander verlaufende, sich parallel zu der Nuten besitzenden Heißseite erstreckende Bohrungen für ein Kühlmittel auf. Die Bohrungen sind endseitig mit quer gerichteten Anschlussrohren zur Kopplung mit einem Kühlmitteleinlauf und einem Kühlmittelauslauf verbunden. Sie sind durch Tieflochbohren in die Kühlplatte eingebracht. In aller Regel besitzen die Bohrungen einen Durchmesser von 50 mm bis 65 mm. Der Mittenabstand zweier benachbarter Bohrungen ist gleichmäßig gestaltet. Er beträgt ungefähr das Vierfache des Durchmessers einer Bohrung.Such a cooling plate counts in the scope of DE 29 07 511 C2 to the state of the art. It has a plurality of bores for a coolant extending in a row at a distance from each other and extending parallel to the grooves. The holes are connected at the ends with transversely directed connecting pipes for coupling to a coolant inlet and a coolant outlet. They are introduced by deep hole drilling in the cooling plate. As a rule, the holes have a diameter of 50 mm to 65 mm. The center distance between two adjacent holes is uniform. It is approximately four times the diameter of a hole.

Bedingt durch die Anordnung und Abmessungen der Bohrungen weist eine bekannte Kühlplatte eine Dicke zwischen 90 mm und 150 mm incl. von Vorsprüngen an der Heißseite auf. Diese Dicke ergibt sich durch den Durchmesser der Bohrungen sowie den Sachverhalt, dass die Materialdicke zwischen den Bohrungen und der Heißseite bzw. der Kaltseite der Kühlplatte zwischen 15 mm und 30 mm betragen soll, um Leckagen vorzubeugen. Hieraus resultiert ein hohes Gewicht für die Kühlplatte verbunden mit einem relativ hohen Materialaufwand.Due to the arrangement and dimensions of the holes, a known cooling plate has a thickness between 90 mm and 150 mm incl. Of projections on the hot side. This thickness is determined by the diameter of the holes and the fact that the material thickness between the holes and the hot side and the cold side of the cooling plate should be between 15 mm and 30 mm to prevent leaks. This results in a high weight for the cooling plate associated with a relatively high cost of materials.

Der Erfindung liegt - ausgehend vom Stand der Technik - die Aufgabe zugrunde, eine Kühlplatte aus Kupfer oder einer Kupferlegierung für Schachtöfen zu schaffen, die bei gleichen oder besseren Kühleigenschaften ohne Gefährdung durch Leckagen eine geringere Dicke aufweist.The invention is - starting from the prior art - the object of the invention to provide a cooling plate made of copper or a copper alloy for shaft furnaces, which has the same or better cooling properties without risk of leakage a smaller thickness.

Diese Aufgabe wird mit den im Anspruch 1 angegebenen Merkmalen gelöst.This object is achieved with the features specified in claim 1.

Aufgrund des Sachverhalts, dass nunmehr das Verhältnis des Durchmessers der Bohrungen zum Mittenabstand zweier benachbarter Bohrungen wie d ≤ s < 3d gestaltet ist, kann eine Bohrung mit einem bislang großen Durchmesser durch mehrere Bohrungen mit geringeren Durchmessern ersetzt werden. Dies hat den Vorteil, dass die Dicke der Kühlplatte um 25 mm bis 35 mm reduziert werden kann, so dass der Materialeinsatz merklich verringert wird. Die Wirtschaftlichkeit bei der Bereitstellung einer Kühlplatte wird erhöht.Due to the fact that now the ratio of the diameter of the holes is designed to the center distance of two adjacent holes such as d ≤ s <3d, a hole with a previously large diameter can be replaced by a plurality of holes with smaller diameters. This has the advantage that the thickness of the cooling plate can be reduced by 25 mm to 35 mm, so that the material use is significantly reduced. The economy in providing a cooling plate is increased.

Neben der Reduzierung der Dicke der Kühlplatte wird durch die erfindungsgemäße Maßnahme auch eine bessere Kühlwirkung erreicht. Bei annähernd gleicher Kühlwassermenge wie bei der Bauart des Standes der Technik ergibt sich eine Temperaturreduzierung von etwa 60°C bis 70°C auf der Heißseite der Kühlplatte. Grund hierfür ist die größere Oberfläche der kleineren Bohrungen in Relation zu einer Bohrung mit einem größeren Durchmesser.In addition to reducing the thickness of the cooling plate is achieved by the inventive measure also has a better cooling effect. With approximately the same amount of cooling water as in the design of the prior art results in a temperature reduction of about 60 ° C to 70 ° C on the hot side of the cooling plate. This is due to the larger surface area of the smaller holes relative to a larger diameter hole.

Ferner wird durch die Erfindung der Temperaturgradient auf der Heißseite begrenzt. Auf diese Weise wird eine gleichmäßigere Belastung der Kühlplatte erzielt Hiermit ist eine Reduzierung des an der Kühlplatte zu erwartenden Verzugs verbunden.Furthermore, the invention limits the temperature gradient on the hot side. In this way, a more uniform load of the cooling plate is achieved hereby is associated with a reduction of expected on the cooling plate delay.

Die Erfindung lässt zu, dass alle in einer Reihe angeordneten Bohrungen mit demselben Mittenabstand von Bohrung zu Bohrung eingebracht werden. Denkbar ist aber auch, dass gemäß den Merkmalen des Anspruchs 2 mindestens zwei, maximal vier Bohrungen, gruppenweise zusammengefasst sind, wobei der Mittenabstand benachbarter Bohrungen in einer Gruppe kleiner als der Mittenabstand einander benachbarter Bohrungen von zwei aufeinander folgenden Gruppen bemessen ist.The invention allows all holes arranged in a row to be inserted from bore to bore with the same center distance. It is also conceivable, however, that according to the features of claim 2, at least two, a maximum of four holes are grouped together, wherein the center distance of adjacent holes in a group is smaller than the center distance of adjacent bores of two consecutive groups.

In diesem Zusammenhang ist es dann entsprechend den Merkmalen des Anspruchs 3 von Vorteil, dass die Bohrungen einer Gruppe über eine zentrale Zu-/Abführung mit einem Anschlussrohr verbunden sind, das mit einem Kühlmitteleinlauf oder mit einem Kühlmittelauslauf gekoppelt ist. Hierbei kann der Innendurchmesser des Anschlussrohrs auf den Durchmesser der zentralen Zu-/Abführung abgestellt sein. Denkbar ist aber auch, dass das Befestigungsende des Anschlussrohrs an der Kühlplatte oval verformt ist. Diese Maßnahme dürfte sich zweckmäßig erweisen, wenn mehr als zwei Bohrungen einem Anschlussrohr zugeordnet werden.In this context, it is then according to the features of claim 3 is advantageous that the holes in a group are connected via a central supply / discharge with a connecting pipe, which is coupled to a coolant inlet or with a coolant outlet. In this case, the inner diameter of the connecting pipe can be adjusted to the diameter of the central supply / discharge. It is also conceivable that the attachment end of the connecting pipe is deformed oval on the cooling plate. This measure should prove expedient if more than two holes are assigned to a connecting pipe.

Eine weitere Ausführungsform bei einer gruppenweisen Anordnung von Bohrungen besteht in den Merkmalen des Anspruchs 4. Danach sind die Bohrungen einer Gruppe mindestens zum Teil über Schrägbohrungen mit einem Anschlussrohr verbunden, das seinerseits mit einem Kühlmitteleinlauf oder einem Kühlmittelauslauf gekoppelt ist. Auch bei dieser Ausführungsform dürfte die ovale Verformung des Anschlussrohrs von Vorteil sein, um alle Mündungen der Schrägbohrungen zu erfassen.A further embodiment of a group arrangement of holes is in the features of claim 4. Thereafter, the holes in a group are at least partially connected via oblique holes with a connection pipe, which in turn is coupled to a coolant inlet or a coolant outlet. Also in this embodiment, the oval deformation of the connecting pipe should be advantageous to detect all mouths of the oblique holes.

Ein bevorzugtes Verhältnis des Durchmessers der Bohrungen zum Mittenabstand zweier benachbarter Bohrungen ist in den Merkmalen des Anspruchs 5 gekennzeichnet. Dieses Verhältnis beträgt d + 5 mm ≤ s ≤ 2d.A preferred ratio of the diameter of the holes to the center distance between two adjacent holes is characterized in the features of claim 5. This ratio is d + 5 mm ≤ s ≤ 2d.

Die Dicke der Kühlplatte wird bei gleicher oder verbesserter Kühlwirkung nach Anspruch 6 dadurch noch weiter reduziert, dass das Verhältnis der Dicke der Kühlplatte zum Durchmesser der Bohrungen 1,4 bis 4, bevorzugt 1,5 bis 2,7, beträgt.The thickness of the cooling plate is further reduced with the same or improved cooling effect according to claim 6, characterized in that the ratio of the thickness of the cooling plate to the diameter of the bores 1.4 to 4, preferably 1.5 to 2.7, is.

Das Verhältnis der Materialdicke zwischen einer Bohrung und der Heißseite zum Durchmesser einer Bohrung beträgt nach Anspruch 7 0,4 bis 1,25, bevorzugt 0,5 bis 1,0.The ratio of the material thickness between a bore and the hot side to the diameter of a bore is according to claim 7 0.4 to 1.25, preferably 0.5 to 1.0.

In Zahlen ausgedrückt ist nach Anspruch 8 der Durchmesser einer Bohrung vorteilhaft zwischen 18 mm und 45 mm, bevorzugt zwischen 20 mm und 40 mm groß.Expressed in figures, according to claim 8, the diameter of a bore advantageously between 18 mm and 45 mm, preferably between 20 mm and 40 mm in size.

Die Erfindung ist nachfolgend anhand von in den Zeichnungen dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:

Figur 1
in schematischer Seitenansicht eine Kühlplatte für einen Schachtofen;
Figur 2
einen Horizontalschnitt durch die Darstellung der Figur 1 entlang der Linie II-II in Richtung der Pfeile IIa gesehen und
Figur 3
eine Darstellung entsprechend derjenigen der Figur 2 gemäß einer weiteren Ausführungsform.
The invention is explained in more detail with reference to exemplary embodiments illustrated in the drawings. Show it:
FIG. 1
in a schematic side view of a cooling plate for a shaft furnace;
FIG. 2
a horizontal section through the representation of Figure 1 along the line II-II seen in the direction of the arrows IIa and
FIG. 3
a representation corresponding to that of Figure 2 according to another embodiment.

Mit 1 ist in der Figur 1 eine Kühlplatte aus einer Kupferlegierung für einen Schachtofen bezeichnet. Auf der Heißseite 2 weist die Kühlplatte 1 abwechselnd Nuten 3 und Vorsprünge 4 auf.1 denotes a cooling plate of a copper alloy for a shaft furnace in FIG. On the hot side 2, the cooling plate 1 alternately grooves 3 and projections 4.

Die Kühlplatte 1 wird in vertikaler Richtung von mehreren in einer Reihe liegenden Bohrungen 5 durchzogen, die durch Tieflochbohren hergestellt sind. Diese Bohrungen 5 sind als Sackbohrungen gestaltet. Die Eintrittsenden sind durch Stopfen 6 verschlossen.The cooling plate 1 is traversed in the vertical direction by a plurality of in-line holes 5, which are made by deep hole drilling. These holes 5 are designed as blind holes. The inlet ends are closed by plugs 6.

Die Bohrungen 5 werden von einem Kühlmitteleinlauf 7 aus über ein Anschlussrohr 8 mit einem Kühlmittel, wie z.B. Wasser, am unteren Ende 9 der Kühlplatte 1 beaufschlagt. Das erwärmte Kühlmittel tritt am oberen Ende 10 der Bohrungen 5 über ein Anschlussrohr 11 in einen Kühlmittelauslauf 12 aus.The bores 5 are conveyed from a coolant inlet 7 via a connecting pipe 8 with a coolant, such as e.g. Water, acted upon at the lower end 9 of the cooling plate 1. The heated coolant exits at the upper end 10 of the bores 5 via a connecting pipe 11 into a coolant outlet 12.

Wie bei gemeinsamer Betrachtung der Figuren 1 und 2 zu erkennen ist, sind die Bohrungen 5 jeweils im Bereich der Anschlussrohre 8, 11 gruppenweise zusammengefasst. Jede Gruppe 13, 13a besitzt beim Ausführungsbeispiel drei Bohrungen 5. Der Mittenabstand s der Bohrungen 5 in einer Gruppe 13, 13a ist kleiner als der Mittenabstand s1 einander benachbarter Bohrungen 5 von zwei aufeinander folgenden Gruppen 13, 13a bemessen.As can be seen in a joint consideration of Figures 1 and 2, the holes 5 are each grouped together in the region of the connecting pipes 8, 11. Each group 13, 13a has three holes in the embodiment 5. The center distance s of the holes 5 in a group 13, 13a is smaller than the center distance s 1 of adjacent bores 5 of two consecutive groups 13, 13a sized.

Die Bohrungen 5 jeder Gruppe 13, 13a sind über eine zentrale Zu-/Abführung 14 mit einem Anschlussrohr 8, 11 verbunden. Beim Ausführungsbeispiel bestehen die Anschlussrohre 8, 11 aus einer Kupferlegierung. Sie weisen umfangsseitig Manschetten 15 aus Stahl auf, über die sie mit einem Schachtofenmantel gasdicht verschweißt werden. Die der Kühlplatte 1 benachbarten Enden 16 der Anschlussrohre 8, 11 sind aufgebördelt und liegen in Vertiefungen 17 auf der Kaltseite 18 der Kühlplatte 1. Die umgebördelten Enden 16 sind über V-Nähte 19 mit der Kühlplatte 1 verschweißt.The bores 5 of each group 13, 13a are connected via a central inlet / outlet 14 with a connecting pipe 8, 11. In the exemplary embodiment, the connecting pipes 8, 11 consist of a copper alloy. They have circumferentially cuffs 15 made of steel, over which they are gas-tight welded to a shaft furnace jacket. The cooling plate 1 adjacent ends 16 of the connecting pipes 8, 11 are flared and lie in recesses 17 on the cold side 18 of the cooling plate 1. The flanged ends 16 are welded via V-seams 19 with the cooling plate 1.

Das Verhältnis des Durchmessers d der Bohrungen 5 zum Mittenabstand s zweier benachbarter Bohrungen 5 ist wie d ≤ s ≤ 3d gestaltet. Bevorzugt beträgt dieses Verhältnis d + 5 mm ≤ s ≤ 2d.The ratio of the diameter d of the holes 5 to the center distance s of two adjacent holes 5 is designed as d ≦ s ≦ 3d. This ratio is preferably d + 5 mm ≦ s ≦ 2d.

Das Verhältnis der Dicke t der Kühlplatte 1 - gemessen vom Nutengrund aus - zum Durchmesser d der Bohrungen beträgt zwischen 1,4 bis 4, bevorzugt wie 1,5 bis 2,7.The ratio of the thickness t of the cooling plate 1 - measured from the bottom of the groove - to the diameter d of the bores is between 1.4 to 4, preferably as 1.5 to 2.7.

Das Verhältnis der Materialdicke r zwischen einer Bohrung 5 und der Heißseite 2 im Nutengrund der Kühlplatte 1 zum Durchmesser d einer Bohrung 5 beträgt 0,4 bis 1,25, bevorzugt 0,5 bis 1,0.The ratio of the material thickness r between a bore 5 and the hot side 2 in the groove bottom of the cooling plate 1 to the diameter d of a bore 5 is 0.4 to 1.25, preferably 0.5 to 1.0.

Beim Ausführungsbeispiel beträgt der Durchmesser d der Bohrungen 18 mm bis 45 mm, bevorzugt 20 mm bis 40 mm.In the exemplary embodiment, the diameter d of the bores is 18 mm to 45 mm, preferably 20 mm to 40 mm.

Die in der Figur 3 dargestellte Variante zeigt im Unterschied zu derjenigen der Figur 2, dass die Bohrungen 5 einer Gruppe 13 zum Teil über Schrägbohrungen 20 mit einem Anschlussrohr 8, 11 verbunden sind, das seinerseits mit einem Kühlmitteleinlauf 7 oder einem Kühlmittelauslauf 12 gekoppelt ist. Ansonsten entspricht die Ausführungsform der Figur 3 derjenigen der Figur 2.The variant shown in Figure 3 shows, in contrast to that of Figure 2, that the holes 5 of a group 13 are connected in part via oblique holes 20 with a connecting pipe 8, 11, which in turn is coupled to a coolant inlet 7 or a coolant outlet 12. Otherwise, the embodiment of FIG. 3 corresponds to that of FIG. 2.

Statt der eingebördelten Enden 16 der Anschlussrohre 8, 11 ist es auch denkbar, dass die Anschlussrohre 8, 11 gerade in die Kühlplatte 1 münden und durch Kehlnähte verschweißt sind.Instead of the crimped ends 16 of the connecting pipes 8, 11, it is also conceivable that the connecting pipes 8, 11 open straight into the cooling plate 1 and are welded by fillet welds.

Bezugszeichen:Reference numerals:

1 -1 -
Kühlplattecooling plate
2 -2 -
Heißseite v. 1Hot side v. 1
3 -3 -
Nuten in 2Grooves in 2
4 -4 -
Vorsprünge an 2Projections on 2
5 -5 -
Bohrungen in 1Drilling in 1
6 -6 -
StopfenPlug
7 -7 -
KühlmitteleinlaufCoolant inlet
8 -8th -
Anschlussrohrconnecting pipe
9 -9 -
unteres Ende v. 5lower end v. 5
10 -10 -
oberes Ende v. 5upper end v. 5
11 -11 -
Anschlussrohrconnecting pipe
12 -12 -
KühlmittelauslaufCoolant outlet
13 -13 -
Gruppe v. 5Group v. 5
13a -13a -
Gruppe v. 5Group v. 5
14 -14 -
zentrale Zu-/Abführungcentral supply / discharge
15 -15 -
Manschettencuffs
16-16-
Enden v. 8, 11Ends v. 8, 11
17 -17 -
Vertiefungen in 18Depressions in 18
18 -18 -
Kaltseite v. 1Cold side v. 1
19 -19 -
V-NähteV-seams
d -d -
Durchmesser v. 5Diameter v. 5
s -s -
Mittenabstand v. 5Center distance v. 5
s1 -s 1 -
Mittenabstand v. 5Center distance v. 5
t -t -
Dicke v. 1Thickness v. 1
r -r -
Materialdickematerial thickness

Claims (8)

Kühlplatte aus Kupfer oder einer Kupferlegierung für Schachtöfen, die mehrere in einer Reihe im Abstand zueinander verlaufende und sich parallel zur Heißseite (2) erstreckende Bohrungen (5) für ein Kühlmittel aufweist, dadurch gekennzeichnet, dass das Verhältnis des Durchmessers (d) der Bohrungen (5) zum Mittenabstand (s) zweier benachbarter Bohrungen (5) wie d ≤ s < 3d gestaltet ist.Cooling plate of copper or a copper alloy for shaft furnaces, comprising a plurality of spaced apart and parallel to the hot side (2) extending bores (5) for a coolant, characterized in that the ratio of the diameter (d) of the bores ( 5) to the center distance (s) of two adjacent holes (5) as d ≤ s <3d is designed. Kühlplatte nach Anspruch 1, dadurch gekennzeichnet, dass mindestens zwei, maximal vier Bohrungen (5) gruppenweise zusammen gefasst sind, wobei der Mittenabstand (s) benachbarter Bohrungen (5) in einer Gruppe (z.B.13) kleiner als der Mittenabstand (s1) einander benachbarter Bohrungen (5) von zwei aufeinander folgenden Gruppen (13,13a) bemessen ist.Cooling plate according to claim 1, characterized in that at least two, a maximum of four holes (5) are grouped together, wherein the center distance (s) of adjacent holes (5) in a group (zB13) smaller than the center distance (s 1 ) adjacent to each other Holes (5) of two consecutive groups (13,13a) is dimensioned. Kühlplatte nach Anspruch 2, dadurch gekennzeichnet, dass die Bohrungen (5) einer Gruppe (13,13a) über eine zentrale Zu-/Abführung (14) mit einem Anschlussrohr (8,11) verbunden sind, das mit einem Kühlmitteleinlauf (7) oder mit einem Kühlmittelauslauf (12) gekoppelt ist.Cooling plate according to claim 2, characterized in that the bores (5) of a group (13, 13a) are connected via a central inlet / outlet (14) to a connecting pipe (8, 11) which is connected to a coolant inlet (7) or is coupled with a coolant outlet (12). Kühlplatte nach Anspruch 2, dadurch gekennzeichnet, dass die Bohrungen (5) einer Gruppe (13,13a) mindestens zum Teil über Schrägbohrungen (20) mit einem Anschlussrohr (8,11) verbunden sind, das seinerseits mit einem Kühlmitteleinlauf (7) oder einem Kühlmittelauslauf (12) gekoppelt ist.Cooling plate according to claim 2, characterized in that the bores (5) of a group (13, 13a) are connected at least in part via oblique bores (20) to a connection pipe (8, 11), which in turn is connected to a coolant inlet (7) or a Coolant outlet (12) is coupled. Kühlplatte nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Verhältnis des Durchmessers (d) der Bohrungen (5) zum Mittenabstand (s) zweier benachbarter Bohrungen (5) wie d + 5mm ≤ s ≤ 2d gestaltet ist.Cooling plate according to one of claims 1 to 4, characterized in that the ratio of the diameter (d) of the holes (5) to the center distance (s) of two adjacent holes (5) as d + 5mm ≤ s ≤ 2d is designed. Kühlplatte nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Verhältnis der Dicke (t) der Kühlplatte (1) zum Durchmesser (d) der Bohrungen (5) 1,4 bis 4,0, bevorzugt 1,5 bis 2,7 beträgt.Cooling plate according to one of claims 1 to 5, characterized in that the ratio of the thickness (t) of the cooling plate (1) to the diameter (d) of the bores (5) 1.4 to 4.0, preferably 1.5 to 2, 7 amounts to. Kühlplatte nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Verhältnis der Materialdicke (r) zwischen einer Bohrung (5) und der Heißseite (2) zum Durchmesser (d) einer Bohrung (5) 0,4 bis 1,25, bevorzugt 0,5 bis 1,0, beträgt.Cooling plate according to one of claims 1 to 6, characterized in that the ratio of the material thickness (r) between a bore (5) and the hot side (2) to the diameter (d) of a bore (5) 0.4 to 1.25, preferably 0.5 to 1.0. Kühlplatte nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Durchmesser (d) einer Bohrung (5) 18 mm bis 45 mm, bevorzugt 20 mm bis 40 mm, beträgt.Cooling plate according to one of claims 1 to 7, characterized in that the diameter (d) of a bore (5) is 18 mm to 45 mm, preferably 20 mm to 40 mm.
EP06003955A 2004-07-23 2006-02-27 Plaque de refroidissement pour fours à cuve Withdrawn EP1826518A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102004035968A DE102004035968A1 (en) 2004-07-23 2004-07-23 Cooling plate useful for blast furnaces consists of copper or copper alloy with several coolant holes parallel to the hot side with ratio of hole diameter to mean interhole distance defined by an inequality
EP06003955A EP1826518A1 (en) 2004-07-23 2006-02-27 Plaque de refroidissement pour fours à cuve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004035968A DE102004035968A1 (en) 2004-07-23 2004-07-23 Cooling plate useful for blast furnaces consists of copper or copper alloy with several coolant holes parallel to the hot side with ratio of hole diameter to mean interhole distance defined by an inequality
EP06003955A EP1826518A1 (en) 2004-07-23 2006-02-27 Plaque de refroidissement pour fours à cuve

Publications (1)

Publication Number Publication Date
EP1826518A1 true EP1826518A1 (en) 2007-08-29

Family

ID=42733777

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06003955A Withdrawn EP1826518A1 (en) 2004-07-23 2006-02-27 Plaque de refroidissement pour fours à cuve

Country Status (2)

Country Link
EP (1) EP1826518A1 (en)
DE (1) DE102004035968A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105814386A (en) * 2013-10-08 2016-07-27 哈奇有限公司 Furnace cooling system with thermally conductive joints between cooling elements

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004035968A1 (en) * 2004-07-23 2006-02-16 Km Europa Metal Ag Cooling plate useful for blast furnaces consists of copper or copper alloy with several coolant holes parallel to the hot side with ratio of hole diameter to mean interhole distance defined by an inequality
DE102008008477A1 (en) 2008-02-08 2009-08-13 Sms Demag Ag Cooling element for cooling the refractory lining of a metallurgical furnace (AC, DC)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2907511A1 (en) * 1979-02-26 1980-09-11 Gutehoffnungshuette Sterkrade COOLING PLATE FOR SHAFT OVENS AND METHOD FOR THE PRODUCTION THEREOF
DE19545984A1 (en) * 1995-12-09 1997-06-12 Gutehoffnungshuette Man Cooling plate for refractory lining of electric arc furnace
EP0816515A1 (en) * 1996-07-05 1998-01-07 MAN Gutehoffnungshütte Aktiengesellschaft Cooling plate for metallurgical furnaces of the iron and steel industry
DE10316367A1 (en) * 2003-04-10 2004-10-28 Km Europa Metal Ag cooling plate
EP1619461A1 (en) * 2004-07-23 2006-01-25 KM Europa Metal Aktiengesellschaft Cooling plate
DE102004035968A1 (en) * 2004-07-23 2006-02-16 Km Europa Metal Ag Cooling plate useful for blast furnaces consists of copper or copper alloy with several coolant holes parallel to the hot side with ratio of hole diameter to mean interhole distance defined by an inequality

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2907511A1 (en) * 1979-02-26 1980-09-11 Gutehoffnungshuette Sterkrade COOLING PLATE FOR SHAFT OVENS AND METHOD FOR THE PRODUCTION THEREOF
DE2907511C2 (en) 1979-02-26 1986-03-20 Kabel- und Metallwerke Gutehoffnungshütte AG, 3000 Hannover Cooling plate for shaft furnaces, in particular blast furnaces, and method for producing the same
DE19545984A1 (en) * 1995-12-09 1997-06-12 Gutehoffnungshuette Man Cooling plate for refractory lining of electric arc furnace
EP0816515A1 (en) * 1996-07-05 1998-01-07 MAN Gutehoffnungshütte Aktiengesellschaft Cooling plate for metallurgical furnaces of the iron and steel industry
DE10316367A1 (en) * 2003-04-10 2004-10-28 Km Europa Metal Ag cooling plate
EP1619461A1 (en) * 2004-07-23 2006-01-25 KM Europa Metal Aktiengesellschaft Cooling plate
DE102004035968A1 (en) * 2004-07-23 2006-02-16 Km Europa Metal Ag Cooling plate useful for blast furnaces consists of copper or copper alloy with several coolant holes parallel to the hot side with ratio of hole diameter to mean interhole distance defined by an inequality

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105814386A (en) * 2013-10-08 2016-07-27 哈奇有限公司 Furnace cooling system with thermally conductive joints between cooling elements
CN105814386B (en) * 2013-10-08 2017-10-27 哈奇有限公司 Stove cooling system with the heat conduction joint between cooling element
US10259084B2 (en) 2013-10-08 2019-04-16 Hatch Ltd. Furnace cooling system with thermally conductive joints between cooling elements

Also Published As

Publication number Publication date
DE102004035968A1 (en) 2006-02-16

Similar Documents

Publication Publication Date Title
DE3445371A1 (en) METHOD FOR PRODUCING TUBES FOR THE PETROLEUM AND NATURAL GAS INDUSTRY AND DRILL UNITS
EP1619461B1 (en) Cooling plate
DE102006018688B4 (en) Method for bending multiport tubes for heat exchangers
DE69203388T2 (en) Method of manufacturing a shell-and-tube heat exchanger.
DE1934339A1 (en) Method and device for the permanent connection of rotating parts, such as shaft parts or the like., By means of serrations
DE102006053702B4 (en) Heat exchangers, in particular gas coolers
EP1391521A1 (en) Cooling plate for metallurgical furnace
EP1826518A1 (en) Plaque de refroidissement pour fours à cuve
DE102008046167B4 (en) Assembly procedure for a split sprocket on a crankshaft
DE2220910A1 (en) METHOD AND DEVICE FOR THE PRODUCTION OF ARCHES FROM PIPES OR HOLLOW BODIES IN THE HOT BENDING PROCESS
EP1322790B1 (en) Cooling element for shaft furnaces
DE102012013494A1 (en) Cooling element for a melting furnace
DE102007016940B4 (en) manifold
EP1156124A1 (en) Cooling plate and method of producing
DE112016002244B4 (en) Heat exchanger and manufacturing process therefor
DE4203964A1 (en) RING COAT FOR A ROLLER FOR CONTINUOUS CASTING
DE3313998C2 (en) Cooling plate for metallurgical furnaces, in particular blast furnaces and processes for their production
EP1480915B1 (en) Limiting wall of a glass smelting plant impinged upon by a glass melt and cooled
DE2723506A1 (en) INCLINED ROLLING MILL FOR REDUCING LONG DISTURBED GOOD
DE19806788C2 (en) Cooling element for shaft furnaces, in particular blast furnaces
EP1077357B1 (en) Cooling element
DE3323781A1 (en) DEVICE FOR COOLING THICK-WALLED COMPONENTS, IN PARTICULAR FOR COOLING THE TUBE FLOORS OF HEAT EXCHANGERS
EP3748191B1 (en) Optimized chain length control
DE112016001755T5 (en) CONNECTING ROD AND THEIR MANUFACTURING PROCESS
EP2096398B1 (en) header plate of a header box and heat distributor for motor vehicles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20071128

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20080209